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ABSTRACT

Large Language Models (LLMs) have achieved significant advancements in natural
language processing tasks, yet they encounter challenges in complex decision-
making scenarios that require long-term reasoning and alignment with high-level
objectives. This paper introduces a novel gradient-free LLM-based Actor-Critic
framework, termed LAC, which addresses these limitations by integrating both
action generation and action evaluation mechanisms. Our approach employs two
distinct critics: a language-based critic that provides context-sensitive feedback
and a value-based critic that offers quantitative assessments of expected long-term
rewards. This dual-critic architecture enhances decision-making by leveraging
the complementary strengths of both critics, enabling contextually appropriate
and more robust action selection. Additionally, we propose a gradient-free policy
improvement method that reduces computational overhead, facilitating efficient
updates to the actor’s policy without the complexities of gradient backpropagation.
We validate the effectiveness of LAC across diverse environments that cover both
high-level action space (ALFWorld) and low-level action space (BabyAI-Text),
demonstrating its superior performance compared to existing state-of-the-art meth-
ods. Our method outperforms other state-of-the-art baselines using the same 7B/8B
open-source LLMs and even exceeds a strong baseline ReAct using GPT-4 in
most settings. Our findings highlight the efficacy and generality of the dual-critic
Actor-Critic framework in enhancing LLM-based decision-making.

1 INTRODUCTION

Large Language Models (LLMs) (Touvron et al., 2023; Jiang et al., 2023; Team et al., 2024) have
demonstrated remarkable capabilities across a wide range of tasks in natural language processing,
from text generation to question answering and summarization. Despite their strengths, LLMs often
struggle in more complex decision-making tasks that require not only generating immediate action but
also reasoning over long horizons and aligning actions with high-level objectives (Ahn et al., 2022;
Yao et al., 2022b; Hao et al., 2023; Liu et al., 2023; Huang et al., 2022b). This raises a fundamental
question: how can we efficiently leverage the rich prior knowledge encoded in LLMs to enable more
reliable and effective sequential decision-making in diverse and complex environments?

Recent studies have explored various methods to improve LLM-based decision-making. Through
the lens of reinforcement learning (RL) (Barto et al., 1989), these methods typically adopt either an
actor-only or critic-only paradigm. In actor-only approaches, the LLM serves as an actor, generating
actions based on its autoregressive next-token prediction capabilities (Ahn et al., 2022; Yao et al.,
2022b; Huang et al., 2022a; Shinn et al., 2024). While such methods are simple and effective
for short-term action generation, they often suffer from a lack of long-term planning. As a result,
decisions may appear locally optimal but fail to achieve the overall task objective in more complex,
multistep environments.

On the other hand, critic-only approaches use LLMs as critics to evaluate candidate actions based
on predicted future trajectories (Hao et al., 2023; Liu et al., 2023; Fu et al., 2024; Brooks et al.,
2024) and select the action with the best outcome. Although this allows for additional evaluation
of actions, it may lead to suboptimal action selection when the sampled candidate actions do not
include the optimal action and the predicted future trajectories deviate from reality. Furthermore,
such methods often prioritize numerical assessments of actions, ignoring important contextual and
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𝜋!!"
+ 𝒬!!"actor-only critic-only

Action Probs. (Partial)

[Instruction]: Interact with a household to solve a task. Here are two examples. (...)
[Task]: You are in the middle of a room. Looking quickly around you, you see a cabinet 6, a cabinet 5, a 
cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a countertop 3, a countertop 2, a 
countertop 1, a drawer 3, a drawer 2, a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a shelf 3, a 
shelf 2, a shelf 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a 
toaster 1.
Your task is to: put a saltshaker in drawer.

Prompt

Inputs & Outputs of LAC (Ours)

(...)

[Obs 2]: On the cabinet 1, you see a glassbottle 1.
[LAC Inference 2]
[Act 2]: go to cabinet 2

✓

[Obs 3]: The cabinet 2 is closed.
[LAC Inference 3]
[Act 3]: open cabinet 2 ✓

[Obs 4]: You open the cabinet 2. The cabinet 2 is open. In it, you see
a plate 1, a saltshaker 1, and a soapbottle 1.
[LAC Inference 4]
[Act 4]: take saltshaker 1 from cabinet 2
[Obs 5]: You pick up the saltshaker 1 from the cabinet 2.

(...)

✓

✓

[Obs 7]: You open the drawer 1. The drawer 1 is open. In it, you see a
fork 1, and a peppershaker 1.
[LAC Inference 7]
[Act 7]: put saltshaker 1 in/on drawer 1
[Obs 8]: You put the saltshaker 1 in/on the drawer 1.

[Act 1]: go to cabinet 1

Figure 1: An illustrative explanation of our method LAC in ALFWorld. The histogram on the right
shows the action probabilities of different methods. While actor (πLLM ) and critics (lang-critic
CLLM , value-critic QLLM ) make mistakes at different time steps, LAC (ours) can select the correct
action by integrating actor and critics. The LAC Inference step is detailed in Figure 2.

qualitative language-based information embedded in the task instructions. As shown in Figure 1,
these two paradigms fall short of delivering optimal performance, as they fail to balance immediate
action generation with long-term action evaluation. While previous works have attempted simple
combinations of these roles (Zhang et al., 2023a), they lack a systematic analysis of the interaction
between actor and critic, which is crucial for effective decision-making.

To address these limitations, we propose a novel gradient-free LLM-based Actor-Critic (LAC)
framework. Unlike previous methods, our approach seamlessly integrates both action generation
(actor) and action evaluation (critic) to significantly enhance decision-making capabilities. In
LAC, the actor improves its policy by using two distinct critics: lang-critic and value-critic, which
provide complementary types of feedback. The lang-critic leverages the LLM’s natural language
understanding capabilities to offer rich, interpretable, and context-sensitive feedback, ensuring that
actions align with the task’s high-level goals and that previous mistakes are avoided. The value-critic,
on the other hand, provides numerical evaluations, estimating the long-term reward and ensuring that
action distributions are quantitatively optimized. To obtain accurate numerical assessments of actions,
we designed a novel value-critic estimation method that extracts the internal belief of LLMs on the
optimality of candidate actions.

For intuition of the dual critics, consider a task where an agent must navigate through a virtual room
to pick up an apple:

• The lang-critic might guide the agent with insights like “the apple is likely in the refrigerator
in the kitchen”, helping it prioritize actions that are contextually relevant (e.g., move toward
the refrigerator instead of wandering aimlessly).
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• The value-critic evaluates the actions by estimating the long-term reward: “picking up the
apple from the refrigerator has a 90% chance of completing the task”, providing a precise
quantitative judgment.

By integrating both critics, LAC selects actions that are both contextually appropriate (based on the
lang-critic) and highly likely to succeed (based on the value-critic). As illustrated in Figure 1, our
method outperforms previous actor-only and critic-only approaches, which often select suboptimal
actions at different time steps. The integration of actor and dual critics in LAC leads to more effective
decision-making and consistent task completion.

In addition, LAC introduces a novel gradient-free policy improvement mechanism that allows the
actor to update its policy in the direction suggested by the critics without the computational burden
of backpropagation. This not only enhances scalability but also makes the system practical for
large-scale LLMs, enabling efficient decision-making in complex environments.

In summary, this work advances the state of LLM-based decision-making through the following key
contributions:

• We introduce a dual-critic actor-critic framework, where a language-based critic provides
contextual feedback and a value-based critic ensures quantitative optimization. This combi-
nation enables more robust decision-making by leveraging the complementary strengths of
both critics.

• We design an effective value-based critic estimation approach that extracts internal informa-
tion from LLMs to provide robust numerical evaluation for candidate actions.

• We propose a novel gradient-free policy improvement method that reduces computational
overhead while effectively refining the actor’s policy based on both qualitative and quantita-
tive feedback from the dual critics.

• We demonstrate the effectiveness and generality of LAC across diverse environments, includ-
ing high-level decision-making tasks in (ALFWorld, (Shridhar et al., 2021)) and low-level
action space (BabyAI-Text, (Carta et al., 2023b)). Empirical results show that our approach
consistently outperforms state-of-the-art methods such as ReAct Yao et al. (2022b) with
GPT-4 (Achiam et al., 2023), even when using much smaller 7B/8B LLMs.

2 RELATED WORK

Large Language Models for Sequential Decision-Making Sequential decision-making is a
fundamental ability of intelligent agents, involving generating a series of actions to achieve the goal
(Barto et al., 1989; Littman, 1996; McCarthy et al., 1963; Bylander, 1994). Recently, LLM-based
agents have been widely used for decision-making in many areas, which only needs some instructions
or few-shot examples to generalize to completely new tasks (Huang et al., 2022b; Singh et al., 2023;
Ding et al., 2023), thanks to the pre-training on large-scale dataset. According to the functionality,
the LLMs that most previous work used mainly belong to two roles: actors, which take trajectories
as input and output actions, and critics, which take both trajectories and actions as input and output
evaluations of actions. Based on this classification, most of the earlier work in this line of research is
actor-only (Ahn et al., 2022; Huang et al., 2022b; Yao et al., 2022b; Huang et al., 2022a; Shinn et al.,
2024), i.e., directly using the action generated by LLMs based on previous trajectory. Due to the
auto-regressive nature of LLM, it does not do reasoning and planning explicitly. Accordingly, LLM
with actor-only methods often struggles with complex tasks that require multiple steps of planning
and reasoning (Huang & Chang, 2022; Mialon et al., 2023). To overcome this hurdle, another line of
work, critic-only uses another LLM to evaluate each action by simulating the consequence of it and
then choose the action with the best-simulated outcome (Hao et al., 2023; Liu et al., 2023; Fu et al.,
2024). However, both actor-only and critic-only methods ignore the interrelation between actor and
critic, prioritize one over the other, and insufficiently exploit the available knowledge from the actor
and critic. Previous work that tries to combine actor and critic (Zhang et al., 2023b) only uses the
language-based outputs of critics. Some work in other fields, such as decoding (Xie et al., 2024), also
uses numerical outputs of critics, but it cannot be directly adapted to decision-making problems. To
address these limitations, our method LAC integrates prior actor-only and critic-only methods and
utilizes the merits of the actor-critic algorithm with the strengths of the LLMs.
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Large Language Models with Reinforcement Learning Classical sequential decision-making
methods, such as Reinforcement Learning (RL), have been widely adopted in embodied environments
(Schulman et al., 2017; Fujimoto et al., 2018; Huang et al., 2020; Dong et al., 2022). However, these
RL-based methods are typically sample-inefficient and require lots of samples for training. On the
other hand, LLMs that contain rich prior knowledge about the world may alleviate this burden. To
combine RL and LLM, one straightforward way is to use LLMs as base models and add policy/value
heads on top of LLMs (Carta et al., 2023a; Tan et al., 2024). Then use classical RL methods like
PPO (Schulman et al., 2017) for training (Szot et al., 2023; Zhou et al.). However, these methods
still require lots of training samples of the same tasks, which reduces the benefits of using LLM to
some extent and contradicts our settings. There are also other paradigms for combining. RLEM
(Zhang et al., 2024) adopts Q-learning (Watkins & Dayan, 1992) and an experience memory to
update policies, but it may get stuck in the tasks with extremely sparse rewards like ALFWorld and
BabyAI-Text. Retroformer (Yao et al., 2023) trains a smaller LLM with PPO to generate suitable
prompts for a larger LLM for a specific task, while our method only needs a small model. ICPI
(Brooks et al., 2024) uses LLMs to implement policy iteration by predicting future trajectories and
accumulating future rewards, which may also struggle with sparse reward settings. We have compared
it empirically in Section 5.

