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A deep neural network (DNN) is said to be undistillable if, when used as a black-box input-output
teacher, it cannot be distilled through knowledge distillation (KD). In this case, the distilled student
(referred to as the knockoff student) does not outperform a student trained independently with label
smoothing (LS student) in terms of prediction accuracy. To protect intellectual property of DNNs, it is
desirable to build undistillable DNNs. To this end, it is first observed that an undistillable DNN may
have the trait that each cluster of its output probability distributions in response to all sample instances
with the same label should be highly concentrated to the extent that each cluster corresponding to
each label should ideally collapse into one probability distribution. Based on this observation and
by measuring the concentration of each cluster in terms of conditional mutual information (CMI), a
new training method called CMI minimized (CMIM) method is proposed, which trains a DNN by
jointly minimizing the conventional cross entropy (CE) loss and the CMI values of all temperature
scaled clusters across the entire temperature spectrum. The resulting CMIM model is shown, by
extensive experiments, to be undistillable by all tested KD methods existing in the literature. That
is, the knockoff students distilled by these KD methods from the CMIM model underperform the
respective LS students. In addition, the CMIM model is also shown to performs better than the model
trained with the CE loss alone in terms of their own prediction accuracy. The code for the paper is
publicly available at https://github.com/ICLR2024CMIM/CMIM.

1 INTRODUCTION

Originally aiming for model compression, knowledge distillation (Buciluǎ et al., 2006; Hinton et al.,
2015) (KD) has received significant attention from both academia and industry in recent years due to
its remarkable effectiveness. The essence of KD is to transfer the knowledge of a pre-trained large
model (teacher) to a smaller model (student). Building on the work of Hinton et al. (2015), numerous
follow-up works have endeavored to enhance the performance of KD (Romero et al., 2014; Anil
et al., 2018; Park et al., 2019) and to gain deeper insights into why distillation is effective (Phuong
& Lampert, 2019; Mobahi et al., 2020; Ye et al., 2024; Allen-Zhu & Li, 2020; Menon et al., 2021;
Borup & Andersen, 2021).

In the scenario where the teacher does not want its knowledge to be transferred, however, KD is
undesirable and indeed poses a threat to intellectual property (IP) of the teacher (Shokri & Shmatikov,
2015). Developing and training a high-quality large DNN requires significant investments of time,
effort, finances, and resources, including intensive data annotation and computational infrastructure.
Developers of the large DNN may want to prevent the knowledge of the large DNN from being
transferred by their competitors. However, once the large DNN is released as a “black box”, anyone
can apply a logit-based KD method (or equivalently a distribution-based KD method (Zheng &
Yang, 2024)) to distill the DNN as a teacher. The goal is to train a student, referred to as a knockoff
student in the context of DNN IP protection, that mimics the teacher’s behavior to gain competitive
advantages. As such, in this case, it would be desirable for the developers to build the large DNN so
that it is undistillable. The question, of course, is how.

Before delving deeper into the above question, let us first clarify what we mean by saying that a DNN
is undistillable. At this point, we invoke the concept of distillable DNN introduced recently in Yang
& Ye (2024):

Definition 1.1. [Distillability of a DNN (Yang & Ye, 2024)] When used as a black-box input-output
teacher, a DNN is said to be distillable with respect to a student if there exists a KD method which,
when applied to the teacher and student, yields a knockoff student outperforming the student trained
alone with label smoothing (LS student) in terms of prediction accuracy.
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Therefore, a DNN is undistillable if no knockoff student can outperform the respective LS student
regardless of which logit-based KD method is used. Since there are so many logit-based KD methods
and so many students, what type of a DNN is undistillable? In comparison with the training of LS
student, Definition 1.1 provides some insight into a trait that an undistillable DNN may possess.
For each label, consider the cluster of the output probability distributions of the DNN in response
to all input sample instances with that label. If each cluster corresponding to each label is highly
concentrated to the extent that all probability distributions within the cluster more or less collapse into
one probability distribution, then the student training within KD is similar to that of the respective
LS student regardless of which logit-based KD method and which student are applied. In this case,
one would expect that no knockoff student would perform significantly better than the respective LS
student. Therefore, a DNN possessing this trait will likely be undistillable.

Given a DNN, we now measure the concentration of its clusters in terms of conditional mutual
information (CMI) (Yang et al., 2023). Specifically, let X denote the random input sample to the
DNN, and Y be the ground truth label of X . Let Ŷ denote the random label predicted by the DNN
in response to input X . It was shown in Yang et al. (2023) that for each label y, the label specific
CMI I(X; Ŷ | Y = y) measures the concentration of the cluster corresponding to label y, and the
CMI I(X; Ŷ | Y ) measures the average concentration across all clusters. To build an undistillable
DNN, one then is motivated to minimize jointly the conventional cross entropy (CE) loss and the
CMI I(X; Ŷ | Y ).

In this paper, we will go one step further. In KD (Geoffrey Hinton, 2015), temperature scaling of
logits is often applied. It was shown in Zheng & Yang (2024) that logit temperature scaling with
temperature T can be equivalently achieved by power transform of the output probability distribution
with power α = 1/T . Further, it was demonstrated in Ye et al. (2024) that the purpose of temperature
scaling or power transform is to enlarge the CMI values of temperature scaled (or power transformed)
clusters, and enlarging CMI values in turn improves the performance of distilled students. Since here
we want to achieve the opposite, we want to make sure that all CMI values of all power transformed
clusters can be made small. To this end, we further extend the label specific CMI I(X; Ŷ | Y = y) and
the CMI I(X; Ŷ | Y ) to I(X; Ŷ α| Y = y) and I(X; Ŷ α[Y ]| Y ), respectively, so that I(X; Ŷ α| Y = y)
measures the concentration of the power transformed cluster corresponding to label y with power α,
and I(X; Ŷ α[Y ]| Y ) measures the average concentration across all power transformed clusters with
power α[Y ], where different clusters may be power transformed with different power α.

Based on the above discussion and towards building undistillable DNNs, we then propose a new
training method called CMI minimized method, which trains a DNN by jointly minimizing the CE
loss and all CMI values of all power transformed clusters, i.e., jointly minimizing the CE loss and
I(X; Ŷ α[Y ]| Y ), ∀α[Y ] > 0.

The resulting trained DNN is referred to as the CMI minimized (CMIM) DNN. The contributions of
the paper are summarized as follows:

• An insight is provided that in order for a DNN to be undistillable, it is desirable for the DNN to
possess the trait that each cluster of the DNN’s output probability distributions corresponding to each
label is highly concentrated to the extent that all probability distributions within the cluster more or
less collapse into one probability distribution close to the one-hot probability vector of that label.

• We extend the label specific CMI I(X; Ŷ | Y = y) and the CMI I(X; Ŷ | Y ) to I(X; Ŷ α| Y = y)

and I(X; Ŷ α[Y ]| Y ), respectively, so that I(X; Ŷ α| Y = y) measures the concentration of the power
transformed cluster corresponding to label y with power α, and I(X; Ŷ α[Y ]| Y ) measures the average
concentration across all power transformed clusters with power α[Y ], where different clusters may
be power transformed with different power α.

• We develop a novel training method dubbed CMI minimized method to train a DNN by jointly
minimizing the CE loss and all CMI values of all power transformed clusters with the resulting
trained DNN referred to as the CMIM DNN.

• We show, by extensive experiments over three popular image classification datasets, namely CIFAR-
100 (Krizhevsky et al., 2012), TinyImageNet (Le & Yang, 2015) and ImageNet (Deng et al., 2009),
that CMIM DNNs have very small CMI values and are indeed undistillable by all tested KD methods
existing in the literature. That is, the knockoff students distilled by these KD methods from the CMIM
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models underperform the respective LS students. On the other hand, models trained by defense
training methods proposed in the literature are all distillable.

• In addition, we show that the CMIM models achieve a higher classification accuracy compared to
those trained with the conventional CE loss.

2 RELATED WORKS

In this section, we mention some defense methods against the threat posed by knockoff students
attempting to steal the IP of pre-trained DNNs via logit-based KD methods. For a thorough review of
related works, including detailed discussions about recent logit-based KD methods, please refer to
Appendix B. These defense methods can be mainly categorized into two groups: (i) model stealing
resistant training methods that specifically train DNNs to reduce the accuracy of knockoff students
while maintaining the original classification accuracy of the model (Ma et al., 2021; Wang et al.,
2022); and (ii) post-training defense methods that perform minimal perturbations to the pre-trained
model’s predictions to mislead the knockoff student (Lee et al., 2019; Orekondy et al., 2020; Cheng
& Cheng, 2023). Nonetheless, in Section 5, we will show that models trained by all these defense
methods are indeed distillable.

