
Log Neural Controlled Differential Equations:
The Lie Brackets Make a Difference

Benjamin Walker 1 Andrew D. McLeod 1 Tiexin Qin 2 Yichuan Cheng 2 Haoliang Li 2 Terry Lyons 1

Abstract
The vector field of a controlled differential equa-
tion (CDE) describes the relationship between a
control path and the evolution of a solution path.
Neural CDEs (NCDEs) treat time series data as
observations from a control path, parameterise a
CDE’s vector field using a neural network, and
use the solution path as a continuously evolving
hidden state. As their formulation makes them
robust to irregular sampling rates, NCDEs are a
powerful approach for modelling real-world data.
Building on neural rough differential equations
(NRDEs), we introduce Log-NCDEs, a novel, ef-
fective, and efficient method for training NCDEs.
The core component of Log-NCDEs is the Log-
ODE method, a tool from the study of rough paths
for approximating a CDE’s solution. Log-NCDEs
are shown to outperform NCDEs, NRDEs, the lin-
ear recurrent unit, S5, and MAMBA on a range of
multivariate time series datasets with up to 50,000
observations.

1. Introduction
1.1. Multivariate Time Series Modelling

Neural controlled differential equations (NCDEs) offer a
number of advantages for modelling real-world multivariate
time series. These include being robust to irregular sampling
rates and decoupling the number of forward passes through
their neural network from the number of observations in
the time series. However, there exists a gap in performance
between NCDEs and current state-of-the-art approaches for
time series modelling, such as S5, the linear recurrent unit
(LRU), and MAMBA (Smith et al., 2023; Orvieto et al.,
2023; Gu & Dao, 2023).

1Mathematical Institute, University of Oxford, UK
2Department of Electrical Engineering, City University of Hong
Kong. Correspondence to: Benjamin Walker <mlbenjamin
walker@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

This paper demonstrates that, on a range of multivariate
time series benchmarks, NCDEs can outperform current
state-of-the-art approaches by utilising a tool from the study
of rough paths, the Log-ODE method. We refer to this new
approach as Log-NCDEs1.

1.2. Neural Controlled Differential Equations

Let {(ti, xi)}ni=0 denote a set of observations from a mul-
tivariate time series, where xi ∈ Rv−1. Let X : [t0, tn] →
Rv be a continuous interpolation, such that Xti = (ti, xi),
where subscript on time-dependent variables denotes evalua-
tion. Let ht ∈ Ru and zt ∈ Rw be the NCDE’s hidden state
and output at time t respectively. Let ξϕ : Rv → Ru and
fθ : Ru → Ru×v be neural networks, and lψ : Ru → Rw
be a linear map, where ϕ, θ, and ψ represent the learnable
parameters. A NCDE is defined by

ht0 = ξϕ(t0, x0),

ht = ht0 +

∫ t

t0

fθ(hs)dXs,

zt = lψ(ht),

(1)

for t ∈ [t0, tn], where fθ(hs)dXs is matrix-vector multi-
plication (Kidger et al., 2020). Details on the regularity
required for existence and uniqueness of the solution to
(1) can be found in Appendix A.1. By an extension of the
Picard-Lindelöf Theorem, a sufficient condition is X be-
ing of bounded variation and fθ being Lipschitz continuous
(Lyons et al., 2007, Theorem 1.3).

NCDEs are an attractive option for modelling multivariate
time series. They are universal approximators of continu-
ous real-valued functions on time series data (Kidger, 2022,
Theorem 3.9). Additionally, since they interact with time
series data through X , NCDEs are unaware of when the
time series was observed. This makes them robust to irreg-
ular sampling rates. Furthermore, the number of forward
passes through fθ when evaluating (1) is controlled by the
differential equation solver. This is opposed to recurrent
models, where it is controlled by the number of observations
n. By decoupling the number of forward passes through

1https://github.com/Benjamin-Walker/
Log-Neural-CDEs

1

https://github.com/Benjamin-Walker/Log-Neural-CDEs
https://github.com/Benjamin-Walker/Log-Neural-CDEs

Log Neural Controlled Differential Equations

their neural network from the number of observations in
the time series, NCDEs can mitigate exploding or vanishing
gradients on highly-sampled time series.

To make use of the techniques developed for training neural
ordinary differential equations (ODEs) (Chen et al., 2018),
NCDEs are typically rewritten as an ODE,

h̃t = h̃t0 +

∫ t

t0

gθ,X(h̃s)ds, (2)

where h̃t0 = ht0 . Kidger et al. (2020) proposed taking X
to be a differentiable interpolation and

gθ,X(h̃s) = fθ(h̃s)
dX
ds

. (3)

1.3. Neural Rough Differential Equations

Neural rough differential equations (NRDEs) are based on
the Log-ODE method, which is discussed briefly here, and
in full detail in Section 2.

Given a set of intervals {[ri, ri+1]}m−1
i=0 satisfying t0 =

r0 < . . . < rm = tn, the Log-ODE method replaces a CDE
with an ODE on each interval. For a depth−N method, the
ODE on [ri, ri+1] is defined by

gθ,X(h̃s) = f̄θ

(
h̃s

) log(SN (X)[ri,ri+1])

ri+1 − ri
, (4)

where f̄θ is constructed using the iterated Lie brackets of
fθ and log(SN (X)[ri,ri+1]) is the depth-N truncated log-
signature of X over [ri, ri+1] (Boutaib et al., 2013). Infor-
mally, f̄θ is a high order description of the vector field fθ
and log(SN (X)[ri,ri+1]) is a high order description of the
control path X over [ri, ri+1]. Note that when using (3), h̃t
is exactly ht for all t ∈ [t0, tn], whereas when using (4), h̃t
is an approximation of ht when t ∈ {ri}mi=1.

NRDEs replace (3) with (4), but instead of calculating f̄θ
using the iterated Lie brackets of fθ, it is treated as a neu-
ral network f̄θ : Ru → Ru×β(v,N), where β(v,N) is the
dimension of a depth−N truncated log-signature of a v di-
mensional path. By neglecting the structure of f̄θ, NRDEs
are able to reduce the computational burden of evaluating
the vector field, at the cost of increasing the output dimen-
sion of the neural network.

Compared to NCDEs, NRDEs can reduce the number of
forward passes through the network while evaluating the
model, as the vector field is autonomous on each interval
[ri, ri+1]. This has been shown to lead to improved classifi-
cation accuracy, alongside reduced time and memory-usage,
on time series with up to 17,000 observations (Morrill et al.,
2021). Furthermore, as it is no longer necessary to apply a
differentiable interpolation to the time series data, NRDEs
are applicable to a wider range of input signals.

1.4. Contributions

This paper introduces Log-NCDEs, which build on NRDEs
by constructing f̄θ using the iterated Lie brackets of a
NCDE’s vector field, fθ. For depth’s N ≥ 2, this change
drastically reduces the output dimension of the model’s
neural network, without impacting the model’s expressiv-
ity. Furthermore, it improves model performance on every
dataset considered in this paper. Calculating the Lie brackets
requires that fθ satisfies a regularity constraint, specifically
being Lip(γ) for γ ∈ (N − 1, N]. Section 3.2 presents a
novel theoretical result bounding the Lip(γ)−norm for a
class of fully connected neural networks when 1 < γ ≤ 2.
Following this, Section 3.3 details how to efficiently cal-
culate the Lie brackets of a Lip(γ) neural network using
standard machine learning tools. The paper concludes by
showing that, over a range of multivariate time series bench-
marks, Log-NCDEs outperform NCDEs, NRDEs, S5, LRU,
and MAMBA.

2. Mathematical Background
The following section provides a thorough mathematical de-
scription of the Log-ODE method. It will introduce Lip(γ)
regularity, the Lie bracket of two vector fields, and the sig-
nature and log-signature of a path, alongside their respective
spaces, the tensor algebra and the free Lie algebra.

2.1. The Tensor Algebra

Definition 2.1. Let U , V , and W be vector spaces. The ten-
sor product space U ⊗ V is the unique (up to isomorphism)
space such that for all bilinear functions κ : U × V → W
there exists a unique linear map τ : U ⊗ V →W , such that
κ = τ ◦ ⊗ (Roman, 2007, Chapter 14).

As an example, let V = R2 and W = R3. In this case,
the tensor product is the outer product of the two vectors,
and the resulting tensor product space is the space of 2× 3
matrices, R2 ⊗ R3 = R2×3. The tensor product of v ∈ R2

and w ∈ R3 is defined by

v ⊗ w =

[
a
b

]
⊗

cd
e

 =

[
ac ad ae
bc bd be

]
, (5)

where any bilinear function κ(v, w) can be written as a
linear function τ(v ⊗ w).

Definition 2.2. The tensor algebra space is the space

T ((V)) = {x = (x0, x1, . . .)|xi ∈ V ⊗i}, (6)

where V ⊗0 = R, V ⊗1 = V , and V ⊗j = V ⊗ V ⊗j−1

(Roman, 2007, Chapter 14).

Details on the choice of norm for V ⊗i when V is a complete

2

Log Neural Controlled Differential Equations

normed vector space, i.e. a Banach space, can be found in
Appendix A.2.

2.2. Lip(γ) Functions

Let V and W be Banach spaces and L(V,W) denote the
space of linear mappings from V to W equipped with the
operator norm.

Definition 2.3. A linear map l ∈ L(V ⊗j ,W) is j symmet-
ric if for all v1 ⊗ · · · ⊗ vj ∈ V ⊗j and all bijective functions
p : {1, . . . , j} → {1, . . . , j} (Roman, 2007, Chapter 14),

l(v1 ⊗ . . .⊗ vj) = l(vp(1) ⊗ · · · ⊗ vp(j)). (7)

Let Ls(V ⊗j ,W) denote the set of all j symmetric linear
maps.

Definition 2.4. Let γ > 0, k ∈ Z such that γ ∈ (k, k + 1],
F be a closed subset of V , and f0 : F → W . For j ∈
{1, . . . , k}, let f j : F → Ls(V

⊗j ,W). The collection
(f0, f1, . . . , fk) is an element of Lip(γ) if there existsM ≥
0 such that for j ∈ {0, . . . , k},

sup
x∈F

||f j(x)||L(V ⊗j ,W) ≤M, (8)

and for j ∈ {0, . . . , k}, all x, y ∈ F , and each v ∈ V ⊗j

(Stein, 1970),∣∣∣∣∣∣f j(y)(v)−∑k−j
l=0

fj+l(x)(v⊗(y−x)⊗l)
l!