3 PRELIMINARY

In this section, we describe the task setting, previous actor-only methods, and critic-only methods to
better understand prior work’s limitations and the motivations for our LAC. For better understanding,
we compare the frameworks of these methods in Figure 2.

Task setup. Consider a general setup of an agent interacting with an environment for achieving
some given goals, e.g., goal g =“put a clean egg in microwave” (from benchmark ALFWorld) or
goal g =“pick up the green ball” (from benchmark BabyAI-Text). At time step t, the agent receives
an observation ot ∈ O, which is described in natural language in this work, from the environment.
The agent then takes an action at ∈ A that is sampled from some policy π(a|g, ht), where ht :=
(o1, a1, o2, a2 · · · , ot) is the history to the agent. During execution, there is no immediate reward.
The environment will give a signal about whether the task was completed successfully or not only at
the end of each episode. The agent has never seen the testing tasks before and can only try each task
once in this work.

Actor-only methods. To solve the above tasks with large language models, one simple method is to
directly use pre-trained LLMs as policy: at ← argmaxa πLLM (a|g, ht), as shown in Figure 2 (a).
We also provide detailed algorithm description of actor-only methods in Algorithm 2 of Appendix B.3,
which can be implemented by simply injecting instructions or few-show examples to the prompt as
shown in Yao et al. (2022b). Despite its simplicity, the actor-LLM πLLM generates actions solely
relying on its auto-regression ability and it does not conduct long-term planning explicitly, which is
typically necessary for sequential decision-making tasks. Additionally, this issue will be exacerbated
when using smaller models like CodeLlama-7B (Roziere et al., 2023) and Mistral-7B (Jiang et al.,
2023). This problem is verified in Section 5.

Critic-only methods. To handle the issue of lack of long-term planning in actor-only methods,
another line of research resorts to critic-only methods (Hao et al., 2023; Liu et al., 2023; Fu et al.,
2024). The basic idea of critic-only methods is to first sample several candidate actions from actor
{a1t , a2t , · · · , ant } ∼ πLLM (·|g, ht), then self-evaluate each candidate action by other LLMs and
finally select the action with the highest evaluation value. We call it critic-only because only the
critic’s output is considered when choosing the final action. The self-evaluation procedure is the key to
critic-only methods, which can adopt many approaches. For example, directly ask an LLM to evaluate
the action candidate (Fu et al., 2024), or predict the future trajectory ut of each action candidate using
an LLM as a forward model fLLM and use the future outcome as evaluation (shown in Figure 2
(b)), or use tree-search methods like Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006;
Coulom, 2006) to expand each action candidate Hao et al. (2023). We also provide detailed algorithm
description of critic-only methods in Algorithm 3 of Appendix B.4. Despite this progress, critic-only
methods often neglect the knowledge of actor and the interaction between actor and critic, which may
lead to ineffective decision-making.
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[Instruction]: (...)
Your task is to: put a 
saltshaker in drawer.
(...)
[Obs 4]: You open the 
cabinet 2. The cabinet 
2 is open. In it, you 
see a plate 1, a 
saltshaker 1, and a 
soapbottle 1.

Trajectory

[Obs 5]: You You pick 
up the saltshaker 1 from 
the cabinet 2.

[LAC Inference 4]

[Act 4]: take saltshaker 
1 from cabinet 2

Action Distribution

𝜋!!"

Action Distribution

𝒞!!" + 𝜋!!"
Action Distribution

𝒞!!" + 𝜋!!" + 𝒬!!" (LAC)

[Selected Act]:
take saltshaker 
1 from cabinet 2

[Lang-Critic]: Now I 
find a saltshaker 
(1). Next, I need to 
take it. I can take 
the saltshaker after 
finding it. The 
thought is 
reasonable. This step 
is GOOD.

1. Lang-Critic 𝒞!!"

[Candidate Act 1]: take 
saltshaker 1 from cabinet 2
[Predicted Future Traj 1]: 
You pick up the saltshaker 1 
from the cabinet 2.
[Lang-Critic 1]: I have 
taken saltshaker 1 in this 
place. This step is GOOD.
[Value-Critic 1]: 0.81355

[Candidate Act 2]: go to 
drawer 1
(...)
[Value-Critic 2]: 0.79087

[Candidate Act 3]: go to 
shelf 1
(...)
[Value-Critic 3]: 0.59058

3. Value-Critic 𝒬!!"

𝜋#$% = 𝜋!!" exp 𝛼𝑄!!" (Eq. 6)2. Actor 𝜋!!"

Figure 2: Framework of our LAC. At each time step, LAC selects an action via three steps: (1) given
current goal and history, lang-critic CLLM generates language-based judgments on previous actions;
(2) the actor πLLM samples candidate actions based on the judgments; (3) the value-critic QLLM

provides numerical evaluations for candidate actions by predicting future trajectories. Finally, the
action distribution that integrates the actor and critics can be calculated in a gradient-free way.

4 METHOD

In this section, we present our LLM-based Actor-Critic (LAC) algorithm that integrates actor and
critic to enhance the decision-making ability of large language models. The key idea behind LAC is to
improve the actor πLLM based on the evaluations provided by two distinct but complementary critics:
the lang-critic CLLM and the value-critic QLLM . The lang-critic CLLM provides language-based
evaluations that contain richer and more interpretable information for assessing actions, but they are
difficult to quantify. The value-criticQLLM provides the numerical assessment in terms of long-term
value or reward but may lack detailed explanations for assessment. By combining both natural
language-based evaluations and numerical assessments, LAC ensures that actions are contextually
relevant and optimized for long-term success. Figure 1 demonstrates how relying solely on one critic
(either CLLM or QLLM ) may still lead to suboptimal actions, whereas combining both critics avoids
such mistakes.

The policy improvement process for πLLM involves two main steps: (1) improving πLLM with
lang-critic’s language-based judgments over previous actions by injecting these judgments into
πLLM ’s prompt so that πLLM could avoid previous mistakes and sample better candidate actions
(Section 4.1); (2) further refining πLLM based on the value-critic’s numerical assessment through a
gradient-free policy improvement procedure (Section 4.2). Our framework is shown in Figure 2. The
overall algorithm is outlined in Algorithm 1. We also compare the frameworks of previous actor-only
methods, critic-only methods, and our LAC, respectively, for better understanding in Figure 15 (a-c).

4.1 POLICY IMPROVEMENT WITH lang-critic

To enhance the actor’s decision-making with contextually grounded feedback, we first prompt the
LLM to generate judgments on previous action selections. Given the task goal g and history ht,
the lang-critic generates a short evaluation sentence ct such as “I have found object-X. This step is
GOOD” or “I should take object-X instead of object-Y first. This step is BAD.” These judgments
provide hints about whether and why the previous actions were appropriate, which helps guide the
actor towards better candidate actions.

To improve the actor’s policy πLLM , we then condition πLLM on language-based evaluation ct
before sampling candidate actions: {a1t , a2t , · · · , ant } ∼ πLLM (·|g, ht, ct). By incorporating ct, the
actor can generate better candidate actions through in-context learning, aligning more closely with
task objectives and avoiding previous mistakes.

5
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Algorithm 1: LAC: LLM-based Actor-Critic algorithm.
Input: current task goal g, history ht, actor πLLM , forward model fLLM , language-based critic

CLLM , value-based critic QLLM , hyperparameter α, candidate action size n.
Output: selected action a∗t

1 ct ← CLLM (g, ht); ▷ generate language-based evaluations (Section 4.1)
2 {a1t , a2t , · · · , ant } ∼ πLLM (·|g, ht, ct); ▷ generate candidate actions
3 for i← 1, 2, · · · , n do
4 ui

t ← fLLM (g, ht, a
i
t); ▷ imagine future trajectory

5 QLLM (g, ht, a
i
t, u

i
t)← log

P (y=+1|g,ht,a
i
t,u

i
t)

P (y=−1|g,ht,ai
t,u

i
t)

; ▷ calculate numerical evaluations
(Section 4.2, Equation (3))

6 end
7 π(ait|g, ht, ct)← πLLM (ait|g, ht, ct) exp (αQLLM (g, ht, a

i
t, u

i
t)); ▷ update action distribution

(Section 4.2, Equation (6))
8 a∗t ← argmaxai

t
π(ait|g, ht, ct)

The key advantage of conditioning on ct is that it acts as an intermediate variable (Prystawski
et al., 2024), helping the actor perform more effective reasoning. Similar to the Chain-of-Thought
mechanism (Wei et al., 2022; Kojima et al., 2022), this enables the actor to adjust its policy based on
the feedback provided by the lang-critic. For more examples of language-based evaluations, please
refer to Table 14 and Table 15 of Appendix B.

4.2 POLICY IMPROVEMENT WITH value-critic

Next, we refine the actor’s policy using the value-criticQLLM , which provides numerical evaluations
of each candidate action ait. While the lang-critic focuses on providing contextually grounded
feedback, the value-critic quantitatively estimates the probability of successfully completing the
task after executing each action ait. This value-based assessment is crucial for guiding the actor’s
decisions to align with long-term rewards, especially in tasks where immediate outcomes do not fully
capture the consequences of an action.

In the following, we will first connect the value-critic to the agent’s success probability of completing
the task, then show how LLMs can be used to estimate this value-based evaluation, and finally derive
a gradient-free policy improvement mechanism using the estimated value-based evaluation.

4.2.1 CONNECT value-critic TO AGENT’S SUCCESS PROBABILITY

Let QLLM (g, ht, a
i
t) be the value-based evaluation of each candidate action ait given the task goal

g and history ht. Ideally, QLLM (g, ht, a
i
t) should represent the cumulative rewards an agent can

acquire after executing ait, analogous to the action-value function in conventional RL algorithms.
However, in the benchmarks we consider, only binary success or failure signals are provided at the
end of each episode, with no intermediate rewards.

To model QLLM (g, ht, a
i
t) similarly to action-value in RL, and to make it easy to estimate using

LLMs, we employ a logistic function (Jordan et al., 1995). Let P (y = +1|g, ht, a
i
t) ∈ [0, 1] denote

the probability of successfully completing the task goal g after executing action ait, where y = +1
represents a success signal at the end of the episode. Similarly, let P (y = −1|g, ht, a

i
t) represent

the failure probability. We use the following logistic function to relate P (y = +1|g, ht, a
i
t) to

QLLM (g, ht, a
i
t):

P (y = +1|g, ht, a
i
t) =

1

1 + exp (−QLLM (g, ht, ait))
. (1)

This formulation indicates that the value-based evaluation QLLM (g, ht, a
i
t) is positively correlated

with the success probability P (y = +1|g, ht, a
i
t). Higher QLLM (g, ht, a

i
t) values map to a greater

likelihood of success, allowing the critic to guide the actor’s policy toward actions that maximize
long-term success.

6
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While other formulations could be used, we found that Equation (1) is both simple and effective for a
wide range of tasks. For a comparison of alternative formulations, refer to Figure 8 in Appendix A.3.