3 NOTATION AND PRELIMINARIES

3.1 NOTATION

The set of real numbers is denoted by R. Vectors are denoted by bold-face letters (e.g., w). The i-th
element of vector w is denoted by w[i]. For two vectors u,v ∈ RC , the inequality u ≤ v implies that
u[i] ≤ v[i], ∀i ∈ [C]. For a positive integer K, let [K] ≜ {1, ...K}. Assume that there are C class
labels with [C] as the set of class labels. Let P([C]) denote the set of all C dimensional probability
distributions. For any two probability distributions P1, P2 ∈ P([C]), the CE and Kullback-Leibler
(KL) divergence between P1 and P2 are denoted by H(P1, P2) and KL(P1, P2), respectively. For
any y ∈ [C] and P ∈ P([C]), write the CE of the one-hot probability distribution corresponding to y
and P as H(y, P ).

For any differentiable function f(·), ∇wf(·) denotes its gradient vector w.r.t. vector w.

For any pair of random variables (X,Y ), denote its joint probability distribution by PX,Y (x, y) or
simply P (x, y) whenever there is no ambiguity, the marginal distribution of Y by PY (y), and the
conditional distribution of Y given X = x by PY |X(·|x). The mutual information between two
random variables X and Y is denoted by I(X,Y ), and the CMI of X and Y given a third random
variable Z is I(X,Y |Z).

We regard a classification DNN as a mapping from raw data x ∈ Rd to a probability distribution
qx ∈ P([C]). Given a DNN: x ∈ Rd → qx, let θ denote its weight vector consisting of all its
connection weights; whenever there is no ambiguity, we also write qx as qx,θ.

3.2 LABEL SMOOTHING

Label smoothing (LS) (Pereyra et al., 2017) is a regularization technique that prevents peaked output
probability distributions, leading to better generalization, by minimizing the objective function:

LLS = (1− ϵ)H(y, qx) + ϵH(u, qx), (1)

where u is the uniform distribution over C classes, and ϵ controls the strength of the regularization.

3.3 POWER TRANSFORM OF PROBABILITY DISTRIBUTION

In a “black-box” teacher setting, where only the output probability vectors (and not the logits) of
the teacher are accessible to the public, applying temperature scaling directly over the logits of the
teacher is not feasible in training knockoff students. In this case, KD training can resort to applying
“power transformation of probability distribution” directly to the output probability vectors (Zheng &
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Yang, 2024). Specifically, given P ∈ P([C]), and a non-negative real number α, the power transform
of P is another probability distribution define as

Pα[i] =
(P [i])α∑

j∈[C](P [j])α
, ∀i ∈ [C]. (2)

It is not hard to verify that the power transformed probability distribution Pα is equal to the softmax
of the logits scaled by temperature T = 1/α. Therefore, temperature scaling can be equivalently
operated directly on the output probability distribution through power transform.

3.4 CMI VALUE OF A DNN

As discussed in Yang et al. (2023), for a multi-class classifier f : x ∈ Rd → qx, let Ŷ be the
random label predicted by the f with probability qX [Ŷ ] in respond to the input X . For each cluster
corresponding to label y ∈ [C], we have

I(X; Ŷ |Y = y) =
∑
x

PX|Y (x|y)

[
C∑
i=1

PŶ |XY (Ŷ = i|x, y) ln
PŶ |XY (Ŷ = i|x, y)

PŶ |Y (Ŷ = i|Y = y)

]
(3)

= EX|Y

[(
C∑
i=1

qX [i] ln
qX [i]

PŶ |Y (Ŷ = i|Y = y)

)
|Y = y

]
= EX|Y [KL (qX , sy) |Y = y] ,

(4)

where PŶ |XY (Ŷ = i|x, y) = qx[i] follows from the Markov chain Y → X → Ŷ , and

sy = PŶ |Y (·|y) = EX|Y [qX |Y = y]. I(X; Ŷ |Y = y) measures the concentration of the clus-
ter corresponding to label y ∈ [C]. Averaging over all clusters corresponding to all labels y, we
get

I(X; Ŷ |Y ) =
∑
y∈[C]

PY (y)I(X; Ŷ |Y = y) = EXY [KL (qX , sY )] . (5)

I(X; Ŷ |Y ) measures the average concentration across all clusters.

When the distribution PX,Y is unknown, we can approximate the CMI of f by its empirical value
from a data sample (a training dataset or mini-batch thereof) D = {(xi, yi)}mi=1. To this end, let
Dy = {1 ≤ j ≤ m : yj = y}. Denote the size of Dy by |Dy|. The empirical values of each label
specific CMI and the CMI can be calculated as follows

Iemp(X; Ŷ |Y = y) =
1

|Dy|
∑
i∈Dy

KL(qxi , s
emp
y ), (6)

Iemp(X; Ŷ |Y ) =
1

m

m∑
i=1

KL(qxi
, semp

yi
), (7)

where semp
y =

1

|Dy|
∑
i∈Dy

qxi
,∀y ∈ [C]. (8)

4 CMI MINIMIZED METHOD

In this section, we present our CMI minimized method. We begin with extending I(X; Ŷ |Y = y)

and I(X; Ŷ |Y ) to the case of power transformed clusters.

4.1 INFORMATION QUANTITIES FOR POWER TRANSFORMED CLUSTERS

Consider a classification DNN: f : x ∈ Rd → qx which maps input sample instances x with different
labels into clusters of probability distributions qx in the space P([C]), with one cluster per label.
For each label y ∈ [C], apply the power transform with power α to each probability distribution

4
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qx within the cluster corresponding to the label y. Then, we obtain a power transformed cluster.
To measure the concentration of the power transformed cluster, we extend I(X; Ŷ |Y = y) to the
following information quantity

I(X; Ŷ α|Y = y) = EX|Y [KL (qαX , sy,α) |Y = y] , (9)

where sy,α = EX|Y [qαX |Y = y]. Note that if we regard Ŷ α as the random label predicted by f

with probability qαX(Ŷ α) in response to the input sample X , i.e., given X , Ŷ α is equal to a label
c with probability qαX(c), ∀c ∈ [C], then I(X; Ŷ α|Y = y) is exactly the CMI between X and Ŷ α

given Y = y. Thus, I(X; Ŷ α|Y = y) measures the concentration of the power transformed cluster
corresponding to y.

Now, we go one step further and allow different clusters to be power transformed with different
powers. Suppose that the cluster corresponding to label y is power transformed with power α[y]. Let
Ŷ α[Y ] be the random label predicted by f with probability q

α[Y ]
X (Ŷ α[Y ]) in response to the input

sample X given Y . That is, given Y = y and X = x, Ŷ α[Y ] is equal to c with probability q
α[y]
x (c)

for any c ∈ [C]. We can then extend I(X; Ŷ |Y ) to I(X; Ŷ α[Y ]|Y )

I(X; Ŷ α[Y ]|Y ) = EXY

[
KL
(
q
α[Y ]
X , sY,α[Y ]

)]
, (10)

=
∑
y∈[C]

PY (y)
[
EX|Y

[
KL
(
q
α[y]
X , sy,α[y]

)
|Y = y

]]
(11)

=
∑
y∈[C]

PY (y)I(X; Ŷ α[y]|Y = y), (12)

where for each y ∈ [C],

sy,α[y] = PŶ α[Y ]|Y (·|y) =
∑
x

PX|Y (x|y)qα[y]x = EX|Y

[
q
α[y]
X |Y = y

]
. (13)

Note that I(X; Ŷ α[Y ]|Y ) is exactly the CMI between X and Ŷ α[Y ] given Y and measures the average
concentration across all power transformed clusters with power function α[Y ]. However, Y , X , and
Ŷ α[Y ] do not form a Markov chain anymore.

When the distribution PX,Y is unknown, we can approximate I(X; Ŷ α[Y ]|Y = y) and I(X; Ŷ α[Y ]|Y )
by their respective empirical values from a data sample (a training dataset or mini-batch thereof)
D = {(xi, yi)}mi=1:

Iemp(X; Ŷ α[Y ]|Y = y) =
1

|Dy|
∑
i∈Dy

KL(qα[y]xi
, semp

y,α[y]), (14)

Iemp(X; Ŷ α[Y ]|Y ) =
1

m

m∑
i=1

KL(qα[yi]
xi

, semp
yi,α[yi]

), (15)

where semp
y,α[y] =

1

|Dy|
∑
i∈Dy

qα[y]xi
,∀y ∈ [C]. (16)

As discussed in Section 1, an undistillable DNN should exhibit the trait that each of these clusters is
highly concentrated and ideally collapses into a single probability distribution that closely resembles
the one-hot probability vector for that label.

