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Abstract

Large language models (LLMs) have achieved remarkable success in natural lan-
guage processing tasks but suffer from high computational costs during inference,
limiting their deployment in latency-constrained applications. To address this issue,
we propose a novel Collaborative Inference with Token-lEvel Routing (CITER)
framework that introduces a token-level routing mechanism, enabling efficient col-
laboration between small and large language models (SLMs & LLMs). Specifically,
CITER enables routing non-critical tokens to an SLM to reduce computational
overhead, while critical tokens are processed by an LLM to maintain generation
quality. We formulate the training of the router as a reinforcement learning task,
where the router receives rewards based on both the quality of predictions and the
inference cost of generation. To further accelerate the reward evaluation process,
we introduce a shortcut for reward function estimation, significantly reducing the
cost of the reward estimation. Extensive experiments demonstrate that CITER re-
duces inference cost while preserving high-quality generation, offering a promising
solution for real-time and resource-constrained applications.

1 Introduction

Large language models (LLMs) have revolutionized a wide range of natural language processing
tasks, from machine translation to question answering (Coleman et al., 2024; Kamalloo et al., 2024).
However, their impressive performance comes with a substantial computational cost, particularly
during inference. As these models grow in size, the cost of inference becomes a significant barrier to
their practical deployment, especially in real-time applications. Thus, there is a growing need for
accelerating the inference process without compromising the quality of the generated outputs.

Among the strategies (Sanh et al., 2020; Anagnostidis et al., 2024) to reduce inference costs, routing
tasks to models of different sizes is a promising approach to accelerating LLM inference while
maintaining output quality. In this approach, small language models (SLMs) handle simpler tasks
with lower computational overhead, while more complex cases are routed to LLMs to ensure response
accuracy. However, while promising, existing works largely focus on routing entire user queries to
different models for generation (Ong et al., 2024; Mohammadshahi et al., 2024), which limits routing
flexibility and may reduce efficiency.

To address this challenge, we present a novel framework, namely Collaborative Inference with
Token-lEvel Routing(CITER). CITER introduces a token-level router that predicts whether a token is
important by estimating the token-level routing score, and routes it to the appropriate model to balance
the efficiency and accuracy of generation. We formulate a reinforcement learning (RL) problem
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Figure 1: An overview of the CITER framework. A router is leveraged to perform collaborative
inference between the SLM and LLM. The router is trained using routing preference collected through
three cases. Case 1: The SLM generates the correct token, the routing preference is assigned to the
SLM. Case 2: The SLM generates an incorrect token, while the LLM generates the correct token,
the routing preference is assigned to the LLM. Case 3: None of the SLM or the LLM generates the
correct token, then the collaborative inference is conducted to obtain the completed response for
assigning the routing preference.

to train the router, with the objective of minimizing inference cost while preserving output quality.
However, training the router using RL can be computationally expensive. To make it more practical,
we present a shortcut to the reward function, significantly accelerating the training process. Through
this RL framework, the router learns an optimal token-level decision-making strategy, enabling an
SLM and an LLM to collaborate for effective and efficient autoregressive generation.

Our primary contribution is CITER, which accelerates LLM inference by employing a token-level
router to select the appropriate model for generating each token. Experiments on four benchmark
datasets demonstrate the effectiveness of our approach, achieving a reduction in LLM inference cost
while maintaining high output accuracy, with comparable accuracy while up to 30% fewer calls
to LLM or delivering up to a 25% improvement in accuracy with the same ratio of calls to LLM
compared to our strongest baseline, co-LLM (Shen et al., 2024). Additionally, our ablation study
experiments also demonstrate that token-level routing offers more flexibility for achieving more
promising results compared to query-level routing and that considering the long-term impact of
routing decisions boosts the acceleration performance significantly.

2 Collaborative Inference with Token-lEvel Routing(CITER)

In this section, we describe our Collaborative Inference with Token-lEvel Routing (CITER) frame-
work that leverages token-level routing to accelerate LLM inference. As illustrated in Figure 1, in
CITER, we introduce a router to facilitate collaborative inference between a powerful but computa-
tionally expensive LLM and a fast but potentially inaccurate SLM. We formulate the training process
of the router as a reinforcement learning problem, aiming to minimize the inference cost while
maintaining the generation quality. Specifically, we first derive the reward function as token-wise
routing preference. Subsequently, we introduce a shortcut for the reward function estimation to
significantly accelerate the collection process. Finally, we propose an iterative training process to
mitigate the potential inconsistencies of the routing decisions in the preference collection phase and
deployment. Next, we will detail the router training and collaborative inference processes.