4.2.2 ESTIMATE value-critic WITH LLMS

To estimate QLLM (g, ht, a
i
t) using LLMs, we perform an equivalent transformation on Equation (1):

QLLM (g, ht, a
i
t) = log

P (y = +1|g, ht, a
i
t)

1− P (y = +1|g, ht, ait)
= log

P (y = +1|g, ht, a
i
t)

P (y = −1|g, ht, ait)
. (2)

With Equation (2), we can use the LLM to obtain value evaluation QLLM (g, ht, a
i
t) via first esti-

mating P (y = ±1|g, ht, a
i
t). The basic idea is to prompting the LLM to predict the success/failure

probability given the current trajectory (g, ht) and action ait. Specifically, we use the generated
probabilities of special paired tokens that contain positive/negative meanings to indicate LLMs’ belief
in success/failure. For example, let the generated probability of “GOOD” or “SUCCESS” represent
positive results P (y = +1|g, ht, a

i
t) and let the generated probability of “BAD” or “FAILURE”

represent negative results P (y = −1|g, ht, a
i
t). The insight is that if the agent selects actions cor-

rectly, the LLM that are pre-trained via next-token prediction tends to increase the probability of
positive tokens internally. Otherwise, the probability of negative tokens will increase. Finally, using
Equation (2), we can calculate QLLM (g, ht, a

i
t) for action ait.

To improve the accuracy of QLLM (g, ht, a
i
t), we introduce future trajectory rollouts using a forward

model fLLM , which can be implemented by prompting LLMs, e.g., adding few-shot examples, or
by fine-tuning on these examples. For each candidate action ait, we roll out several future steps to
predict the resulting trajectory ui

t = fLLM (g, ht, a
i
t). By considering the future trajectory ui

t, we
obtain more informed estimates of the success and failure probabilities, P (y = ±1|g, ht, a

i
t, u

i
t).

This approach accounts for the delayed consequences of actions and ensures that QLLM (g, ht, a
i
t)

reflects the long-term value of each action:

QLLM (g, ht, a
i
t, u

i
t) = log

P (y = +1|g, ht, a
i
t, u

i
t)

P (y = −1|g, ht, ait, u
i
t)
. (3)

Trajectory rollouts are especially important in tasks where the outcomes of actions may unfold over
several steps. By simulating the future impact of actions, the value-critic provides a more accurate
assessment, guiding the actor toward actions that maximize the probability of long-term success.

4.2.3 IMPROVE actor WITH value-critic

With the value-critic QLLM , we can improve the actor’s policy using the following optimization
problem:

max
π

Eai
t∼π(ai

t|g,ht,ct)

[
QLLM (g, ht, a

i
t, u

i
t)
]
− 1

α
DKL

[
π(ait|g, ht, ct)∥πLLM (ait|g, ht, ct)

]
, (4)

where α is a hyperparameter controlling the deviation from the original actor πLLM . The KL-
divergence term prevents the new actor π from deviating too far from the original policy, balancing
the actor’s prior knowledge and the value-critic’s guidance.

Following prior work (Rafailov et al., 2024; Go et al., 2023; Peng et al., 2019; Jain et al., 2013; Peters
& Schaal, 2007), we can show that the optimal solution to the KL-constrained maximization objective
in Equation (4) takes the following form:

π(ait|g, ht, ct) =
1

Z(g, ht, ct)
πLLM (ait|g, ht, ct) exp (αQLLM (g, ht, a

i
t, u

i
t)), (5)

where Z(g, ht, ct) =
∑

ai
t
πLLM (ait|g, ht, ct) exp (αQLLM (g, ht, a

i
t, u

i
t)) is the partition function.

Please refer to Appendix B.1 for a complete derivation. As the partition function does not depend on
action ait, we can ignore it in practice:

π(ait|g, ht, ct) ∝ πLLM (ait|g, ht, ct) exp (αQLLM (g, ht, a
i
t, u

i
t)). (6)

We simply take the action with maximum proportion at ← argmaxai
t
π(ait|g, ht, ct). It is worth

mentioning that if we let α = 0 and remove ct in Equation (6), we recover actor-only methods. And
if we let α→ +∞, we recover critic-only methods that use our action-value estimation approach.
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There are two key advantages of using Equation (6). Firstly, it updates the action distribution of
actor πLLM in the direction suggested by critic QLLM in a gradient-free way, which achieves policy
improvement with much lower computation burden compared to gradient-based methods, especially
when the actor is realized by a large model. Secondly, the action distribution of the new actor π is a
balanced integration of the actor’s prior based on past information and the critic’s posterior based on
predicted future information.

5 EXPERIMENTS

In this section, we benchmark our method LAC on benchmarks that cover both high-level action space
(ALFWorld (Shridhar et al., 2021)) and low-level action space (BabyAI-Text (Chevalier-Boisvert
et al., 2019)). We evaluate the effectiveness of LAC by answering the following questions: (1) Can
LAC outperform other decision-making with LLMs methods? (Section 5.2) (2) How does each
component of LAC contributes to its performance? (Section 5.3) (3) How do different large language
models influence performance? (Section 5.2 and Section 5.3) (4) Is our method computationally
consuming? (Section 5.4).

5.1 EXPERIMENT SETUP

We compare our method with various decision-making with LLMs baselines, which can be largely
classified into actor-only and critic-only methods. For more details of baselines, please refer to
Appendix C.2.

Actor-only methods. ReAct (Yao et al., 2022b) combines reasoning and acting in the interaction
with the environment and leverages the reasoning capabilities of LLMs to increase the probability of
the LLM acting correctly as an actor.

Critic-only methods. RAP(Hao et al., 2023) utilizes LLMs as actor and world models and adopts
tree-search planning methods to evaluate each possible action candidate. ICPI (Brooks et al., 2024)
implements policy iteration using LLMs by predicting future trajectories and selecting the action with
the highest predicted cumulative rewards. RAFA (Liu et al., 2023) evaluates each action candidate by
tree-search and selects the action that may complete the most sub-goals.

We evaluate LAC on two decision-making benchmarks with high-level actions and low-level actions,
respectively.

Benchmark with high-level actions: ALFWorld. ALFWorld (Shridhar et al., 2021) is a widely
used text-based household environment with 134 different tasks, which require the agent to achieve a
goal through a sequence of high-level actions, e.g. “go to place-X”, “take object-Y from place-X”,
etc.. The main challenge of this benchmark is to locate the target object and fulfill household work
with commonsense knowledge of LLMs. Following ReAct, we evaluate all 134 unseen evaluation
games in a task-specific setup.

Benchmark with low-level actions: BabyAI-Text. BabyAI-Text (Carta et al., 2023b) is a Grid
World environment that extended from the BabyAI platform (Chevalier-Boisvert et al., 2019), in
which the agent and objects are placed in a room of 8× 8 tiles. The agent has 6 primitive actions:
turn left, turn right, go forward, pick up, drop, toggle, to solve a task described in natural language
(e.g. “Pick up the red box”). These tasks could be difficult because agents have to make a long-term
plan, avoid obstacles and find a short path to target objects based on partial observations that are
described in natural language

To show the stability of LAC, we adopt four open-source large language models from different
organizations: CodeLlama-7B (Roziere et al., 2023), Mistral-7B (Jiang et al., 2023), Gemma-7B
(Team et al., 2024), and Llama-3-8B (Meta, 2024a).

5.2 PERFORMANCE

We report the results of our method LAC compared with other baselines in ALFWorld and BabyAI-
Text in Figure 3 and Figure 6 of Appendix A.1. For all experiments, we set the temperature of LLMs
to 0, hence the generation is deterministic. For this reason, there is no error bar in the figure.
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Figure 3: Performance of our LAC compared with various baselines in benchmarks ALFWorld and
BabyAI-Text.

LAC outperforms all other baselines on both ALFWorld and BabyAI-Text across different LLMs, and
LAC is even better than GPT-4+ReAct in most settings, which validates our method’s effectiveness
and stability.

LAC’s superior performance stems from its balanced integration of the strengths of both actor and
critic. While actor-only (e.g., ReAct) methods excel in short-term actions, they often struggle with
long-term reasoning. In contrast, critic-only (e.g., RAP) methods conduct explicit reasoning but
might mispredict future trajectories and lead to even worse action selection occasionally compared
with actor-only methods. LAC addresses these limitations by balancing the actor’s action generation
and the critic’s evaluation. We have provided illustrative examples for ALFWorld and BabyAI-Text in
Figure 1 and Figure 13 respectively. In summary, actor-only and critic-only methods make mistakes
at different time steps, our LAC can select the correct action.

Regarding the performance of LAC with different base models, we highlight two key findings: (1)
Our method is general and can be adapted to various base models, and (2) stronger base models, such
as Gemma-7B, demonstrate higher performance when integrated with our approach. However, due to
the incomplete public availability of training details for these base models, further in-depth analysis
will require additional investigation.

5.3 ABLATION STUDIES
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Figure 4: Ablation studies in benchmarks ALFWorld and BabyAI-Text.

To investigate the contributions of each component of LAC, we conduct elaborate ablation studies.
There are two main components that characterize our method: (1) the integration of actor πLLM and
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lang-critic CLLM before action generation and (2) the integration of actor πLLM and value-critic
QLLM after action generation. Therefore, to show the contribution of each component, we design
the following ablation studies: (1) LAC w/o lang-critic removes the lang-critic CLLM from LAC as
well as the integration before action generation; (2) LAC w/o value-critic removes the value-critic
QLLM from LAC as well as the integration after action generation; (3) Value-critic-only only uses
value-critic QLLM for decision-making.

We report the result in Figure 4. LAC is better than all other variants in both ALFWorld and
BabyAI-Text. Specifically, the performance decrease in LAC w/o lang-critic and LAC w/o value-critic
compared with LAC verify the effectiveness of lang-critic CLLM and value-criticQLLM , respectively.
And the result that Value-critic-only performs worse than LAC also suggests the necessity for
integrating actor and critic.

5.4 COMPUTATIONAL COST ANALYSIS
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Figure 5: Computational cost analysis of LAC and baselines.

Our method integrates the actor and two critics, which may bring extra computational cost per step.
In Figure 5, we compare computational costs concerning the number of tokens spent and running
time between LAC and other baselines. Specifically, though LAC has a higher computational cost per
step due to the extra inference procedure of critics and the forward model, the total cost of LAC is
still lower than most LLM-based baselines because LAC requires fewer steps to finish each task.

6 DISCUSSION

In this work, we introduce a novel LLM-based Actor-Critic algorithm LAC that integrates the ability
of actors and critics as well as exploits the strong prior knowledge in LLMs for sequential decision-
making. Compared with previous actor-only and critic-only methods, LAC achieves high performance
on ALFWorld and BabyAI-Text even using small open-source LLMs.
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A EXTRA RESULTS

A.1 RESULTS OF OTHER TASKS IN BABYAI-TEXT
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Figure 6: Performance of our LAC compared with various baselines in all tasks from BabyAI-Text.

For a complete comparison, we show the performance of LAC and baselines in other tasks from
BabyAI-Text in Figure 6. Our LAC outperforms all other baselines, which further validates the
effectiveness of LAC.
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Figure 7: Performance of LAC in benchmark WebShop

A.2 RESULTS OF LAC IN WEBSHOP

We have conducted new experiments using the WebShop benchmark (Yao et al., 2022a), which
presents a scenario with a potentially infinite action space. This benchmark requires an agent to
purchase a product based on specific instructions (e.g. “I need a long clip-in hair extension which
is natural looking, and price lower than 20.00 dollars”) through web interactions (e.g. search “long
clip-in hair extension”, choose buttons such as “click [item ID]” or “back to search”). Within this
context, the “search” and “click” actions can indeed lead to an unbounded set of potential actions, as
the agent can continuously refine its queries and selections based on dynamic web results.

