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Abstract

In Multi-Agent RL, agents learn and evolve together, and each agent has to interact
with a changing set of other agents. While generally viewed as a problem of
non-stationarity, we propose that this can be viewed as a Meta-RL problem. We
demonstrate an approach for learning Stackelberg equilibria, a type of equilibrium
that features a bi-level optimization problem, where the inner level is a “best-
response” of one or more follower agents to an evolving leader agent. Various
approaches have been proposed in the literature to implement this best-response,
most often treating each leader policy and the learning problem it induces for the
follower(s) as a separate instance. We propose that the problem can be viewed
as a meta (reinforcement) learning problem: Learning to learn to best-respond
to different leader behaviors, by leveraging commonality in the induced follower
learning problems. We demonstrate an approach using contextual policies and
show that it matches performance of existing approaches using significantly fewer
environment samples in experiments. We discuss how more advanced meta-RL
techniques could allow this to scale to richer domains.

1 Introduction

Multi-Agent Reinforcement Learning (RL) is considered a hard problem, in part because it features
what is generally thought of as a non-stationarity issue: As agents train and evolve together, so does
the learning problem that each individual agent change - if other agents behave differently in a joint
environment, my own actions might lead to different results for myself. We propose that this can
be viewed as a meta-RL or multitask RL problem as well: agents need to learn to adapt quickly to
changing behavior of other agents.

We focus here specifically on Stackelberg equilibria, which arise naturally in settings such as security
games [1, 22] or (indirect) mechanism design [16, 24, 5]. In these equilibria, we have an asymmetric
setting: A leader who commits to a strategy, and one or more followers who respond. The leader aims
to maximize their reward, knowing that followers in turn will best-respond to the leader’s choice of
strategy. In the remainder of this paper, we will briskly formalize the setting and equilibrium concept
in section 2, discuss how existing approaches implement the follower best-response and propose a
novel approach using meta-RL techniques in section ??, and experimentally validate it in section 4.

Prior Work Our work builds on prior approaches on learning Stackelberg equilibria [11, 18,
26, 2, 30] as well as RL for (indirect) mechanism design [29, 28, 3, 5, 6]. We utilize contextual
policies [25, 13, 7, 19, 31, 9] in our own approach.
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2 Preliminaries

Markov games. We consider partially observable stochastic Markov games, essentially a multi-
agent generalization of a partially observable Markov Decision Process (POMDP).
Definition 1 (Markov Game). A Markov Game M with n agents is a tuple (S,A, T, r,Ω, O, γ),
consisting of a state space S, an action space A = (A1, ..., An), a (stochastic) transition function T :
S ×A → S, a (stochastic) reward function r : S ×A → Rn, a set of observations Ω = (Ω1, ...,Ωn),
a (stochastic) observation function O : S ×A → Ω, and a discount factor γ.

At each step t of the game, every agent i chooses an action ai,t from their action space Ai, the
game state evolves according to the joint action (a1,t, . . . , an,t) and the transition function T , and
agents receive observations and reward according to O and R. An agent’s behavior in the game is
characterized by its policy πi : oi 7→ ai, which maps observations to actions. (We focus here mainly
on this memory-less case.) Each agent in a Markov Game individually seeks to maximize its own
(discounted) total reward

∑
t γ

tri(st, ai,t, a−i,t). This gives rise to the usual definitions of Nash
equilibria (NE), correlated equilibria (CE), and coarse correlated equilibria (CCE), which we do not
repeat in full here. Note that strategies in Markov games and in each of these equilibrium definitions
are policies: A pair of policies π1, π2 in a two-player Markov game is a Nash equilibrium if neither
agent can increase their expected total reward by unilaterally deviating.

Stackelberg Equilibria. Unlike all the above equilibrium concepts, a Stackelberg equilibrium is
not symmetric: There is a special player, the leader, who commits to their strategy first; the other
player (the follower) then chooses their best strategy given the leader’s choice of strategies. This
makes the leader potentially more powerful. This Stackelberg concept again also extends to Markov
games: Here a leader agent L decides on their strategy, and the remaining (follower) agents observe
and best-respond to this strategy. The leader seeks to maximize their own reward, considering that
followers will always best-respond to their choice of strategy. For instance, in an iterated prisoner’s
dilemma [20], a leader might commit to a tit-for-tat strategy, in turn leading the follower to cooperate.
We formally define this in Appendix A.

3 Meta-RL for Stackelberg RL

Stackelberg learning approaches in the literature can broadly be grouped into two categories based on
how they implement the follower best-response, optimization-based approaches such as [17, 27],
and learning-based approaches such as [5, 3, 29]. What is common to both and crucial to our
discussion is that they approach the Stackelberg learning problem using a nested outer-inner loop,
where for every learning iteration of the leader, an inner loop iteratively computes the followers’ best
response.