2.1 Router Training

2.1.1 Efficient Collection of Token-Wise Routing Preferences
To equip the router with the ability to predict token-level routing scores, we formulate the training
process of the router as a reinforcement learning problem. Let the current state Th be the historical
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context input to the LLM before h-th token. At each step h ∈ [H], the RL agent Π select either the
LLM πL and the SLM πS with action a = {L, S}. In addition, we assume the rewardR(TH ,AH)
comprehensively encodes the performance of the routing strategy, including the quality of generated
response TH and the computational cost required by performing AH . We further define the state-
action value function as QΠ

h (Th, a) = E[R(TH ,Ah:H)|Th, a,Π]. The objective of the routing agent
is to optimize the policy by

Πh = argmax
Πh

Ea∼Πh(·|Th)Q
Π
h (Th, a)−KL(Πh ∥ µ), (1)

where µ is the pre-defined policy which randomly select the SLM and LLM. Omitting the mathemati-
cal derivation, which is detailed in Appendix B, we can obtain the objective function as

L =
∑
Th

1h[S ≻ L|Th,Π] logΠh(S|Th) + 1h[L ≻ S|Th,Π] logΠh(L|Th), (2)

where the 1h[S ≻ L|Th,Π] is the routing preference and the 1h[L ≻ S|Th,Π] = 1 − 1h[S ≻
L|Th,Π]. To optimize equation 2, the routing preference 1h[S ≻ L|Th,Π] is determined by whether
the fully generated response, starting from state Th+1, is correct. The state Th+1 is reached by taking
action S (selecting the SLM) from state Th. Specifically, If the state Th+1 is not a completed state
(e.g., ending with an <EOS> token), the routing agent Π will be leveraged to process the collaborative
inference between the SLM and the LLM, obtaining the completed state TH at first. Then, the routing
preference 1h[S ≻ L|Th,Π] will be determined as whether the generated response TH is correct.
The whole process can be formulated as follows:

1h[S ≻ L|Th,Π] =1(Correct(TH)), if Th+1 is completed,
1h[S ≻ L|Th,Π] =1(Πh+1(S|Th+1) > τ)1h+1[S ≻ L|Th+1,Π]+

1(Πh+1(S|Th+1) ≤ τ)1h+1[L ≻ S|Th+1,Π], otherwise,
(3)

where the Correct(·) is used to determine whether the generated response is correct. The threshold τ
is a hyperparameter that determines the routing score required to select the SLM.

However, the second case in equation 3 requires generating the full response TH to obtain the reward,
which is computationally expensive. To mitigate this, we introduce a shortcut for estimating the
reward, significantly reducing the cost of reward computation. Specifically, we first define the ground
truth context before h-th token as T ∗

h , and y∗h as the ground truth h-th token. Subsequently, we feed
T ∗
h to both the SLM and LLM to generate the next token. If the SLM can generate the correct token

y∗h, the SLM will be selected. Otherwise, if LLM can generate the correct token y∗h, the LLM will be
selected. Only when both models fail to generate the correct token y∗h based on ground truth context,
the full response generation is required to compute the reward. Empirically, about 80% ∼ 90% of
tokens can be correctly predicted by either the SLM or LLM, making the shortcut significantly reduce
the computational cost of the reward function estimation. After collecting the preference, it will be
used to train the router using equation 2.

2.1.2 Iterative Training Process

Ideally, we would expect the router Π used during preference data collection to make the same
routing decision as the one used during deployment. However, as the router is updated throughout
training using the collected data in Section 2.1.1, its behavior is likely to change, leading to potential
inconsistencies. To address this issue, we propose a multi-iteration router training process. In each
iteration k, the router Πk−1 from the previous iteration k − 1 is used to collect routing preferences.
These newly collected routing preferences are then utilized to train a new router Πk. With each
iteration, the router’s behavior becomes more consistent, eventually reaching convergence. This
iterative process continues until the collected routing preferences match those from the previous
iteration or until a predefined number of iterations K is reached. The only exception occurs in the
first iteration, where no trained router exists. In this case, a simple routing policy is employed, routing
all tokens to the SLM to collect the initial preference data. By following this approach, we can train
the router in a practical and efficient manner. The full process is outlined in Appendix G.