4.2 FRAMEWORK FOR MINIMIZING CMI VALUES OF POWER TRANSFORMED CLUSTERS

Towards building an undistillable DNN, we now train a DNN f : x ∈ Rd → qx by jointly minimizing
the CE loss and all CMI values of all power transformed clusters. Let

α =
[
α[1], α[2], . . . , α[C]

]
,

5
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and write each qx as qx,θ. In our CMI minimized method, the objective function we want to minimize
is

EXY

[
H(Y, qX,θ)

]
+ λmax

α
I(X; Ŷ α[Y ]|Y ) (17)

where λ > 0 is a hyper-parameter trading the CE loss with the maximum CMI, and the maximization
over α is taken over the region 0 ≤ α[i] ≤ β, 1 ≤ i ≤ C. The optimization problem then becomes

min
θ

{
EXY

[
H(Y, qX,θ)

]
+ λmax

α
I(X; Ŷ α[Y ]|Y )

}
= min

θ

{
EXY

[
H(Y, qX,θ)

]
+ λmax

α

∑
y

PY [y]I(X; Ŷ α[y]|Y = y)
}

(18)

= min
θ

{
EXY

[
H(Y, qX,θ)

]
+ λ

∑
y

PY [y] max
α[y]

I(X; Ŷ α[y]|Y = y)
}
. (19)

0.00 0.25 0.50 0.75 1.00
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orchids

motorcycle

Figure 1: The class’s CMI val-
ues for pre-trained ResNet-50 on
CIFAR-100 for three randomly se-
lected classes, namely beaver, or-
chids and motorcycle Vs. the power
transform factor α.

In order to get a better understanding about the behaviour of
the second term in the objective function of equation 18 w.r.t.
α, we depict in Figure 1 I(X; Ŷ α[Y ]|Y = y) vs α[y] for three
randomly-selected classes y using a pre-trained ResNet-50 on
CIFAR-100. In Figure 1, maxα I(X; Ŷ α|Y = y) is achieved
at a value of α which is between 0.25 and 0.75. In Theo-
rem E.1 of Appendix E, we further show that for each label y,
I(X; Ŷ α|Y = y) as a function of α is continuously differen-
tiable.

However, finding an algorithmic solution to the min-max prob-
lem in equation 18 to equation 19 is challenging. To overcome
this difficulty, we next develop a more tractable expression for
maxα I(X; Ŷ α|Y = y). At this point, we invoke the following
theorem, which will be proved in Appendix F.
Theorem 4.1. For any label y,

max
α

I(X; Ŷ α|Y = y) = lim
ω→∞

1

ω
ln

1

β

∫ β

0

exp {ωI(X; Ŷ α|Y = y)}dα. (20)

Therefore, when ω is large, maxα I(X; Ŷ α|Y = y) can be approximated by

max
α

I(X; Ŷ α|Y = y) ≈ 1

ω
ln

1

β

∫ β

0

exp {ωI(X; Ŷ α|Y = y)}dα (21)

≈ 1

ω
ln

[
1

N

N∑
i=1

exp {ωI(X; Ŷ αi |Y = y)}

]
, (22)

where N is relatively large, and αi = iβ/N .

Now plugging equation 22 into equation 19, we have

min
θ

{
EXY

[
H(Y, qX,θ)

]
+

λ

ω

∑
y

PY [y] ln

[
1

N

N∑
i=1

exp {ωI(X; Ŷ αi |Y = y)}

]}
. (23)

Note that the second term in the objective function of equation 23 is not amenable to parallel
computation via GPU due to the dependency of KL divergence on sy,αi

, the centroid of the power
transformed cluster corresponding to Y = y with power αi. To get around this difficulty, we follow
the approach in Yang et al. (2023) and introduce dummy distributions Qy,i ∈ P([C]) for each (y, i)

to rewrite I(X; Ŷ αi |Y = y) as follows

I(X; Ŷ αi |Y = y) = EX|Y
[
KL
(
qαi

X,θ, sy,αi

)
| Y = y

]
= min

Qy,i

EX|Y
[
KL
(
qαi

X,θ, Qy,i

)
| Y = y

]
, (24)
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where the minimum in the above is achieved when

Qy,i = sy,αi
= EX|Y

[
qαi

X,θ|Y = y
]
. (25)

Combining equation 24 with equation 23, we are led to solve the double minimization problem

= min
θ

{
EXY

[
H(Y, qX,θ)

]
+

λ

ω

∑
y

PY [y] ln

[
1

N

N∑
i=1

exp {ωmin
Qy,i

EX|Y
[
KL
(
qαi

X,θ, Qy,i

)
| Y = y

]
}

]}
(26)

= min
θ

min
{Qy,i}y∈[C],i∈[N]

{
EXY

[
H(Y, qX,θ)

]
+

λ

ω

∑
y

PY [y] ln

[
1

N

N∑
i=1

exp {ωEX|Y
[
KL
(
qαi

X,θ, Qy,i

)
| Y = y

]
}

]}
(27)

When the distribution PX,Y is unknown, it can be approximated by its empirical distribution from a
data sample (a training dataset or mini-batch thereof) D = {(xi, yi)}mi=1. The objective function in
the double minimization equation 27 then becomes

JD(θ, {Qy,i}y∈[C],i∈[N ]) =
1

|D|
∑

(x,y)∈D

H(y, qx,θ)+

λ

ω

∑
y

|Dy|
|D|

ln

 1

N

N∑
i=1

exp { ω

|Dy|
∑
j∈Dy

KL
(
qαi

Xj ,θ
, Qy,i

)
}

 . (28)

4.3 ALGORITHM FOR SOLVING THE OPTIMIZATION IN EQUATION 27

The double minimization optimization problem in equation 27 naturally lends us an alternating
algorithm that optimizes θ and {Qy,i}y∈[C],i∈[N ] alternatively to minimize the objective function in
equation 27 or Equation (28), given the other is fixed.

Given {Qy,i}y∈[C],i∈[N ], θ can be updated using the same first-order optimization method as in
conventional deep learning, such as stochastic gradient descent applied over mini-batches.

Following Yang et al. (2023), given θ, for each class y, {Qy,i}i∈[N ] can be updated according to
equation 25 in the following manner: (1) we randomly sample a mini-batch of samples |By| instances
from the training set with ground truth label y; (2) {Qy,i}i∈[N ] can be updated as

Qy,i =

∑
x∈By

qαi

x,θ

|By|
∀i ∈ [N ]. (29)

The proposed alternating algorithm for optimization problem equation 27 is summarized in Algo-
rithm 1 1. To simplify our notation, we use (·)tb to indicate parameters at the b-th batch updation
during the t-th alternating iteration of the algorithm. We further write (·)tB as (·)t whenever needed,
set (·)t0 = (·)t−1.

5 EXPERIMENTS

In this section, we demonstrate the effectiveness of CMIM by comparing it with several state-of-
the-art alternatives. Specifically, we first report the accuracy that a knockoff student can achieve by
deploying different logit-based KD (attack) methods in Section 5.1. In all the experiments, when
testing the distillibality of the trained DNNs using the benchmark defense methods and CMIM, we

1If the impact of the random mini-batch sampling and stochastic gradient descent is ignored, the alternating
algorithm is guaranteed to converge in theory since given θ, the optimal {Qy,i}y∈[C],i∈[N ] can be found
analytically via equation 29, although it may not converge to a global minimum.
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Algorithm 1: CMIM.
Input: Training set T , mini-batches {Bb}b∈[B], number of epochs T , λ, β, ω, N
Initialization: Initialize θ0 and Q0

y,i y∈[C],i∈[N ]
.

for t = 1 to T do
[Sampling αi] Randomly select N samples {αi}i∈[N ] from interval [0, β].

for b = 1 to B do
[Updating Qy,i] For each class y, construct mini-batch {By}y∈[C]. Update Qt

y,i,
∀y ∈ [C]; ∀i ∈ [N ], according to Equation (29).
[Updating θ] Fix Qt

y,i y∈[C],i∈[N ]
. Update θt

b−1 to θt
b by stochastic gradient descent over the

objective function 28.
end

end
Output: Global model θT .

compare the knockoff student’s accuracy (i) when it attempts to steal the IP of protected DNN using
logit-based (attack) methods with (ii) when it trains its model using the LS. If the former outperforms
the latter, we conclude that the knockoff makes the underlying DNN distillable. Next, in Section 5.2,
we report the classification accuracy of the protected models trained by the different defense methods.
Lastly, in Section 5.3, we visualize the output cluster of models trained by CMIM, CE and NT.

5.1 KNOCKOFF STUDENT ACCURACY

• Datasets: We conduct extensive experiments on three image classification dataset, namely CIFAR-
100 (Krizhevsky et al., 2012) TinyImageNet (Le & Yang, 2015) and ImageNet (Deng et al., 2009).
For description of each dataset, please refer to Appendix G.

• Models: To show the effectiveness of CMIM, we use different model architectural families for
teacher and knockoff student models. To this end, we pick models from VGG family (Simonyan &
Zisserman, 2015), ResNet family (He et al., 2016) (shortened as RN), ShuffleNetV2 (Ma et al., 2018),
shortened as SNV2, and Mobilenetv2 (Sandler et al., 2018) shortened as MNV2. Particularly, we have
conducted experiments on the following (teacher-student) pairs for each dataset: (i) for CIFAR-100,
we use four pairs {(VGG16-VGG11), (VGG16-SNV2), (RN50-VGG11), (RN50-RN18)}; (ii) for
TinyImageNet, we use two pairs {(RN34-RN18), (RN50-SNV2)}; and for ImageNet we use two
pairs {(RN34-RN18),(RN34-MNV2)}.