The results of our experiments are detailed in Figure 7. We found that our method, LAC, consistently
outperforms other baselines, in terms of both accumulated reward and success rate across various base
models. This demonstrates the robustness of our method in handling more complex and open-ended
action spaces.

A.3 RESULTS OF USING OTHER DEFINITION OF QLLM

AlfWorld BabyAI-text (task: go to)

�'� �$�%���� � %%���� �$�%������ �#)*(�$���
�#!! ( &*���(" ���&"+�" ��'� $)

	�	

	�


	��

	��

	�


	��

	��

	��

	��

�+
��
 )
)�
��

* 

	���

	��


	��� 	���
	���

	��


	���

	��	

�����'+()� ������� $'"���� �
��

�&���#�$���� ��$$���� �#�$������ �"()'�#���
�"  �'�%)���'!����%!*�!���&��#(

	�	

	�


	��

	��

	�


	��

	��

	��

�*
��

�(
(�

��
)� 	�
�

	���

	���

	��	

	�
�

	���
	��


	���

�����&*'(� ������� #&!���� � 
��

�&���#�$���� ��$$���� �#�$������ �"()'�#���
�"  �'�%)���'!����%!*�!���&��#(

	�	

	�


	��

	��

	�


	��

	��

	��

�*
��

�(
(�

��
)� 	�
�

	���

	���

	��	

	�
�

	���
	��


	���

�����&*'(� ������� #&!���� � 
��

Figure 8: Performance of LAC when using different definition of value-critic QLLM

In LAC we define lang-critic QLLM as QLLM (g, ht, a
i
t) = log

P (y=+1|g,ht,a
i
t)

P (y=−1|g,ht,ai
t)

. There are also other

definitions, for example, the simplest variant is QLLM (g, ht, a
i
t) = logP (y = +1|g, ht, a

i
t).

In this subsection, we provide a performance comparison between them in Figure 8. LAC outperforms
the variant in most situations across tasks and models. We speculate that this is because LAC uses
more information, i.e., both P (y = +1|g, ht, a

i
t) and P (y = −1|g, ht, a

i
t), than the variant, and the
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evaluation might be more accurate and more stable. There might be other definitions of QLLM and
among them, our QLLM is simple and effective.

A.4 COMPARISON OF LAC WITH MORE BASELINES ON ALFWORLD

CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B Llama-3.1-8B
Different Large Language Models
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Conventional Actor-Critic

Conventional Decision Transformer

Figure 9: Performance of our LAC and LAC’s variants compared with various baselines in benchmark
ALFWorld.

In this subsection, we compare LAC with more baselines including some traditional RL methods
implemented using LLMs on ALFWorld (Shridhar et al., 2021). The comparison is shown in Figure 9.

While in LAC we fine-tune the critic using a few trajectories, it is also possible to fine-tune the actor
to generate actions using those trajectories. Therefore, a potential baseline could be fine-tuning the
actor in actor-only method. To demonstrate the improvement brought by fine-tuning the actor, we
fine-tune the actor in ReAct (Yao et al., 2022b) and show the results in Figure 9. We also show
the results of LAC w/ fine-tuned actor in Figure 9. In brief, ReAct w/ fine-tuned actor is a strong
baseline compared with other baselines, but still inferior to our method LAC and LAC w/ fine-tuned
actor. Compared to LAC, the underperformance of LAC w/ fine-tuned actor arises from its tendency
to overfit the training trajectories. This overfitting causes the actor to favor actions that are more
frequent in the dataset, potentially leading to suboptimal action selection.

For example, in the ALFWorld training dataset, the action “take an apple from X” occurs frequently.
After fine-tuning, the actor may disproportionately generate this action, even when it is irrelevant to
the current goal. One case is that the current goal is to “heat some egg and put it in the garbage can”.
When the agent sees an “apple 2” in “fridge 1”, it generates and selects an irrelevant action “take
apple 2 from fridge 1”, which does not align with the task.

This tendency towards overfitting arises because the complexity of the policy function, which maps
states s to actions a, often exceeds that of the critic. The policy often has to capture a wide variety of
potential actions for each state, particularly in complex environments. However, the quite limited
training dataset in our setting restricts its ability to generalize effectively, resulting in memorization
of specific actions rather than flexible decision-making. In contrast, our critic, which includes a world
model for rollout and an evaluation function, focuses on capturing more predictable dynamics of the
environment and simpler evaluation criteria. This typically requires simpler mappings than those
needed for the policy, thus avoiding overfitting.

We also include some LLM-based RL variants as baselines to show the superiority of LAC over
conventional RL algorithms. We design three LLM-based RL variants that are built upon pre-
trained LLMs and directly extract actions/values information from LLMs without adding action/value
heads, namely Conventional Policy Gradient, Conventional Policy Gradient w/ dense rewards and
Conventional Actor-Critic in Figure 9.

For the implementation of the Conventional Policy Gradient, we need the probability of actions and
the returns. To obtain the probability of actions, we directly use LLM to compute the conditional
probability of each token in action ai = [w1, w2, · · · , w|at|] given the goal g, history ht and then
calculate their product:

π(at|g, ht) = Π
|at|
j=1PLLM (wj |g, ht, w<j)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

in which PLLM (wj |g, ht, w<j) is the probability of token wj given goal g, history ht and previous
tokens w<j computed by LLM. Then we regard the cumulative future rewards as the return Gt, which
is +1 for successful trajectories and −1 for failed trajectories in the tasks we considered. Finally, the
gradient of policy is E[

∑
t∇logπ(at|g, ht)Gt]. Conventional Policy Gradient w/ dense rewards is

similar to Conventional Policy Gradient except that we manually add intermediate rewards for each
step, and then use the cumulative future rewards as the return Gt.

For the implementation of the Conventional Actor-Critic, we additionally need a critic to estimate
action values. As it is possible to train a new value head using only 18 trajectories, we instead
approximate the action value similar to QLLM in our method LAC, i.e. QLLM (g, ht, at, ut) =

logPLLM (y=+1|g,ht,at,ut)
PLLM (y=−1|g,ht,at,ut)

, in which PLLM (y = ±1|g, ht, at, ut) is the output probability of special
positive/negative tokens like GOOD or BAD that indicate positive/negative results as LLM’s belief
on success/failure. Finally, the gradient of policy is E[

∑
t∇logπ(at|g, ht)QLLM (g, ht, at, ut)].

In summary, Conventional Policy Gradient exhibits almost all zero performance, which is due to the
extremely sparse reward problems, compared with Conventional Policy Gradient w/ dense rewards.
Conventional Actor-Critic demonstrates non-zero performance only on some stronger LLMs like
Gemma-7B (Team et al., 2024), Llama-3-8B (Meta, 2024a) and Llama-3.1-8B (Meta, 2024b), which
may be because the optimization method of conventional actor-critic is not suitable in insufficient
data settings.

In addition to the aforementioned LLM-based RL variant, Decision Transformer (Chen et al., 2021)
is also a potential solution in combining RL and transformer-based LLMs. We fine-tune pretrained
LLMs in a similar way as conventional decision transformers. We construct a dataset using decision-
transformers’ trajectory representation: τ = [R1, s1, a1, R2, s2, a2, · · · ], in which Rt is return-to-go,
i.e., +1 for successful trajectories and -1 for failed trajectories in our extremely sparse reward settings.
Then we fine-tune LLMs with next-token prediction loss on these trajectories. During execution,
we insert +1 before state st to specify the desired outcome. The results are shown in Figure 9 as
Conventional Decision Transformer. In short, Conventional Decision Transformer exhibits a similar
performance to ReAct, which may be because the 18 trajectories are insufficient for fine-tuning
decision transformers.

Our method LAC is better than all considered baselines because of its ability to handle extremely
sparse reward problems using LLM’s prior knowledge and to fully utilize insufficient data.

A.5 MORE ABLATIONS OF LAC IN ALFWORLD AND BABYAI-TEXT

The value-critic relies on future trajectory predictions to improve the accuracy of its evaluations. By
predicting future trajectories, the critic considers long-term consequences and evaluates actions more
effectively, which ultimately leads to better decision-making.

For a full comparison, here we conducted an extra experiment for LAC w/o rollout, in which the value-
critic generate value-based evaluations without future trajectory predictions. The results, included
in Figure 10 and Figure 11, show that LAC w/o rollout consistently underperforms compared to the
full LAC across various base models. This finding emphasizes the importance of future trajectory
predictions for accurate evaluations.

A.6 COMPUTATIONAL COST ANALYSIS OF LAC WITH MORE BASELINES IN ALFWORLD

In this subsection, we demonstrate the computation cost of LAC and other baselines in Figure 12.
We show the success rate, steps per task, time used per task, and token cost per task respectively.
Specifically, though LAC has a higher computational cost per step due to the extra inference procedure
of critics and the forward model, the total cost is still lower than most LLM-based baselines because
LAC has a higher success rate and requires fewer steps to finish each task.

A.7 ILLUSTRATION OF BABYAI-TEXT

We should the illustrative example of BabyAI-Text in Figure 13.
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Figure 10: More ablation studies of LAC in ALFWorld
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Figure 11: More ablation studies of LAC in BabyAI-Text

A.8 RESULTS OF DIFFERENT CRITIC IMPROVEMENT METHODS

To improve the critics given only several examples, we can fine-tune the open-source models via next-
token prediction. Please refer to Appendix B.2 for more fine-tuning details. To show the effectiveness
of fine-tuning, we present the performance of LAC and other variants on task “go to” and “pick up”
from BabyAI-Text when we just add these examples into the prompt, i.e., in-context learning, in
Table 1 and Table 2. We also show the the performance improvement if we do fine-tuning in the
parentheses of Table 1. This result indicates that (1) fine-tuning can incorporate extra knowledge
into LLMs better than in-context learning in our case (2) both of our two critics can benefit from
fine-tuning. It is worth mentioning that our LAC still outperforms baselines without fine-tuning.

Table 1: Performance of two critic improvement methods: in-context learning or fine-tuning.
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B

LAC 0.30 (↑ 0.16) 0.62 (↑ 0.14) 0.32 (↑ 0.34) 0.24 (↑ 0.46)
LAC w/o lang-critic 0.30 (↑ 0.02) 0.58 (↑ 0.02) 0.38 (↑ 0.10) 0.26 (↑ 0.28)
LAC w/o value-critic 0.28 (↑ 0.06) 0.48 (↑ 0.04) 0.42 (↑ 0.10) 0.10 (↑ 0.28)
Value-critic-only 0.42 (↑ 0.04) 0.40 (↑ 0.24) 0.34 (↑ 0.22) 0.38 (↑ 0.24)
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Figure 12: Computational cost analysis of our LAC compared with various baselines in benchmarks
ALFWorld. Though LAC may have a higher computational cost per step due to the extra inference
procedure of critics and the forward model, the total cost of LAC is still lower than most LLM-based
baselines because LAC requires fewer steps to finish each task.

