Under review as a conference paper at ICLR 2025

ENHANCING TRAINING ROBUSTNESS THROUGH
INFLUENCE MEASURE

Anonymous authors
Paper under double-blind review

ABSTRACT

In the field of machine learning, the pursuit of robust and accurate models is
ongoing. A key aspect of achieving robustness lies in identifying which data points
in the training set should be excluded and which high-quality, potentially unlabeled
data points outside the training set should be incorporated to improve the model’s
performance on unseen data. To accomplish this, an effective metric is needed
to evaluate the contribution of each data point toward enhancing overall model
performance. This paper proposes the use of an influence measure as a metric
to assess the impact of training data on test set performance. Additionally, we
introduce a data selection method to optimize the training set as well as a dynamic
active learning algorithm driven by the influence measure. The effectiveness
of these methods is demonstrated through extensive simulations and real-world
datasets.

1 INTRODUCTION

To build robust machine learning models, the significance of individual training data points cannot be
overstated. Each data point in the training set contributes uniquely to the model’s learning process,
shaping its performance, generalization, and resilience to various challenges (Blum & Langley, 1997).
Simply evaluating the model’s performance on the provided data is insufficient; understanding the
influence of individual training examples and making informed decisions about their inclusion or
exclusion is critical for developing robust and reliable models.

Recent advancements in machine learning have highlighted the importance of strategic data selection
and management during training. Techniques such as active learning (Settles, 2009) promote the
iterative selection of the most uncertain unlabeled data points for labeling and inclusion in the training
set. However, estimating uncertainty in deep neural networks (DNNs) is challenging due to their
tendency to exhibit overconfidence (Ren et al., 2021). To address this, methods like deep Bayesian
approaches (Gal et al., 2017b)), query-by-committee (Gorriz et al.,|2017), Variational Auto-Encoders
(Sinha et al.| 2019), adversarial learning (Ducoffe & Precioso, 2018} Mayer & Timofte, 2020), graph
convolutional networks (Caramalau et al., [2021), and noise stability (Li et al., |2024) have been
proposed to improve uncertainty estimates. However, these approaches assume a well-trained model
and fail to consider how model parameters might evolve when the training data is modified.

To bridge this gap, recent studies have focused on quantifying the impact of individual training
examples on model behavior, with the main challenge being the identification of an appropriate
evaluation metric. The Shapley value has emerged as a promising solution, inspiring a number of
Shapley-value-based approaches (Ghorbani & Zou, |2019; Jia et al.,|2019bjaj; (Ghorbani et al., |2020;
Kwon & Zou, 2022 Wang & Jia, 2023)). However, these methods often require multiple model
retrainings and evaluations, making them computationally expensive.

Techniques such as influence functions (Koh & Liang, |2017; |Pruthi et al., |2020; | Yeh et al., 2018}
Chen et al.,|2021) offer insights into the effect of individual data points on model predictions, helping
to identify and mitigate harmful or overly influential examples. For instance,|Chhabra et al.|(2024)
apply influence functions to measure the impact of training data on a specific model, improving
performance by pruning detrimental data points. Their method is highly efficient as it avoids the need
for model retraining. However, these algorithms may still fail in certain cases, as demonstrated in the
following simple example.

Under review as a conference paper at ICLR 2025

Binary Classification via Logistic Regression. We consider a logistic regression model p(z) =
(14 e=*#)~1, where B € R represents the coefficients. For a training set Z = {(x;,;)}"_, and a
validation set V, the influence function in |Chhabra et al.|(2024)) for example is defined as

I(—wi) = Y 9pLy,a; B)D_ 05L(ys wis B)) " 0pL(yi, wi; B),

(@y)eV i=1

where d3 = 0/08, © € R, y € {0,1} is a binary classification label, L represents the
cross-entropy loss, and 8 = argmingern >, L(y;,2:;8). According to (Chhabra et al.
(2024), samples z; with negative influence function values negatively impact the model’s per-
formance on the validation set and should be removed. For all training samples x;, the term

2 (zyyev 0Ly, ; 3)[2?:1 8/23L(yi, ;;)] ! remains constant, with only 93 L(y;, z;; 3) varying.
In the simple logistic regression scenario, we have g L (y;, 2;; 5) = [(1 + eib)~ — y;]z;. Assum-
ing 32, ey 9Ly, 23 B) 2012, O3L(yi, w45 B)) " > 0 and a; > 0, the training sample influence
is negative if and only if y; = 1. However, it is clearly incorrect to solely remove data points from
one class, as outliers in the other class may also negatively influence the model’s performance. For

higher-dimensional x;, as shown in Section E] using both simulated and real-world data, our method
consistently outperforms the approach proposed by|Chhabra et al.|(2024) and others.

Given the limitations of existing methods, we draw inspiration from local influence measures
developed in the statistical community (Zhu et al.,[2007; 2011} [Shu & Zhul [2019; |Sui et al.l 2023) to
propose a novel metric in this article. Our approach differs from previous ones that typically evaluate
the impact of perturbations on data samples or model parameters with a fixed model assumption.
Instead, our measure directly assesses the effect of minor perturbations to training samples on the
model’s performance on a test set, allowing the model to adapt to these changes. This method
provides a more accurate assessment of training robustness, with broad applications in various
downstream tasks. To implement this, we have developed a new perturbation manifold and expanded
the local influence framework. Using this innovative approach, we introduce two key metrics: one
for data trimming, aimed at identifying and removing training set anomalies that compromise model
stability on the test set, and another for active learning, which focuses on selecting the most impactful
unlabeled data to enhance training robustness. Moreover, acknowledging the challenges of slow
computation and high memory usage inherent in calculating exact local influence measures, we
propose two approximation methods. Our experiments on real-world datasets demonstrate that these
approximations achieve performance comparable to exact calculations while significantly reducing
computational overhead.

‘We summarize our contributions as follows,

(1) Unlike existing local influence measures, we propose a new metric that evaluates the impact of
perturbations to training samples on the model’s performance on test data.

(i) The proposed metric is applicable to both data trimming and active learning. For data trimming,
it evaluates the effects of minor perturbations to each sample, offering deeper insights into how
individual samples impact training robustness. In the context of active learning, the method
captures the relationship between training samples, unlabeled data, and parameter updates.

(iii)) We propose two approximation methods to alleviate the high computational cost of calculating
local influence measures. These algorithms significantly reduce computational overhead while
maintaining better performance than other methods, as demonstrated in our experiments.

2 A NEW INFLUENCE MEASURE

In this section, we begin by presenting essential background information, including the Perturbation
Manifold, before formally defining the proposed metric.