• Defense benchmark methods: For comprehensive comparisons, we benchmark CMIM with seven
recently published defense methods: MAD Orekondy et al. (2020), APGP (Cheng & Cheng, 2023),
RSP (Lee et al., 2019), ST (Ma et al., 2022), NT (Ma et al., 2021), SNT (Wang et al., 2022), and LS2

(Müller et al., 2019).

• Logit-based KD (attack) methods: We use three logit-based KD methods that are primarily
designed for when the teacher-student models are in cooperating mode, namely KD (Hinton et al.,
2015), DKD (Zhao et al., 2022), DIST (Huang et al., 2022a); and four logit-based KD attacks methods
that a knockoff student can deploy to make the protected DNNs possibly distillable, namely MKD
(Yang & Ye, 2024), HTC (Jandial et al., 2022), AVG (Keser & Toreyin, 2023), Knockoff (Orekondy
et al., 2019). We report all the training setups, including all the hyper-parameters used for both
defense and attack methods in Appendix H.1.

• Results: The accuracy that a knockoff student can attain using the above (defense-attack) combina-
tions are listed in Table 1 (for the accuracy variances, please refer to Appendix J), where we use the
notations K-student to denote knockoff student. The numbers in the column titled “Best” represent
the maximum value for each respective row, indicating the highest accuracy that the knockoff student
can achieve using the distillation methods.

2Although LS is not a defense method per se, it is observed that the models trained by LS reduce the knockoff
student’s accuracy. We discuss the rationale behind this in Appendix C.
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Table 1: Top-1 accuracy (%) of the knockoff student on CIFAR-100, TinyImageNet and ImageNet
dataset (the results for CIFAR-100 and TinyImageNet are averaged over 3 runs). Green upward
arrows (↑) and red downward arrows (↓) indicate whether the knockoff student was able to render the
underlying DNN distillable.

CIFAR-100
Defense Model K-student LS KD MKD DKD DIST HTC AVG Knockoff Best

MAD
VGG16 VGG11 71.94 68.55 ↓ 72.08 ↑ 53.32 ↓ 69.21 ↓ 71.19 ↓ 70.03 ↓ 61.44 ↓ 72.08 ↑

SNV2 72.65 72.50 ↓ 72.46 ↓ 7.64 ↓ 69.91 ↓ 71.37 ↓ 72.86 ↑ 70.87 ↓ 72.86 ↑
RN50 VGG11 71.94 72.00 ↑ 72.04 ↑ 54.29 ↓ 71.57 ↓ 70.76 ↓ 70.73 ↓ 61.73 ↓ 72.04 ↑

RN18 78.76 77.76 ↓ 78.79 ↑ 43.73 ↓ 73.76 ↓ 77.89 ↓ 78.61 ↓ 73.92 ↓ 78.79 ↑

APGP
VGG16 VGG11 71.94 71.92 ↑ 72.27 ↑ 27.24 ↓ 69.25 ↓ 70.08 ↓ 72.01 ↓ 45.98 ↓ 72.27 ↑

SNV2 72.65 73.10 ↑ 73.75 ↑ 12.52 ↓ 71.04 ↓ 71.66 ↓ 73.20 ↑ 9.48 ↓ 73.75 ↑
RN50 VGG11 71.94 71.91 ↓ 72.11 ↑ 9.74 ↓ 69.48 ↓ 71.36 ↓ 71.92 ↑ 34.71 ↓ 72.11 ↑

RN18 78.76 78.04 ↓ 79.06 ↑ 62.71 ↓ 77.32 ↓ 77.82 ↓ 77.90 ↓ 2.57 ↓ 79.06 ↑

RSP
VGG16 VGG11 71.94 71.42 ↓ 72.04 ↑ 70.22 ↓ 70.80 ↓ 70.40 ↓ 71.56 ↓ 31.04 ↓ 72.04 ↑

SNV2 72.65 73.55 ↑ 72.95 ↑ 67.45 ↓ 72.19 ↓ 71.46 ↓ 72.27 ↓ 26.09 ↓ 73.55 ↑
RN50 VGG11 71.94 71.97 ↑ 72.01 ↑ 69.53 ↓ 72.18 ↑ 70.87 ↓ 70.85 ↓ 46.68 ↓ 72.18 ↑

RN18 78.76 77.78 ↓ 77.79 ↓ 77.01 ↓ 78.88 ↑ 78.00 ↓ 78.13 ↓ 55.86 ↓ 78.88 ↑

NT
VGG16 VGG11 71.94 71.40 ↓ 73.44 ↑ 71.47 ↓ 71.33 ↓ 70.77 ↓ 71.58 ↓ 63.56 ↓ 73.44 ↑

SNV2 72.65 72.44 ↓ 72.70 ↑ 6.24 ↓ 72.04 ↓ 70.75 ↓ 72.83 ↑ 6.32 ↓ 72.83 ↑
RN50 VGG11 71.94 72.01 ↑ 72.03 ↑ 71.55 ↓ 71.88 ↓ 70.16 ↓ 71.94 ↓ 62.94 ↓ 72.03 ↑

RN18 78.76 78.41 ↓ 78.92 ↑ 79.26 ↑ 78.99 ↑ 77.94 ↓ 78.33 ↓ 68.96 ↓ 79.26 ↑

SNT
VGG16 VGG11 71.94 72.06 ↑ 72.28 ↑ 4.92 ↓ 71.98 ↑ 70.60 ↓ 71.63 ↓ 64.08 ↓ 72.06 ↑

SNV2 72.65 72.94 ↑ 73.17 ↑ 72.78 ↑ 72.22 ↓ 71.22 ↓ 72.74 ↑ 6.22 ↓ 73.17 ↑
RN50 VGG11 71.94 72.02 ↑ 72.12 ↑ 72.32 ↑ 71.70 ↓ 70.66 ↓ 71.65 ↓ 62.94 ↓ 72.32 ↑

RN18 78.76 78.25 ↓ 78.48 ↓ 78.82 ↑ 78.14 ↓ 78.45 ↓ 78.38 ↓ 67.71 ↓ 78.82 ↑

ST
VGG16 VGG11 71.94 72.09 ↑ 72.01 ↑ 71.63 ↓ 71.93 ↓ 71.16 ↓ 71.63 ↓ 63.32 ↓ 72.09 ↑

SNV2 72.65 72.64 ↓ 72.67 ↑ 70.53 ↓ 72.24 ↓ 71.32 ↓ 72.42 ↓ 69.46 ↓ 72.67 ↑
RN50 VGG11 71.94 72.00 ↑ 72.13 ↑ 71.62 ↓ 71.76 ↓ 70.54 ↓ 71.73 ↓ 65.43 ↓ 72.13 ↑

RN18 78.76 78.96 ↑ 79.02 ↑ 78.35 ↓ 78.31 ↓ 78.36 ↓ 78.81 ↑ 72.87 ↓ 79.02 ↑

LS
VGG16 VGG11 71.94 71.90 ↓ 72.00 ↑ 71.57 ↓ 70.89 ↓ 70.66 ↓ 71.76 ↓ 63.49 ↓ 72.00 ↑

SNV2 72.65 72.87 ↑ 73.52 ↑ 70.01 ↓ 71.49 ↓ 71.70 ↓ 73.01 ↑ 65.20 ↓ 73.52 ↑
RN50 VGG11 71.94 71.82 ↓ 71.99 ↑ 71.95 ↓ 70.77 ↓ 70.86 ↓ 71.88 ↓ 62.29 ↓ 71.99 ↑

RN18 78.76 77.72 ↓ 77.82 ↓ 79.37 ↑ 78.33 ↓ 78.31 ↓ 77.91 ↓ 63.36 ↓ 79.37 ↑

CMIM
VGG16 VGG11 71.94 71.87 ↓ 71.64 ↓ 71.56 ↓ 70.34 ↓ 71.71 ↓ 71.42 ↓ 66.89 ↓ 71.87 ↓

SNV2 72.65 72.53 ↓ 71.44 ↓ 72.46 ↓ 71.45 ↓ 71.59 ↓ 71.94 ↓ 64.45 ↓ 72.53 ↓
RN50 VGG11 71.94 71.54 ↓ 71.34 ↓ 71.77 ↓ 71.86 ↓ 69.32 ↓ 71.70 ↓ 60.58 ↓ 71.86 ↓

RN18 78.76 78.21 ↓ 78.16 ↓ 78.13 ↓ 77.56 ↓ 77.23 ↓ 78.64 ↓ 65.88 ↓ 78.64 ↓
TinyImageNet

RSP RN34 RN18 63.56 63.54 ↓ 64.32 ↑ 64.01 ↑ 63.27 ↓ 63.54 ↓ 62.15 ↓ 55.43 ↓ 64.32 ↑
RN50 SNV2 60.61 60.18 ↓ 60.76 ↑ 56.26 ↓ 56.43 ↓ 60.96 ↑ 60.15 ↓ 54.01 ↓ 60.96 ↑

ST RN34 RN18 63.56 63.96 ↑ 64.12 ↑ 63.25 ↓ 63.51 ↓ 63.49 ↓ 63.84 ↑ 57.42 ↓ 64.12 ↑
RN50 SNV2 60.61 61.23 ↑ 61.36 ↑ 60.43 ↓ 60.32 ↓ 60.22 ↓ 61.13 ↑ 55.84 ↓ 61.36 ↑