2.2 Collaborative Inference

After router training, during inference, we aim to leverage the SLM to collaboratively generate
tokens to reduce the number of tokens generated by the LLM, thereby improving the efficiency of
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Figure 2: The accuracy vs % calls to LLM curve of CITER and the baselines. Points closer to the
top-left corner indicate better acceleration performance.

the inference process. Specifically, we start by feeding both the input prompt and the previously
generated tokens into the SLM, obtaining the output token and corresponding hidden states. Then,
the router Π trained in Section 2.1 is leveraged to predict the token-level routing score based on
the hidden states from the SLM. During this process, the router considers both the current token
and the historical context to make routing decisions based not only on the accuracy of the current
token but also on the long-term influence of its decision on future token generation. Subsequently, a
pre-defined threshold τ is used to determine whether the SLM or the LLM should handle the current
token. If the routing score exceeds the threshold τ , indicating that the SLM is confident with its
output. The output token from the SLM will be committed to the final response and the generation
process will go on. Otherwise, the token will be routed to the LLM for re-generation and the SLM’s
output will be discarded. During the preference data collection process for router training, most
tokens are assigned to the SLM, with only a few routed to the LLM through our shortcut. As a result,
the SLM efficiently generates the majority of tokens. This process continues until an <EOS> token is
produced by either the SLM or LLM. In this way, the router dynamically routes each token between
the SLM and LLM, offloading non-critical tokens to the SLM to reduce computational overhead
while utilizing the LLM’s capabilities to maintain response quality.

3 Experiments

In this section, we evaluate the performance of CITER aiming to answer the following questions: (1)
Compared with the previous works on speeding up the inference of LLM, how does our framework
perform in terms of the computational cost and the quality of the generated response? (2) Does
the components we proposed in our framework boost the performance of the router? (3) Does the
iterative training process of the router improve the performance of our framework?

3.1 Experimental Setup

Dataset and Evaluation. We evaluate CITER and our baselines on four widely-used academic bench-
mark datasets: the commonsense QA dataset (Talmor et al., 2019), the ARC-Challenge dataset (Clark
et al., 2018), the GSM8k dataset (Cobbe et al., 2021) and the MMLU-Professional Psychology
dataset (Hendrycks et al., 2021). More details of those datasets are presented in Appendix C. To
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Figure 3: The accuracy vs % calls to LLM curve of CITER and the varient CITER-S. Points closer to
the top-left corner indicate better acceleration performance.

compare the performance of CITER with the baselines, we plot the accuracy vs. the % calls to LLM
curve to illustrate the acceleration performance of both CITER and the baselines. The optimal point
is located in the top-left corner of the curve, corresponding to the highest accuracy with the lowest
inference cost.

Baselines. We compare CITER with both a representative query-level routing method
(RouteLLM (Ong et al., 2024)) and a token-level routing method (co-LLM (Shen et al., 2024)).
RouteLLM makes routing decisions for entire queries, directing them to different models for genera-
tion, while co-LLM breaks down the generation process, routing each token to different models.

3.2 Overall Performance

We conduct extensive experiments to assess the performance of CITER across all benchmark datasets.
The results are presented in Figure 2. Notably, all token-level routing methods significantly outperform
the query-level routing method, across all datasets, reducing up to 30% calls to LLM while maintaining
the same accuracy. This emphasizes the effectiveness of token-level routing, which provides enhanced
flexibility in reducing computational costs while preserving response quality. Furthermore, CITER
consistently surpasses co-LLM, achieving comparable accuracy with up to 27% fewer calls to LLM.
These findings demonstrate the success of our framework in accelerating LLM inference. This
outcome is expected, as co-LLM does not consider long-term information during the router training
phase, which is crucial for token-level routing.

3.3 Analysis of Long-Term Influence
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Figure 4: Accuracy vs. %
calls to LLM curve of CITER
with router over the first three
iterations on the common-
sense QA datasets. Points
closer to the top-left corner in-
dicate better acceleration per-
formance.

We also conduct an ablation study on the long-term influence of
routing decisions to evaluate its effectiveness. For this purpose, we
design an ablation variant, CITER-S, where the SLM is selected if
both the SLM and LLM provide incorrect predictions during the
routing preference collection, disregarding the long-term impact of
routing decisions. The results are shown in Figure 3. Clearly, CITER
significantly outperforms the ablation variant CITER-S across all
datasets, reducing calls to LLM by up to 42% while maintaining
the same accuracy. These findings highlight the critical role of
accounting for the long-term influence of routing decisions.

3.4 Analysis of Iterative Training Process

To highlight the importance of the iterative training process, we
present the performance curve of CITER with the router over the
first three iterations on the Commonsense QA dataset. As shown in
Figure 4, the results demonstrate a clear improvement in performance
from the first to the second iteration. In the second iteration, CITER
reduces ∼ 5% calls to LLM while maintaining the same accuracy compared to the first. This
improvement underscores the effectiveness of our proposed iterative training process. Moreover, the
performance curve of the third iteration closely follows that of the second, indicating that the router
has already converged. The rapid convergence of the router emphasizes the robustness of our training
strategy, suggesting that optimal performance can be achieved without excessive computational costs.