As our key contribution, we go beyond this and explore using multi-task and meta-RL as a means
of implementing the follower oracle. We can recognize that the follower games, FsL , are in fact a
family of related problems. For this reason, the follower oracle problem can be seen as a multitask
or meta-RL problem, and solved using techniques from those fields. We make use of contextual
policies [25], where a context ω describes the task an agent is supposed to solve. In our case, the
context provides the specific MDP among a family of MDPs a follower finds itself in, and ω is a
description of the leader policy. This context, ω, is concatenated to the follower agent’s observation
oi,t, and agent i observes (oi,t, ω) at timestep t.

We focus on settings with a state space small enough to allow the leader policy to be fully understood
with a small number of queries (i.e., the leader’s action for every possible state), and we directly use
the leader’s response to a fixed set of queries as the context ω. For instance, in an iterated prisoner’s
dilemma, we ask the leader three questions: “How do you act on the initial step of the game?”, “How
do you act if the opponent cooperated in the previous step?” and “How do you act if the opponent
defected in the previous step?” Clearly, if these are the only three possible states, this is sufficient to
characterize the leader policy. We further use a two-stage training approach. In Phase 1, we train
the follower against a different, randomized leader policy in each episode. By the end of this phase,
the policy is able to best-respond to all possible leader policies. In Phase 2, we train a leader policy
against this follower, where the leader is queried at the beginning of each episode. In the iterated
matrix game setting in our experiments, we explicitly define the context, ω, in this way. For settings
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Figure 1: Blue: Performance of our novel PPO+Meta-RL approach on 12 canonical symmetric iterated matrix
games. Orange: PPO+Q-learn [6]. Dashed green: Good Shepherd ES-MD [3] (final performance at 1.28B
timesteps, estimated from Fig. 2 ibid.)

where this is not possible, the multitask and meta-RL literature provide a range of approaches that
infer context, often using recurrent networks [25, 13, 7, 19, 31, 9].

4 Experiments

We evaluate our contextual policy approach and general framework on an ensemble of iterated
symmetric matrix games, standard benchmark domains that allow comparison to prior approaches, as
well as a novel domain based on a modified Atari 2600 game.

Iterated Matrix Games. In these environments, we play a matrix games for n = 10 steps per
episode, and give agents a one-step memory. Therefore, there are five states in these Markov games:
one for the initial steps of each episode, and four for later steps depending on the two agents’ previous
actions. At each step, each agent has a choice of two actions (e.g. “cooperate” or “defect”).

Figure 1 shows the performance of our Meta-RL approach using PPO for the leader. We compare
against the approaches of [3] and [6]. For our PPO+Meta-RL approach, we plot the combined
environment steps used by the meta-follower training plus the leader training on the x-axis. For [3],
we estimate performance from Figure 2 therein. Note that this is the eventual performance at the end
of training ([3] do not publish learning curves).

We see that final performance largely matches that of the “good shepherd” ES-MD approach, and by
extension also matches or outperforms all their baselines (c.f. Figures 1 and 2 therein). Importantly,
notice that our approach converges in around 50k environment steps, whereas [3] report perfor-
mance at 1.28 billion environment steps in the ES-MD case. We give further details on comparing
performance to [3] in Appendix D.

We also see that our approach outperforms the PPO+Q-learn approach of [6]. In Appendix D we
show the PPO+Q-learn approach training for significantly longer, and see that where it does converge
it does so around 500k environment steps at the earliest, whereas for most of the harder cases it still
has not nearly reached optimal performance at 2M timesteps. We again note that our approach shows
greatly improved sample efficiency.

Environments: Bilateral Trade on Atari 2600 As a second, significantly higher-dimensional and
challenging domain, we present a bilateral trade scenario on a modified Atari 2600 game (which
are a state-of-the-art benchmark domain in single-agent RL). We use a two-player version of the
game “Space Invaders”, and introduce an artificial resource constraint: Each agent can only fire in
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Figure 2: Performance of PPO+Meta-RL on Atari 2600 bilateral trade scenario. Plots show two Stackelberg
equilibria: Agent 1 (seller) as leader (blue curves) and agent 2 (buyer) as leader (orange).

the game if they have a bullet available. Initially, neither player has any bullets available. Throughout
the episode, we give bullets to player 1, one at a time at stochastic intervals. Player 1 can then choose
to offer the sell this bullet to player 2 by offering them a price, or Player 1 can choose to use the
bullet themselves. Player 2 in turn can choose to accept or reject a particular offer at a particular
price. If a trade takes place, the sales price is added to player 1’s reward, and subtracted from player
2’s reward. Additionally, we introduce a reward scale imbalance: Each time player 1 successfully
shoots an alien invader, they get a reward of 0.1. However each time player 2 shoots an alien, they
get a much higher reward of 1.0. Noting that even well-trained AI agents do not hit every single shot
they take, we should still expect that player 2 be able to generate just under 1.0 reward from each
bullet they fire, and player 1 a much smaller reward of just under 0.1.