∣∣∣∣∣∣
W

|x− y|γ−jV

≤M. (9)

If f = (f0, f1, . . . , fk) ∈ Lip(γ), then the Lip(γ)−norm,
denoted ||f ||Lip(γ), is the smallest M for which (8) and (9)
hold. When 0 < γ ≤ 1, then k = 0 and f0 ∈ Lip(γ)
implies f0 is bounded and γ−Hölder continuous. When
γ = 1, then f0 is bounded and Lipschitz. In this paper, we
are concerned with the regularity of vector fields on Ru. In
this case, f ∈ Lip(γ) for γ ∈ (k, k + 1] implies that f is
bounded, has k bounded derivatives, and the kth derivative
satisfies

||Dkf(y)−Dkf(x)|| ≤M |x− y|γ−k, (10)

for all x, y ∈ Ru.

2.3. The Free Lie Algebra

Definition 2.5. A Lie algebra is a vector space V with a
bilinear map [·, ·] : V × V → V satisfying [w,w] = 0 and
the Jacobi identity,

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0, (11)

for all w, x, y, z ∈ V . The map [·, ·] is called the Lie bracket
(Reutenauer, 1993).

Any associative algebra, (V,×), has a Lie bracket structure
with Lie bracket defined by

[x, y] = x× y − y × x, (12)

for all x, y ∈ V . For example, V = Rn×n with the matrix
product. For another example, consider the vector space
of infinitely differentiable functions from Ru to Ru with
pointwise addition, denoted C∞(Ru,Ru). This space is a
Lie algebra when equipped with the Lie bracket

[a, b](x) = Ja(x)b(x)− Jb(x)a(x), (13)

for a, b ∈ C∞(Ru,Ru) and x ∈ Ru, where Ja(x) ∈ Ru×u
is the Jacobian of a with entries given by J ija (x) = ∂ja

i(x)
for i, j ∈ {1, . . . , u} (Kirillov, 2008).
Definition 2.6. Let A be a non-empty set, L0 be a Lie
algebra, and ϕ : A → L0 be a map. The Lie algebra L0 is
said to be the free Lie algebra generated by A if for any Lie
algebra L and any map f : A → L, there exists a unique
Lie algebra homomorphism g : L0 → L such that g ◦ϕ = f
(Reutenauer, 1993).

The free Lie algebra generated by V is the space

L((V)) = {(l0, l1, . . .) : li ∈ Li}, (14)

where L0 = 0, L1 = V , and Li+1 is the span of [v, l] for
v ∈ V and l ∈ Li.

2.4. The Log-Signature

Let X : [t0, tn] → V have bounded variation and define

Xn
[t0,tn]

=

∫
· · ·
∫

︸ ︷︷ ︸
u1<···<un

ui∈[t0,tn]

dXu1
⊗ · · · ⊗ dXun

∈ V ⊗n. (15)

The signature of the path X is

S(X)[t0,tn] = (1, X1
[t0,tn]

, . . . , Xn
[t0,tn]

, . . .) ∈ T̃ ((V)),
(16)

where T̃ ((V)) = {x ∈ T ((V))|x = (1, . . .)} (Lyons
et al., 2007). The depth-N truncated signature is defined as
SN (X)[t0,tn] = (1, X1

[t0,tn]
, . . . , XN

[t0,tn]
) ∈ T̃N (V). The

signature is an infinite dimensional vector which describes
the path X over the interval [t0, tn]. In fact, assuming X
contains time as a channel, linear maps on S(X)[t0,tn] are
universal approximators for continuous, real-valued func-
tions of X (Lyons, 2014; Arribas, 2018). This property of
the signature relies on the shuffle-product identity, which
states that polynomials of the elements in a truncated signa-
ture can be rewritten as linear maps on the signature trun-
cated at greater depth (Ree, 1958; Chevyrev & Kormilitzin,
2016). A consequence of the shuffle-product identity is that
not every term in the signature provides new information
about the path X . The transformation which removes the
information redundancy is the logarithm.

3

Log Neural Controlled Differential Equations

Figure 1. A schematic diagram of the Log-ODE method.

Definition 2.7. For x ∈ T̃ ((V)), the logarithm is defined
by

log(x) = log(1 + t) =

∞∑
n=1

(−1)n

n
t⊗n, (17)

where t = (0, x1, x2, . . .) (Reutenauer, 1993).

It was shown by Chen (1957) that

log(S(X)[t0,tn]) ∈ L((V)). (18)

This result plays a crucial role in the Log-ODE method.

2.5. The Log-ODE Method

The vector field of a CDE is typically thought of as a matrix-
valued function f : Ru → Ru×v. An equivalent formu-
lation is f being a linear map acting on dX ∈ Rv and
returning a vector field on Ru. In other words, f(·)dX :
Ru → Ru. This formulation will prove more useful in the
following section.

LetX : [t0, tn] → Rv be a continuous path. The (truncated)
log-signature is a map which takes X to the (truncated)
free Lie algebra LN (Rv). If f(·)dX is restricted to smooth
vector fields on Ru, then f(·)dX is a linear map from Rv
to the Lie algebra C∞(Ru,Ru). By definition 2.6, there
exists a unique linear map f̄ from LN (Rv) to the smooth
vector fields on Ru. Figure 1 is a schematic diagram of this
relationship. Since f̄ is a Lie algebra homomorphism, it can
be defined recursively by

f̄(·)a = f(·)a, a ∈ Rv (19)

and
f̄(·)[a, b] = [f̄(·)a, f̄(·)b] (20)

for [a, b] ∈ LN (Rv).

Over an interval, the Log-ODE method approximates a CDE
using an autonomous ODE constructed by applying the lin-
ear map f̄ to the truncated log-signature of the control, as
seen in (21) (Lyons, 2014). There exist theoretical results
bounding the error in the Log-ODE method’s approxima-
tion, including when the control and solution paths live in
infinite dimensional Banach spaces (Boutaib et al., 2013).
However, for a given set of intervals, the series of vector

fields {gX(·)}∞N=1 is not guaranteed to converge. In prac-
tice, N is typically chosen as the smallest N such that a
reasonably sized set of intervals {ri}mi=0 gives an approx-
imation error of the desired level. A recent development
has been the introduction of an algorithm which adaptively
updates N and {ri}mi=0 (Bayer et al., 2023).

3. Method
3.1. Log Neural Controlled Differential Equations

Log-NCDEs use the same underlying model as NRDEs

ht = ht0 +

∫ t

t0

gθ,X(hs)ds,

gθ,X(hs) = f̄θ (hs)
log(SN (X)[ri,ri+1])

ri+1 − ri
,

(21)

but with two major changes. First, instead of parameterising
f̄θ using a neural network, it is constructed using the iterated
Lie brackets of a NCDE’s neural network, fθ, via (19) and
(20). Second, fθ is ensured to be a Lip(γ) function for
γ ∈ (N − 1, N]. Figure 2 is a schematic diagram of a
Log-NCDE.

These changes have a major benefit. For N > 1, Log-
NCDEs are exploring a drastically smaller output space
during training than NRDEs, while maintaining the same
expressivity, as NCDEs are universal approximators. This
is because the output dimension of fθ is u× v, whereas the
output dimension of f̄θ is u× β(v,N). Figure 3 compares
these values for paths of dimension v from 1 to 15 and
truncation depths of N = 1 and N = 2. This benefit comes
at the cost of needing to calculate the iterated Lie brackets
when evaluating Log-NCDEs, which will be quantified in
Section 3.4 and explored empirically in Section 5.2.

When N = 1, (21) simplifies to

gθ,X(hs) = fθ (hs)
Xri+1 −Xri

ri+1 − ri
. (22)

Hence, in this case the only difference between Log-NCDEs
and NRDEs is the regularisation of fθ. Furthermore, (22)
and (3) are equivalent when X is a linear interpolation.
Therefore, the approach of NCDEs, NRDEs, and Log-
NCDEs coincide when using a depth−1 Log-ODE approxi-
mation (Morrill et al., 2021).

3.2. Lip(γ) Neural Networks

The composition of two Lip(γ) functions is Lip(γ) (Cass
et al., 2012, Lemma 2.2). Hence, a simple approach to ensur-
ing a fully connected neural network (FCNN) is Lip(γ) is to
make each layer Lip(γ). This can be achieved by choosing
an infinitely differentiable activation function, such as SiLU
(Elfwing et al., 2018). However, in practice this may not

4

Log Neural Controlled Differential Equations

Figure 2. A schematic diagram of the training loop for a Log-NCDE. The coloured circles labelled data observations represent irregular
samples from a time series. The purple line labelled system response is a potentially time varying label one wants to predict. The
log-signatures of the data observations over each interval [ri, ri+1] are combined with the iterated Lie brackets of fθ to produce the vector
field gθ,X from (21). The pink dashed line represents the solution of (1) and the solid black line represents the approximation obtained by
solving (21). A linear map lψ gives the Log-NCDE’s prediction and a loss function L(·, ·) is used to update fθ’s parameters.

Figure 3. A plot of β(v,N) against v for N = 1, 2. The output
dimension of a NRDE’s neural network is Ru×β(v,N), whereas for
a Log-NCDE it is Ru×v .

ensure sufficient regularity, as demonstrated by Theorem
3.1.

Theorem 3.1. Let fθ be a FCNN with input dimension
nin, hidden dimension nh, depth m, and activation function
SiLU. Assuming the input x = [x1, . . . , xnin

]T satisfies
|xj | ≤ 1 for j = 1, . . . , nin, then fθ ∈ Lip(2) and

||fθ||Lip(2) ≤ CPm!

(
{||W i||2, ||bi||2}mi=1

)
(23)

where C is a constant depending on nin, nh, and m,
{W i}mi=1 and {bi}mi=1 are the weights and biases of ith

layer of fθ, and Pm! is a polynomial of order m!.

Proof. A proof is given in Appendix B.