Table 2: Performance of two critic improvement methods: in-context learning or fine-tuning.
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B

LAC 0.20 (↑ 0.06) 0.22 (↑ 0.20) 0.34 (↑ 0.08) 0.20 (↑ 0.16)
LAC w/o lang-critic 0.16 (↑ 0.08) 0.32 (↑ 0.04) 0.32 (↑ 0.04) 0.22 (↑ 0.06)
LAC w/o value-critic 0.12 (↑ 0.14) 0.36 (↑ 0.20) 0.28 (↑ 0.06) 0.26 (↑ 0.04)
Value-critic-only 0.22 (↑ 0.04) 0.24 (↑ 0.26) 0.16 (↑ 0.16) 0.16 (↑ 0.26)

A.9 ANALYSIS OF THE FINE-TUNING PROCESS IN LAC

In order to improve the quality of the language-based critic generated by LLM, we finetune the
LLM that generates the critic. In this section, we analyze the finetuning process, showing the impact
of finetuning on critic prediction, as well as the impact of different data amounts and positive and
negative sample ratios on task success rates. The comparison can be seen in Figure 14.

In Figure 14 (a), we show the influence of fine-tuning data size. We use 9, 18, 27 and 36 trajectories
to fine-tune LLMs, and show the final success rate on 134 evaluation tasks. In summary, larger data
sizes (27 or 36 trajectories) generally bring higher success rate, while small data sizes (18 and even 9
trajectories in some cases) are already enough for LAC to achieve outperformance.

Figure 14 (b) shows the influence of different positive/negative sample ratio (positive:negative = 0:1,
1:3, 1:1, 3:1 and 1:0) on final performance. We keep the total number of samples the same and just
change positive/negative ratio. In short, our LAC is robust to reasonable positive/negative ratios (e.g.
1:3, 1:1, 3:1), while LAC based on CodeLlama-7B (Roziere et al., 2023) and Gemma-7B (Team et al.,
2024) even perform better when given all positive samples (1:0).

Figure 14 (c) shows the learning curves of the fine-tuning process. We plot the next prediction loss
and positive/negative tokens prediction accuracy for CodeLlama-7B (Roziere et al., 2023). In short,
as the next token prediction loss decreases during fine-tuning, the accuracy of predicting the special
tokens (GOOD or BAD) increases, which exhibits the effect of the fine-tuning process.

A.10 RESULTS OF DIFFERENT HYPER-PARAMETER α

The hyper-parameter α in Equation (4) controls the deviation from the original actor πLLM . In this
subsection, we grid-search this hyper-parameter over {1/2, 1, 2, 5, 10} in task “go to” of BabyAI-
Text, then we fix α for other tasks: α = 1 for model CodeLlama-7B, α = 2 for model Gemma-7B,
α = 2 for model Llama-3-8B and α = 10 for model Mistral-7B.

As for benchmark ALFWorld, we fixed α = 1 in all experiments.
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[Instruction]: Assume that you are an agent in a Grid World. Given a goal, your task is
to execute a sequence of actions to achieve the goal.
[Possible actions]: turn left, turn right, go forward, pick up, drop, toggle.
[Goal]: go to the green ball

Prompt

✓
✗

✓ ✓ ✓

✓✓✗ ✗ ✗

✗ ✓✓ ✓✗

✓✗✓ ✓✓

𝜋!!" 𝜋!!"
+ 𝐶!!"

𝒬!!"

𝜋!!"
+ 𝐶!!"
+ 𝒬!!"
(Ours)

𝜋!!"
+ 𝒬!!"actor-only critic-only

go forward turn left turn right

Action Probs. (Partial)

[Obs 1]: You see a wall 5 steps forward, You see a wall 2
steps right, You see a green ball 3 steps left and 4 steps
forward, You see a grey key 2 steps left and 2 steps
forward, You see a blue key 1 step left and 3 steps forward,
You see a green key 1 step left and 2 steps forward, You see
a blue ball 1 step right and 1 step forward
[LAC Inference 1]
[Act 1]: go forward

[Obs 2]: (...) You see a green ball 3 steps left and 3 steps
forward, (...) You see a blue ball 1 step right
[LAC Inference 2]
[Act 2]: go forward

[Obs 5]: You see a wall 1 step forward, (...) You see a
green ball 3 steps left
[LAC Inference 5]
[Act 5]: turn left

[Obs 6]: (...) You see a red ball 4 steps forward, You see a
green ball 3 steps forward
[LAC Inference 6]
[Act 6]: go forward

Inputs & Outputs of LAC (Ours)

✓

✓

✓

✓

(...)

Figure 13: An illustrative explanation of our method LAC in BabyAI-Text. The histogram on the
right shows the action probabilities of different methods. While actor (πLLM ) and critics (lang-critic
CLLM , value-critic QLLM ) make mistakes at different time steps, LAC (ours) can select the correct
action by integrating actor and critics. Please refer to Table 16 for the full trajectory.

Table 3: Results of different hyper-parameter α
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B

LAC (α = 1/2) 0.46 0.54 0.62 0.68
LAC (α = 1) 0.46 0.62 0.64 0.58
LAC (α = 2) 0.44 0.76 0.66 0.64
LAC (α = 5) 0.46 0.72 0.62 0.64
LAC (α = 10) 0.40 0.58 0.60 0.70

B METHOD DETAILS

B.1 DERIVING THE SOLUTION OF THE KL-CONSTRAINED MAXIMIZATION OBJECTIVE

In this subsection, we will derive Equation (5). We optimize the following objective:

max
π

Eai
t∼π(ai

t|g,ht,ct)

[
QLLM (g, ht, a

i
t, u

i
t)
]
− 1

α
DKL

[
π(ait|g, ht, ct)∥πLLM (ait|g, ht, ct)

]
.
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Figure 14: Analysis regarding the fine-tuning process of our LAC. (a) Influence of the fine-tuning
data size. Larger data sizes (27, 36 trajectories) generally bring higher performance, but small data
sizes (18 and even 9 trajectories) are already enough for our method to achieve outperformance. (b)
Influence of the positive/negative data ratio. LAC is robust to reasonable positive/negative ratios (1:3,
1:1, 3:1) while CodeLlama-7B and Gemma-7B-based LAC even perform better given all positive
data (1:0). (c) Learning curves of next-token prediction loss and positive/negative tokens prediction
accuracy for CodeLlama-7B and ALFWorld.

We now have:

max
π

Eai
t∼π(ai

t|g,ht,ct)

[
QLLM (g, ht, a

i
t, u

i
t)
]
− 1

α
DKL

[
π(ait|g, ht, ct)∥πLLM (ait|g, ht, ct)

]
=max

π
Eai

t∼π(ai
t|g,ht,ct)

[
QLLM (g, ht, a

i
t, u

i
t)−

1

α
log

π(ait|g, ht, ct)

πLLM (ait|g, ht, ct)

]
=min

π
Eai

t∼π(ai
t|g,ht,ct)

[
log

π(ait|g, ht, ct)

πLLM (ait|g, ht, ct)
− αQLLM (g, ht, a

i
t, u

i
t)

]
=min

π
Eai

t∼π(ai
t|g,ht,ct)

[
log

π(ait|g, ht, ct)
1

Z(g,ht,ct)
πLLM (ait|g, ht, ct) exp (αQLLM (g, ht, ait, u

i
t))
− logZ(g, ht, ct)

]

where we have the partition function:

Z(g, ht, ct) =
∑
ai
t

πLLM (ait|g, ht, ct) exp (αQLLM (g, ht, a
i
t, u

i
t)).

Since the partition function is a function of only g, ht and the original actor πLLM , but does not
depend on the optimized actor π, we define

π∗(ait|g, ht, ct) =
1

Z(g, ht, ct)
πLLM (ait|g, ht, ct) exp (αQLLM (g, ht, a

i
t, u

i
t)).

This definition of policy if a valid probability distribution as π∗(ait|g, ht, ct) for all ait and∑
ai
t
π∗(ait|g, ht, ct) = 1. As Z(g, ht, ct) is not a function of ait, we can then re-organize the

objective as:

min
π

Eai
t∼π(ai

t|g,ht,ct)

[
log

π(ait|g, ht, ct)
1

Z(g,ht,ct)
πLLM (ait|g, ht, ct) exp (αQLLM (g, ht, ait, u

i
t))
− logZ(g, ht, ct)

]

=min
π

Eai
t∼π(ai

t|g,ht,ct)

[
log

π(ait|g, ht, ct)

π∗(ait|g, ht, ct)
− logZ(g, ht, ct)

]
=min

π
DKL

[
π(ait|g, ht, ct)∥π∗(ait|g, ht, ct)

]
− logZ(g, ht, ct).

Then since Z(g, ht, ct) does not depend on π, we can only care about the KL-divergence, which is
minimized at 0 if and only if the two distributions are identical. Therefore, the optimal solution is

π(ait|g, ht, ct) = π∗(ait|g, ht, ct) =
1

Z(g, ht, ct)
πLLM (ait|g, ht, ct) exp (αQLLM (g, ht, a

i
t, u

i
t)),

(7)
which completes the derivation.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

𝜋!!": actor 𝑓!!": forward model 𝒞!!": lang-critic 𝒬!!": value-critic

(𝑎) 𝑔, ℎ#
𝜋!!"

𝑎#$

𝑎#%

⋯

𝜋 𝑎#$

𝜋 𝑎#%
𝑎#∗

arg	max⋯

selected 
action

𝑔, ℎ#
𝜋!!"

𝑎#$

𝑎#%

⋯

𝑢#$ 𝑄(𝑎#$)
𝒬'#()*

𝑄(𝑎#$)
𝒬'#()*

𝑎#∗
arg	max⋯(𝑏)

𝑢#%

𝑓!!"

𝑓!!"

(𝑐)
𝒞!!"𝑔, ℎ# 𝑐#

𝜋!!"
𝑎#$ 𝑄(𝑎#%)

𝒬!!"

𝑎#% 𝑄(𝑎#%)
𝒬!!"

⋯

goal, 
history

lang-based
evaluation

candidate 
actions

value-based 
evaluation

𝜋 𝑎#$

𝜋 𝑎#%

𝑎#∗
arg	max

+

+

⋯

𝑢#$

𝑢#%

imagined 
trajectories

action 
prob.

𝑓!!"

𝑓!!"

ac<on 
genera<on

𝒬'#()*: other critics

Figure 15: Frameworks comparison. (a) Actor-only methods directly select the action with the highest
probability generated by actor-LLM πLLM , which may result in a lack of long-term planning and
non-optimal action selection; (b) Critic-only methods self-evaluate each candidate action with another
critic-LLM QLLM by first predicting candidate’s future trajectory ui

t and then directly select the
action with the best-predicted outcome, which may ignore the prior knowledge in actor; (c) Our
LLM-based Actor-Critic (LAC) algorithm integrate actor and dual critics: lang-critic CLLM and
value-critic QLLM to enhance the decision-making ability of LLMs.

B.2 CRITIC IMPROVEMENT OF LAC

The lang-critic CLLM , value-critic QLLM , and forward model fLLM we used can be easily imple-
mented by prompting LLMs via providing instructions or few-shot examples from similar tasks like
prior work (Yao et al., 2022b; Liu et al., 2023). However, empirically, we found that they can be
further improved via fine-tuning LLMs with simple next-token prediction loss on several samples
collected from training tasks. In this work, we consider 18 trajectories for each benchmark for
fine-tuning. Though 18 trajectories are significantly fewer than what is required for conventional
reinforcement learning algorithms, they are generally enough for our method. Each trajectory has
the following format: (g, o0, a1, o1, c1, · · · , aH , oH , cH), where H is the episode length and ci is a
language-based evaluation of action at. Each ct includes an explanation about the action at (e.g., “I
have found object-X. This step is ” or “I should take object-X instead of object-Y first. This step is ”)
and a special token that indicates positive/negative judgment (e.g., “GOOD” or “BAD”).