Perturbation Manifold. Our definition of the perturbation manifold closely follows that of |Shu
& Zhu|(2019). Given an input sample z = (x, y) in the training set Z = {z;}?_, and a machine

learning model with an estimated parameter vector 8, which is trained on Z, the prediction probability
for class ¢ € {1,..., K} is denoted as P(c|z,0). Let w = (w1, ...,w,) " be a perturbation vector

Under review as a conference paper at ICLR 2025

that varies within an open subset {2 C RP. The perturbation w is applied to «, thereby affecting
the learning of the parameter vector 6. We denote the parameter vector obtained by the model after
perturbing the training sample 2 with w as 6(z+w) with §(z) = 6. We define P(c|z+w, O(x+w))
as the prediction probability under the perturbation w such that 25:1 Plclz +w,8(x +w)) =1. Tt
is assumed that there exists a wg € 2 such that P(c|& + wo, 8(x 4+ wo)) = P(c|z, §). Additionally,
we assume that { P(c|@ + w, 6(x + w)) }/ | is positive and sufficiently smooth for all w € €.

Following the development in (Zhu et al., [2007; 2011), we define M = {P(c|x + w, f(x + w)) :
w € O} as a perturbation manifold. The tangent space of M at w is denoted by T, which is spanned
by {dl(wlc, x,0(x)) /0w }r_,, where l(w|c, &, 0(x)) = log P(c|® + w, O(x + w)). Let G, (w) =
S 0l l(wle, ®, 0(x))dul(w|c, x, 8(x)) P(c|@ + w, (@ + w)) with 9, = (8/wr, ..., D/dw,).
If G, (w) is positive definite, then M is a Riemannian manifold (Shu & Zhu, 2019) with G, (w)
serving as the Riemannian metric tensor (Amari, |2012; |Amari & Nagaoka, [2000).

Although G, (w) is often not positive definite in classification problems, we can still reduce the
dimensionality of the perturbations and reconstruct a Riemannian manifold (Shu & Zhu, |[2019).

The Influence Measure. Let L(y', x’; 8) denote the loss function of the model with parameter 6 on
z' = (a',y) ¢ Z, we can get the expression for the (first-order) influence measure:

FI(2',2) = 0uL(y, @'; 0(x + w0))GL(w0)O, Ly, ' O(z + w)), @2.1)
where G (wy) is the pseudoinverse of G (wp).

We consider a linear perturbation approach where applying perturbation w to the training sample
z transforms (z,y) into (2 + w, y). Consequently, the parameter vector updates to 6(z + w) :=
n~targmingeo{> 1, L(yi,zi;0) + L(y,x + w; 0) — L(y, x; 0) }, with wy = 0. Using the chain
rule, we can derive the expression for ,L(y/, '3 (x + wy)):

OuL(y',@';0(z + wo)) = 06 L(y, 2';6(2))0u0(x + w)| (2.2)

w=wq
Here, 0,0(x + w) |w:w0 R~ n_lHé_lamagL(y, x; 0(x)), whose derivation is detailed in Appendix

@), where Hy := n~' 0" | 93 L(yi, x;; 8(x)). The term 0,09 L(y, x; §(x)) represents the gradient
of the loss function L first taken with respect to the model parameters 8 and then with respect to x,
evaluated at the perturbed training sample (x, y).

~

For the computation of G (wy), P(c|x + wo, 8(x + wp)) can be directly obtained using the learned

model parameter vector 6 and the unperturbed sample point 2. The calculation of d,,1(wo|c, x, 6(x))
requires the application of the chain rule:

Aul(wole, , O(x)) =8y, log P(c|z + wp, O(x + wp)) (2.3)
=8g log P(c|z + wo, 0(+ wp)) - 0u0(x + w)|w—w,

+ O log P(c| + wo, B(x + wp)).
All differentiation operations can be easily computed using backpropagation (Goodfellow et al.,[2016))
in deep learning libraries such as TensorFlow (Abadi et al.,|2016) and PyTorch (Paszke et al.| 2017).
This entire process is efficient and does not require retraining the model parameters.

Theorem 1. If represents a diffeomorphism of w, then FI(2’, z) is invariant under any reparame-
terization associated with ¢.

Compared to widely used measures in Euclidean spaces, such as the Jacobian norm (Novak et al.|
2018) and Cook’s local influence measure (Cookl, [1986), Theorem 1 demonstrates that FI(2’, z)
remains invariant under any diffeomorphic transformation (e.g., scaling) of the perturbation vector w.
The proof of Theorem 1 can be found in|Shu & Zhu|(2019).

The significance of Theorem 1 is especially pronounced when there are scale differences among the
dimensions of x. For instance, if certain dimensions have significantly larger values than others, the
contribution of perturbations to those dimensions may appear exaggerated. However, our FI(2’, z)
mitigates this scaling issue by employing the metric tensor of the perturbation manifold instead of
that of the standard Euclidean space.

Under review as a conference paper at ICLR 2025

3 FI FOR DATA TRIMMING.

The primary goal of data trimming is to eliminate training samples that may compromise the model’s
performance on datasets beyond the training set. Since our proposed influence measure (FI) quantifies
the impact of each training sample on the model’s performance on test sets, it serves as a natural tool
for data trimming.

From a model robustness perspective, if a small perturbation in a training sample leads to a significant
effect on the model’s performance on the test set, that sample should be excluded, which aligns with
the principle of our proposed metric. Given the inherent challenge of ensuring that all samples in
the training set are entirely accurate, a sample with excessive influence could severely degrade the
model’s overall performance if it contains any contamination. Therefore, to enhance robustness, such
samples should be removed from the training set.

Following the setup of |(Chhabra et al.| (2024), we introduce a training set Z, a validation set V),
and a base model F. In this context, we assess the impact of each training sample on the model’s
performance by computing the FI for each training tuple z; € Z with respect to V. To achieve
this, we extend Equation [2.1]to encompass the entire validation set. This involves replacing the loss
function for an individual validation sample with the mean loss function across the entire validation
set, as follows:

FI"(2) = 8, L(V; 0(z + wo))GL(w0)0, L(V; (x + w)),
where 9, L(V; 0(z + wy)) := ﬁ > (@ ey Ow Ly, @ O(z + wp)).
The algorithm for computing FI*" is outlined in Algorithm After computing'these values, we can
sort all data points in the training set in descending order based on their FI“’ values and remove

the top b points to enhance the model’s performance on the test set. For the detailed data trimming
algorithm, please refer to Algorithm 3]

Algorithm 1 Calculation of FI*"
Input: Training set Z, Validation set }, Base model F
Output: Influence measure vector FI*! ¢ RIZI1x1
1: procedure FI_CALCULATION(Z, V, F)
2: Train F with Z, and obtain the parameter vector 0
3 Generate an empty vector FT of size | Z| x 1
4 Calculate 3+ 3= ey Do L(Y', 2; 6) and Hy
5: for every z; in Z do
6: Calculate G5, (wp) and 0509 L(y;, x;; é)
7
8
9
0
1:

0uL(V;0) < L3 0 ey Qo LY, @';0) H ' 0,00 L(yi, wi; 6)
FI"[i] + 0, L(V;0)GL (wo)d] L(V;0)
end for
return F
end procedure

Iutil

4 FI FOR ACTIVE LEARNING.

In active learning, the primary objective is to identify the most uncertain or informative samples from
an unlabeled pool for annotation, typically in sequential batches. After each round of annotation,
the newly labeled data are combined with the existing labeled set to retrain the model and improve
its performance. |Li et al.| (2024) argue that if a small perturbation to the model parameters leads
to significant changes in the prediction for a given sample, this indicates high uncertainty for that
sample under the current model, suggesting that it should be labeled and added to the training set.
Our approach is more fundamental: since the model parameters are derived from the training data,
we directly assess how perturbations to the training samples influence the model’s predictions for the
unlabeled samples. If slight perturbations to most training samples substantially alter the model’s

Under review as a conference paper at ICLR 2025

prediction for a given sample, it likely contains missing information from the training set and should
therefore be included.