5



References
Abien Fred Agarap. Deep learning using rectified linear units (relu), 2019. URL https://arxiv.
org/abs/1803.08375.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas
Hofmann. Dynamic context pruning for efficient and interpretable autoregressive transformers,
2024. URL https://arxiv.org/abs/2305.15805.

Joshua Belofsky. Token-level adaptation of lora adapters for downstream task generalization, 2023.
URL https://arxiv.org/abs/2311.10847.

Nikhil Bhendawade, Irina Belousova, Qichen Fu, Henry Mason, Mohammad Rastegari, and Mahyar
Najibi. Speculative streaming: Fast llm inference without auxiliary models, 2024. URL https:
//arxiv.org/abs/2402.11131.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv: 2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Jian Chen, Vashisth Tiwari, Ranajoy Sadhukhan, Zhuoming Chen, Jinyuan Shi, Ian En-Hsu Yen, and
Beidi Chen. Magicdec: Breaking the latency-throughput tradeoff for long context generation with
speculative decoding. arXiv preprint arXiv:2408.11049, 2024a.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023b.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374, 2024b.

Feng Cheng, Ziyang Wang, Yi-Lin Sung, Yan-Bo Lin, Mohit Bansal, and Gedas Bertasius. Dam:
Dynamic adapter merging for continual video qa learning, 2024. URL https://arxiv.org/abs/
2403.08755.

Alexandra Chronopoulou, Matthew E. Peters, Alexander Fraser, and Jesse Dodge. Adaptersoup:
Weight averaging to improve generalization of pretrained language models, 2023. URL https:
//arxiv.org/abs/2302.07027.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Jared Coleman, Bhaskar Krishnamachari, Khalil Iskarous, and Ruben Rosales. Llm-assisted rule
based machine translation for low/no-resource languages. arXiv preprint arXiv:2405.08997, 2024.

Shizhe Diao, Tianyang Xu, Ruijia Xu, Jiawei Wang, and Tong Zhang. Mixture-of-domain-adapters:
Decoupling and injecting domain knowledge to pre-trained language models memories, 2023.
URL https://arxiv.org/abs/2306.05406.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

6

https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/2305.15805
https://arxiv.org/abs/2311.10847
https://arxiv.org/abs/2402.11131
https://arxiv.org/abs/2402.11131
https://arxiv.org/abs/2403.08755
https://arxiv.org/abs/2403.08755
https://arxiv.org/abs/2302.07027
https://arxiv.org/abs/2302.07027
https://arxiv.org/abs/2306.05406


Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015. URL https://arxiv.org/abs/1502.03167.

Joel Jang, Seungone Kim, Seonghyeon Ye, Doyoung Kim, Lajanugen Logeswaran, Moontae Lee,
Kyungjae Lee, and Minjoon Seo. Exploring the benefits of training expert language models over
instruction tuning. In International Conference on Machine Learning, pp. 14702–14729. PMLR,
2023.

Ehsan Kamalloo, Shivani Upadhyay, and Jimmy Lin. Towards robust qa evaluation via open llms.
In Proceedings of the 47th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’24, pp. 2811–2816, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400704314. doi: 10.1145/3626772.3657675. URL
https://doi.org/10.1145/3626772.3657675.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving
with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Principles, pp.
611–626, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding, 2023. URL https://arxiv.org/abs/2211.17192.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models. arXiv preprint
arXiv:2311.08692, 2023.

Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dangyang Chen, and Yu Cheng. Twin-merging:
Dynamic integration of modular expertise in model merging, 2024. URL https://arxiv.org/
abs/2406.15479.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating generative
large language model serving with tree-based speculative inference and verification. arXiv preprint
arXiv:2305.09781, 2023.

Alireza Mohammadshahi, Arshad Rafiq Shaikh, and Majid Yazdani. Routoo: Learning to route to
large language models effectively, 2024. URL https://arxiv.org/abs/2401.13979.

Mohammed Muqeeth, Haokun Liu, Yufan Liu, and Colin Raffel. Learning to route among specialized
experts for zero-shot generalization, 2024. URL https://arxiv.org/abs/2402.05859.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data, 2024.
URL https://arxiv.org/abs/2406.18665.