Practically, we just fine-tune the LLM once and use it to construct all the lang-critic CLLM , value-
critic QLLM , and forward model fLLM , thanks to the fine-tuning with the above data format.
Specifically, when minimizing the loss of predicting future trajectories, the forward model fLLM

is improved. When minimizing the loss of generating language-based evaluations, the lang-critic
CLLM , value-critic QLLM are both improved. The latter is because language-based evaluations
also contain special tokens that indicate positive/negative judgments, whose generated probabilities
are used to calculate QLLM in Equation (3). We analyze this fine-tuning process in Appendix A.9.
Some examples of the labeled trajectories in ALFWorld and BabyAI-Text are shown in Table 14 and
Table 15 respectively.

B.3 Actor-only METHODS

We compare our LAC with actor-only and critic-only methods in Figure 15.
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We detail the general actor-only methods in Algorithm 2.

Algorithm 2: Actor-only methods.
Input: current task goal g, history ht, actor πLLM , candidate action size n.
Output: selected action a∗t

1 {a1t , a2t , · · · , ant } ∼ πLLM (·|g, ht)

2 a∗t ← argmaxai
t
π(ait|g, ht)

B.4 Critic-only METHODS

We detail the general critic-only methods in Algorithm 3. Note that critic-only may use different
QOther to estimate numerical assessment of actions.

Algorithm 3: Critic-only methods.
Input: current task goal g, history ht, actor πLLM , forward model fLLM , value-based critic

QOther, candidate action size n.
Output: selected action a∗t

1 {a1t , a2t , · · · , ant } ∼ πLLM (·|g, ht); ▷ generate candidate actions
2 for i← 1, 2, · · · , n do
3 ui

t ← fLLM (g, ht, a
i
t); ▷ imagine future trajectory

4 calculate QOther(g, ht, a
i
t, u

i
t)

5 end
6 a∗t ← argmaxai

t
QOther(g, ht, a

i
t, u

i
t)

C EXPERIMENT DETAILS

C.1 BENCHMARK DETAILS

C.1.1 ALFWORLD: BENCHMARK WITH HIGH-LEVEL ACTIONS

We choose ALFWorld (Shridhar et al., 2021), a text-based household environment, to demonstrate
the effectiveness of LAC on high-level planning. ALFWorld is a synthetic text-based game aligned
with ALFRED (Shridhar et al., 2020) benchmark. There are 6 types of tasks in this environment,
which require the agent to achieve a high-level goal through a sequence of high-level actions, e.g.
“go to place-X”, “take object-Y from place-X”, etc. The details about the 6 task types in ALFWorld
are shown in Table 4.

Table 4: All the task types and the corresponding goals for ALFWorld
Type Description
Pick & Place The agent needs to put a target object to a target place, e.g. put some spraybottle on toilets, find some apple

and put it in sidetable, etc.
Clean & Place The agent needs to find a target object, clean it and put it to a target place, e.g. clean some apple and put it in

sidetable, put a clean lettuce in diningtable, etc.
Heat & Place The agent needs to find a target object, heat it and put it to a target place, e.g. heat some egg and put it in

diningtable, put a hot apple in fridge, etc.
Cool & Place The agent needs to find a target object, cool it and put it to a target place, e.g. cool some pan and put it in

stoveburner, put a cool mug in shelf, etc.
Examine & Place The agent needs to find a target object, and examine it with desklamp, e.g. look at bowl under the desklamp,

examine the pen with the desklamp, etc.
Pick Two & Place The agent needs to put two target objects to a target place, e.g. put two saltshaker in drawer, find two pen

and put them in dresser, etc.

A challenge built into ALFWorld is that the agent needs to explore the environment to find a target
object. The commonsense knowledge in LLMs about the likely locations for common household
items makes this environment suitable for LLMs to solve. The reward is 1 only when the agent
reaches the goal. Following ReAct, we evaluate 134 unseen evaluation games in a task-specific
setup.
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C.1.2 BABYAI-TEXT: BENCHMARK WITH LOW-LEVEL ACTIONS

For decision-making tasks with low-level planning, we adopt BabyAI-Text (Carta et al., 2023b) as
our test-bed. BabyAI-Text is a text-only version environment extended from the BabyAI platform
(Chevalier-Boisvert et al., 2019). BabyAI-Text is a Grid World environment, in which the agent and
objects are placed in a room of 8× 8 tiles. The agent has 6 primitive actions: turn left, turn right, go
forward, pick up, drop, toggle, to solve a task described in natural language (e.g. Pick up the red box).
The agent has access to a 7× 7 partial view, which means it can only observe the objects belonging
to the 7× 7 grid in front of it. In addition to objects relevant to completing a given task, there are
also other distractors in the room. All the task types in BabyAI-Text are shown in Table 5.

Table 5: All the task types and the corresponding goals for BabyAI-Text
Type Description
go to The agent needs to find target object and go to it, e.g. go to the green key, go to the red ball, etc.
pick up The agent needs to find target object, go to it and pick up it, e.g. pick up the blue key, pick up the purple ball,

etc.
go to after pick up The agent needs to find and pick up one object, then go to another object, e.g. go to the blue key after you

pick up the green key etc.
pick up then go to The agent needs to find and pick up one object, then go to another object, e.g. pick up the green box, then go

to the purple box etc.
put next to The agent needs to find and pick up one object, then go to another object and put the first object next to it,

e.g. put the grey key next to the yellow ball etc.
open door The agent needs to know which key to pick up, then find and pick up it to open the door, e.g. open the door,

open the blue door, etc.

Unlike ALFWorld, an agent interacting with BabyAI-Text needs to find out the suitable low-level
action to execute at each step. We evaluate on the test environment in BabyAI-Text. The objects
in a room are randomly chosen, and their position, as well as the agent’s position, are also random.
Considering the time and computational resource constraints, we evaluate on 50 tasks for each task
type, yielding 300 tasks total.

C.2 IMPLEMENTATION DETAILS OF BASELINES

C.2.1 REACT

ReAct (Yao et al., 2022b) is an actor-only method that combines reasoning and acting during the
interaction with the environment. It leverages the reasoning capabilities of LLMs to increase the
probability of the LLM acting correctly as an actor.

Table 6 shows an example of a trajectory interleaving between actions and observations in ALFWorld.
To leverage the reasoning ability of LLMs, ReAct adds an extra thinking action to the original action
set in ALFWorld, allowing LLM agent to engage in reasoning about task decomposition and goal
achievement during task execution. An annotated trajectory for ALFWorld given by ReAct is shown
in Table 7. Text labeled in light green is the annotated thought to help LLM complete a task better.

Table 6: An example of successful trajectory for ALFWorld
You are in the middle of a room. Looking quickly around you, you see a cabinet
4, a cabinet 3, a cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a
handtowelholder 2, a handtowelholder 1, a sinkbasin 2, a sinkbasin 1, a toilet 1,
a toiletpaperhanger 1, and a towelholder 1.
Your task is to: put some spraybottle on toilet.
> go to cabinet 1
On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1.
> go to cabinet 2
The cabinet 2 is closed.
> open cabinet 2
You open the cabinet 2. The cabinet 2 is open. In it, you see a candle 1, and a
spraybottle 2.
> take spraybottle 2 from cabinet 2
You pick up the spraybottle 2 from the cabinet 2.
> go to toilet 1
On the toilet 1, you see a soapbottle 2.
> put spraybottle 2 in/on toilet 1
You put the spraybottle 2 in/on the toilet 1.
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Table 7: An example of annotated successful trajectory for ALFWorld in ReAct
You are in the middle of a room. Looking quickly around you, you see a cabinet
4, a cabinet 3, a cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a
handtowelholder 2, a handtowelholder 1, a sinkbasin 2, a sinkbasin 1, a toilet 1,
a toiletpaperhanger 1, and a towelholder 1.
Your task is to: put some spraybottle on toilet.
> think: To solve the task, I need to find and take a sparybottle, then put it on
toilet.
OK.
> think: First I need to find a spraybottle. A spraybottle is more likely to appear
in cabinet (1-4), countertop (1), toilet (1), sinkbasin (1-2), garbagecan (1). I can
check one by one, starting with cabinet 1.
OK.
> go to cabinet 1
On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1.
> go to cabinet 2
The cabinet 2 is closed.
> open cabinet 2
You open the cabinet 2. The cabinet 2 is open. In it, you see a candle 1, and a
spraybottle 2.
> think: Now I find a spraybottle (2). Next, I need to take it.
> take spraybottle 2 from cabinet 2
You pick up the spraybottle 2 from the cabinet 2.
> think: Now I take a spraybottle (2). Next, I need to put it in/on toilet 1.
OK.
> go to toilet 1
On the toilet 1, you see a soapbottle 2.
> put spraybottle 2 in/on toilet 1
You put the spraybottle 2 in/on the toilet 1.

During the interaction with the environment, two successful trajectories like in Table 7 are provided
to LLMs to leverage the in-context learning ability of LLMs. The LLMs will generate an action
to be executed in the environment or conduct some reasoning about how to achieve the final goal.
The chosen action and new observation are appended to the prompt for LLMs to form a sequential
decision-making process.

Table 8: An example of successful trajectory for BabyAI-Text
Goal of the agent: go to the green key
Observation:You see a wall 2 steps right, You see a wall 3 steps forward, You see a
grey box 3 steps left, You see a grey key 3 steps left and 1 step forward, You see a
blue box 3 steps left and 2 steps forward
Action:turn left
Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 2 steps
forward, You see a green key 2 steps left and 1 step forward, You see a green ball
1 step left and 3 steps forward, You see a grey box 3 steps forward, You see a grey
key 1 step right and 3 steps forward, You see a blue box 2 steps right and 3 steps
forward
Action:go forward
Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 1 step
forward, You see a green key 2 steps left, You see a green ball 1 step left and 2
steps forward, You see a grey box 2 steps forward, You see a grey key 1 step right
and 2 steps forward, You see a blue box 2 steps right and 2 steps forward
Action:turn left
Observation:You see a wall 3 steps left, You see a green box 2 steps left and 3 steps
forward, You see a green box 2 steps left and 1 step forward, You see a green key 2
steps forward, You see a blue key 1 step right and 3 steps forward, You see a green
ball 2 steps right and 1 step forward, You see a grey box 2 steps right
Action:go forward
Observation:You see a green box 2 steps left and 2 steps forward, You see a green box
2 steps left, You see a green key 1 step forward, You see a blue key 1 step right and
2 steps forward, You see a green ball 2 steps right

Similar to ALFWorld, we annotate some successful trajectories in BabyAI-Text to teach a ReAct
agent how to complete a task in BabyAI-Text. Examples of successful trajectories without thoughts
and with thoughts are shown in Table 8 and Table 9 respectively.