NT RN34 RN18 63.56 63.27 ↓ 64.49 ↑ 64.67 ↑ 63.43 ↓ 63.50 ↓ 64.43 ↑ 53.11 ↓ 64.67 ↑
RN50 SNV2 60.61 59.57 ↓ 61.55 ↑ 31.55 ↓ 60.03 ↓ 60.98 ↑ 60.31 ↓ 50.94 ↓ 61.55 ↑

LS RN34 RN18 63.56 63.74 ↑ 64.01 ↑ 64.23 ↑ 63.51 ↓ 64.20 ↑ 63.04↓ 57.43 ↓ 64.23 ↑
RN50 SNV2 60.61 60.32 ↓ 60.93 ↑ 60.74 ↑ 60.11 ↓ 60.46 ↓ 60.14 ↓ 52.96 ↓ 60.93 ↑

CMIM RN34 RN18 63.53 62.89 ↓ 63.15 ↓ 62.94 ↓ 63.28 ↓ 61.57 ↓ 62.96 ↓ 56.13 ↓ 63.28 ↓
RN50 SNV2 60.61 57.57 ↓ 59.32 ↓ 60.58 ↓ 59.41 ↓ 59.33 ↓ 60.42 ↓ 56.91 ↓ 60.58 ↓

ImageNet

ST RN34 RN18 70.89 70.74 ↓ 71.02 ↑ 70.02 ↓ 69.94 ↓ 70.91 ↑ 71.00 ↑ 63.24 ↓ 71.02 ↑
MNV2 70.93 71.03 ↑ 71.25 ↑ 69.32 ↓ 70.53 ↓ 70.69 ↓ 71.06 ↑ 54.53 ↓ 71.25 ↑

CMIM RN34 RN18 70.89 70.44 ↓ 70.69 ↓ 69.97 ↓ 70.59 ↓ 70.63 ↓ 70.53 ↓ 59.34 ↓ 70.69 ↓
MNV2 70.93 70.21 ↓ 70.72 ↓ 69.97 ↓ 70.44 ↓ 70.86 ↓ 70.20 ↓ 55.24 ↓ 70.86 ↓

As observed in Table 1, whether the architectures of teacher-student pairs are the same or different,
unlike the DNNs trained by other defense methods, the DNNs trained by CMIM cannot be made
distillable using different distillation methods.

5.2 ACCURACY OF PROTECTED MODELS

In this section, we report the top-1 accuracy of the protected models in Table 1 trained using the
benchmark defense methods with those trained by CMIM. The results are summarized in Tables 2
and 3. As observed, the models trained by CMIM have the highest classification accuracy compared to
the benchmark methods. This is because for the models trained by CMIM, the clusters corresponding
to the output probability of the DNNs are very concentrated, facilitating easier classification of
samples from different classes.
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Table 2: Top-1 accuracy (%) of models trained by defense methods on CIFAR-100 and TinyImageNet.
The best and second best results are bolded and underlined, respectively.

CIFAR100 TinyImageNet
Model CE MAD APGP RSP ST NT SNT LS CMIM Model CE RSP ST NT LS CMIM

VGG16 73.75 73.75 73.84 73.71 73.75 73.75 72.59 73.90 73.84 RN34 65.39 65.21 65.39 65.23 65.45 65.99
RN50 77.81 77.81 77.56 77.63 77.81 77.31 77.77 78.45 78.72 RN50 66.14 65.91 66.13 66.06 66.09 66.93

Table 3: Top-1 accuracy (%) of models trained by defense methods on ImageNet.
ImageNet

Model CE ST CMIM
RN34 73.31 73.30 73.69

(a) CE (b) Nasty teacher (c) CMIM
Figure 2: Visualization of three projected probability clusters for ResNet-50 trained on CIFAR-100
using (a) CE, (b) NT, and (c) CMIM.

The results in Table 2 motivate us to test the top-1 accuracy of additional models trained by CMIM
and compare them with those trained by CE loss (see Appendix I).

5.3 VISUALIZING THE OUTPUT CLUSTERS

In this subsection, we aim to visualize the output clusters for the models trained by CE, NT and
CMIM. to this end, we follow the visualization approach introduced in Yang et al. (2023), and
pick three labels randomly from CIFAR-100 dateset. For each probability distribution in the three
clusters corresponding to these picked labels, consider only the probabilities of these three labels,
normalize them so that they become a three-dimensional probability vector, and further project the
resulting probability vector into the two-dimensional simplex. Then the three clusters corresponding
to three selected labels are projected into and can be viewed in the two dimensional simplex (Yang
et al., 2023). Such simplexes are depicted in Figure 2 for ResNet-50 trained using CE loss, nasty
teacher and CMIM framework, where for better visualization we used the same power transform
α = 4 to depict all the simplexes. As observed, for the model trained by CMIM, the clusters are
highly concentrated in the corner of the simplex (one-hot vectors). Thus, a knockoff student cannot
outperform LS regularization when distilling a CMIM-trained model.

6 CONCLUSION

In this paper, from an information-theoretic perspective, we proposed a defence method against the
threat posed by knockoff students attempting to steal the IP of pre-trained DNNs via logit-based KD
methods. In particular, we proposed to minimize the CMI of the protected DNN across different power
transform hyper-parameter values α, while minimizing the conventional CE loss simultaneously.
We referred to model trained by these framework as CMIM models. By conducting a series of
experiments, we showed that, unlike the prior defense methods proposed in the literature, a knockoff
student cannot render CMIM models distillable. In addition, we showed that the models trained by
CMIM achieve higher classification accuracy compared to those trained by CE loss.

Despite these promising results, our work has certain limitations. First, the evaluation of CMIM
models is primarily empirical, as providing a formal theoretical proof of undistillability remains an
open challenge. Second, our approach introduces additional computational overhead compared to the
conventional training using CE loss.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020.
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A APPENDIX

B A THOROUGH STUDY OF RELATED WORKS

B.1 LOGIT-BASED KD METHODS

Knowledge Distillation (KD) has become a cornerstone technique for compressing large teacher
models into smaller student models. This section reviews key logit-based KD methods and explores
their advancements.

Hinton et al. (2015) introduced the foundational concept of KD, using KL divergence to match the
student’s softmax outputs to the teacher’s. This work laid the groundwork for logit-based methods, as
the softmax output directly relates to the logits. Later, Moldovan et al. (2019) proposed Path-KD,
a method that utilizes the paths leading to the correct class in both teacher and student models for
distillation. While not directly logit-based, it demonstrates the effectiveness of aligning decision-
making processes. Guo et al. (2021) proposed Logit-Like Distillation, addressing the capacity gap
by matching the ranking of logits instead of their exact values [4]. This approach allows the student
to learn the essential ordering of classes even with limited capacity. An et al. (2021) proposed
relation knowledge distillation (RKD), focusing on aligning relationships between class logits rather
than individual values. This approach improves the student’s ability to generalize to unseen data.
Zhao et al. (2022) introduced decoupled knowledge distillation (DKD), where it decouples the
classical KD loss into two parts: target class knowledge distillation and non-target class knowledge
distillation. Huang et al. (2022b) proposed DIST where they designed a KD method to distill better
from a stronger teacher; indeed they claim that preserving the relations between the predictions of
teacher and student would suffice for an effective KD. Borup & Andersen (2021) provided theoretical
arguments for the importance of weighting the teacher outputs with the ground-truth targets when
performing self-distillation with kernel ridge regressions along with a closed form solution for the
optimal weighting parameter.

B.2 DEFENSE METHODS AGAINST LOGIT-BASED KD

As also discussed in Section 2, the defense methods against the threat posed by knockoff students
attempting to steal the IP of pre-trained DNNs via logit-based KD methods can be categorized into
two approaches. Here, we elaborate on these two approaches.

(I) Model stealing resistant training: In this approach, DNNs are trained to reduce the accuracy
of knockoff students while maintaining the original classification accuracy of the model. In partic-
ular, Ma et al. (2021) proposed a training algorithm named self-undermining KD to create nasty
teachers (NT) that prevent knowledge leakage and unauthorized model stealing through KD, without
compromising model accuracy. The nasty teacher is trained by minimizing the following objective
function:

LNT = H(y, qx)− ϵ KL(q̃x, qx), (30)

where q̃x is a output of a pre-trained standard model.

Subsequently, Wang et al. (2022) proposed semantic nasty teachers (SNT) which improve the model
stealing resistance of NT by disentangling semantic relationships in the output logits during teacher
model training, which is crucial for successful KD.