Oleksiy Ostapenko, Zhan Su, Edoardo Maria Ponti, Laurent Charlin, Nicolas Le Roux, Matheus
Pereira, Lucas Caccia, and Alessandro Sordoni. Towards modular llms by building and reusing a
library of loras, 2024. URL https://arxiv.org/abs/2405.11157.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
Fusion: Non-destructive task composition for transfer learning. In Paola Merlo, Jorg Tiede-
mann, and Reut Tsarfaty (eds.), Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume, pp. 487–503, Online, April
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.39. URL
https://aclanthology.org/2021.eacl-main.39.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

7

https://arxiv.org/abs/1502.03167
https://doi.org/10.1145/3626772.3657675
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2406.15479
https://arxiv.org/abs/2406.15479
https://arxiv.org/abs/2401.13979
https://arxiv.org/abs/2402.05859
https://arxiv.org/abs/2406.18665
https://arxiv.org/abs/2405.11157
https://aclanthology.org/2021.eacl-main.39


Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter, 2020. URL https://arxiv.org/abs/1910.01108.

Shannon Zejiang Shen, Hunter Lang, Bailin Wang, Yoon Kim, and David Sontag. Learning to decode
collaboratively with multiple language models. arXiv preprint arXiv:2403.03870, 2024.

Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Rozière,
Jacob Kahn, Daniel Li, Wen tau Yih, Jason Weston, and Xian Li. Branch-train-mix: Mixing expert
llms into a mixture-of-experts llm, 2024. URL https://arxiv.org/abs/2403.07816.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421.

Hanqing Wang, Bowen Ping, Shuo Wang, Xu Han, Yun Chen, Zhiyuan Liu, and Maosong Sun.
Lora-flow: Dynamic lora fusion for large language models in generative tasks, 2024a. URL
https://arxiv.org/abs/2402.11455.

Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik Kundu, Eric Xing, and Mikhail Yurochkin. Fus-
ing models with complementary expertise. In The Twelfth International Conference on Learning
Representations, 2024b.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.
6.

Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts, 2024. URL https://arxiv.org/
abs/2404.13628.

Jingwei Xu, Junyu Lai, and Yunpeng Huang. Meteora: Multiple-tasks embedded lora for large
language models, 2024. URL https://arxiv.org/abs/2405.13053.

A Related Work

In this section, we conduct a literature review that mainly focuses on prior LLM inference acceleration
methods, especially those that involve using routing mechanisms and collaborative inference between
LLMs for inference acceleration.

Query-Level Routing Mechanisms. Previous routing methods (Jang et al., 2023; Chronopoulou
et al., 2023; Diao et al., 2023; Lu et al., 2023; Cheng et al., 2024; Lu et al., 2024; Chen et al., 2023b;
Wang et al., 2024b) for efficient inference mainly focus on routing entire user queries to different
models for generation. For example, Routoo (Mohammadshahi et al., 2024) proposes a performance
predictor and a cost-aware decoder to route between LLMs, considering both performance and
resource constraints; RouteLLM (Ong et al., 2024) formulates the routing problem as a classification
problem and employs a data augmentation framework to significantly expand the dataset used for
training the router. FrugalGPT Chen et al. (2023b) formulates the routing problem as a constrained
optimization problem, where the final generated quality is maximized under a budget or inference
cost constraint. However, as highlighted in Section 1, routing at the query-level granularity may lead
to suboptimal performance, as non-critical tokens in complex queries may be generated inefficiently,
while critical tokens in simple queries may suffer from inaccuracy. In contrast, token-level routing
methods offer more fine-grained control over the routing process, improving both inference costs and
the quality of the generated response.
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Token-Level Routing Mechanisms. Unlike query-level routing methods, previous token-level rout-
ing methods (Pfeiffer et al., 2021; Belofsky, 2023; Muqeeth et al., 2024; Wang et al., 2024a; Wu et al.,
2024; Xu et al., 2024) mainly focus on routing input tokens to different specialized experts to enhance
performance without considering the computational cost. For example, Arrow (Ostapenko et al.,
2024) reuses a library of expert LoRAs to build a mixture-of-experts (MoE) architecture, dynamically
routing inputs to different LoRAs during inference. Similarly, Branch-Train-MiX (Sukhbaatar et al.,
2024) fine-tunes LLMs on different domains from a seed LLM, creating specialized experts to form
an MoE framework. Among these methods, co-LLM (Shen et al., 2024) is the most relevant to
our framework CITER, introducing a router to route tokens to models of different sizes. However,
co-LLM only considers the current outputs from SLM and LLM when generating ground truth labels
to train the router. This may lead to suboptimal performance since the influence of current decisions
on future tokens is not considered. Moreover, similar to other token-level routing methods, co-LLM
focuses on enhanced response quality without taking the computational cost of the inference process
into account. In contrast, our CITER framework considers both the current token and the future
impact of each decision, enabling more accurate and efficient routing.