C.2.2 RAP

RAP(Hao et al., 2023) can be treated as a critic-only method, in which it utilizes LLMs as actor and
world model, and adopts tree-search planning methods to evaluate each possible action candidate.
Trajectories interleaving between actions and observations like in Table 6 and Table 8 are provided
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Table 9: An example of annotated successful trajectory for BabyAI-Text in ReAct
Goal of the agent: go to the green key
Observation:You see a wall 2 steps right, You see a wall 3 steps forward, You see a
grey box 3 steps left, You see a grey key 3 steps left and 1 step forward, You see a
blue box 3 steps left and 2 steps forward
Action:think: To complete the task, I need to find a green key and go to it.
Observation:OK
Action:think: I have not seen a green key. Firstly, I need to find a green key.
Observation:OK
Action:turn left
Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 2 steps
forward, You see a green key 2 steps left and 1 step forward, You see a green ball
1 step left and 3 steps forward, You see a grey box 3 steps forward, You see a grey
key 1 step right and 3 steps forward, You see a blue box 2 steps right and 3 steps
forward
Action:think: I have seen a green key 2 steps left and 1 step forward. Next, I need
to go to the green key.
Observation:OK
Action:go forward
Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 1 step
forward, You see a green key 2 steps left, You see a green ball 1 step left and 2
steps forward, You see a grey box 2 steps forward, You see a grey key 1 step right
and 2 steps forward, You see a blue box 2 steps right and 2 steps forward
Action:turn left
Observation:You see a wall 3 steps left, You see a green box 2 steps left and 3 steps
forward, You see a green box 2 steps left and 1 step forward, You see a green key 2
steps forward, You see a blue key 1 step right and 3 steps forward, You see a green
ball 2 steps right and 1 step forward, You see a grey box 2 steps right
Action:go forward
Observation:You see a green box 2 steps left and 2 steps forward, You see a green box
2 steps left, You see a green key 1 step forward, You see a blue key 1 step right and
2 steps forward, You see a green ball 2 steps right

to LLMs to learn how to choose action as an actor and the dynamics of the environment as a world
model.

The assessment of each step is performed by a reward function, which can be the log probability
of the action or self-evaluation given by LLMs, or based on some task-specific heuristics. In our
implementation, we adopt the log probability of actions given by LLMs as the reward. For simplicity
of implementation, we adopted a greedy approach to expand the tree, generating only one action at
a time. More specifically, at each step, LLMs will sample some action candidates. For each action
candidate, LLMs will generate a rollout trajectory until a maximum step or terminal state. The
summation of log probabilities of all the actions on the rollout accessed by LLMs are used as Q value
for each action candidate. The candidate with the highest Q value is chosen to be executed in the
environment.

C.2.3 ICPI

ICPI (Brooks et al., 2024) proposes to implement policy iteration using LLMs through in-context
learning. At each step, the actor in ICPI will sample some action candidates and the critic will
compute the Q values for each action candidates. The action candidates with the highest Q values is
chosen to be executed.

The actor is implemented using LLMs, and successful trajectories like in Table 6 and Table 8 are
provided to it.

As to the critic, ICPI prompts LLMs to give the numerical reward for each step directly. Given the
current history and an action candidate, the critic in ICPI will rollout a trajectory starting from the
action candidate. Apart from predicting the observations, the critic will give the numerical reward for
each step on the rollout trajectory. The (discounted) return on the rollout is treated as the Q value
for the action candidate. For both ALFWorld and BabyAI-Text, we define the reward as 1 when the
agent reaches the goal. All other steps will have a reward 0. The examples provided to the critic are
like in Table 10 for ALFWorld and Table 11 for BabyAI-Text.
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Table 10: An example provided to critic in ICPI for ALFWorld
You are in the middle of a room. Looking quickly around you, you see a cabinet
4, a cabinet 3, a cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a
handtowelholder 2, a handtowelholder 1, a sinkbasin 2, a sinkbasin 1, a toilet 1,
a toiletpaperhanger 1, and a towelholder 1.
Your task is to: put some spraybottle on toilet.
> go to cabinet 1
On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1.
Reward:0
> go to cabinet 2
The cabinet 2 is closed.
Reward:0
> open cabinet 2
You open the cabinet 2. The cabinet 2 is open. In it, you see a candle 1, and a
spraybottle 2.
Reward:0
> take spraybottle 2 from cabinet 2
You pick up the spraybottle 2 from the cabinet 2.
Reward:0
> go to toilet 1
On the toilet 1, you see a soapbottle 2.
Reward:0
> put spraybottle 2 in/on toilet 1
You put the spraybottle 2 in/on the toilet 1.
Reward:1

Table 11: An example provided to critic in ICPI for BabyAI-Text
Goal of the agent: go to the green key
Observation:You see a wall 2 steps right, You see a wall 3 steps forward, You see a
grey box 3 steps left, You see a grey key 3 steps left and 1 step forward, You see a
blue box 3 steps left and 2 steps forward
Action:turn left
Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 2 steps
forward, You see a green key 2 steps left and 1 step forward, You see a green ball
1 step left and 3 steps forward, You see a grey box 3 steps forward, You see a grey
key 1 step right and 3 steps forward, You see a blue box 2 steps right and 3 steps
forward
Reward:0
Action:go forward
Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 1 step
forward, You see a green key 2 steps left, You see a green ball 1 step left and 2
steps forward, You see a grey box 2 steps forward, You see a grey key 1 step right
and 2 steps forward, You see a blue box 2 steps right and 2 steps forward
Reward:0
Action:turn left
Observation:You see a wall 3 steps left, You see a green box 2 steps left and 3 steps
forward, You see a green box 2 steps left and 1 step forward, You see a green key 2
steps forward, You see a blue key 1 step right and 3 steps forward, You see a green
ball 2 steps right and 1 step forward, You see a grey box 2 steps right
Reward:0
Action:go forward
Observation:You see a green box 2 steps left and 2 steps forward, You see a green box
2 steps left, You see a green key 1 step forward, You see a blue key 1 step right and
2 steps forward, You see a green ball 2 steps right
Reward:1

C.2.4 RAFA

The framework of RAFA (Liu et al., 2023) is also like RAP or ICPI. The main difference is the critic
used.

RAFA implements tree-search using LLM to evaluate each action candidate. Different from ICPI,
RAFA uses the task completion progress as the value for each step. They have the LLMs decompose
a goal into sub-goals, and use the completion status of the sub-goals after each step as the value for
the step. RAFA evaluates the completion status of sub-goals based on the predicted observations.
Examples provided to critic in RAFA are like in Table 12 for ALFWorld and Table 13 for BabyAI-
Text.
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Table 12: An example provided to critic in RAFA for ALFWorld
You are in the middle of a room. Looking quickly around you, you see a cabinet
4, a cabinet 3, a cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a
handtowelholder 2, a handtowelholder 1, a sinkbasin 2, a sinkbasin 1, a toilet 1,
a toiletpaperhanger 1, and a towelholder 1.
Your task is to: put some spraybottle on toilet.
> critic: My task requires two sub-goals in order: take a spraybottle and put the
spraybottle on the toilet. My current state satisfies zero of the two sub-goals.
The value is 0/2=0.
> OK.
On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1.
> OK.
The cabinet 2 is closed.
> OK.
You open the cabinet 2. The cabinet 2 is open. In it, you see a candle 1, and a
spraybottle 2.
> OK.
You pick up the spraybottle 2 from the cabinet 2.
> critic: Now I take a spraybottle. My current state satisfies the first of the two
sub-goals: take a spraybottle. The value is 1/2=0.5.
> OK.
On the toilet 1, you see a soapbottle 2.
> OK.
You put the spraybottle 2 in/on the toilet 1.
> critic: Now I put the spraybottle on the toilet. My current state satisfies all
the two sub-goals. The value is 2/2=1.

Table 13: An example provided to critic in RAFA for BabyAI-Text
Goal of the agent: go to the green key
You see a wall 2 steps right, You see a wall 3 steps forward, You see a grey box 3
steps left, You see a grey key 3 steps left and 1 step forward, You see a blue box 3
steps left and 2 steps forward
>critic: My task requires two sub-goals in order: find the green key, and go to
the green key. My current state satisfies zero of the two sub-goals. The value is
0/2=0.
>OK.
You see a wall 3 steps right, You see a blue key 3 steps left and 2 steps forward,
You see a green key 2 steps left and 1 step forward, You see a green ball 1 step left
and 3 steps forward, You see a grey box 3 steps forward, You see a grey key 1 step
right and 3 steps forward, You see a blue box 2 steps right and 3 steps forward
>critic: Now I find the green key. My current state satisfies the first of the two
sub-goals: find the green key. The value is 1/2=0.5.
>OK.
You see a wall 3 steps right, You see a blue key 3 steps left and 1 step forward, You
see a green key 2 steps left, You see a green ball 1 step left and 2 steps forward,
You see a grey box 2 steps forward, You see a grey key 1 step right and 2 steps
forward, You see a blue box 2 steps right and 2 steps forward
>OK.
You see a wall 3 steps left, You see a green box 2 steps left and 3 steps forward,
You see a green box 2 steps left and 1 step forward, You see a green key 2 steps
forward, You see a blue key 1 step right and 3 steps forward, You see a green ball
2 steps right and 1 step forward, You see a grey box 2 steps right
>OK.
You see a green box 2 steps left and 2 steps forward, You see a green box 2 steps
left, You see a green key 1 step forward, You see a blue key 1 step right and 2 steps
forward, You see a green ball 2 steps right
>critic: Now I go to the green key. My current state satisfies all the two
sub-goals. The value is 2/2=1.

C.3 IMPLEMENTATION DETAILS OF LAC, ABLATION STUDIES, AND VARIANTS

We build our method based on ReAct (Yao et al., 2022b). Specifically, we adopt the trajectories
with thoughts from ReAct and annotate language-based evaluations for those trajectories. For each
task type, we annotate two trajectories from ReAct as successful examples to teach LLMs how
to complete this type of tasks. Some examples of the annotated trajectories for ALFWorld and
BabyAI-Text are shown in Table 14 and Table 15 respectively. The language-based evaluations we
annotated are labeled in light orange. We also use ReAct algorithm to collect some failed trajectories
from the training set for each task type. The collected failed trajectories are also annotated with
language-based evaluations, aiming to teach LLMs to distinguish between steps that are beneficial,
harmful, or indeterminate for achieving a goal.

We annotate the language-based evaluations using the following criteria:
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Table 14: An example of annotated successful trajectory for ALFWorld in LAC
You are in the middle of a room. Looking quickly around you, you see a cabinet
4, a cabinet 3, a cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a
handtowelholder 2, a handtowelholder 1, a sinkbasin 2, a sinkbasin 1, a toilet 1,
a toiletpaperhanger 1, and a towelholder 1.
Your task is to: put some spraybottle on toilet.
> think: To solve the task, I need to find and take a sparybottle, then put it on
toilet.
OK.
==> critic: The thought is reasonable. This step is GOOD.
> think: First I need to find a spraybottle. A spraybottle is more likely to appear
in cabinet (1-4), countertop (1), toilet (1), sinkbasin (1-2), garbagecan (1). I can
check one by one, starting with cabinet 1.
OK.
==> critic: I need to find spraybottle firstly. The thought is reasonable. This
step is GOOD.
> go to cabinet 1
On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1.
==> critic: I have not seen spraybottle in this place. This step is UNKNOWN.
> go to cabinet 2
The cabinet 2 is closed.
==> critic: The cabinet 2 is closed. This step is UNKNOWN.
> open cabinet 2
You open the cabinet 2. The cabinet 2 is open. In it, you see a candle 1, and a
spraybottle 2.
==> critic: I have seen spraybottle 2 in this place. This step is GOOD.
> think: Now I find a spraybottle (2). Next, I need to take it.
OK.
==> critic: I can take the spraybottle after finding it. The thought is reasonable.
This step is GOOD.
> take spraybottle 2 from cabinet 2
You pick up the spraybottle 2 from the cabinet 2.
==> critic: I have taken spraybottle 2 in this place. This step is GOOD.
> think: Now I take a spraybottle (2). Next, I need to put it in/on toilet 1.
OK.
==> critic: I can put the spraybottle in/on toilet after taking it. The thought is
reasonable. This step is GOOD.
> go to toilet 1
On the toilet 1, you see a soapbottle 2.
==> critic: I should go to toilet if I want to put the spraybottle on it. This step
is GOOD.
> put spraybottle 2 in/on toilet 1
You put the spraybottle 2 in/on the toilet 1.
==> critic: I have put the spraybottle 2 in/on the toilet 1. This step is GOOD.