(II) post-training defence methods: The aim of these approaches is to deceive the knockoff
by imposing minimal perturbations to the model’s predictions. Lee et al. (2019) tested a variety
of possible perturbation forms, and found that the reverse sigmoid perturbation (RSP) to be the
most effective one. Orekondy et al. (2020) introduced maximizing angular deviation (MAD), a
technique that perturbs the output probabilities, leading to an adversarial gradient signal that deviates
significantly from the original gradient of the knockoff. To this end, they applied a randomly
initialized model as the surrogate for the potential knockoff. More recently, Cheng & Cheng (2023)
proposed a plug-and-play generative perturbation model, dubbed as accuracy preserving generative
perturbation (APGP), which can effectively defend KD-based model cloning, while preserve the
model utility.
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Figure 3: The CMI values for the models trained by different KD-resistance defence methods Vs.
power transform value α for (a) ResNet-50, and (b) VGG16 trained on CIFAR-100 dataset.

B.3 ATTACK METHODS USING LOGIT-BASED KD

Jandial et al. (2022) sought to circumvent the defense of nasty teachers and steal (or extract) its
information. Specifically, they analyzed nasty teacher from two different angles and subsequently
leverage them carefully to develop simple yet efficient methodologies, named as HTC and SCM,
which enhance learning from nasty teacher.

In AVG (Keser & Toreyin, 2023), the authors noted that undistillable teachers exhibit multiple peaks
in their softmax response, which are transferred to the student models. These peaks are considered
to be the primary factor that misleads the student models. To mitigate the influence of the multiple
peaks in the softmax response of teachers, they proposed transferring the mean of features with the
same labels as the soft labels.

Orekondy et al. (2019) introduced a technique called ”Knockoff Nets” that allows an attacker to
steal the functionality of black-box models. Remarkably, the attacker only needs to interact with
the model by feeding it input data and observing the resulting predictions. By training a new model
(”knockoff”) on these input-prediction pairs, the attacker can create a copycat model that performs
similarly to the original black box.

C WHY LS REDUCE THE KNOCKOFF STUDENT’S ACCURACY?

Original aiming to prevent overfitting and improve generalization, label smoothing was observed
by Müller et al. (2019) to reduce the accuracy of the knockoff student. The researchers found that
”label smoothing encourages examples to lie in tight, equally separated clusters”. Consequently, label
smoothing reduces the contextual information in the teacher model’s output (Yang et al., 2024).

D WHY PRIOR DEFENCE METHODS CAN BE MADE DISTILLABLE?

In this section, we answer to this question that why the DNNs trained using all prior KD-resistance
defense methods could be made distillable (as shown in Section 5). Indeed, the reason lies in the fact
that by appropriately adjusting the power transform value α, the DNNs trained using these defense
methods can potentially achieve a high CMI value compared to our proposed method CMIM (see
Figure 3). Thus, using this specific α value during distillation, a logit-based KD method can render
these DNNs distillable effectively.

E POWER TRANSFORMATION OF MUTUAL INFORMATION

The following theorem implies that for each label y, I(X; Ŷ α|Y = y) as a function of α is continu-
ously differentiable.

Theorem E.1. Let (X,Z) be a pair of random variables, where Z is discrete, and X can be either
discrete or continuous. Let PZ|X [·|x] denote the conditional probability distribution of Z given
X = x. Additionally, let Pα

Z|X [·|x] denote the power transformed version of PZ|X [·|x] with power
α, Zα denote the random variable the conditional distribution of which given X = x is Pα

Z|X [·|x],
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and qα denote the probability distribution of Zα. Then, the following holds

∂ I(X;Zα)

∂ α
=

1

α

∑
x

PX [x]
{(

m2(P
α
Z|X [·|x])−m2

1(P
α
Z|X [·|x])

)
− Cov(Pα

Z|X [·|x], qα)
}
, (31)

where for probability vectors P and Q,

m1(P )
∆
=
∑
j

P [j]
(
− ln(P [j])

)
= H(P ), (Shannon entropy) (32a)

m2(P )
∆
=
∑
j

P [j]
(
− ln(P [j])

)2
, (Second moment) (32b)

Cov(P,Q)
∆
=
∑
j

P [j]
(
− ln(P [j])−m1(P )

)(
− ln(Q[j])−

∑
i

P [i](− ln(Q[i]))
)
. (32c)

Proof. To simplify our notation, we denote the conditional distributions PZ|X [·|x] and Pα
Z|X [j|x] by

px and pαx , respectively. Decompose I(X;Zα) as follows

I(X;Zα) = H(Zα)−H(Zα|X)

= H(qα)−
∑
x

P [x]H(pαx) (33)

where for any random variables U and V , H(V ) and H(V |U) are the entropy of V and the conditional
entropy of V given U , respectively, and H(p) denotes the entropy of the probability distribution p.
Then the partial derivative of I(X;Zα) w.r.t. α is equal to

∂I(X;Zα)

∂α
=

∂H(qα)

∂α
−
∑
x

P [x]
∂H(pαx)

∂α
. (34)

To continue, we first compute the partial derivative in the second term of the RHS of equation 34

∂H(pαx )

∂α
=

−∂
∑

j p
α
x [j] ln(p

α
x [j])

∂α
= −

∑
j

(
ln(pαx [j]) + 1

)∂pαx [j]
∂α

= −
∑
j

(
ln(pαx [j]) + 1

)

×
(px[j])

α ln(px[j])
(∑

i(px[i])
α
)
− (px[j])

α
(∑

i(px[i])
α ln px[i]

)
(∑

i(px[i])
α
)2

= −
∑
j

(
ln(pαx [j]) + 1

)(
pαx [j]

(
ln(px[j])−

∑
i

pαx [i] ln(px[i])
))

=
−1

α

∑
j

(
ln(pαx [j]) + 1

)
pαx [j]

(
ln(px[j])

α −
∑
i

pαx [i|] ln(px[i])α
)

(35)

=
−1

α

∑
j

(
ln(pαx [j]) + 1

)
pαx [j]

(
ln(pαx [j])−

∑
i

pαx [i] ln(p
α
x [i])

)

=
−1

α

(∑
j

pαx [j]
(
ln(pαx [j])

)2 − (∑
j

pαx [j] ln(p
α
x [j])

)(∑
i

pαx [i] ln(p
α
x [i])

))

=
−1

α

(
m2(p

α
x )−m2

1(p
α
x )
)

(36)

Note that
qα =

∑
x

P [x]pαx .
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Then we have

∂H(qα)

∂α
=

−∂
∑

j q
α[j] ln(qα[j])

∂α
= −

∑
j

(
ln(qα[j]) + 1

)∂qα[j]
∂α

= −
∑
j

(
ln(qα[j]) + 1

)∑
x

P [x]
∂pαx [j]

∂α

=
−1

α

∑
j

(
ln(qα[j]) + 1

)∑
x

P [x]pαx [j]
(
ln(pαx [j]) +m1(p

α
x)
)

(37)

=
−1

α

∑
j

(
ln(qα[j])

)∑
x

P [x]pαx [j]
(
ln(pαx [j]) +m1(p

α
x)
)

=
−1

α

∑
x

P [x]
∑
j

(
ln(qα[j])

)
pαx [j]

(
ln(pαx [j]) +m1(p

α
x)
)

=
−1

α

∑
x

P [x]

(∑
j

pαx [j] ln(p
α
x [j])

(
ln(qα[j])

)

−m1(p
α
x)
∑
j

pαx [j]
(
− ln(qα[j])

))

=
−1

α

∑
x

P [x] Cov (pαx , q
α) (38)

where equation 37 is due to equation 35.

From Equations (36) and (38), Theorem E.1 follows.

F PROOF OF THEOREM 4.1

Theorem 4.1 follows from Theorem E.1 and the following lemma.
Lemma F.1. Let g(t) be a continuously differentiable function over [0, β]. Then the following holds:

max
t

g(t) = lim
ω→∞

1

ω
ln

1

β

∫ β

0

exp {ωg(t)}dt. (39)

Proof. Let t∗ be an optimal point at which

g(t∗) = max
t

g(t).

For any ϵ > 0, let N (t∗, ϵ) denote a closed interval containing t∗ with length ϵ. It is easy to verify
that

1

ω
ln

1

β

∫ β

0

exp {ωg(t)}dt ≤ g(t∗)

which implies that

lim sup
ω→∞

1

ω
ln

1

β

∫ β

0

exp {ωg(t)}dt ≤ g(t∗). (40)

On the other hand,

1

ω
ln

1

β

∫ β

0

exp {ωg(t)}dt ≥ 1

ω
ln

1

β

∫
N (t∗,ϵ)

exp {ωg(t)}dt

≥ 1

ω
ln

ϵ

β
exp {ω min

t∈N (t∗,ϵ)
g(t)}

= min
t∈N (t∗,ϵ)

g(t) +
1

ω
ln

ϵ

β
. (41)
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Letting ω → ∞ in equation 41 yields

lim inf
ω→∞

1

ω
ln

1

β

∫ β

0

exp {ωg(t)}dt ≥ min
t∈N (t∗,ϵ)

g(t). (42)

Note that equation 42 is valid for any ϵ > 0. Letting ϵ → 0 in equation 42, we have

lim inf
ω→∞

1

ω
ln

1

β

∫ β

0

exp {ωg(t)}dt ≥ g(t∗). (43)

Then equation 39 follows from equation 40 and equation 43. This completes the proof of Lemma F.1.