Assuming that each layer {Li}mi=1 of fθ satisfies
||Li||Lip(2) = 1, an explicit evaluation of (23) gives

||fθ||Lip(2) ≤ 52
m−1−1. (24)

For a depth 7 FCNN, this bound is greater than the max-
imum value of a single precision floating point number.
Hence, it may be necessary to control ||fθ||Lip(2) explicitly
during training. This is achieved by modifying the neural
network’s loss function L to

L 7→ L+ λ

(
m∑
i=1

||W i||2 + ||bi||2

)
, (25)

where λ is a hyperparameter controlling the weight of the
penalty. This is an example of weight regularisation, which
has long been understood to improve generalisation in NNs
(Hinton, 1987; Krogh & Hertz, 1991). Equation 25 is specif-
ically a variation of spectral norm regularisation (Yoshida &
Miyato, 2017).

3.3. Constructing the Log-ODE Vector Field

The linear map f̄θ in (21) is defined recursively by (19)
and (20). Assuming fθ(·)a is infinitely differentiable, then
fθ(·)a is an element of the Lie algebra C∞(Ru,Ru) and

[fθ(·)a, fθ(·)b] = Jfθ(·)afθ(·)b− Jfθ(·)bfθ(·)a, (26)

as discussed in Section 2.3. Let {ej}vj=1 be the usual basis
of Rv . A choice of basis for LN (Rv) is a Hall basis, denoted

5

Log Neural Controlled Differential Equations

{êk}β(v,N)
k=1 , which is a specific subset of up to the (N −1)th

iterated Lie brackets of {ej}vj=1 (Hall, 1950). Rewriting
(21) using a Hall basis,

f̄θ (hs)
log(SN (X)[ri,ri+1])

ri+1 − ri
=

β(v,N)∑
k=1

λkf̄θ(hs)êk, (27)

where λk is the term in the scaled log-signature correspond-
ing to the basis element êk. Since each êk can be written
as iterated Lie brackets of {ej}vj=1, it is possible to replace
f̄θ(·)êk with the iterated Lie brackets of fθ(·)ei using (19)
and (20). Each fθ(·)ei : Ru → Ru is a vector field defined
by the ith column of the neural network’s output. Hence,
gθ,X can be evaluated at a point using iterated Jacobian-
vector products (JVPs) of fθ.

3.4. Computational Cost

When the signature truncation depth N is greater than 1,
NRDEs and Log-NCDEs incur an additional computational
cost for each evaluation of the vector field, which we quan-
tify here for N = 2. Assume that a NCDE, NRDE, and
Log-NCDE are all using an identical FCNN as their vec-
tor field, except for the dimension of the final layer in the
NRDE. Let m and nh be the depth and dimension of the
FCNN’s hidden layers respectively, and u and v be the di-
mension of ht and X from (1) respectively. Letting Fx be
the number of FLOPs to evaluate model x’s vector field,

FNCDE = 2unh + 2(m− 1)n2h + 2uvnh,

FNRDE = 2unh + 2(m− 1)n2h + u(v2 − v)nh,

FLog-NCDE = 3vFNCDE,

(28)

where the number of FLOPs to calculate a JVP is 3 times
that of evaluating the FCNN and v JVPs of fθ are needed
to evaluate (27) when N = 2 (Griewank & Walther, 2008,
Chapter 4). Log-NCDEs and NRDEs have the same asymp-
totic computational complexity in each variable. However,
each JVP is evaluated at the same point hs. This allows the
computational burden of Log-NCDEs on high-dimensional
time series to be reduced by constructing a batched function
using Jax’s vmap (Bradbury et al., 2018). The computational
cost is evaluated empirically in Section 5.2.

3.5. Limitations

In this paper, we only consider Log-NCDEs which use a
depth−1 or depth−2 Log-ODE approximation. This is due
to the following two limitations. First, there are no the-
oretical results explicitly bounding the Lip(γ) norm of a
neural network for γ > 2. Second, the computational cost
required to evaluate gθ,X grows rapidly with the depth N .
This can makeN > 2 computationally infeasible, especially
for high-dimensional time series. Another general limita-
tion of NCDEs is the need to solve the differential equation

Figure 4. An example path from the toy dataset, where each colour
represents a channel in the path.

recursively, preventing parallelisation. This is in contrast
to non-selective structured state-space models, whose un-
derlying model is a differential equation that can be solved
parallel in time (Gu et al., 2022).

4. Experiments
4.1. Baseline Methods

Log-NCDEs are compared against six models, which rep-
resent the state-of-the-art for a range of deep learning ap-
proaches to time series modelling. Four of these models
are stacked recurrent models, which use the same general
architecture, but with different recurrent layers. The archi-
tecture used in this paper is based on the one introduced
by Smith et al. (2023) and the four different recurrent lay-
ers considered are LRU, S5, MAMBA, and S6, the selec-
tive state-space recurrence introduced as a component of
MAMBA (Orvieto et al., 2023; Smith et al., 2023; Gu &
Dao, 2023). The other two baseline models are continuous
models; a NCDE using a Hermite cubic spline with back-
ward differences as the interpolation and a NRDE (Kidger
et al., 2020; Morrill et al., 2021). Further details on all
model architectures can be found in Appendices C.1 and
C.2.

4.2. Toy Dataset

We construct a toy dataset of 100,000 time series with 6
channels and 100 regularly spaced samples each. For every
time step, the change in each channel is sampled indepen-
dently from the discrete probability distribution with density

p(n) =

∫ n+0.5

n−0.5

1√
2π
e−

1
2x

2

dx, (29)

where n ∈ Z. In other words, the change in a channel at each
time step is a sample from a standard normal distribution
rounded to the nearest integer. Figure 4 is a plot of a sample
path from the toy dataset.

6

Log Neural Controlled Differential Equations

We consider four different binary classifications on the toy
dataset. Each classification is a specific term in the signature
of the path which depends on a different number of channels.

1. Was the change in the third channel,
∫ 1

0
dX3

s , greater
than zero?

2. Was the area integral of the third and sixth channels,∫ 1

0

∫ u
0

dX3
sdX6

u, greater than zero?

3. Was the volume integral of the third, sixth, and first
channels,

∫ 1

0

∫ v
0

∫ u
0

dX3
sdX6

udX1
v , greater than zero?

4. Was the 4D volume integral of the third, sixth, first,
and fourth channels,

∫ 1

0

∫ w
0

∫ v
0

∫ u
0

dX3
sdX6

udX1
vdX4

w,
greater than zero?

On this dataset, all models use a hidden state of dimension
64 and Adam with a learning rate of 0.0001 (Kingma & Ba,
2017). LRU, S5, S6, and MAMBA use six blocks. NRDE
and Log-NCDE take ri+1 − ri to be 4 observations and the
signature truncation depth N to be 2. Full hyperparameter
choices are given in Appendix C.3.

4.3. UEA Multivariate Time Series Classification
Archive

The models considered in this paper are evaluated on six
datasets from the UEA multivariate time series classification
archive (UEA-MTSCA)2. These six datasets were chosen
via the following two criteria. First, only datasets with
more than 200 total cases were considered. Second, the
six datasets with the most observations were chosen, as
datasets with many observations have previously proved
challenging for deep learning approaches to time series
modelling. Further details on the chosen datasets can be
found in Appendix C.4. Following Morrill et al. (2021),
the original train and test cases are combined and resplit
into new random train, validation, and test cases using a
70 : 15 : 15 split.

Hyperparameters for all models are found using a grid
search over the validation accuracy on a fixed random split
of the data. Full details on the hyperparameter grid search
are in Appendix C.4. Having fixed their hyperparameters,
models are compared on their average test set accuracy over
five different random splits of the data. In order to compare
models on their average GPU memory and run time, 1000
steps of training are run on an NVIDIA RTX 4090. The av-
erage run time is estimated by combining the time for 1000
training steps with the average total number of training steps
from the five runs over the random data splits.

2As of June 1st 2024, the EigenWorms dataset at https://
timeseriesclassification.com has 23 duplicated time
series, which were removed for the experiments in this paper.

4.4. PPG-DaLiA

PPG-DaLiA is a multivariate time series regression dataset,
where the aim is to predict a person’s heart rate using data
collected from a wrist-worn device (Reiss et al., 2019).
The dataset consists of fifteen individuals with around 150
minutes of recording each at a maximum sampling rate
of 128Hz. There are six channels; blood volume pulse,
electrodermal activity, body temperature, and three-axis ac-
celeration. The data is split into a train, validation, and test
set following a 70 : 15 : 15 split for each individual. After
splitting the data, a sliding window of length 49920 and step
size 4992 is applied.

Hyperparameters are found using the same method as for
the UEA-MTSCA, but with validation mean squared error
and slightly different hyperparameter choices given the high
number of observations. Full details can be found in Ap-
pendix C.4. Having fixed their hyperparameters, models
are compared on their average mean squared error over five
different runs on the same fixed data split.

5. Results
5.1. Toy Dataset

Figure 5 compares the performance of the models consid-
ered in this paper on the four different toy dataset classifica-
tions. As expected, given that the classifications considered
are solutions to CDEs, NCDE’s are the best performing
model. Since NRDEs and Log-NCDEs are fixed to ri+1−ri
being 4 observations and N = 2, they are both approxima-
tions of a CDE. Notably, Log-NCDEs consistently outper-
form NRDEs, providing empirical evidence that NRDEs
do not always accurately learn the Lie bracket structure of
f̄θ. From the stacked recurrent models, MAMBA achieves
the highest validation accuracy on all four datasets. How-
ever, the performance of all the stacked recurrent models
decreases drastically as the number of channels the label
depends on increases.

5.2. UEA-MTSCA

Table 1 reports the average and standard deviation of each
model’s test set accuracy over five different splits of the
data. On the datasets considered, NCDEs achieve the lowest
average accuracy. NRDEs improve upon NCDEs in both
average accuracy and rank, but are still outperformed by
three of the stacked recurrent models, LRU, S5, and S6.
Log-NCDEs are the best performing model on average test
set accuracy and average rank. Compared to NRDEs, they
achieve a higher average test set accuracy on all six datasets
and a lower standard deviation on five datasets. These results
highlight the improvement in performance which can be
achieved by calculating the Lie brackets.

7

https://timeseriesclassification.com
https://timeseriesclassification.com

Log Neural Controlled Differential Equations

Figure 5. Validation accuracy against number of steps for LRU, S5, S6, MAMBA, NCDE, NRDE, and Log-NCDE on the four different
classifications considered for the toy dataset.

Table 1. Test set accuracy on a subset of the UEA-MTSCA. The best performing model is highlighted in bold and the second best is
underlined. The average accuracy and average rank are also reported.