Other Methods for LLM Inference Acceleration. In addition to routing methods, several ap-
proaches ranging from algorithmic to system optimizations (Leviathan et al., 2023; Miao et al.,
2023; Kwon et al., 2023; Bhendawade et al., 2024; Cai et al., 2024; Chen et al., 2024b,a) have been
proposed to accelerate LLM inference. Speculative Decoding (Leviathan et al., 2023; Chen et al.,
2023a) employs a small draft model to generate potential next tokens, which are concatenated with
previously generated tokens. These guesses are then processed by the target LLM in parallel to verify
their correctness. Tokens are only committed to the final output if confirmed by the target LLM.
Although this approach reduces inference time by generating multiple tokens in a single forward pass,
it does not lower the overall computational complexity (e.g., the total amount of FLOPs). Speculative
Streaming (Bhendawade et al., 2024) addresses the computational overhead of Speculative Decoding
by predicting n-grams instead of individual tokens in each forward pass. However, it requires re-
designing the LLM architecture, necessitating re-pretraining, which is computationally prohibitive for
many use cases. Medusa (Cai et al., 2024) mitigates the re-pretraining issue by adding auxiliary heads
to the original LLM, allowing n-gram predictions without modifying the core model. These heads
can be trained while keeping the original LLM frozen, thereby avoiding the need for re-pretraining.
SpecInfer and Sequoia (Miao et al., 2023; Chen et al., 2024b) leverage tree-based parallelism for
decoding and verification to further accelerate inference.

B Proof of Objective Function

Let the current state Th be the historical context input to the LLM before h-th token, i.e., Th =
{x, y1, · · · , yh−1}, where x is the input prompts. At each step h ∈ [H], the RL agent select
either the LLM πL and the SLM πS with action a = {L, S}. Then the state Th+1 is composed
by first sampling the next token yh ∼ πa(·|Th) and then concatenating it to previous state as
Th+1 = Th + {yh}. In addition, we assume the reward is defined by the whole trajectory by
R(TH ,AH) where AH is the sequence of a routing policy, i.e. AH = {a1, · · · aH}, ah = {L, S}.
RewardR comprehensively encodes the performance of the routing strategy, including the quality of
generated response TH and the computational cost required by performing AH . We further define
the (meta) policy for the routing agent as Π = {Πh(·|Th)}h and the state-action value function as
QΠ

h (Th, a) = E[R(TH ,Ah:H)|Th, a,Π], where the expectation is taken over TH and Ah:H given
history context Th, action a ∈ {L, S} and (meta) policy Π. The objective of the routing agent is to
optimize the policy by

Πh = argmax
Πh

Ea∼Πh(·|Th)Q
Π
h (Th, a)−KL(Πh ∥ µ), (4)

where µ is the pre-defined policy with µ(L) = µ(S) = 0.5, meaning that the SLM and LLM
are randomly selected. The closed-form solution for equation ?? is therefore Πh(a|Th) ∝
µ(a) exp(QΠ

h (Th, a)).
Generally, it is hard to evaluate the quantity ofR(TH ,AH) because it contains both the quality of TH
and the efficiency of AH . We inject the pairwise preference 1h[S ≻ L] following the Bradley–Terry
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Table 1: The statistics of our evaluation datasets.
Dataset Domain Task # choices Train size Test size

Commonsense QA General CoT + Multi-choice 5 9,741 1,221
ARC-Challenge Reasoning CoT + Multi-choice 4 1,119 299
GSM8k Math Question answering N/A 7,473 1,319
MMLU-Professional Psychology Psychology CoT + Multi-choice 4 612 69

model (Bradley & Terry, 1952) as:

Pr
h
(S ≻ L|Th,Π) =

1

1 + exp(QΠ(Th, L)−QΠ(Th, S))
(5)

Following (Rafailov et al., 2024), we have that

QΠ
h (Th, L)−QΠ

h (Th, S) = log
Πh(L|Th)

µ(L)
− log

Πh(S|Th)
µ(S)

= log
Πh(L|Th)
Πh(S|Th)

, (6)

where the equation 6 is due to log(µ(L)/µ(S)) = 0. Plugging equation 6 into equation 5 yields

Pr(S ≻ L|Th,Π)h =
1

1 + Πh(L|Th)/Πh(S|Th)
= Πh(S|Th), (7)

where the last equation is due to the fact that Πh(S|Th) + Πh(L|Th) = 1. Therefore, given a context
Th, once we have labeled the preference 1h[S ≻ L|Th,Π], Πh(S|Th), the routing agent Π can be
learned by minimizing the cross-entropy loss

L =
∑
Th

1h[S ≻ L|Th,Π] logΠh(S|Th) + 1h[L ≻ S|Th,Π] logΠh(L|Th), (8)

where the 1h[L ≻ S|Th,Π] is defined similarly to 1h[S ≻ L|Th,Π], but it takes action L (selecting
the LLM) instead of S (selecting the SLM) at step h, conditioned on the state Th.