(1) If an action on a trajectory is necessary for achieving the final goal, the following language-
based evaluations will end with “This step is GOOD.” to indicate the completion of an
essential step, such as action “take spraybottle 2 from cabinet 2” for the goal “put some
spraybottle on toilet”.

(2) If an action is crucial for obtaining essential information to complete a goal, the subsequent
language-based evaluations will end with “This step is GOOD.”, such as action “open
cabinet 2” in Table 14 which finds the target object.

(3) If an action is definitely useless or incorrect for achieving a goal, the following language-
based evaluations will end with “This step is BAD.” to indicate this action is undesirable,
such as action “take cloth 1 from cabinet 1” for the task in Table 14.

(4) If an action can not be evaluated as good or bad from the history, the following language-
based evaluations will end with “This step is UNKNOWN.”, such as action “go to cabinet 1”
or “go to cabinet 2” in Table 14.

All the annotated successful and failed trajectories are used to construct fine-tuning examples to
fine-tune LLMs to generate better language-based evaluations.

Considering the computational cost of fully finetuning of LLMs, we use LoRA (Hu et al., 2021) to
finetune our models. In ALFWorld, with two successful trajectories and one failed trajectory for
each task type, we have 485 (input,output) pairs in total of six task types to finetune models. In
BabyAI-Text, the number of finetuning (input,output) pairs is 418. We finetune models for 1,000
steps with learning rate 2.5e-5 and batch size 2. We use A100 GPU with 80GB memory to fine-tune
our model. With just about 400-500 (input,output) pairs and 1,000 fine-tuning steps, we can complete
the fine-tuning process within one and a half hours.
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Table 15: An example of annotated successful trajectory for BabyAI-Text in LAC
Goal of the agent: go to the green key
Observation:You see a wall 2 steps right, You see a wall 3 steps forward, You see a
critic box 3 steps left, You see a critic key 3 steps left and 1 step forward, You
see a blue box 3 steps left and 2 steps forward
Action:think: To complete the task, I need to find a green key and go to it.
Observation:OK
Critic:The thought is reasonable. This step is GOOD.
Action:think: I have not seen a green key. Firstly, I need to find a green key.
Observation:OK
Critic:I need to find a green key firstly. The thought is reasonable. This step is
GOOD.
Action:turn left
Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 2 steps
forward, You see a green key 2 steps left and 1 step forward, You see a green ball 1
step left and 3 steps forward, You see a critic box 3 steps forward, You see a critic
key 1 step right and 3 steps forward, You see a blue box 2 steps right and 3 steps
forward
Critic:I have turned left and seen a green key 2 steps left and 1 step forward. This
step is GOOD.
Action:think: I have seen a green key 2 steps left and 1 step forward. Next, I need
to go to the green key.
Observation:OK
Critic:I can go to the green key after seeing it. The thought is reasonable. This
step is GOOD.
Action:go forward
Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 1 step
forward, You see a green key 2 steps left, You see a green ball 1 step left and 2
steps forward, You see a critic box 2 steps forward, You see a critic key 1 step
right and 2 steps forward, You see a blue box 2 steps right and 2 steps forward
Critic:I have gone forward. The green key is 2 steps left. This step is UNKNOWN.
Action:turn left
Observation:You see a wall 3 steps left, You see a green box 2 steps left and 3 steps
forward, You see a green box 2 steps left and 1 step forward, You see a green key 2
steps forward, You see a blue key 1 step right and 3 steps forward, You see a green
ball 2 steps right and 1 step forward, You see a critic box 2 steps right
Critic:I have turned left. The green key is 2 steps forward. This step is UNKNOWN.
Action:go forward
Observation:You see a green box 2 steps left and 2 steps forward, You see a green box
2 steps left, You see a green key 1 step forward, You see a blue key 1 step right and
2 steps forward, You see a green ball 2 steps right
Critic:I have gone forward. The green key is 1 step forward. This step is GOOD.

During testing, the fine-tuned models are used to generate language-based evaluations after executing
an action in the environment, as well as to forecast the potential outcomes of each action candidate.

We sample n = 5 action candidates from πLLM at each time step. The πLLM is augmented by
leveraging the language-based evaluations generated by CLLM . After sampling action candidates,
we use the fine-tuned model to predict future outcomes for each action candidate. The model needs
to predict the possible observation and generate language-based evaluations for each predicted step.
We set the maximum prediction step as 4, the model will continue the prediction until it generates
a language-based evaluation ending with “This step is GOOD.” or “This step is BAD”, or when it
reaches the maximum prediction step.

For the optimization of πLLM , we solve an optimization problem in Equation (4) with a hyper-
parameter α, which balances the generating probabilities of πLLM and the values given by QLLM .
For ALFWorld, we set α as 1, which yields superb performance over baselines. For BabyAI-Text,
we conduct a grid-search over {1/2,1,2,5,10} for α, finding that different LLMs will have best
performance with different α. The results can be seen in Table 3.

We set the maximum horizon length to 40 for ALFWorld and 30 to BabyAI-Text. If the agent has not
reached the final goal after 40 or 30 steps, this episode will be marked as failure.

We use A100 GPU with 80GB memory to evaluate our method. For LAC, the execution time for
ALFWorld is about 10 hours for 134 tasks using single A100 GPU. And for BabyAI-Text, the
execution time can be varied for different task types, ranging from 4 to 10 hours for 50 tasks using
one A100 GPU. The GPU memory usage may range from 15GB to over 70GB during the interaction
according to the length of inputs to LLMs.
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We compare our method with all the aforementioned baselines, demonstrating the effectiveness of our
method on decision-making tasks with both high-level actions and low-level actions. To demonstrate
the effectiveness of each component in our method, we conduct ablation studies on each component.
We removes the lang-critic CLLM from LAC as well as the integration during pre-action-generation
phase. This variant is called LAC w/o lang-critic. We also evaluate the role of QLLM by removing
it from LAC as well as the integration during post-action-generation phase. This variant is called
LAC w/o value-critic. We also demonstrate the role of the action prior given by LLM policy by using
only value-criticQLLM for decision-making. We call this variant as Value-critic-only. The execution
time of those variants during evaluation can be varied according to its performance because a method
having poor performance typically will cost more time to execute. On ALFWorld, it may be 10-20
hours. The comparisons between those variants are shown in Figure 4.

We found that each component in LAC is crucial for the superb performance. Removing some
components may lead to wrong choice of action candidates. Such an example is shown in Table 16.
LAC can complete this task successfully, while eliminating some components in LAC will lead to
failure. The comparison is shown in Figure 1.

D LIMITATIONS

Our work has two limitations. Firstly, lang-critic of LAC is only used before action generation and it
can also be applied after action generation. For example, it can provide language-based evaluations
for predicted future trajectories to re-sample candidate actions if the previous candidate actions all
fail to complete the target task. Secondly, though the value-critic of LAC can also adopt tree-search
to provide a more accurate assessment of candidate actions, in this paper, we only expand one node
for each candidate action for simplicity.

E BROADER IMPACTS

Our method is built upon open-source large language models (LLMs). Like other methods that use
LLMs, our method also inherits some benefits and challenges from LLMs. For the benefits, our
method directly exploits the prior knowledge from LLMs, which may reduce potential carbon costs
compared with training policies from scratch. For the challenges, our method might be susceptible to
producing unintended output when confronted with harmful input, such as unethical text or input
intended for adversarial attacks. To solve this problem, we suggest a thoughtful deployment of our
method, such as adding a filtering component.
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Table 16: An example of successful trajectory in test environment in BabyAI-Text given by LAC
Goal of the agent:go to the green ball
Observation:You see a wall 5 steps forward, You see a wall 2 steps left, You see a
yellow ball 1 step left and 4 steps forward, You see a blue ball 1 step left and
3 steps forward, You see a red ball 1 step left and 1 step forward, You see a grey
key 2 steps right and 2 steps forward, You see a green key 2 steps right and 1 step
forward, You see a blue key 3 steps right and 1 step forward
Action:think:To complete the task, I need to find a green ball and go to it.
Observation:OK
Critic:This thought is reasonable. This step is GOOD.
Action:think:I have seen a green ball 1 step left and 4 steps forward. Next, I need
to go to the green ball.
Observation:OK
Critic:This thought is reasonable. I can go to the green ball after seeing it. This
step is GOOD.
Action:turn right
Observation:You see a wall 5 steps forward, You see a wall 2 steps right, You see a
green ball 3 steps left and 4 steps forward, You see a grey key 2 steps left and 2
steps forward, You see a blue key 1 step left and 3 steps forward, You see a green
key 1 step left and 2 steps forward, You see a blue ball 1 step right and 1 step
forward
Critic:I have turned right. The green ball is 3 steps left and 4 steps forward.
This step is UNKNOWN.
Action:go forward
Observation:You see a wall 4 steps forward, You see a green ball 3 steps left and 3
steps forward, You see a grey key 2 steps left and 1 step forward, You see a blue key
1 step left and 2 steps forward, You see a green key 1 step left and 1 step forward,
You see a blue ball 1 step right
Critic:I have gone forward. The green ball is 3 steps left and 3 steps forward.
This step is UNKNOWN.
Action:go forward
Observation:You see a wall 3 steps forward, You see a wall 2 steps right, You see a
green ball 3 steps left and 2 steps forward, You see a grey key 2 steps left, You see
a blue key 1 step left and 1 step forward, You see a green key 1 step left
Critic:I have gone forward. The green ball is 3 steps left and 2 steps forward.
This step is UNKNOWN.
Action:go forward
Observation:You see a wall 2 steps forward, You see a wall 2 steps right, You see a
green ball 3 steps left and 1 step forward, You see a blue key 1 step left
Critic:But I have gone forward. The green ball is 3 steps left and 1 step forward.
This step is UNKNOWN.
Action:go forward
Observation:You see a wall 1 step forward, You see a wall 2 steps right, You see a
green ball 3 steps left
Critic:But I have gone forward. The green ball is 3 steps left. This step is
UNKNOWN.
Action:turn left
Observation:You see a wall 1 step right, You see a grey key 2 steps left and 2 steps
forward, You see a green key 2 steps left and 1 step forward, You see a blue key 1
step left and 1 step forward, You see a red ball 4 steps forward, You see a green
ball 3 steps forward
Critic:But I have turned left. The green ball is 3 steps forward. This step is
UNKNOWN.
Action:go forward
Observation:You see a wall 1 step right, You see a grey key 2 steps left and 1 step
forward, You see a green key 2 steps left, You see a blue key 1 step left, You see a
red ball 3 steps forward, You see a green ball 2 steps forward
Critic:But I have gone forward. The green ball is 2 steps forward. This step is
UNKNOWN.
Action:go forward
Observation:You see a wall 1 step right, You see a grey key 2 steps left, You see a
red ball 2 steps forward, You see a green ball 1 step forward
Critic:But I have gone forward. The green ball is 1 step forward. This step is
GOOD.
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