Dataset
Method

LRU S5 S6 MAMBA NCDE NRDE Log-NCDE
EigenWorms 85.0± 6.2 83.9± 4.1 85.0± 16.1 70.9± 15.8 62.2± 2.2 77.2± 7.1 82.8± 2.7

EthanolConcentration 23.8± 2.8 25.6± 3.5 26.4± 6.4 27.9± 4.5 22.0± 1.0 31.4± 4.5 35.9± 6.1

Heartbeat 78.1± 7.6 73.9± 3.1 76.5± 8.3 76.2± 3.8 68.1± 5.8 73.9± 2.6 74.2± 2.0

MotorImagery 51.9± 8.6 53.0± 3.9 51.3± 4.7 47.7± 4.5 51.6± 6.2 54.0± 7.8 57.2± 5.6

SelfRegulationSCP1 84.5± 4.6 87.1± 2.1 82.8± 2.7 80.7± 1.4 80.0± 2.0 76.7± 5.6 82.1± 1.4

SelfRegulationSCP2 47.4± 4.0 55.1± 3.3 49.9± 9.4 48.2± 3.9 49.1± 6.2 48.1± 11.4 54.0± 2.6

Av. 61.8 63.1 62.0 58.6 55.5 60.2 64.4

Av. Rank 3.6 3.1 3.3 4.8 6.0 4.6 2.7

8

Log Neural Controlled Differential Equations

Table 2. Average GPU memory and run time for each model over
the six datasets from the UEA-MTSCA experiments.

Model Av. GPU Mem. (MB) Av. run time (s)
LRU 5484.3 379.5
S5 5327.7 441.4
S6 2608.0 578.1
MAMBA 4450.3 1609.1
NCDE 1674.3 7720.7
NRDE 3338.3 8338.3
Log-NCDE 2661.3 2200.1

Table 3. Average test set mean squared error on the PPG-DaLiA
dataset.

Model MSE (×10−2)

LRU 15.64± 1.67
S5 12.79± 0.72
S6 12.88± 2.05

MAMBA 10.65± 2.20
NCDE 13.77± 0.41
NRDE 18.79± 2.69

Log-NCDE 9.20± 0.55

Table 2 details the average GPU memory and run time for
each model, with the results for individual datasets given
in Appendix C.5. The major contributors to NCDEs high
average run time are time series with many observations.
Using a depth−2 Log-ODE method decreases the com-
putational burden on datasets with many observations for
both NRDEs and Log-NCDEs. Although NRDEs and Log-
NCDEs have the same asymptotic computational complex-
ity, using a batched function to calculate the Lie brackets
leads to Log-NCDEs having a lower computational burden
on high-dimensional time series than NRDEs, as discussed
in Section 3.4. Hence, Log-NCDEs have a lower average
run time than both NCDEs and NRDEs. Despite these im-
provements, all four stacked recurrent models have lower
average run times than Log-NCDEs.

5.3. PPG-DaLiA

Table 3 contains the average and standard deviation of each
model’s test set mean squared error on the PPG-DaLiA
dataset. In contrast to the UEA-MTSCA experiments,
MAMBA is the best performing stacked recurrent model
and NRDEs do not improve over NCDEs. However, Log-
NCDEs still achieve the best performance, obtaining the
lowest average test set mean squared error and the second
lowest standard deviation.

6. Discussion
Recent theoretical work on the expressive power of struc-
tured state space models may provide an explanation for
their performance on the toy dataset. It has been shown that
the recurrent layer of non-selective state space models, such

as S5, are unable to capture terms in the signature that de-
pend on more than one channel. Instead, the computational
burden is placed on the non-linear mixing in-between recur-
rent blocks. Furthermore, it has been shown that stacked
selective state-space models, such as MAMBA, can capture
higher order terms in the signature with only linear mix-
ing layers (Cirone et al., 2024). Although the toy dataset
highlights a potential limitation of the stacked recurrent
models, this did not translate into poor performance on the
real-world datasets considered in this paper.

Log-NCDEs achieve the highest average accuracy on the
UEA-MTSCA datasets and the lowest mean squared error
on the PPG-DaLiA dataset. In particular, they improve
upon NRDEs on every dataset. These results highlight the
effectiveness of the Log-ODE method for improving the per-
formance of NCDEs and the importance of calculating the
Lie brackets when applying the Log-ODE method. Further-
more, despite increasing the computational cost of each vec-
tor field evaluation, Log-NCDEs have a lower average run
time than both NCDEs and NRDEs on the UEA-MTSCA
datasets. Empirical evidence suggests this is due to the
Log-ODE method improving efficiency on time series with
many observations, and calculating the Lie brackets lower-
ing the computational burden of the Log-ODE method on
high-dimensional time series. In addition to achieving state-
of-the-art performance on the regularly sampled datasets
considered in this paper, Log-NCDEs maintain the ability
of NCDEs to naturally handle irregular sampling, making
them an attractive option for real-world applications.

7. Conclusion
Building on NRDEs, this paper introduced Log-NCDEs,
which utilise the Log-ODE method to train NCDEs in an
effective and efficient manner. This required proving a
novel theoretical result bounding the Lip(γ) norm of fully
connected neural networks for 1 < γ ≤ 2, as well as de-
veloping an efficient method for calculating the iterated
Lie brackets of a neural network. A thorough empirical
evaluation demonstrated the benefits of calculating the Lie
brackets when applying the Log-ODE method. Furthermore,
it showed that Log-NCDEs can achieve state-of-the-art per-
formance on a range of multivariate time series datasets.

A reasonable direction of future work is extending Log-
NCDE’s to depth−N Log-ODE methods for N > 2. This
would require proving an equivalent result to Theorem 3.1
for γ > 2. Furthermore, it would be necessary to address the
computational cost of the iterated Lie brackets. This could
be achieved by using a structured neural network with cheap
Jacobian-vector products as the CDE vector field. Another
avenue of future work could be incorporating the recently
developed adaptive version of the Log-ODE method (Bayer
et al., 2023).

9

Log Neural Controlled Differential Equations

Impact Statement
This paper presents Log Neural Controlled Differential
Equations, a novel approach aimed at advancing the field of
time series modelling. Potential applications of the method
include healthcare, finance, and biology, where accurate
time series modeling plays a crucial role. Despite the clear
potential for positive impact, care must be taken to further
understand the capabilities and limitations of the model be-
fore real-world deployment. Additionally, structured state-
space models, an alternative approach to time series mod-
elling, have recently been integrated into large language
models (LLMs). The advancement of LLMs has many po-
tential societal consequences, both positive and negative.

Acknowledgements
Benjamin Walker was funded by the Hong Kong Innovation
and Technology Commission (InnoHK Project CIMDA).
Andrew McLeod was funded in part by the EPSRC [grant
number EP/S026347/1] and in part by The Alan Turing
Institute under the EPSRC grant EP/N510129/1. Terry
Lyons was funded in part by the EPSRC [grant number
EP/S026347/1], in part by The Alan Turing Institute under
the EPSRC grant EP/N510129/1, the Data Centric Engi-
neering Programme (under the Lloyd’s Register Foundation
grant G0095), the Defence and Security Programme (funded
by the UK Government) and the Office for National Statis-
tics & The Alan Turing Institute (strategic partnership) and
in part by the Hong Kong Innovation and Technology Com-
mission (InnoHK Project CIMDA). The authors would like
to acknowledge the use of the University of Oxford Ad-
vanced Research Computing (ARC) facility in carrying out
this work. http://dx.doi.org/10.5281/zenodo.22558

References
Arribas, I. P. Derivatives pricing using signature payoffs.

arXiv:1809.09466, 2018.

Bayer, C., Breneis, S., and Lyons, T. An adaptive algorithm
for rough differential equations. arXiv:2307.12590, 2023.

Boedihardjo, H., Geng, X., Lyons, T., and Yang, D. The
signature of a rough path: Uniqueness. Advances in
Mathematics, 293:720–737, 2016. ISSN 0001-8708.

Boutaib, Y., Gyurkó, L., Lyons, T., and Yang, D. Dimension-
free euler estimates of rough differential equations. Revue
Roumaine des Mathematiques Pures et Appliquees, 59:
25–53, 2013.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable

transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Cass, T., Litterer, C., and Lyons, T. New Trends in Stochastic
Analysis and Related Topics: A Volume in Honour of
Professor K. D. Elworthy. Interdisciplinary mathematical
sciences. World Scientific, 2012. ISBN 9789814360913.

Chen, K. T. Integration of paths, geometric invariants and a
generalized baker- hausdorff formula. Annals of Mathe-
matics, 65:163, 1957.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. Neural ordinary differential equations. In NeurIPS,
pp. 6572–6583, 2018.

Chevyrev, I. and Kormilitzin, A. A primer on the signature
method in machine learning. arXiv:1603.03788, 2016.

Cirone, N. M., Orvieto, A., Walker, B., Salvi, C., and Lyons,
T. Theoretical foundations of deep selective state-space
models. arXiv:2402.19047, 2024.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D.
Language modeling with gated convolutional networks.
arXiv:1612.08083, 2017.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted
linear units for neural network function approximation
in reinforcement learning. Neural Networks, 107:3–11,
2018. Special issue on deep reinforcement learning.

Griewank, A. and Walther, A. Evaluating Derivatives. Soci-
ety for Industrial and Applied Mathematics, 3600 Market
Street, Floor 6, Philadelphia, PA, 2nd edition, 2008.

Gu, A. and Dao, T. Mamba: Linear-time sequence modeling
with selective state spaces. arXiv:2312.00752, 2023.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long se-
quences with structured state spaces. In The International
Conference on Learning Representations (ICLR), 2022.

Hall, M. A basis for free lie rings and higher commutators
in free groups. In Proceedings of the American Mathe-
matical Society, volume 1, pp. 575–581, 1950.

Hinton, G. E. Learning translation invariant recognition
in massively parallel networks. In Proceedings of the
Parallel Architectures and Languages Europe, Volume I:
Parallel Architectures PARLE, pp. 1–13, Berlin, Heidel-
berg, 1987. Springer-Verlag.

Kidger, P. On neural differential equations. arXiv:
2202.02435, 2022.

Kidger, P., Morrill, J., Foster, J., and Lyons, T. Neural Con-
trolled Differential Equations for Irregular Time Series.
In Advances in Neural Information Processing Systems,
2020.