C Dataset Description

In this section, we describe our benchmark datasets with more details. The statistics of the datasets
are summarized in Table 1.

C.1 Commonsense QA

CommonsenseQA is a large-scale, multiple-choice question-answering dataset designed to challenge
and evaluate systems on their ability to leverage commonsense knowledge. The dataset consists of
12,102 questions, each accompanied by one correct answer and four distractor (incorrect) options,
requiring models to distinguish the correct answer by understanding various types of commonsense
reasoning. What sets CommonsenseQA apart is its emphasis on requiring a broader array of everyday
knowledge, involving not only basic facts but also causal, temporal, and conceptual reasoning.

C.2 ARC-Challenge

The AI2 ARC dataset is a comprehensive collection of 7,787 grade-school-level multiple-choice
science questions, meticulously curated to stimulate advancements in question-answering systems.
The dataset is strategically divided into two subsets: the ARC-Easy Set and the ARC-Challenge
Set. The ARC-Challenge Set, which is the subset we utilized in our work, comprises a selection
of particularly difficult questions. These questions were specifically included because they were
misclassified by both a traditional retrieval-based algorithm and a word co-occurrence algorithm,
making them a true test of a model’s ability to understand and reason through complex scientific
concepts. The ARC-Challenge subset serves as an ideal benchmark for testing sophisticated models,
as it presents questions that require more than surface-level understanding or simple pattern matching.
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C.3 MMLU-Professional Psychology

The MMLU dataset is a comprehensive multitask benchmark that comprises multiple-choice questions
across a vast range of knowledge domains, including subjects in the humanities, social sciences,
hard sciences, and other fields. It covers 57 distinct tasks such as elementary mathematics, U.S.
history, computer science, law, and more, aimed at evaluating a model’s general world knowledge
and problem-solving capabilities.

In our work, we focused specifically on the “Professional Psychology” subset of MMLU. This
subset contains questions rich in domain-specific terminology, including specialized terms related to
psychology and, occasionally, biological concepts tied to psychological phenomena. It provides a
robust test for assessing a model’s proficiency in understanding and reasoning within a specialized
academic field, thus offering insights into the model’s capability to handle complex, domain-specific
content.

C.4 GSM8k

GSM8k (Grade School Math 8k) is a dataset consisting of 8.5K high-quality, linguistically diverse
grade school math word problems. Designed to evaluate and improve question-answering capabilities
in basic mathematical problem-solving, this dataset emphasizes multi-step reasoning, requiring
between 2 and 8 steps to arrive at the correct solution.

The problems involve a sequence of elementary calculations using basic arithmetic opera-
tions—addition, subtraction, multiplication, and division—along with some early Algebra concepts.
However, the dataset ensures that all problems are approachable for a bright middle school student,
avoiding the need for advanced mathematical tools like variable definitions in most cases.

One of the distinctive features of GSM8K is that the solutions are presented in natural language
rather than purely in mathematical expressions. This design decision aligns with the dataset’s goal to
illuminate the reasoning capabilities of large language models (LLMs), specifically how they simulate
an “internal monologue” when reasoning through problems. The dataset’s natural language solutions
provide a more interpretable and instructive resource for evaluating the logical progression of LLMs
in real-world tasks.

D Implementation Details

We implement our framework using the Hugging Face Transformers library (Wolf et al., 2020). For
the SLM and LLM, we utilize Qwen2-1.5b and Qwen2-72b, respectively. The router is implemented
as a multilayer perceptron (MLP) network with three hidden layers, ReLU activation (Agarap, 2019),
BatchNorm normalization (Ioffe & Szegedy, 2015), and a 0.1 dropout rate. It is trained using the
Adam optimizer (Kingma & Ba, 2017) with a learning rate of 1× 10−7, betas of (0.9, 0.99), and no
weight decay. Training is performed on a single NVIDIA H100 GPU with a batch size of 80. The
iterative training process runs for 2 rounds.

E Prompt

In this section, we illustrate the prompt we used for each dataset.

E.1 Multiple-Choice Question Prompt

For multiple-choice question datasets, including the Commonsense QA dataset, the ARC-Challenge
dataset, and the MMLU-Professional Psychology dataset, we leverage the following prompt to require
LLMs to provide both an explanation and a final answer in a specific format.