We now introduce a method for active learning using the proposed FI. For an unlabeled sample
Tuniabel, W first assign it a predicted label and treat it as a validation sample. Next, we calculate
the influence measure of &,,,;.p.; With respect to each point in the training set. The overall influence
measure FI°(&,,ue1) is derived by aggregating these individual measures either by averaging or
using specific quantiles of these FI values. The FI“°(&,,a;) is defined as follows:

FIacrive (munlahel) = g({FI(zunlabeh zZ;) }?:1) ’ (4 1)

where g represents the aggregation function, zyuaper = (Tuntaver yp,ed), and yp,.q is the predicted label
assigned by the current model for x,,ape;-

During each round of active learning, we begin by computing FI**. We then sort all the samples
in the unlabeled pool in descending order based on their FI*’* values. The top-ranked samples
are labeled and added to the training set. In the subsequent round, the model is retrained, FIécive ig
recalculated, and the process is repeated.

The active learning process described above has two main drawbacks. First, computing FI%/"
requires substantial storage for second-order derivatives, particularly in models with numerous
parameters or high-dimensional data. To address this issue, we propose the KFSVD approximation
method, which combines K-FAC and Truncated SVD to effectively reduce storage requirements.
Second, the necessity to recalculate FI*“** for all unlabeled data in each round significantly decreases
computational efficiency. To mitigate this, we implement a subsampling approximation that enhances
overall performance. The details of these two approximation methods are as follows.

Algorithm 2 Calculation of FI“""¢
Input: Labeled pool of training data £, Unlabeled pool of training data I/, Base model F, Aggregation
function g, Truncated SVD parameter k
Output: Influence measure vector FI“""¢ ¢ RIUIx1
procedure F1““*_.CALCULATION(L, U, F, g, k)
: Train F with £, and obtain the parameter vector 0
Generate an empty vector F1°"* of size |U| x 1
Calculate H with K-FAC approximation

1:
2
3
4:
5. forevery 2 inU do
6
7
8

Obtain an estimated labf,l y; with F
Calculate 9p L(;, 2%; 6)

T+ 0

9: for every z£ in £ do
10: Calculate G .2 (wo)
11: Calculate A x i, Umxi and V., with power iteration
12: 8magL(y]§,:B£’;é) — UkaAkaVd—&k
13: 0w L(fi, @5 0) < Do L(fi, @4; 0) H 05,00 L(yf , f; 6)
14: T = T U{0uL(ii, 245 0)G £ (w0)05 L(gi 25 6)}
15: end for '
16: FI“™[i] + g(J)
17: end for .
18: return F14"

19: end procedure

KFSVD approximation, which combines the Kronecker-factored (K-FAC) approximation (Martens
& Grossel, [2020; [Nickl et al., [2024) with Truncated Singular Value Decomposition (Truncated-SVD)
approximation (Golub & Reinsch||1971) to mitigate memory consumption associated with the Hessian
matrix Hy and the second-order partial derivatives 0,09 L(y, x; 6(x)). The K-FAC algorithm is
a widely recognized technique for approximating the Hessian matrix, which not only accelerates
computations but also significantly reduces storage requirements. Meanwhile, the Truncated-SVD

Under review as a conference paper at ICLR 2025

approximation employs power iteration and related techniques to compute the top-k eigenvalues and
their corresponding eigenvectors of 95, Jg L(y, x; é(m)), thereby providing an effective approximation
of these second-order partial derivatives. Assuming the dimensionality of the sample covariates
is d and the number of model parameters is m, the Truncated-SVD approximation enables the
decomposition of the second-order partial derivatives as 0,09 L(y, x; é(w)) = UmxkAkkadE &

where Ay, is a diagonal matrix containing the top-k eigenvalues of 8,9 L(y, x; 8(x)) and Uy, x 1
and V. are comprised of k orthogonal vectors. Consequently, the Truncated-SVD approximation
reduces the storage requirement for the second-order derivatives from m x dto (m +d + 1) x k.

Algorithmprovides a detailed procedure for calculating FI1** using the KFSVD approximation.

Subsampling approximation, which utilizes subsampling and random forest techniques to enhance
computational efficiency. Specifically, we extract a small subset of samples (e.g., 20%) from the
unlabeled pool and accurately compute their FI*“*, These computed values are then used to sort
the samples. The features of each sample, along with their corresponding ranks, serve as covariates
and target variables to create a new dataset. Subsequently, we train a regression model using random
forests on this dataset and leverage the trained model to predict the ranks of other samples. Selection
in each round is based on these predicted ranks. Since the computation of FI** is the most time-
consuming part of the workflow, the overall acceleration is directly correlated with the proportion
of samples for which we choose to compute FI*“** accurately. For instance, selecting 20% of the
samples can reduce the total processing time to % of the original duration.

In practice, we integrate both approximation methods to develop a comprehensive FI1*“"_based active
learning algorithm. This algorithm effectively addresses the storage and computational efficiency

challenges inherent in calculating FI***, The detailed procedure is outlined in Algorithm

5 EXPERIMENTAL RESULTS

In this section, we present experimental results that illustrate how our newly proposed metrics, Frit
and FI*"¢, contribute to enhancing model robustness. We compare our algorithms with state-of-the-
art strategies in both data trimming and active learning scenarios, thereby validating the effectiveness
of our approach on both simulated and real-world datasets.

5.1 DATA TRIMMING

In this subsection, we conduct simulations using both linear and nonlinear models to demonstrate
how our algorithm enhances data trimming efficiency and evaluate the effectiveness of the proposed
FI on real-world datasets. The latest data trimming method, Influence Value (IV), introduced by
Chhabra et al.|(2024), serves as the primary baseline for comparison in these experiments.