10

http://github.com/google/jax

Log Neural Controlled Differential Equations

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv:1412.6980, 2017.

Kirillov, Jr, A. An Introduction to Lie Groups and Lie
Algebras. Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 2008.

Krogh, A. and Hertz, J. A. A simple weight decay can
improve generalization. In Proceedings of the 4th Inter-
national Conference on Neural Information Processing
Systems, NIPS’91, pp. 950–957, San Francisco, CA, USA,
1991. Morgan Kaufmann Publishers Inc.

Lyons, T. Differential equations driven by rough signals (i):
An extension of an inequality of l. c. young. Mathematical
Research Letters, 1:451–464, 1994.

Lyons, T. Rough paths, signatures and the modelling of
functions on streams. arXiv:1405.4537, 2014.

Lyons, T. and Qian, Z. Path Integration Along Rough Paths.
Oxford University Press, 12 2002.

Lyons, T., Caruana, M., and Lévy, T. Differential Equations
Driven by Rough Paths: École D’été de Probabilités de
Saint-Flour XXXIV-2004. Springer, 2007.

Lyons, T. J. Differential equations driven by rough sig-
nals. Revista Matemática Iberoamericana, 14(2):215–
310, 1998.

Morrill, J., Salvi, C., Kidger, P., Foster, J., and Lyons, T.
Neural rough differential equations for long time series,
2021.

Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gulcehre,
C., Pascanu, R., and De, S. Resurrecting recurrent neural
networks for long sequences. arXiv:2303.06349, 2023.

Ree, R. Lie elements and an algebra associated with shuffles.
Annals of Mathematics, 68:210, 1958.

Reiss, A., Indlekofer, I., Schmidt, P., and Van Laerhoven,
K. Deep ppg: Large-scale heart rate estimation with
convolutional neural networks. Sensors, 19(14), 2019.

Reutenauer, C. Free Lie Algebras. LMS monographs.
Clarendon Press, 1993.

Roman, S. Advanced Linear Algebra. Graduate Texts in
Mathematics. Springer New York, 2007.

Smith, J. T. H., Warrington, A., and Linderman, S. W. Sim-
plified state space layers for sequence modeling. In Inter-
national Conference on Learning Representations, 2023.

Stein, E. M. Singular Integrals and Differentiability Proper-
ties of Functions (PMS-30). Princeton University Press,
1970.

Yoshida, Y. and Miyato, T. Spectral norm regularization for
improving the generalizability of deep learning. ArXiv:
1705.10941, 2017.

Young, L. C. An inequality of the hölder type, connected
with stieltjes integration. Acta Mathematica, 67:251–282,
1936.

11

Log Neural Controlled Differential Equations

A. Additional Mathematical Details
A.1. Existence and Uniqueness

Let V and W be Banach spaces, X : [0, T] → V and y : [0, T] →W be continuous paths, and f(·)ν be a linear map from
ν ∈ V to vector fields on W . Assume that X , Y , and f are regular enough for the integral∫ t

0

f(Ys)dXs (30)

to be defined for all t ∈ [0, T] in the Young sense (Young, 1936). The path Y is said to obey a controlled differential
equation (CDE) if

Yt = Y0 +

∫ t

0

f(Ys)dXs, (31)

for t ∈ [0, T], where Y0 ∈W is the initial condition and X is the control (Lyons et al., 2007). The existence and uniqueness
of the solution to a CDE depends on the smoothness of the control path X and the vector field f . We will measure the
smoothness of a path by the smallest p ≥ 1 for which the p−variation is finite and the smoothness of a vector field by the
largest γ > 0 such that the function is Lip(γ) (defined in Section 2.2).

Definition A.1. (Partition) A partition of a real interval [0, T] is a set of real numbers {ri}mi=0 satisfying 0 = r0 < . . . <
rm = T .

Definition A.2. (p−variation (Young, 1936)) Let V be a Banach space, D = (r0, · · · , rm) ⊂ [0, T] be a partition of [0, T],
and p ≥ 1 be a real number. The p−variation of a path X : [0, T] → V is defined as

||X||p =

[
sup
D

∑
ri∈D

|Xri −Xri+1
|p
] 1

p

. (32)

Theorem A.3. Let 1 ≤ p < 2 and p− 1 < γ ≤ 1. If W is finite-dimensional, X has finite p−variation, and f is Lip(γ),
then (31) admits a solution for every y0 ∈W (Lyons, 1994).

Theorem A.4. Let 1 ≤ p < 2 and p < γ. If X has finite p−variation and f is Lip(γ), then (31) admits a unique solution
for every y0 ∈W (Lyons, 1994).

These theorems extend the classic differential equation existence and uniqueness results to controls with unbounded variation
but finite p−variation for p < 2. A proof of these theorems is can be found in (Lyons et al., 2007). These theorems are
sufficient for the differential equations considered in this paper. However, there are many settings where the control has
infinite p−variation for all p < 2, such as Brownian motion. The theory of rough paths was developed in order to give
meaning to (31) when the control’s p−variation is finite only for p ≥ 2 (Lyons, 1998). An introduction to rough path theory
can be found in (Lyons et al., 2007).

A.2. The Tensor Algebra

Let V be a Banach space and V ⊗n denote the tensor powers of V ,

V ⊗n = V ⊗ · · ·⊗︸ ︷︷ ︸
n-1 times

V. (33)

There is choice in the norm of V ⊗n. In this paper, we follow the setting of (Boedihardjo et al., 2016) and (Lyons & Qian,
2002). It is assumed that each V ⊗n is endowed with a norm such that the following conditions hold for all v ∈ V ⊗n and
w ∈ V ⊗m:

1. ||v|| = ||v1 ⊗ · · · ⊗ vn|| = ||vp(1) ⊗ · · · ⊗ vp(n)|| for all all bijective functions p : {1, . . . , n} → {1, . . . , n},

2. ||v ⊗ w|| ≤ ||v|| ||w||,

3. for any bounded linear functional f on V ⊗n and g on V ⊗m, there exists a unique bounded linear functional f ⊗ g on
V ⊗(m+n) such that (f ⊗ g)(v ⊗ w) = f(v)g(w).

12

Log Neural Controlled Differential Equations

Definition A.5. (The Tensor Algebra (Lyons et al., 2007)) For n ≥ 1, let V ⊗n be equipped with a norm satisfying the above
conditions, and define V ⊗0 = R. The tensor algebra space is the set

T ((V)) = {x = (x0, x1, . . .)|xk ∈ V ⊗k} (34)

with product z = x⊗ y defined by

zk = (x⊗ y)k =

k∑
j=0

xj ⊗ yk−j . (35)

The tensor algebra’s product is associative and has unit 1 = (1, 0, 0, . . .). As T ((V)) is an associative algebra, it has a Lie
algebra structure, with Lie bracket

[x,y] = x⊗ y − y ⊗ x (36)

for x,y ∈ T ((V)) (Reutenauer, 1993).

B. Proof of Theorem 3.1
The proof of Theorem 3.1 relies on two lemmas. The first is a bound on the Lip(γ)−norm of the composition of two Lip(γ)
functions. The second is a bound on the Lip(2)−norm of each layer of a fully connected neural network (FCNN).

B.1. Composition of Lip(γ) Functions

Lemma B.1. (Composed Lip(γ)−norm (Cass et al., 2012)) Let U , V , and W be Banach spaces and Σ ⊂ U and Ω ⊂ V
be closed. For γ ≥ 1, let f ∈ Lip(γ,Σ,Ω) and g ∈ Lip(γ,Ω,W). Then the composition g ◦ f : Ω →W is Lip(γ) with

||g ◦ f ||Lip(γ) ≤ Cγ ||g||Lip(γ) max
{
||f ||k+1

Lip(γ), 1
}
, (37)

where k is the unique integer such that γ ∈ (k, k + 1] and Cγ is a constant independent of f and g.

The original statement of lemma B.1 in (Cass et al., 2012) gives (37) as

||g ◦ f ||Lip(γ) ≤ Cγ ||g||Lip(γ) max
{
||f ||kLip(γ), 1

}
. (38)

We believe this is a small erratum, as for g : [0, 1] → [0, 1] defined as g(x) = x, (38) implies there exists C1 > 0 such that

||g ◦ f ||Lip(1) = ||f ||Lip(1) ≤ C1||g||Lip(1) = C1 (39)

for all bounded and Lipschitz f : [0, 1] → [0, 1]. As a counterexample, for any C1 > 0, take f(x) = xn with n >
max{C1, 1}. The following proof of lemma B.1 is given in (Cass et al., 2012).

Proof. Let (g ◦ f)0, . . . , (g ◦ f)k be defined by the generalisation of the chain rule to higher derivatives. Explicit calculation
can be used to verify that if f and g are Lip(γ), definition 2.4 implies g ◦ f is Lip(γ) with ||g ◦ f ||Lip(γ) obeying (37).

Bounding the Lip(γ)−norm of a neural network (NN) requires an explicit form for Cγ in (37). This can be obtained via the
explicit calculations mentioned in the proof of lemma B.1. Here, we present the case γ ∈ (1, 2].