G DATASETS DESCRIPTION

• CIFAR-100 (Krizhevsky et al., 2012) dataset contains 50K training and 10K test color
images, each with size 32× 32, categorized into 100 classes.

• TinyImageNet (Le & Yang, 2015) contains 120K color images across 200 classes, each with
a resolution of 64× 64 pixels. For each class, there are 500 training images, 50 validation
images and 50 test images.

• ImageNet (Deng et al., 2009) is a large-scale dataset used in visual recognition tasks,
containing around 1.2 million training and 50K validation images.

H EXPERIMENTS SETUP

All experiments detailed in this paper were conducted using a publicly available national high-
performance computer. For each experiment, we utilized 16 CPU cores, 64 GB of memory, and one
NVIDIA V100 GPU. The software environment comprised Python 3.10, PyTorch 1.13, and CUDA
11.

For all experiments, including defenses and attacks, the SGD optimizer (Robbins & Monro, 1951;
LeCun et al., 2002) with a learning rate of 0.1 is used unless otherwise specified.

For the CIFAR-100 and TinyImageNet datasets, we train the model for 200 epochs, decaying the
learning rate by 0.1 at epochs 60, 120, 160.

For ImageNet, we follow the standard PyTorch practice 3.

The batch size is 128 for both CIFAR-100 and TinyImageNet, and 256 for ImageNet.

To get the accuracy that a knockoff student can achieve using label smoothing, we have tested a
wide spectrum of label smoothing factor ϵ = {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9},
and selected the one that resulted in the highest classification accuracy.

In the CMIC method, we set T = 20 and tested λ = 0.1, 0.25, 0.5, 1, selecting the value that
minimized the CMI value while maintaining or improving classification accuracy.

H.1 DEFENSE SETUP

We used the following parameters and settings for the defense models used in Section 5.

H.1.1 DEFENSE SETUP ON CIFAR-100 AND TINYIMAGENET

1. MAD: We employ a randomly initialized VGG-8 as adversary’s architecture, and following
the implementation of MAD-argmax.

2. APGP: We apply a 3 layer MLP with residual connection as the generative model and set
λ = 0.1 for all experiments.

3. RSP: We use α = 1 and β = 20 for all the experiments.

3https://github.com/pytorch/vision/tree/main/references/classification
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4. NT: To ensure a acceptable accuracy sacrifice, we test three different ϵ values and select
the largest one that results in an accuracy drop of less than 0.5%. Specifically, we use
ϵ = 0.01 for ResNet-50 and ϵ = 0.005 for VGG-16 on the CIFAR-100 dataset, while for
TinyImageNet, we use ϵ = 0.001 for both ResNet-34 and ResNet-50.

5. SNT: We use the pretrained word2vect model namely ”fasttext-wiki-news-subwords-300”
provided by Gensim (Rehurek & Sojka, 2011), and set λ = 0.2 for all experiments.

6. ST: We use the teacher model trained by CE as the underlying model, and use the sparse
ratio of 10% as suggested in their paper for all experiments.

7. LS: We apply label smoothing factor 0f 0.05 for all experiments.
8. ISTM: We set the binary search parameters to Tb = 20 and αmax = 2000. We use λ = 0.2

for ResNet-50 and λ = 0.5 for VGG-16 on the CIFAR-100 dataset, while for TinyImageNet,
we use λ = 0.1 for ResNet-34 and λ = 0.5 ResNet-50.

H.1.2 DEFENSE SETUP ON IMAGENET

1. ST: We use the teacher model trained by CE as the underlying model, and use the sparse
ratio of 10% as suggested in their paper for all experiments.

2. ISTM: We set the binary search parameters to Tb = 20 and αmax = 2000. We use λ = 0.2
for all the experiments.

H.2 ATTACK SETUP

H.2.1 ATTACK SETUP ON CIFAR-100 AND TINYIMAGENET

We use power transform parameter α = 0.25 (or equivalently T = 4) for all experiments unless
otherwise specified.

1. KD: We set the CE-KL trade-off coefficient to λ = 0.9.
2. MKD: We use the intrinsic dimension of 3 for CIFAR-100, and 5 for TinyImageNet. We

employed the Adam optimizer (Kingma & Ba, 2014) with learning rate 10−3 for the trainable
Markov transform.

3. DKD: We test alpha, beta pairs of {1, 4} and {2, 8}, and report the one with best accuracy.
4. DIST: We useβ = 1.0, γ = 1.0, τ = 1.0 for all experiments.
5. HTC: We use α = 0.05(T = 20), λ = 0.01 for all experiments.
6. AVG: λ = 0.9.
7. Knockoff: We follow the implementation of the original paper.

H.2.2 ATTACK SETUP ON IMAGENET

We use α = 1 (T = 1) for all experiments unless otherwise specified.

1. KD: λ = 0.9.
2. MKD: We use the intrinsic dimension of 16. We employed the Adam optimizer (Kingma &

Ba, 2014) with learning rate 10−3 for the trainable Markov transform.
3. DKD: We test alpha, beta pairs of {1, 4} and {2, 8}, and report the one with best accuracy.

I ACCURACY OF PROTECTED MODELS

In this section, we report the top-1 accuracy of some additional models that are trained using
CMIM and compare them with those trained by CE method. To this end, we use 10 well-known
models for CIFAR-100 dataset namely ResNet (RN)-{18, 34, 50, 101, 152}, SqueezeNet (SQN),
ResNext (RNXT) 50, MobileNet (MN), Xception (XCP), DenseNet (DN) 121; and 2 models namely
RN-{34, 50} for TinyImageNet and ImageNet. We follow the same training recipe as the one in
Section 5.1. The results for CIFAR-100 and (Tiny-)ImageNet are listed in Table 4 and Table 5,
respectively. As seen, the top-1 accuracy for all models trained by CMIC is consistently higher than
those trained by CE counterpart, with the gain up to 1.15%.
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Table 4: Top-1 accuracy (%) of models trained by CE and CMIM methods on CIFAR-100.

CIFAR-100
Model CE CMIC Model CE CMIC
RN18 76.05 77.20 SQN 69.32 70.64
RN34 77.20 77.54 RNXT50 78.71 79.12
RN50 77.81 77.93 MN 67.26 67.51
RN101 79.07 79.12 XCP 77.37 77.64
RN152 79.21 79.43 DN121 79.16 79.33

Table 5: Top-1 accuracy (%) of models trained by CE and CMIM methods on TinyImageNet and
ImageNet.

TinyImageNet ImageNet
Model CE CMIC Model CE CMIC
RN34 65.39 65.99 RN34 73.31 73.69
RN50 66.14 66.93 RN50 76.15 76.40
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J VARIANCE OF TABLE 1

Table 6: Top-1 accuracy (%) and variance of the knockoff student on CIFAR-100 and TinyImageNet
dataset (averaged over 3 runs)

CIFAR-100
Defense Model K-student LS KD MKD DKD DIST HTC AVG Knockoff

MAD
VGG16 VGG11 71.94±0.09 68.55±0.20 72.08±0.29 53.32±0.38 69.21±0.09 71.19±0.03 70.03±0.07 61.44±0.06

SNV2 72.65±0.18 72.50±0.11 72.46±0.13 7.64 ± 0.70 69.91 ± 0.18 71.37±0.24 72.86±0.18 70.87±0.26

RN50 VGG11 71.94±0.09 72.00±0.21 72.04±0.13 54.29±0.52 71.57±0.31 70.76±0.20 70.73±0.22 61.73±0.23
RN18 78.76±0.08 77.76±0.23 78.79±0.23 43.73±0.55 73.76±0.10 77.89±0.25 78.61±0.15 73.92±0.19

APGP
VGG16 VGG11 71.94±0.09 71.92±0.19 72.27±0.21 27.24±0.54 69.25±0.14 70.08±0.23 72.01±0.20 45.98±0.45

SNV2 72.65±0.18 73.10±0.27 73.75±0.23 12.52±0.30 71.04±0.31 71.66±0.13 73.20±0.27 9.48 ± 0.73

RN50 VGG11 71.94±0.09 71.91 ± 0.17 72.11 ± 0.23 9.74 ± 0.86 69.48 ± 0.11 71.38 ± 0.25 71.92 ± 0.14 34.71 ± 0.30
RN18 78.76 ± 0.08 78.04 ± 0.21 79.06 ± 0.14 62.71 ± 0.29 77.32 ± 0.13 77.82 ± 0.13 77.90 ± 0.15 2.57 ± 0.95

RSP
VGG16 VGG11 71.94 ± 0.09 71.42 ± 0.24 72.04 ± 0.13 70.22 ± 0.19 70.80 ± 0.17 70.40 ± 0.17 71.56 ± 0.06 31.04 ± 0.62

SNV2 72.65 ± 0.18 73.55 ± 0.34 72.95 ± 0.36 67.45 ± 0.20 72.19 ± 0.44 71.46 ± 0.41 72.27 ± 0.27 26.09 ± 0.40

RN50 VGG11 71.94 ± 0.09 71.97 ± 0.17 72.01 ± 0.20 69.53 ± 0.12 72.18 ± 0.21 70.87 ± 0.14 70.85 ± 0.17 46.68 ± 0.60
RN18 78.76 ± 0.08 77.78 ± 0.09 77.79 ± 0.16 77.01 ± 0.09 78.88 ± 0.21 78.00 ± 0.26 78.13 ± 0.12 55.86 ± 0.18