Validation on 2D Linear Model. Taple 1: Comparison of two methods on linear model. Number of
Logistic regression is utilized cases where FI outperforms IV across 30 random seeds, along with
for this binary classification task. performance improvements. Acc_FI: the mean accuracy by FI, and
We begin by generating several AccIV:byIV.

datasets by sampling from two
isotropic 2D Gaussian distribu- # of deleted points ~ # of better case ~ Acc_FI(%) AccIV(%)

tions. Each dataset comprises 150 5 3 96221065 95774076
training samples, 100 validation 10 28 06204065 94.84+1.07
samples, and 600 test samples. 20 30 96.23+0.64 93.36+2.21

The experimental settings for this
scenario are consistent with those of the study by |Chhabra et al.| (2024). To account for the ran-
domness inherent in the sampling process, we analyze our method on datasets generated under the
same distribution but with different random seeds. As shown in Table [T} our method consistently
enhances model performance compared to theirs in most cases, particularly when trimming 5, 10,
and 20 samples, with thirty different random seeds employed each time. Moreover, it is evident
from Figure[T]C that IV tends to trim samples from a specific class under certain conditions. In this
context, Figure[I]D clearly demonstrates that in some scenarios IV fails, while our method continues
to perform effectively.

Under review as a conference paper at ICLR 2025

Training Set Trimmed Samples (Ours) Trimmed Samples (IV) Test Set Performance

©

0%
K

Feature 2
o
°
8
°
Feature 2
Feature 2
Py
Feature 2

IS
>
»

~

Feature 1 Feature 1 Feature 1 Feature 1

Figure 1: Performance under Linear Model. Different colored points represent different classes.
A shows the training set. B and C respectively denote the samples to be trimmed by FI and IV. D
denotes test set. Green line: boundary without trimming; Red line: boundary after FI trimming; and
Blue line: boundary after IV trimming.

Validation on 2D Nonlinear Model. After demonstrating the effectiveness of our method in
linear scenarios, we now extend our examination to nonlinear cases. To achieve this, we con-
struct a binary classification dataset that is non-linearly separable, with each class represented
by a crescent-shaped region. A more intuitive understanding can be obtained from Figure [9]
We employ a neural network that

includes an input layer, two hid- Table 2: Comparison of two methods on nonlinear model. Number
den layers with ReLU activation of cases where FI outperform IV across 20 random seeds, along with
functions, and an output layer performance improvements. Acc_FI: the mean accuracy by FI, and
with a sigmoid activation func- AccIV:byIV.

tion. Similar to the linear case,
we conduct repeated experiments ~ # of deleted points # of better case ~ Acc_FI(%) AccIV(%)
in the nonlinear scenario. Each

. .. 5 17 89.90+£2.16 87.50+2.46
dataset comprises 500 training 10 17 00244205 88.02-42.62
samples, 250 validation samples, 20 15 90.32+1.67 87.80+2.54

and 250 test samples. As shown
in Table[2] our method achieves a higher average accuracy and outperforms the other methods in most
cases across the 20 repetitions. Figure [J]illustrates instances where utilizing IV to remove training
points can lead to a deterioration in model performance under certain conditions.

Validation on Real-World Datasets. We evaluate the effectiveness of our proposed methods using
four real-world datasets: two tabular datasets, Adult (Kohavi et al., [1996) and Bank (Moro et al.|
2014); a visual dataset, CelebA (Liu et al.L|2018)); and a textual dataset, Jigsaw Toxicity (Noever, [2018)).
Additional information regarding the datasets and experimental details can be found in Appendices
and Both FI*! and TV are evaluated on the validation set, with Logistic Regression serving as
the base model. The results on the test sets of these datasets are presented in Figure

As illustrated in Figure[2| our findings indicate that under a limited budget b, our FI data trimming
method consistently outperforms two baseline models, IV and Random Trimming. Among the
four datasets examined, Random Trimming demonstrates no improvement in model performance.
Although IV exhibits a notable enhancement on Adult and Bank, it tends to remove important data
points on CelebA, resulting in decreased performance, and shows no improvement on Jigsaw Toxicity
compared to Random Trimming. This suggests that IV may fail in certain scenarios. In contrast, our
method consistently achieves the maximum improvements across all datasets, particularly on the
Bank dataset, where accuracy increases by more than 10%. Interestingly, our method performs better
on real-world datasets than on simulated ones. This is largely due to the simplicity of the simulated
datasets, which are two-dimensional with clear boundaries effectively separating the classes and
contain no erroneous data points. In such cases, a sufficiently large dataset allows the model to
easily find the optimal boundary, minimizing the advantages of data trimming. In contrast, real-world
datasets are typically high-dimensional and more complex, often containing errors. Here, the benefits
of removing potentially erroneous high-influence points become more evident. To support this, we
introduce noise into the real-world datasets and conduct further experiments; details of the noise
method are in Appendix [D.1] and results are shown in Figure[8] The findings clearly demonstrate that

Under review as a conference paper at ICLR 2025

both FI and IV outperform Random Trimming, with our method retaining significant advantages over
IV, further confirming its robustness.

Adult Bank CelebA Jigsaw Toxicity

0.900
0810
0.898
0785
0.805 0.896

0.780 0.894

0.800
0.892
0.775

0.795 0.890

Accuracy

0770 0.888

0.790

_—o—0—-o
oo

béddase.

& 0.886
b Ah bt 44

0.765
0.884

0785

100 20 40 60 80 100
@ Fiours) @ V@ Random

200 20 40 60 80
Del num

50 100 150 200 0 50

Figure 2: Accuracy curves of three data trimming methods on test sets of Adult, Bank, CelebA and
Jigsaw Toxicity.

5.2 ACTIVE LEARNING

In this section, we conduct numerical experiments on three simple tabular datasets and three complex
image datasets to demonstrate the effectiveness of the proposed FI metric in active learning. We
compare our method with two state-of-the-art active learning baselines including IV (Chhabra et al.|
2024) and BALD (Gal et al., [2017a;; [Kirsch et al.| [2019;|2023)). Random Selection is also included as
a baseline. All reported results are averaged over three runs to ensure a reliable evaluation.

Note that, IV, as proposed by |Chhabra et al.| (2024), originally calculates influence values only once
during the initial selection, which can hinder overall performance since these values are not updated
with subsequent labelings. To ensure fairness in our comparisons, we modified IV to recalculate
influence values in each round of selection, and this updated version is used in our experiments.

For our method, the aggregation function g({FI(Zynaper, i)}) in Equation denotes the oper-
ation of calculating the mean of the data points from the set {FI(zaper, 2i) }1—; that fall between
the 10th and 90th percentiles, sorted in descending order. In other words, we compute the mean of
the middle 80% of the data after sorting. This approach effectively excludes extreme values, thereby
enhancing the robustness of our final result.

Tabular Datasets. For the tabular datasets, we employed a Logistic Regression model. The total
number of annotation rounds for each experiment, along with the settings for the unlabeled pool size
and acquisition size, are detailed in Table[d} As shown in Figure 3] our method outperforms the other
approaches on these simple tabular datasets. Random Selection performs reasonably well initially, but
as data volume increases, improvements in model performance diminish. BALD shows comparable
performance to Random Selection on tabular datasets. IV initially underperforms compared to
Random Selection, but as more data is added, its performance improves and eventually becomes
comparable to BALD. Our method starts similarly to BALD, but its focus on more challenging
samples allows it to quickly address missing information once the model achieves a certain accuracy.
As a result, in the latter stages of each graph, our method distinctly diverges from the others.