Lemma B.2. Let U , V , and W be Banach spaces and Σ ⊂ U and Ω ⊂ V be closed. For γ ∈ (1, 2], let f = (f (0), f (1)) ∈
Lip(γ,Σ,Ω) and g = (g(0), g(1)) ∈ Lip(γ,Ω,W). Consider h(0) : Σ → W and h(1) : Σ → L(V,W) defined for p ∈ Σ
and v ∈ V by

h(0)(p) := g(0)
(
f (0)(p)

)
and h(1)(p)[v] := g(1)

(
f (0)(p)

) [
f (1)(p)[v]

]
. (40)

Then h :=
(
h(0), h(1)

)
∈ Lip(γ,Σ,W) and

||h||Lip(γ,Σ,W) ≤ (1 + 2γ) ||g||Lip(γ,Ω,W) max
{
1, ||f ||γLip(γ,Σ,Ω)

}
. (41)

13

Log Neural Controlled Differential Equations

Proof. From definition 2.4, f (0) : Σ → Ω, f (1) : Σ → L(U, V), g(0) : Ω → W and g(1) : Ω → L(V,W). Furthermore,
for all p ∈ Σ

(I)
∣∣∣∣∣∣f (0)(p)∣∣∣∣∣∣

V
≤ ||f ||Lip(γ,Σ,Ω) and (II)

∣∣∣∣∣∣f (1)(p)∣∣∣∣∣∣
L(U,V)

≤ ||f ||Lip(γ,Σ,Ω). (42)

Similarly, for all x ∈ Ω we have that

(I)
∣∣∣∣∣∣g(0)(x)∣∣∣∣∣∣

W
≤ ||g||Lip(γ,Ω,W) and (II)

∣∣∣∣∣∣g(1)(x)∣∣∣∣∣∣
L(V,W)

≤ ||g||Lip(γ,Ω,W). (43)

Define Rf0 : Σ× Σ → V and Rf1 : Σ× Σ → L(U, V) by

Rf0 (p, q) := f (0)(q)− f (0)(p)− f (1)(p)[q − p],

Rf1 (p, q)[u] := f (1)(q)[u]− f (1)(p)[u],
(44)

for any p, q ∈ Σ and u ∈ U . Then

(I)
∣∣∣∣∣∣Rf0 (p, q)∣∣∣∣∣∣

V
≤ ||f ||Lip(γ,Σ,Ω)||q − p||γU ,

(II)
∣∣∣∣∣∣Rf1 (p, q)∣∣∣∣∣∣

L(U,V)
≤ ||f ||Lip(γ,Σ,Ω)||q − p||γ−1

U .
(45)

Similarly, define Rg0 : Ω× Ω →W and Rg1 : Ω× Ω → L(V,W) by

Rg0(x, y) := g(0)(y)− g(0)(x)− g(1)(x)[y − x],

Rg1(x, y)[v] := g(1)(y)[v]− g(1)(x)[v],
(46)

for x, y ∈ Ω and v ∈ V . Then,

(I) ||Rg0(x, y)||W ≤ ||g||Lip(γ,Ω,W)||y − x||γV
(II) ||Rg1(x, y)||L(V,W) ≤ ||g||Lip(γ,Ω,W)||y − x||γ−1

V .
(47)

Define h(0) : Σ →W and h(1) : Σ → L(V,W) as in (40),

h(0)(p) := g(0)
(
f (0)(p)

)
and h(1)(p)[u] := g(1)

(
f (0)(p)

) [
f (1)(p)[u]

]
, (48)

for p ∈ Σ and u ∈ U . Finally, define remainder terms Rh0 : Σ× Σ →W and Rh1 : Σ× Σ → L(U,W) by

Rh0 (p, q) := h(0)(q)− h(0)(p)− h(1)(p)[q − p],

Rh1 (p, q)[u] := h(1)(q)[u]− h(1)(p)[u],
(49)

for p, q ∈ Σ and u ∈ U . We now establish that h = (h(0), h(1)) ∈ Lip(γ,Σ,W) and that the norm estimate claimed in (41)
is satisfied.

First we consider the bounds on h(0) and h(1). For any p ∈ Σ, (I) in (43) implies that∣∣∣∣∣∣h(0)(p)∣∣∣∣∣∣
W

=
∣∣∣∣∣∣g(0) (f (0)(p))∣∣∣∣∣∣

W
≤ ||g||Lip(γ,Ω,W) (50)

since f (0)(p) ∈ Ω. Further, for any p ∈ Σ and any u ∈ U , (43) and (II) in (42) imply that∣∣∣∣∣∣h(1)(p)[u]∣∣∣∣∣∣
W

=
∣∣∣∣∣∣g(1) (f (0)(p)) [f (1)(p)[u]]∣∣∣∣∣∣

W

≤
∣∣∣∣∣∣g(1) (f (0)(p))∣∣∣∣∣∣

L(V,W)

∣∣∣∣∣∣f (1)(p)∣∣∣∣∣∣
L(U,V)

||u||U

≤ ||g||Lip(γ,Ω,W)||f ||Lip(γ,Σ,Ω)||u||U

14

Log Neural Controlled Differential Equations

since f (0)(p) ∈ Ω. Taking the supremum over u ∈ U with unit U -norm, it follows that∣∣∣∣∣∣h(1)(p)∣∣∣∣∣∣
L(U,W)

≤ ||g||Lip(γ,Ω,W)||f ||Lip(γ,Σ,Ω). (51)

Now we consider the bounds onRh0 andRh1 . For this purpose we fix p, q ∈ Σ and u ∈ U . We first assume that ||q−p||U > 1.
In this case we may use (50) and (51) to compute that∣∣∣∣Rh0 (p, q)∣∣∣∣W =

∣∣∣∣∣∣h(0)(q)− h(0)(p)− h(1)(p)[q − p]
∣∣∣∣∣∣
W

≤ 2||g||Lip(γ,Ω,W) + ||g||Lip(γ,Ω,W)||f ||Lip(γ,Σ,Ω)||q − p||U .

Since γ > 1 means that 1 < ||q − p||U < ||q − p||γU , we deduce that∣∣∣∣Rh0 (p, q)∣∣∣∣W ≤ ||g||Lip(γ,Ω,W)

(
2 + ||f ||Lip(γ,Σ,Ω)

)
||q − p||γU . (52)

Similarly, we may use (51) and that ||q − p||γ−1
U > 1 to compute that∣∣∣∣Rh1 (p, q)[u]∣∣∣∣W =

∣∣∣∣∣∣h(1)(q)[u]− h(1)(p)[u]
∣∣∣∣∣∣
W

≤ 2||g||Lip(γ,Ω,W)||f ||Lip(γ,Σ,Ω)||q − p||γ−1
U ||u||U . (53)

Taking the supremum over u ∈ U with unit U -norm in (53) yields the estimate that∣∣∣∣Rh1 (p, q)∣∣∣∣L(V,W)
≤ 2||g||Lip(γ,Ω,W)||f ||Lip(γ,Σ,Ω)||q − p||γ−1

U . (54)

Together, (52) and (54) establish the remainder term estimates required to conclude that h = (h(0), h(1)) ∈ Lip(γ,Σ,W) in
the case that ||q − p||U > 1.

We next establish similar remainder term estimates when ||q − p||U < 1. Thus we fix p, q ∈ Σ and assume that
||q − p||U < 1. Note that γ > 1 means that ||q − p||γU < ||q − p||U < 1. Additionally,∣∣∣∣∣∣f (0)(q)− f (0)(p)

∣∣∣∣∣∣
V

(44)
=
∣∣∣∣∣∣f (1)(p)[q − p] +Rf0 (p, q)

∣∣∣∣∣∣
V
,

≤ ||f ||Lip(γ,Σ,Ω) (||q − p||U + ||q − p||γU) ,
≤ 2||f ||Lip(γ,Σ,Ω)||q − p||U ,

(55)

where (II) in (42) and (I) in (45) have been used. We now consider the term Rh0 (p, q). We start by observing that

Rh0 (p, q)
(49)
= h(0)(q)− h(0)(p)− h(1)(p)[q − p]

(48)
= g(0)

(
f (0)(q)

)
− g(0)

(
f (0)(p)

)
− g(1)

(
f (0)(p)

) [
f (1)(p)[q − p]

]
(46)
= g(1)

(
f (0)(p)

) [
f (0)(q)− f (0)(p)− f (1)(p)[q − p]

]
+Rg0

(
f (0)(p), f (0)(q)

)
(44)
= g(1)

(
f (0)(p)

) [
Rf0 (p, q)

]
+Rg0

(
f (0)(p), f (0)(q)

)
.

Consequently, by using (II) in (43) to estimate the term g(1)
(
f (0)(p)

)
, (I) in (45) to estimate the term Rf0 (p, q), and (I) in

(47) to estimate the term Rg0
(
f (0)(p), f (0)(q)

)
, we may deduce that

∣∣∣∣Rh0 (p, q)∣∣∣∣W ≤ ||g||Lip(γ,Ω,W)

(
||f ||Lip(γ,Σ,Ω)||q − p||γU +

∣∣∣∣∣∣f (0)(q)− f (0)(p)
∣∣∣∣∣∣γ
V

)
. (56)

The combination of (55) and (56) yields the estimate∣∣∣∣Rh0 (p, q)∣∣∣∣W ≤ ||g||Lip(γ,Ω,W)

(
||f ||Lip(γ,Σ,Ω) + 2γ ||f ||γLip(γ,Σ,Ω)

)
||q − p||γU . (57)

15

Log Neural Controlled Differential Equations

Turning our attention to Rh1 , we fix u ∈ U and compute that

Rh1 (p, q)[u]
(49)
= h(1)(q)[u]− h(1)(p)[u]

(48)
= g(1)

(
f (0)(q)

) [
f (1)(q)[u]

]
− g(1)

(
f (0)(p)

) [
f (1)(p)[u]

]
(46)
= g(1)

(
f (0)(p)

) [
f (1)(q)[u]− f (1)(p)[u]

]
+Rg1

(
f (0)(p), f (0)(q)

) [
f (1)(q)[u]

]
(44)
= g(1)

(
f (0)(p)

) [
Rf1 (p, q)[u]

]
+Rg1

(
f (0)(p), f (0)(q)

) [
f (1)(q)[u]

]
.

Consequently, by using (II) in (43) to estimate the term g(1)
(
f (0)(p)

)
, (II) in (42) to estimate the term f (1)(q), (II) in (45)

to estimate the term Rf1 (p, q), and (II) in (47) to estimate the term Rg1
(
f (0)(p), f (0)(q)

)
, we may deduce that

∣∣∣∣Rh1 (p, q)[u]∣∣∣∣W ≤ ||g||Lip(γ,Ω,W)||f ||Lip(γ,Σ,Ω)

(
||q − p||γ−1

U +
∣∣∣∣∣∣f (0)(q)− f (0)(p)

∣∣∣∣∣∣γ−1

V

)
||u||U . (58)

The combination of (55) and (58) yields the estimate that∣∣∣∣Rh1 (p, q)[u]∣∣∣∣W ≤ ||g||Lip(γ,Ω,W)

(
||f ||Lip(γ,Σ,Ω) + 2γ−1||f ||γLip(γ,Σ,Ω)

)
||q − p||γ−1

U ||u||U . (59)

Taking the supremum over u ∈ U with unit U -norm in (59) yields the estimate that∣∣∣∣Rh1 (p, q)∣∣∣∣L(V,W)
≤ ||g||Lip(γ,Ω,W)

(
||f ||Lip(γ,Σ,Ω) + 2γ−1||f ||γLip(γ,Σ,Ω)

)
||q − p||γ−1

U . (60)

Finally, we complete the proof by combining the various estimates we have established for h to obtain the Lip(γ,Σ,W)-norm
bound claimed in (41).