NT
VGG16 VGG11 71.94 ± 0.09 71.40 ± 0.34 73.44 ± 0.16 71.47 ± 0.14 71.33 ± 0.18 70.77 ± 0.23 71.58 ± 0.09 63.56 ± 0.16

SNV2 72.65 ± 0.18 72.44 ± 0.43 72.70 ± 0.35 6.24 ± 0.51 72.04 ± 0.19 70.75 ± 0.13 72.83 ± 0.20 6.32 ± 0.26

RN50 VGG11 71.94 ± 0.09 72.01 ± 0.25 72.03 ± 0.19 71.55 ± 0.36 71.88 ± 0.31 70.16 ± 0.29 71.94 ± 0.18 62.94 ± 0.24
RN18 78.76 ± 0.08 78.41 ± 0.25 78.92 ± 0.14 79.26 ± 0.29 78.99 ± 0.14 77.94 ± 0.22 78.33 ± 0.05 68.96 ± 0.18

SNT
VGG16 VGG11 71.94 ± 0.09 72.06 ± 0.22 72.28 ± 0.12 4.92 ± 0.22 71.98 ± 0.18 70.60 ± 0.13 71.63 ± 0.10 64.08 ± 0.19

SNV2 72.65 ± 0.18 72.94 ± 0.41 73.17 ± 0.13 72.78 ± 0.20 72.22 ± 0.24 71.22 ± 0.18 72.74 ± 0.20 6.22 ± 0.59

RN50 VGG11 71.94 ± 0.09 72.02 ± 0.19 72.12 ± 0.39 72.32 ± 0.33 71.70 ± 0.39 70.66 ± 0.17 71.65 ± 0.20 62.94 ± 0.29
RN18 78.76 ± 0.08 78.25 ± 0.05 78.48 ± 0.24 78.82 ± 0.30 78.14 ± 0.28 78.45 ± 0.15 78.38 ± 0.13 67.71 ± 0.20

ST
VGG16 VGG11 71.94 ± 0.09 72.09 ± 0.23 72.01 ± 0.14 71.63 ± 0.16 71.93 ± 0.12 71.16 ± 0.27 71.63 ± 0.18 63.32 ± 0.14

SNV2 72.65 ± 0.18 72.64 ± 0.15 72.67 ± 0.21 70.53 ± 0.48 72.24 ± 0.39 71.32 ± 0.38 72.42 ± 0.12 69.46 ± 0.28

RN50 VGG11 71.94 ± 0.09 72.00 ± 0.19 72.13 ± 0.13 71.62 ± 0.24 71.76 ± 0.29 70.54 ± 0.33 71.73 ± 0.11 65.43 ± 0.24
RN18 78.76 ± 0.08 78.96 ± 0.26 79.02 ± 0.06 78.35 ± 0.09 78.31 ± 0.14 78.36 ± 0.25 78.81 ± 0.14 72.87 ± 0.08

LS
VGG16 VGG11 71.94 ± 0.09 71.90 ± 0.18 72.00 ± 0.06 71.57 ± 0.26 70.89 ± 0.12 70.66 ± 0.17 71.76 ± 0.10 63.49 ± 0.21

SNV2 72.65 ± 0.18 72.87 ± 0.28 73.52 ± 0.25 70.01 ± 0.32 71.49 ± 0.38 71.70 ± 0.42 73.01 ± 0.27 65.20 ± 0.14

RN50 VGG11 71.94 ± 0.09 71.82 ± 0.28 71.99 ± 0.16 71.95 ± 0.33 70.77 ± 0.39 70.86 ± 0.24 71.88 ± 0.16 62.29 ± 0.10
RN18 78.76 ± 0.08 77.72 ± 0.30 77.82 ± 0.12 79.37 ± 0.19 78.33 ± 0.06 78.31 ± 0.21 77.91 ± 0.07 63.36 ± 0.17

CMIM
VGG16 VGG11 71.94 ± 0.09 71.87 ± 0.24 71.64 ± 0.07 71.56 ± 0.03 70.34 ± 0.09 71.71 ± 0.14 71.42 ± 0.05 66.89 ± 0.11

SNV2 72.65 ± 0.18 72.53 ± 0.21 71.44 ± 0.16 72.46 ± 0.20 71.45 ± 0.31 71.59 ± 0.24 71.94 ± 0.20 64.45 ± 0.24

RN50 VGG11 71.94 ± 0.09 71.54 ± 0.30 71.34 ± 0.16 71.77 ± 0.06 71.86 ± 0.28 69.32 ± 0.09 71.70 ± 0.22 60.58 ± 0.17
RN18 78.76 ± 0.08 78.21 ± 0.13 78.16 ± 0.09 78.13 ± 0.06 77.56 ± 0.06 77.23 ± 0.09 78.64 ± 0.06 65.88 ± 0.09

TinyImageNet

RSP RN34 RN18 63.56 ± 0.06 63.54 ± 0.09 64.32 ± 0.07 64.01 ± 0.07 63.27 ± 0.16 63.54 ± 0.07 62.15 ± 0.14 55.43 ± 0.12
RN50 SNV2 60.61 ± 0.15 60.18 ± 0.26 60.76 ± 0.16 56.26 ± 0.16 56.43 ± 0.11 60.96 ± 0.22 60.15 ± 0.20 54.01 ± 0.22

ST RN34 RN18 63.56 ± 0.06 63.96 ± 0.13 64.12 ± 0.07 63.25 ± 0.10 63.51 ± 0.14 63.49 ± 0.19 63.84 ± 0.08 57.42 ± 0.08
RN50 SNV2 60.61 ± 0.15 61.23 ± 0.24 61.36 ± 0.14 60.43 ± 0.14 60.32 ± 0.24 60.22 ± 0.17 61.13 ± 0.13 55.84 ± 0.11

NT RN34 RN18 63.56 ± 0.06 63.27 ± 0.14 64.49 ± 0.17 64.67 ± 0.16 63.43 ± 0.20 63.50 ± 0.10 64.43 ± 0.11 53.11 ± 0.06
RN50 SNV2 60.61 ± 0.15 59.57 ± 0.22 61.55 ± 0.12 31.55 ± 0.28 60.03 ± 0.23 60.98 ± 0.27 60.31 ± 0.17 50.94 ± 0.15

LS RN34 RN18 63.56 ± 0.06 63.74 ± 0.08 64.01 ± 0.14 64.23 ± 0.11 63.51 ± 0.07 64.20 ± 0.16 63.04 ± 0.13 57.43 ± 0.10
RN50 SNV2 60.61 ± 0.15 60.32 ± 0.24 60.93 ± 0.15 60.74 ± 0.26 60.11 ± 0.28 60.46 ± 0.14 60.14 ± 0.21 52.96 ± 0.23

CMIM RN34 RN18 63.53 ± 0.06 62.89 ± 0.03 63.15 ± 0.08 62.94 ± 0.03 63.28 ± 0.05 61.57 ± 0.06 62.96 ± 0.06 56.13 ± 0.04
RN50 SNV2 60.61 ± 0.15 57.57 ± 0.20 59.32 ± 0.17 60.58 ± 0.12 59.41 ± 0.09 59.33 ± 0.10 60.42 ± 0.04 56.91 ± 0.05

K COMPUTATIONAL OVERHEAD

In this section we compare the computational overhead of our method with the CE counterpart on
CIFAR-100 dataset.

Table 7: Training times of CMIM and CE for ResNet-10 and VGG-16 on the CIFAR-100 dataset.

CE CMIM
RN50 4 hours 43 minutes 5 hours 13 minutes
VGG16 2 hours 57 minutes 3 hours 25 minutes

Note that the training time for CMIM is slightly higher than that of conventional CE method. This
is primarily due to the additional inference samples required to estimate the CMI. In addition, note
that the number of samples N does not have any effects on the training time CMIM; this is because
the power transform applied to the teacher’s output probabilities, and when calculating the gradients
during the backpropagation, different values of α does not change the gradients.

L ABLATION ON HYPERPARAMETERS

In this section, we conduct ablation study on the hyperparameters of range of β and number of power
samples α.
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For all experiments of ablation study, we use the VGG-16 - SNV2 as the teacher student pair on the
Cifar-100 dataset.

L.1 RANGE OF β

Figure 4: The student accuracy when distilled from the teacher model trained by different β values.

We study the effect of β here. For all experiments, we randomly sampled 50 different α,As we can
see, the knockoff student accuracy drops drastically when β ≥ 1.

L.2 NUMBER OF POWER SAMPLES α

Figure 5: The student accuracy when distilled from the teacher model trained by different number of
sample α.

Here, we examine the effect of the number of samples on student performance. For a single sample, we
use the conventional CE loss to train the teacher model. The student accuracy decreases monotonically
as the number of samples increases.
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