CelebA

Adult Jigsaw Toxicity

0.850 -
0.900 -

0.825 1
0.850 4
0.800 -

0.775 1 0.8001
0.750 4 0.750

0.725 4

——- Random
—— Fl(ours)

0.700

0.675 4

—=- Random
—— Fl(ours)

0.700 1

06501 |

——- Random
—— Fl(ours)
v

Bald

0 1000 2000 3000 4000 5000 6000

500

1000
Dataset Size

1500

0

1000 2000 3000 4000

Figure 3: Classification performance due to the different active learning methods on Adult, CelebA,
and Jigsaw Toxicity.

Under review as a conference paper at ICLR 2025

Image Classification. The data in the tabular datasets have been processed, resulting in high test
accuracy with logistic regression. In contrast, for the image datasets—MNIST (LeCun et al.,|1998)),
EMNIST (Cohen et al., 2017), and CIFAR-10 (Krizhevsky & Hinton| 2009)—the input consists of
raw images, and we employ a Convolutional Neural Network (CNN) as the classifier. To simplify
the computation of FI*“**_ we utilize the outputs from the last layer of the neural network and focus
on the parameters of that layer. However, during each training iteration, all parameters of the neural
network are updated, not just those of the final layer. The settings for the unlabeled pool size and
acquisition size for each image dataset are provided in Table[5] Experimental results indicate that our
method maintains comparable time consumption to other approaches, even with complex image data
(see Table|[/|for details). Our primary focus in active learning is enhancing model accuracy rather
than speed. We developed CNNss tailored for MNIST and EMNIST, with specifications in Table[6] For
CIFAR-10, we adopted a model architecture from Trockman & Kolter| (2023). As shown in Figure E],
both BALD and IV methods are suited to different scenarios, but our method consistently outperforms
others across all datasets, particularly in more complex situations. The relatively straightforward
MNIST dataset does not fully demonstrate our method’s advantages, so we created more challenging
unbalanced and redundant MNIST datasets. Comparisons on these datasets reveal our method as the
most effective, with advantages even more pronounced than on the original MNIST, as illustrated in
Figure Additionally, Figurevisually represents the selection preferences of FI**, highlighting
its tendency to identify points that are more challenging for the current model to distinguish.

MNIST EMNIST CIFAR10
0.880 A

0.950 4 0.825 4

0.860 4
0.900 4 0.8001

0.840 4
0.775

0.850 4 0.820 1

0.750 1
0.800

0.800 - 0.725 4

Test Accuracy

0.780

.700 4
0-700 === Random 0.760 === Random
—— Fl(ours) 0.7404 —— Fl(ours)

07501 HE? —=- Random
7 —— Fl(ours)
0.700 4 v

Bald 06504 | Bald 07204 ! Bald

0.675 4

100 200 300 400 500 600 800 1000 1200 10000 15000 20000
Dataset Size

Figure 4: Classification performance due to the different active learning methods on MNIST, EMNIST,
and CIFAR-10.

Ground Truth: 5 Ground Truth: 5 Ground Truth: 4

S ¥

1.0

-
o
I
o

0.59

Probability
o
w
|
o
w

0.0

o
o

— T T T T T T 0.0 —T— —T T T T — T T T T T
012 3 456 7 89 012 3 456 7 8 9 012 3 456 7 89
Predicted Digit Predicted Digit Predicted Digit

Figure 5: Images with the highest FI**¢ selected in the first round of active learning for the MNIST
problem, along with their corresponding prediction probability distributions.

6 CONCLUSION

In this paper, we introduce a novel local influence metric that evaluates the impact of perturbations
to training samples on model performance concerning test samples. This metric is applicable in
both data trimming and active learning, offering valuable insights into the contributions of individual
samples and their relationships with unlabeled data.

Under review as a conference paper at ICLR 2025

Furthermore, we propose two approximation methods to mitigate the computational costs associated
with calculating local influence measures. Our experimental results demonstrate that these algorithms
effectively reduce costs while outperforming other state-of-the-art methods.

REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}: a system for
{Large-Scale} machine learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pp. 265-283, 2016.

Shun-ichi Amari. Differential-geometrical methods in statistics, volume 28. Springer Science &
Business Media, 2012.

Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191. American
Mathematical Soc., 2000.

Avrim L Blum and Pat Langley. Selection of relevant features and examples in machine learning.
Artificial intelligence, 97(1-2):245-271, 1997.

Razvan Caramalau, Binod Bhattarai, and Tae-Kyun Kim. Sequential graph convolutional network
for active learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9583-9592, 2021.

Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. Hydra: Hypergradient
data relevance analysis for interpreting deep neural networks. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(8):7081-7089, May 2021. doi: 10.1609/aaai.v35i8.16871. URL
https://ojs.aaai.org/index.php/AAAI/article/view/16871.

Anshuman Chhabra, Peizhao Li, Prasant Mohapatra, and Hongfu Liu. “what data benefits my
classifier?” enhancing model performance and interpretability through influence-based data
selection. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=HE9eUQlAvo.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
to handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pp.
2921-2926. IEEE, 2017.

R Dennis Cook. Assessment of local influence. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 48(2):133-155, 1986.

Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a margin
based approach. arXiv preprint arXiv:1802.09841, 2018.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pp. 1183-1192. PMLR, 2017a. URL http://
proceedings.mlr.press/v70/gall7a.html.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
In International conference on machine learning, pp. 1183-1192. PMLR, 2017b.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International conference on machine learning, pp. 2242-2251. PMLR, 2019.

Amirata Ghorbani, Michael Kim, and James Zou. A distributional framework for data valuation. In
International Conference on Machine Learning, pp. 3535-3544. PMLR, 2020.

Gene H Golub and Christian Reinsch. Singular value decomposition and least squares solutions. In
Handbook for Automatic Computation: Volume II: Linear Algebra, pp. 134—151. Springer, 1971.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

10

https://ojs.aaai.org/index.php/AAAI/article/view/16871
https://openreview.net/forum?id=HE9eUQlAvo
http://proceedings.mlr.press/v70/gal17a.html
http://proceedings.mlr.press/v70/gal17a.html

Under review as a conference paper at ICLR 2025

Marc Gorriz, Axel Carlier, Emmanuel Faure, and Xavier Giro-i Nieto. Cost-effective active learning
for melanoma segmentation. arXiv preprint arXiv:1711.09168, 2017.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
Costas J Spanos, and Dawn Song. Efficient task-specific data valuation for nearest neighbor
algorithms. arXiv preprint arXiv:1908.08619, 2019a.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Giirel, Bo Li,
Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the
shapley value. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
1167-1176. PMLR, 2019b.

Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurlPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
7024-7035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
95323660ed2124450caaac2c46b5ed90-Abstract.html.

Andreas Kirsch, Sebastian Farquhar, Parmida Atighehchian, Andrew Jesson, Frédéric Branchaud-
Charron, and Yarin Gal. Stochastic batch acquisition: A simple baseline for deep active learning.
Trans. Mach. Learn. Res., 2023, 2023. URL https://openreview.net/forum?id=
vCcHWQVYNB JW.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885-1894. PMLR, 2017.

Ron Kohavi et al. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In Kdd,
volume 96, pp. 202-207, 1996.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL https://www.cs|
toronto.edu/~kriz/learning-features—-2009-TR.pdf.

Yongchan Kwon and James Zou. Beta shapley: a unified and noise-reduced data valuation framework
for machine learning. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.),
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume
151 of Proceedings of Machine Learning Research, pp. 8780-8802. PMLR, 28-30 Mar 2022. URL
https://proceedings.mlr.press/v151/kwon22a.html.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Xingjian Li, Pengkun Yang, Yangcheng Gu, Xueying Zhan, Tianyang Wang, Min Xu, and
Chengzhong Xu. Deep active learning with noise stability, 2024.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes (celeba)
dataset. Retrieved August, 15(2018):11, 2018.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature, 2020. URL https://arxiv.org/abs/1503.05671.

Christoph Mayer and Radu Timofte. Adversarial sampling for active learning. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3071-3079, 2020.

Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success of bank
telemarketing. Decision Support Systems, 62:22-31, 2014.

11

https://proceedings.neurips.cc/paper/2019/hash/95323660ed2124450caaac2c46b5ed90-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/95323660ed2124450caaac2c46b5ed90-Abstract.html
https://openreview.net/forum?id=vcHwQyNBjW
https://openreview.net/forum?id=vcHwQyNBjW
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.mlr.press/v151/kwon22a.html
https://arxiv.org/abs/1503.05671

Under review as a conference paper at ICLR 2025

Peter Nickl, Lu Xu, Dharmesh Tailor, Thomas Mollenhoff, and Mohammad Emtiyaz Khan. The
memory perturbation equation: Understanding model’s sensitivity to data, 2024. URL https:
//arxiv.org/abs/2310.19273.

David Noever. Machine learning suites for online toxicity detection. arXiv preprint arXiv:1810.01869,
2018.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Sensitivity and generalization in neural networks: an empirical study. arXiv preprint
arXiv:1802.08760, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zach DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.
URL https://api.semanticscholar.org/CorpusID:40027675.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data influ-
ence by tracing gradient descent. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 19920-19930. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/f11le/e6385d39ec9394f2f3a354d9d2b88eec—Paper.pdf.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta, Xiaojiang Chen,
and Xin Wang. A survey of deep active learning. ACM computing surveys (CSUR), 54(9):1-40,
2021.

Burr Settles. Active learning literature survey. 2009.

Hai Shu and Hongtu Zhu. Sensitivity analysis of deep neural networks. In Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications
of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, AAAT'19/TAAT 19/EAAT’19. AAAI Press, 2019. ISBN 978-1-57735-809-1.
doi: 10.1609/aaai.v33i01.33014943. URL https://doi.org/10.1609/aaai.v33101,
33014943.

Samarth Sinha, Sayna Ebrahimi, and Trevor Darrell. Variational adversarial active learning. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 5972-5981, 2019.

Yang Sui, Yukun Huang, Hongtu Zhu, and Fan Zhou. Adversarial learning of distributional rein-
forcement learning. In International Conference on Machine Learning, pp. 32783-32796. PMLR,
2023.

Asher Trockman and J. Zico Kolter. Patches are all you need? Trans. Mach. Learn. Res., 2023, 2023.
URLhttps://openreview.net/forum?id=rAnB7JSMXL.

Jiachen T Wang and Ruoxi Jia. Data banzhaf: A robust data valuation framework for machine
learning. In International Conference on Artificial Intelligence and Statistics, pp. 6388—6421.
PMLR, 2023.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm:
Deep self-attention distillation for task-agnostic compression of pre-trained transformers. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 5776-5788. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/3f5ee243547dee91fbd053clcd4a845aa—Paper.pdfl

Chih-Kuan Yeh, Joon Sik Kim, Ian E. H. Yen, and Pradeep Ravikumar. Representer point selection
for explaining deep neural networks, 2018.

Hongtu Zhu, Joseph G. Ibrahim, Sikyum Lee, and Heping Zhang. Perturbation selection and influence
measures in local influence analysis. The Annals of Statistics, 35(6):2565-2588, 2007. ISSN
00905364. URL http://www. jstor.org/stable/25464601.

Hongtu Zhu, Joseph G Ibrahim, and Niansheng Tang. Bayesian influence analysis: a geometric
approach. Biometrika, 98(2):307-323, 2011.

12

https://arxiv.org/abs/2310.19273
https://arxiv.org/abs/2310.19273
https://api.semanticscholar.org/CorpusID:40027675
https://proceedings.neurips.cc/paper_files/paper/2020/file/e6385d39ec9394f2f3a354d9d2b88eec-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e6385d39ec9394f2f3a354d9d2b88eec-Paper.pdf
https://doi.org/10.1609/aaai.v33i01.33014943
https://doi.org/10.1609/aaai.v33i01.33014943
https://openreview.net/forum?id=rAnB7JSMXL
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://www.jstor.org/stable/25464601

Under review as a conference paper at ICLR 2025

A DERIVATION OF EXPRESSION FOR &,é(a: +w

Moz

Recall that 6 (z) minimizes the empirical risk: R(6) := LS L(yi, ®i; 0). We assume that R is
twice-differentiable and strongly convex in 0, i.e., Hy := DRR(9) = LS O3 L(yi, s 6) exists
and is positive definite. This ensures the availability of H é_l, which will be utilized in the subsequent

derivation. The perturbed parameter vector é(m + w) can be written as

~

. 1 1
0(r+w)= arglgélél{R(O) + EL(y, T+ w;0)— EL(y, x;0)}. (A1)

Define the parameter change d(w) = @(z + w) — 6(x), and note that, since 6(z) does not depend
on w, the quantity we aim to calculate can be expressed in terms of it: J,,0(x + w) = 0,,0(w).

According to the definition of 6(z + w), we know

A 1 A 1 A
0=09R(O(x +w))+ gc'?gL(y, T+ w;0(x+w))— E@gL(y, x;0(x + w)). (A2)

Next, since (x + w) — O(x) as w — 0, we perform a Taylor expansion of the right-hand side:
N 1 N 1 A
0=0gR(O(x + w)) + E@gL(y, T+ w;f(x+w)) — ﬁagL(y, z;0(x + w)), (A.3)
A 1 ~ 1 A
~ [0gR(6(x)) + E@gL(y,w +w;0(x)) — E@gL(y,w; 6(x))]

+ [O3RO@)) + 03U + w: () — ~RL(,: 0()]5(w). (Ad)

Solving for §(w), we get

5((41) ~— [83R(é($)) + %%L(y, T+ w; é(a:)) — %agL(y, x; é(m))}fl s
- [0pR(O(x)) + %GeL(y,w +w;b(x)) - %%L(y,w; 6(z))].