We start this task by combining (52) and (57) to deduce that for every p, q ∈ Σ we have

∣∣∣∣Rh0 (p, q)∣∣∣∣W ≤

{
||g||Lip(γ,Ω,W)

(
2 + ||f ||Lip(γ,Σ,Ω)

)
||q − p||γU if ||q − p||U > 1

||g||Lip(γ,Ω,W)

(
||f ||Lip(γ,Σ,Ω) + 2γ ||f ||γLip(γ,Σ,Ω)

)
||q − p||γU if ||q − p||U ≤ 1.

(61)

Moreover, the combination of (54) and (60) yields the estimate that

∣∣∣∣∣∣Rh1 (p, q)∣∣∣∣∣∣
L(V,W)

≤

{
2||g||Lip(γ,Ω,W)||f ||Lip(γ,Σ,Ω)||q − p||γ−1

U if ||q − p||U > 1

||g||Lip(γ,Ω,W)

(
||f ||Lip(γ,Σ,Ω) + 2γ−1||f ||γLip(γ,Σ,Ω)

)
||q − p||γ−1

U if ||q − p||U ≤ 1.
(62)

A consequence of (61) is that∣∣∣∣Rh0 (p, q)∣∣∣∣W ≤ (1 + 2γ) ||g||Lip(γ,Ω,W) max
{
||f ||γLip(γ,Σ,Ω), 1

}
||q − p||γU , (63)

whilst a consequence of (62) is that∣∣∣∣Rh1 (p, q)∣∣∣∣L(V,W)
≤
(
1 + 2γ−1

)
||g||Lip(γ,Ω,W) max

{
||f ||γLip(γ,Σ,Ω), 1

}
||q − p||γ−1

U . (64)

Therefore, by combining (50), (51), (63), and (64), we conclude both that h = (h(0), h(1)) ∈ Lip(γ,Σ,W) and that

||h||Lip(γ,Σ,W) ≤ (1 + 2γ) ||g||Lip(γ,Ω,W) max
{
||f ||γLip(γ,Σ,Ω), 1

}
. (65)

Note that (41) is a stricter bound than (37), as for γ ∈ (k, k + 1],

max
{
||f ||γLip(γ,Σ,Ω), 1

}
≤ max

{
||f ||k+1

Lip(γ), 1
}
. (66)

There is equality when ||f ||Lip(γ) ≤ 1 or γ = 2.

16

Log Neural Controlled Differential Equations

B.2. Lip(2)−norm of a Neural Network Layer

Lemma B.2 allows us to bound the Lip(2)−norm of a neural network (NN) given a bound on the Lip(2)−norm of each
layer of a NN. We demonstrate this here for a simple NN.

Definition B.3. (Fully Connected NN) Let m,nin, nout, nh ∈ N and fθ be a fully connected NN with m layers, input
dimension nin, output dimension nout, hidden dimension nh, and activation function σ. Given an input x ∈ Rnin , the
output of the NN is defined as

y = Lm(· · · (L1(x)) · · ·), (67)

where L1 : Rnin → Rnh , Li : Rnh → Rnh for i = 2, . . . ,m− 1, and Lm : Rnh → Rnout . Each layer is defined by

Li(y) =

L
i
1(y)
...

Liα(y)

 =

σ(l
i
1(y))
...

σ(liα(y))

 =

σ(W
i
1 · y + bi1)

...
σ(W i

α · y + biα)

 , (68)

where y ∈ Rβ , W i = [W i
1, . . . ,W

i
α]
T ∈ Rα×β and bi = [bi1, . . . , b

i
α]
T ∈ Rα are the learnable parameters and

(α, β) =


(nh, nin), i = 1,

(nh, nh), i = 2, . . . ,m− 1,

(nout, nh), i = m.

(69)

Definition B.4. (SiLU (Elfwing et al., 2018)) The activation function SiLU : R → R is defined as

SiLU(y) =
y

1 + e−y
. (70)

Lemma B.5. Let fθ be a fully connected NN with activation function SiLU. Assume the input is normalised such that
x = [x1, . . . , xnin

]T satisfies |xj | ≤ 1 for j = 1, . . . , nin. Then

||Li||Lip(2) ≤

 n∑
j=1

max
{
0.5||W i

j ||22, 1.1||W i
j ||2,Γi||W i

j ||2 + |bij |
}2 1

2

, (71)

where

Γi =
√
nh||W i−1||2

(
· · ·
(√

nh||W 2||2
(√
nin||W 1||2 + ||b1||2

)
+ ||b2||2

)
+ · · ·

)
+ ||bi−1||2. (72)

Proof. Consider L1 : A→ Rn, where A ⊂ Rnin is the set of x = [x1, . . . , xnin]
T satisfying |xj | ≤ 1 for j = 1, . . . , nin.

Each L1
j : Rnin → R is composed of a linear layer l1j and a SiLU. First, we show that

(L1
j ,∇L1

j) =

(
l1j

1 + e−l
1
j

,
el

1
j (el

1
j + l1j + 1)

(el
1
j + 1)2

W 1
j

)
∈ Lip(2), (73)

where l1j (x) =W 1
j · x+ b1j . So,

max
x∈A

|L1
j (x)| ≤ max

x∈A
|l1j (x)| ≤

√
nin||W 1

j ||2 + |b1j | (74)

and
||∇L1

j ||2 ≤ 1.1||W 1
j ||2. (75)

Since L1
j is at least twice differentiable,

|L1
j (y)− L1

j (x)−∇L1
j (x)(y − x)|

||y − x||22
=

|(y − x)T∇2L1
j (b)(y − x))|

2|x− y|22
≤ 1

2
β(∇2L1

j (b)), (76)

17

Log Neural Controlled Differential Equations

where b = x+ t(y − x) for some t ∈ (0, 1) and β(A) = max{|λmax(A)|, |λmin(A)|}. Similarly,

||∇L1
j (y)−∇L1

j (x)||2
||y − x||2

=
|∇2L1

j (z)(y − x)|2
|x− y|2

≤ ||∇2L1
j (z)||2 = β(∇2L1

j (z)), (77)

where z = x+ α(y − x) for some α ∈ (0, 1). Now,

∇2L1
j =

el
1
j (2 + 2el

1
j + l1j (1− el

1
j)

(el
1
j + 1)3

W 1
j ⊗W 1

j , (78)

which has one non-zero eigenvalue

β(∇2L1
j) =

el
1
j (2 + 2el

1
j + l1j (1− el

1
j)

(el
1
j + 1)3

||W 1
j ||22 (79)

satisfying
max

x∈Rnin
β(∇2L1

j (x)) = 0.5||W 1
j ||22. (80)

Therefore,
||L1

j ||Lip(2) = max
{
0.5||W 1

j ||22, 1.1||W 1
j ||2,

√
nin||W 1

j ||2 + |b1j |
}
, (81)

and

||L1||Lip(2) =

 n∑
j=1

max
{
0.5||W 1

j ||22, 1.1||W 1
j ||2,

√
nin||W 1

j ||2 + |b1j |
}2 1

2

. (82)

The calculations for subsequent layers are very similar, except that the input to each layer is no longer restricted to A. For
example,

max
x∈A

|L2
j (L

1(x))| = max
x∈A

|W 2
j · SiLU(W 1x+ b1) + b2j |,

≤
(√
nin||W 1||2 + ||b1||2

)
||W 2

j ||2 + |b2j |.
(83)

In general

||Li||Lip(2) ≤

 n∑
j=1

max
{
0.5||W i

j ||22, 1.1||W i
j ||2,Γi||W i

j ||2 + |bij |
}2 1

2

, (84)

where

Γi =
√
nh||W i−1||2

(
· · ·
(√

nh||W 2||2
(√
nin||W 1||2 + ||b1||2

)
+ ||b2||2

)
+ · · ·

)
+ ||bi−1||2. (85)

B.3. Proof of Theorem 3.1

Theorem B.6. Let fθ be a FCNN with input dimension nin, hidden dimension nh, depth m, and activation function SiLU
(Elfwing et al., 2018). Assuming the input x = [x1, . . . , xnin

]T satisfies |xj | ≤ 1 for j = 1, . . . , nin, then fθ ∈ Lip(2) and

||fθ||Lip(2) ≤ CPm!(||W 1||2, . . . , ||Wm||2, ||b1||2, . . . , ||bm||2) (86)

where C is a constant depending on nin, nh, and m, {W i}mi=1 and {bi}mi=1 are the weights and biases of ith layer of fθ,
and Pm! is a polynomial of order m!.

Proof. Lemma B.5 means that each layer Lj of fθ is Lip(2) with norm satisfying

||Lj ||Lip(2) ≤ CPj(||W1||2, . . . , ||Wj ||2, ||b1||2, . . . , ||bj ||2), (87)

where C is a constant depending on n and nin and Pj is a jth order polynomial. Applying lemma B.2 gives the bound in
(86).

18

Log Neural Controlled Differential Equations

Table 4. A summary of the subset of the UEA-MTSCA datasets used in this paper.

Dataset Dimension Number of Observations Classes
EigenWorms 6 17984 5
EthanolConcentration 3 1751 4
Heartbeat 61 405 2
MotorImagery 64 3000 2
SelfRegulationSCP1 6 896 2
SelfRegulationSCP2 7 1152 2

C. Experimental Details
C.1. Stacked Recurrent Models

The stacked recurrent models considered in this paper are based on the official implementation of S5 located at https:
//github.com/lindermanlab/S5 (Smith et al., 2023). A recurrent block consists of a batch or layer normalisation,
a recurrent layer, a GLU layer (Dauphin et al., 2017), dropout with rate 0.1, and a skip connection. A full model consists of
a linear encoder, a number of stacked recurrent blocks, and a final linear layer. The four different recurrent layers considered
are the linear recurrent unit, S5, S6, and MAMBA, where S6 refers to the selective state-space recurrence introduced by
Gu & Dao (2023) and MAMBA refers to the combination of a gated MLP, convolution, and S6 recurrence that was also
introduced by Gu & Dao (2023). S5 and LRU use batch normalisation, whereas S6 and MAMBA use layer normalisation.