Example:

Question: $question
Choices:
A. $choice_A
B. $choice_B
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C. $choice_C
D. $choice_D
E. $choice_E
Please format your response in the following way:
[Explanation]. Therefore, the answer is answer (label).
Ensure the final sentence includes the answer followed by the label in parentheses.
Answer and Reasoning: $response

E.2 GSM8k Math Problem Prompt

For math problems in the GSM8k dataset, the following prompt is employed to require LLMs to
provide a step-by-step solution with clear reasoning in LaTeX format, with the final answer enclosed
in a box using \boxed{}.

Example:

Solve the following math problem step by step. Ensure all reasoning is shown clearly
in LaTeX format, and the final answer should be enclosed using the LaTeX command
\boxed{} to display it in a box.
Question: $question
Solution: $solution

F Examples

In this section, we list examples of each dataset, including the questions, prompts, and responses
from LLMs to clearly demonstrate the prompt we use and the task of each dataset.

F.1 Commonsense QA

Question: What do people aim to do at work?
Choices:
A. complete job
B. learn from each other
C. kill animals
D. wear hats
E. talk to each other

Please format your response in the following way:
[Explanation]. Therefore, the answer is answer (label).
Ensure the final sentence includes the answer followed by the label in parentheses.
Answer and Reasoning:
The answer should be something that people aim to do at work. People generally aim to
complete jobs. Therefore, the answer is complete job (A).

F.2 ARC-Challenge

Question: Juan and LaKeisha roll a few objects down a ramp. They want to see which
object rolls the farthest. What should they do so they can repeat their investigation?
Choices:
A. Put the objects in groups.
B. Change the height of the ramp.
C. Choose different objects to roll.
D. Record the details of the investigation.

Please format your response in the following way:
[Explanation]. Therefore, the answer is answer (label).
Ensure the final sentence includes the answer followed by the label in parentheses.
Answer and Reasoning:
To repeat their investigation, Juan and LaKeisha should record the details of the
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investigation. This will involve noting down the objects they rolled, the height of
the ramp, and the distance each object rolled. This way, they can replicate the exact
conditions and compare the results of their repeated investigation. This is the
crucial step in the scientific method, as it ensures that the results are reliable
and can be trusted. Therefore, the final answer is record the details of the
investigation (D).

F.3 MMLU-Professional Psychology

Question: Justice primarily involves ___________.
Choices:
A. Recognizing fairness for all persons
B. Promoting accuracy and truthfulness
C. Benefitting others and do no harm
D. Respecting cultural and individual difference

Please format your response in the following way:
[Explanation]. Therefore, the answer is answer (label).
Ensure the final sentence includes the answer followed by the label in parentheses.
Answer and Reasoning:
Justice primarily involves recognizing fairness for all individuals. It is about ensuring
that everyone is treated equally and fairly, without any discrimination or bias. Therefore,
the answer is Recognizing fairness for all persons (A).

F.4 GSM8K

Solve the following math problem step by step. Ensure all reasoning is shown clearly in
LaTeX format, and the final answer should be enclosed using the LaTeX command \boxed{} to
display it in a box.
Question: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder at the
farmers' market daily for \$2 per fresh duck egg. How much in dollars does she make every
day at the farmers' market?
Solution: 16 - 3 = << 16 - 3 = 1 3 >> 13 eggs are left after breakfast. 13 - 4 = << 13 - 4 = 9
>> 9 eggs are left after baking. 9 * 2 = << 9 * 2 = 18 >> 18 dollars she makes at the
farmers' market. The final answer is: \\boxed{18}.

G The Iterative Training Process of our Router
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Algorithm 1: The Iterative Training Process of our Router
Input: The training data D = {(Th, y∗h)}i, the initial router Π0, the SLMMS and LLMML,

the pre-defined threshold τ and the number of iterations K
Output: The trained router Π

1 Initialization: iter k ← 0, previous routing preference S0 ← ∅
2 for k = 1 to K do
3 Sk ← ∅
4 for i = 1 to |D| do
5 ySh ←MS(Th)
6 if ySh == y∗h then
7 Sk ← Sk ∪ {1}
8 Continue
9 yLh ←ML(Th)

10 if yLh == y∗h then
11 Sk ← Sk ∪ {0}
12 Continue
13 Generate the full response TH starting from Th ∪ ySh with router Πk−i and threshold τ
14 Sk ← Sk ∪ {1(Correct(TH))}
15 if Sk == Sk−1 then
16 break
17 Train the router Πk with the routing preference Sk and dataset D as the loss

function equation 2
18 Π← Πk

19 Return Π
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