Since @(z) minimizes R, we have dp R(8) = 0. We further assume that 93 L(y, «; 0 (x)) is continu-
ous on x, then we have

(@) =~ [0BRO@)] 7 [0 L, + w3 6() ~ 0 Lp,w:0(@)]. (A6)

After differentiation, the final expression can be obtained,

awé(w + w)‘w:w() = aw6<w)|w:wo

1 A
~ ——H, ' 9,00 L(y, 2;6(x)). (A7)
n

B ALGORITHMS

Algorithm 3 Data Trimming using FI*"/

Input: Training set Z, Validation set V, Base model F, Budget b
Output: Trimmed Dataset Z’
1: procedure DATATRIMMING(Z, V, F, b)
2 Call the algorithm FI“/-CALCULATION(Z, V, F) to obtain FT*! ¢ RIZ|x1
3: Select b samples z; € Z as {Z;}, whose FI"'[4] rank in the top b
4: 2+ Z\{Zy}
5
6:

return Z’
end procedure

13

Under review as a conference paper at ICLR 2025

Algorithm 4 Active Learning using F1%"""

Input: Labeled pool of training data £, Unlabeled pool of training data I/, Base model F, Number
of samples for annotation (per round) N, Aggregation function g, Truncated SVD parameter k,
Subsampling rate p € [0, 1]

Output: Updated labeled pool £

1: procedure ACTIVELEARNING(L, U, F, N, g, k, p)
2 for j < 1to NUM _rounds do
3 Subsample U, C U s.t. x € U, w.p. pforallz € U
4: Call the algorithm FI“’*-CALCULATION(L, U,,, F, g, k) to obtain FI*"* ¢ RI“p|x1
5: for z;; € U, do
6 74 4 is the rank of FI*’*[i'] sorted in ascending order
7 end for
8: Train a random forest i with {(x;, rir)}ifpz 1
9: for x; € U do
10: T h({EZ)
11: end for
12: Select N samples z; as { Xy }, whose #; ranks in the top N
13: Take { X } out of U, and query their labels {Y }
14: Update £ <+~ LJ{Xn,Yn}
15: end for
16: return £

17: end procedure

C DATA SOURCES

Adult. The Adult dataset consists of 48,842 instances and 14 features, including categorical and
integer types. Extracted from the 1994 Census database by Barry Becker, it focuses on predicting
whether an individual’s annual income exceeds $50,000. Records were filtered based on criteria such
as age, gross income, and work hours, making this dataset a valuable resource for classification tasks
in social science and Access Link: Adult Database

Bank. The Bank dataset pertains to direct marketing campaigns conducted by a Portuguese banking
institution, focusing on phone call outreach. The primary objective of this dataset is to classify
whether a client will subscribe to a term deposit, indicated by the binary variable (yes/no). This
dataset is derived from multiple marketing campaigns, which often required several contacts with the
same client to ascertain their interest in the product. Access Link: |Bank Database

CelebA. The CelebA dataset is a large-scale facial attribute dataset containing over 200,000 celebrity
images, each annotated with 40 attribute labels. This dataset serves as a valuable resource for tasks
such as facial recognition, attribute prediction, and generative modeling. Access Link: CelebA
Database

Jigsaw Toxicity. The Jigsaw dataset of Wikipedia consists of comments from online platforms
that have been labeled for toxicity. It contains a large number of comments, with 28 features of
syntax, sentiment, emotion and outlier word dictionaries. The dataset is commonly used for training
and evaluating machine learning models aimed at detecting harmful or inappropriate content in
user-generated text. Access Link: Jigsaw Toxicity Database

MNIST. The MNIST database is a large collection of handwritten digits that is widely used for training
and testing in the field of machine learning. This dataset contains 70,000 images of handwritten digits
(0-9), each of which is a 28 x28 pixel grayscale image. Access Link: MNIST Database

EMNIST. The Extended MNIST database consists of handwritten character digits sourced from the
NIST Special Database 19, formatted as 28 x 28 pixel images to align with the structure of the MNIST
dataset. There are six different splits provided in this dataset, and we use the EMNIST Letters with
145,600 characters. Access Link: EMNIST Database

CIFAR10. The CIFAR10 database, developed by the Canadian Institute for Advanced Research, is a
widely utilized collection of images for training machine learning and computer vision algorithms. It

14

https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/222/bank+marketing
https://archive.org/details/celeba
https://archive.org/details/celeba
https://arxiv.org/abs/1810.01869
http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/datasets/crawford/emnist

Under review as a conference paper at ICLR 2025

consists of 60,000 color images, each measuring 32 x32 pixels, categorized into 10 classes: airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Each class contains 6,000 images. Access
Link: \(CIFARI0 Database

D EXPERIMENT DETAILS

D.1 EXPERIMENT DETAILS IN[3.1]

Data Construction for Real-World Datasets. In this experiment, the preprocessing methods for
all real-word datasets are consistent with those used in|Chhabra et al.|(2024). For CelebA, we use the
extracted features provided by the authors |Liu et al.|(2015)), and for Jigsaw Toxicity, we obtain text
embeddings using the MiniLM transformer model (Wang et al.,|2020). Further details are provided
below.

* Adult. This dataset contains 37,692 samples, with 30,162 for training and 7,530 for testing.
There are 102 features, and the target is to predict if income exceeds $50k (yes) or not (no).

* Bank. This dataset consists of 30,490 samples, divided into 18,292 training samples and
12,198 test samples. There are 50 features, and the target is to predict if the client will
subscribe a term deposit (yes/no).

* CelebA. This dataset includes 104,163 samples, with 62,497 for training and 41,666 for
testing. There are 39 features, and the aim is to predict whether a person is smiling (yes) or
not (no).

* Jigsaw Toxicity. This dataset consists of 30,000 samples, split into 18,000 training samples
and 12,000 test samples. There are 385 features, and the target is to determine if a tweet is
toxic (yes) or not (no).

Given that the initial test accuracy of the model on the original datasets generally exceeds 90%, the
impact of data trimming is minimal. Accordingly, we randomly sample 5,000 instances from the
original training set to serve as the new training set, and 4,200 instances from the test set to serve as
the new test set.