C.2. CDE Models

NCDEs, NRDEs, and Log-NCDEs use a single linear layer as ξϕ. NCDEs and NRDEs use FCNNs as their vector fields
configured in the same way as their original papers (Kidger et al., 2020; Morrill et al., 2021). NCDEs use ReLU activation
functions for the hidden layers and a final activation function of tanh. NRDEs use the same, but move the tanh activation
function to be before the final linear layer in the FCNN. Log-NCDEs use a FCNN with SiLU activation functions for the
hidden layers and a final activation function of tanh. NRDEs and Log-NCDEs take their intervals ri+1 − ri to be a fixed
number of observations, referred to as the Log-ODE step.

C.3. Toy Dataset Details

On the toy dataset, all models use a hidden state of dimension 64 and Adam with a learning rate of 0.0001 (Kingma &
Ba, 2017). LRU, S5, S6, and MAMBA use 6 blocks and S5, S6, and MAMBA use a state dimension of 64. S5 uses
2 initialisation blocks and MAMBA uses a convolution dimension of 4 and an expansion factor of 2. NCDEs, NRDEs,
and Log-NCDEs use a FCNN with width 128 and depth 3 as their vector field. Furthermore, they all use Heun as their
differential equation solver with a fixed stepsize of 0.01. NRDEs and Log-NCDEs use a Log-ODE step of 4 and a signature
truncation depth of 2. Log-NCDEs do not use any Lip(γ) regularisation, i.e. λ = 0.

C.4. UEA-MTSCA and PPG-DaLiA Details

Table 4 provides details on the dimension, number of observations, and number of classes for the datasets chosen from the
UEA-MTSCA for the experiments conducted in this paper. Care is necessary when using the EigenWorms dataset. As of June
1st 2024, the train and test splits obtained from https://timeseriesclassification.com/description.
php?Dataset=EigenWorms contain repeated time series. The repeated data was removed for the experiments in this
paper. Tables 5 and 6 give an overview of the hyperparameters optimised over during the UEA-MTSCA and PPG-DaLiA
experiments for the stacked recurrent models and the NCDE models respectively. The optimisation was performed using
a grid search of the validation accuracy for the UEA-MTSCA datasets and the mean squared error for the PPG-DaLiA
dataset. All models and experiments used Adam as their optimiser and a batch size of 32, except the stacked recurrent
models on PPG-DaLiA, which used a batch size of 4 due to memory constraints. NCDEs, NRDEs, and Log-NCDEs use
Heun as their differential equation solver with a fixed stepsize of 1/max{500, 1 + (Time series length/Log-ODE step)},
with Log-ODE step = 1 for NCDEs. Additionally, Log-NCDEs scale down their initial FCNN parameters by a factor of
1000 to reduce the starting Lip(2) norm of the vector field.

19

https://github.com/lindermanlab/S5
https://github.com/lindermanlab/S5
https://timeseriesclassification.com/description.php?Dataset=EigenWorms
https://timeseriesclassification.com/description.php?Dataset=EigenWorms

Log Neural Controlled Differential Equations

Table 5. Hyperparameters selected by the optimisation for LRU, S5, S6, and MAMBA on the UEA-MTSCA datasets and PPG-DaLiA
dataset. The following abbreviations are used: EigenWorms (EW), EthanolConcentration (EC), Heartbeat (HB), MotorImagery (MI),
SelfRegulationSCP1 (SCP1), SelfRegulationSCP2 (SCP2), and PPG-DaLiA (PPG). A ✗ denotes that the hyperparameter is not applicable
to that model.

Hyperparameters Options
Method

LRU S5 S6 MAMBA

Learning Rate 10−3 EW, MI, SCP2,
PPG EW, EC, PPG

EW, HB, MI,
SCP2 EW, EC, PPG

10−4 EC, HB, SCP1
HB, MI, SCP1,

SCP2 SCP1, PPG HB, SCP2

10−5 EC MI, SCP1

Include Time True EW, SCP1, PPG
EW, EC, MI,
SCP2, PPG

EC, HB, MI,
PPG EW, EC, SCP2

False
EC, HB, MI,

SCP2 HB, SCP1 EW, SCP1, SCP2
HB, MI, SCP1,

PPG

Hidden Dimension 16 PPG EC, SCP1, PPG
EW, EC, HB,

MI, SCP2 EW

64 MI, SCP1 HB, SCP2 SCP1, PPG EC, HB, SCP2

128
EW, EC, HB,

SCP2 EW, MI MI, SCP1, PPG

Number of Layers 2 EC EW, HB, SCP2 SCP1, SCP2, PPG MI, SCP1

4 MI, SCP1
EW, EC, HB,

MI EC, HB, PPG

6
EW, HB, MI,

SCP1, SCP2, PPG EC, PPG EW, SCP2

State Dimension 16 EW, EC EC, HB EC, HB, SCP1 SCP1

64 SCP2 SCP1 EW, PPG
EW, MI, SCP2,

PPG

256
HB, MI, SCP1,

PPG
EW, MI, SCP2,

PPG MI, SCP2 EC, HB

S5 Initialisation
Blocks 2 ✗ EC ✗ ✗

4 ✗ HB, MI ✗ ✗

8 ✗
EW, SCP1, SCP2,

PPG ✗ ✗

Convolution
Dimension 2 ✗ ✗ ✗ EW, HB, SCP2

3 ✗ ✗ ✗ MI, PPG
4 ✗ ✗ ✗ EC, SCP1

Expansion Factor 1 ✗ ✗ ✗ EW, MI, SCP1
2 ✗ ✗ ✗ SCP2, PPG
4 ✗ ✗ ✗ EC, HB

20

Log Neural Controlled Differential Equations

Table 6. Hyperparameters selected by the optimisation for NCDE, NRDE, and Log-NCDE on the UEA-MTSCA datasets and PPG-DaLiA
dataset. Given the length of each timeseries in the PPG-DaLiA dataset, different choices were considered for the Log-ODE depth and
step, which are shown here in red. The following abbreviations are used: EigenWorms (EW), EthanolConcentration (EC), Heartbeat
(HB), MotorImagery (MI), SelfRegulationSCP1 (SCP1), SelfRegulationSCP2 (SCP2), and PPG-DaLiA (PPG). A ✗ denotes that the
hyperparameter is not applicable to that model.

Hyperparameters Options
Method

NCDE NRDE Log-NCDE

Learning Rate 10−3 HB, PPG EW, SCP1, SCP2, PPG HB, SCP1, SCP2, PPG
10−4 EW, MI, SCP1 EC, HB, MI EW, EC, MI
10−5 EC, SCP2

Include Time True EW, EC, SCP2, PPG EW, PPG EC, HB, MI, SCP2, PPG
False HB, MI, SCP1 EC, HB, MI, SCP1, SCP2 EW, SCP1

Hidden Dimension 16 EC, HB, SCP1, PPG EW, SCP1, SCP2, PPG HB
64 SCP2 EW, EC, MI, SCP2, PPG
128 EW, MI EC, HB, MI SCP1

Vector Field
(Depth, Width) (2, 32) HB SCP1 HB

(3, 64) EC SCP1
(3, 128) EW, SCP1, PPG EC, SCP2 EC, MI, SCP2
(4, 128) MI, SCP2 EW, HB, MI, PPG EW, PPG

Log-ODE
(Depth, Step) (1, 1) ✗ EC, MI, SCP2

(2, 2) ✗ HB EC, HB
(2, 4) ✗ SCP1 MI
(2, 8) ✗ SCP2
(2, 12) ✗ EW, SCP1
(2, 16) ✗ EW
(1, 10) ✗ PPG
(2, 10) ✗

(2, 100) ✗

(2, 1000) ✗ PPG

Regularisation λ 10−3 ✗ ✗ SCP1, SCP2
10−6 ✗ ✗ EW, MI, PPG
0 ✗ ✗ EC, HB

21

Log Neural Controlled Differential Equations

C.5. Additional Memory and run time Results

Models are compared on their average GPU memory usage and run time for the UEA-MTSCA datasets. In order to compare
the models, 1000 steps of training were run on an NVIDIA RTX 4090 with each model using the hyperparameters obtained
from the hyperparameter optimisation. The specific choices of the hyperparameters are listed in Tables 5 and 6. In addition
to the time for 1000 steps and GPU memory usage, shown in Figures 6a and 6b respectively, the average number of total
training steps taken to produce the results in Table 1 is recorded in Figure 6c. Combining the results for time for 1000
training steps and total number of training steps gives an approximation of the total run time on the same hardware, and
these results are shown in Figure 6d.

Although the time per training step is lower for stacked recurrent models than NCDEs, NRDEs, or Log-NCDEs, they
also require more training steps to converge. Additionally, NCDEs, NRDEs, and Log-NCDEs require less GPU memory.
The largest contributors to the average run time of NCDEs are the datasets with the most observations, EigenWorms and
MotorImagery. The positive impact of the Log-ODE method on computational burden is demonstrated empirically by
the decrease in run time achieved by NRDEs and Log-NCDEs on EigenWorms when using a depth−2 Log-ODE method.
When a depth−1 Log-ODE method is used, such as NRDEs on MotorImagery, the same decrease is not observed. Section
3.4 demonstrated that Log-NCDEs and NRDEs have the same asymptotic computational complexity. However, when
using a depth−2 Log-ODE approximation and the same stepsize, NRDEs and Log-NCDEs exhibit drastically different run
times on Heartbeat, a high-dimensional dataset. This difference is partly explained by the model’s having different optimal
hyperparameter choices, but even when using identical hyperparameters to the NRDE, Log-NCDE’s run time for 1000 steps
of training is 3017 seconds, whereas NRDE’s run time is 20384 seconds. The remaining difference in run time is due to
calculating the JVPs of fθ using a batched function, as discussed in Section 3.4. If instead the JVPs are calculated using a
for-loop, then Log-NCDEs run time increases to 15551 seconds.

22

Log Neural Controlled Differential Equations

(a) Memory (b) Time

(c) Number of steps (d) Total time

Figure 6. Memory, time for 1000 steps, number of steps, and approximate total time for each model and dataest from the UEA-MTSCA
considered in this paper on an NVIDIA RTX 4090. The following abbreviations are used: EigenWorms (EW), EthanolConcentration
(EC), Heartbeat (HB), MotorImagery (MI), SelfRegulationSCP1 (SCP1), and SelfRegulationSCP2 (SCP2).

23