Data Construction for Noisy Real-World Datasets. Consider the additional experiments on data
trimming presented in Figure 8] For Adult, Bank, and Jigsaw Toxicity, our construction method
follows the same approach as in the Real-World Datasets experiment, with the additional step of
randomly sampling 500 instances from the training sets and adding white noise with a variance of
0.1. For CelebA, since the variables are binary (-1, 1), we introduced noise by randomly selecting six
feature columns and flipping their values (transforming -1 to 1 and 1 to -1). This approach generates
a noisy dataset for supplementary experiments.

Random Trimming. We randomly remove b (budget) data points from the training sets under five
random seeds, and evaluate the average performance on the test sets in each iteration.

Experimental Procedure and Parameter Settings. First, a model is trained on the initial dataset.
Based on this trained model, we then implement three data trimming strategies, removing b data
points. Finally, we retrain the model to evaluate the effectiveness of the different trimming strategies.
The experimental procedure is illustrated in Figure[6] highlighting the key steps involved in our study.
Additionally, the parameter settings are detailed in Table

15

https://pytorch.org/vision/stable/generated/torchvision.datasets.CIFAR10.html

Under review as a conference paper at ICLR 2025

Trimming Strategy

Table 3: Parameter Settings of Data Trim-

FI (ours) Remove top .
v b Fl points ming.
Model
Evaluation
Remove bottom .
b1V points Adult Bank Celeba)&V
Toxicity
. optimizer SGD SGD Adam Adam
f::;z‘:ub PONE learning_rate le-2 le-2 le-4 le-2
t weight_decay le-2 le-2 le-6 le-2
Adult Bank CelebA Jigsav
. . . Toxicity
o +noise +noise +noise +noise
O
® optimizer SGD SGD SGD Adam
learning_rate le-2 le-2 le-2 le-1
weight_decay le-2 le-4 le-6 le-4

Figure 6: Flowchart of data trimming.

D.2 EXPERIMENT DETAILS IN[5.2]

Data Construction for Unbalanced and Redundant MNIST. For Unbalanced MNIST, we set
the total sample size to 27,500. Categories O to 4 are each allocated an equal sample size, representing
1/55 of the total sample. Similarly, categories 5 to 9 are assigned equal sample sizes, with each
constituting 10/55 of the total sample. This allocation strategy ensures a deliberate imbalance among
the classes. Samples are systematically drawn based on these ratios from the original dataset to create
this new unbalanced dataset. For Redundant MNIST, the task is delineated to classify solely the
digits 1 and 7, presented in equal proportions. If the acquisition function selects an input from any
class other than 1 or 7, the labeling function designates a “neither” category. This setup leads to
a three-way classification scheme during training, categorized as 1 vs. 7 vs. neither. This design
allows us to explore the effectiveness of the learning model in dealing with class imbalance and
partial class information, critical aspects in real-world applications where similar conditions are often
encountered.

Active Learning
Strategy

Model
Tuning
Update
model
parameters H
Q ‘
|m| 19 =
nitial 1 H Y
| labeld pool | Q ‘ b

Figure 7: Flowchart of active learning.

Active Learning Experiment. Tables [and [5] detail the parameter settings for active learning with
tabular and image data, respectively. Table[6]describes the neural network architectures employed for
MNIST and EMNIST.

16

Under review as a conference paper at ICLR 2025

Table 4: Active Learning Experiment Configuration for Tabular Datasets

Attribute Adult CelebA Jigsaw Toxicity
Number of Classes 2 2 2
Rounds 12 11 8
Initial Pool 300 300 180
Unlabeled Pool Size 5000 3000 5000
Acquisition Size 500 150 500

Table 5: Active Learning Experiment Configuration for Image Datasets

Attribute MNIST EMNIST CIFAR10
Number of Classes 10 37 10
Rounds 14 10 9
Initial Pool 60 600 6000
Unlabeled Pool Size 420 2000 10000
Acquisition Size 30 100 2000

Table 6: Architecture of MNIST CNN

Layer Type Activation Output Dimensions (incl. Padding)

Conv2d ReLU (32, 14, 14), P=1
Conv2d RelLU 64,7,7), P=1
Dropout - -
Linear RelLU 256
Linear - num_classes

E ADDITIONAL EXPERIMENTS

Adult Bank CelebA Jigsaw Toxicity
0.785 0.90 0.904

0780 088 0.902

0775 0.900

0.898

Accuracy

0770 0.82
0.896
0765 074

000000090 0.894

50 100 150 200 20 40 60 80 100 20 40 60 80 100 S0 100 150 200 250 300 350
Del num -@- Flours) @- vV ~@- Random

Figure 8: Accuracy curves of three data trimming methods on test sets of Adult, Bank, CelebA and
Jigsaw Toxicity.

17

Under review as a conference paper at ICLR 2025

Training Set Trimmed ples(Ours) Trimmed (V) Test Set Performance

Acc: 0.904
Acc: 0.908
Acc: 0.880

Feature 2
Feature 2
Feature 2
Feature 2

2 1 2
Feature 1 Feature 1 Feature 1 Feature 1

Figure 9: Performance under Nonlinear Model. Different colored points represent different classes.
A shows the training set. B and C respectively denote the samples to be trimmed by FI method and
IV method. D denotes test set. Green line: boundary without trimming. Red line: boundary after FI
trimming. Blue line: boundary after IV trimming.

Unbalanced MNIST Redundant MNIST
0.950 -
0.980
0.900 A
- 0.960
=)
e
3 0.850 1
¥ y
< 0.940
k3
= 0.8001 | [/
4 ——- Random ——- Random
—— Fl(ours) 0.920 1 —— Fl(ours)
60.7s04 o L. v o B v
Bald Bald
T T T T 0.900 T T T T
100 200 300 400 500 100 200 300 400 500
Dataset Size Dataset Size

Figure 10: Classification performance due to the different active learning methods on Unbalanced
MNIST, and Redundant MNIST.

Table 7: Time (seconds) for active learning algorithms over toy case on MNIST, EMNIST, and
CIFAR-10.

Methods MNIST EMNIST CIFAR-10

Fl(ours) 19 45 372
v 13 15 204
BALD 9 15 214

18

Under review as a conference paper at ICLR 2025

Bank

0.90
=@~ Fi(ours)
@ v

-@- shapley Value
-®- Random

0.88

Accuracy

0 25 50 75 100 125 150 175 200
Del num

Figure 11: Performance comparison of different methods on Bank, including the newly added
Shapley method.

MNIST

0.950 A
09001 .~ ___o
0.850 A %
0.8001 /¢ -—- Random

—— Fl(ours)
0.750 A . v
0.700 - ---- Bald

—-— Shapley

100 200 300 400 500 600

Figure 12: Performance comparison of different methods on MNIST, including the newly added
Shapley method.

19

	Introduction
	A New Influence Measure
	FI for Data Trimming.
	FI for Active Learning.
	Experimental Results
	Data Trimming
	Active Learning

	Conclusion
	Derivation of Expression for Lg
	Algorithms
	Data Sources
	Experiment Details
	Experiment Details in 5.1
	Experiment Details in 5.2

	Additional Experiments