Clearly there is more total reward generated if player 1 sells all their bullets to player 2, with the
difference referred to as the “gains from trade” in economics. However, notice that this is not a
mechanism design setting (there is no mechanism), and also that there are two Stackelberg equilibria:
If player 1 is the leader, then their optimal strategy is to offer bullets to player 2 at just under player
2’s average utility per bullet. Player 2 will best respond by accepting the trade, still generate small
positive reward, and player 1 will receive almost the entirety of the gains from trade. In the second
Stackelberg equilibrium, player 2 is the leader. Player 2’s optimal strategy is to refuse any price
higher than just above player 1’s average utility per bullet; and player 1’s best response is to offer to
sell at that (low) price. In this scenario, player 1 will be left with little more reward than had they
kept and used the bullets themselves, and player 2 will receive almost all the gains from trade.

Figure 2 shows that our Meta-RL algorithm is able to successfully learn this for both equilibria. In
this experiment we use discrete prices (0, 0.25, 0.5, 0.75.1.0) for compatibility with the discrete Atari
environment, so the results shown are the exact optimum.

5 Conclusion and Discussion

We have proposed and evaluated a novel approach to Stackelberg learning that uses contextual policies
to implement the follower oracle, showing similar performance to previous approaches at much
reduced sample complexity in experiments. In our approach, we view different leader agents the
follower interacts with, and the follower learning problems they induce, as a family of related tasks.

In our current implementation, we pre-train the follower meta-policy and then freeze it during leader
training. This works because we are working relatively small domains, where we can effectively
sample enough of the leader policy space for the follower meta-policy to generalize to any leader
it sees during leader training. In larger domains, we envision to keep training the follower during
leader training, making this even more of a meta-RL (as opposed to multitask RL) approach. In fact,
one prior work [29] already uses a similar approach, although they frame it as a curriculum approach
used mainly to bootstrap learning rather than a meta-RL approach, and they only give partial context
to the follower. Nevertheless, we see this as further evidence that a “meta-RL for multiagent-RL”
approach has merit.

Further, we focus here specifically on Stackelberg equilibria but believe the same principle of viewing
interaction with different or changing other agents as a meta-RL problem applies to other contexts as
well. We note in particular similarities with zero-shot and few-shot interaction problems [10, 8], and
suggest that synergies between these areas and meta-RL could be a fruitful area for further work.
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A Stackelberg Equilibrium Definition

Stackelberg equilibria can be extended to multiple followers, where best-response is not always
unique: Any choice of leader strategy sL induces a Markov game between FsL between the followers,
which could feature multiple equilibria and even types of equilibria. This is often abstracted away
from formally by defining the follower best-response as a (possibly stochastic) oracle E(FsL). For
this discussion, we adopt this notation even for the single-follower case.

Definition 2 (Stackelberg equilibrium). Given a Markov Game M and a follower best-response
oracle E , a leader strategy sL together with a tuple of follower strategies sF is a Stackelberg

6



equilibrium, if sL maximizes the leaders expected reward under the condition that follower strategies
are drawn from E(FsL):

sL ∈sL E
sF∼E(FsL

)

[∑
t

E[rL
(
st, aL,aF

)
]
]
, (1)

where the second expectation is drawing actions and state transitions from their respective policies
sL, sF and transition function T , and the reward function is r, all as in Definition 1.

B Continuous Follower Learning

A standard approach is to use a (no-regret or reinforcement) learning algorithm to implement the
follower best-response. In some prior work [3], it is explicitly stated that learning starts “from scratch”
i.e. with randomly initialized weights after every leader policy update. In other approaches [29, 5],
followers train starting from their weights before the leader update, i.e. they train continuously
without a weight re-initialization. The latter approach recognizes, as we do, that the follower learning
problems are not entirely unrelated - in particular, if the leader policy only changes a little in each
update, then it seems reasonable to assume that follower policies should also converge to a point
only a little distance from their best-response to the previous leader policy. In turn, if they start from
their previous weights, they may only need fewer training steps to reach there. While intuitively this
makes sense, and may work in practice in many settings, we show here that this approach can also
lead to learning failure.

In an experiment, we trained a leader and follower in the “Battle of the Sexes” single-shot matrix
game from Example ??, using a standard inner-loop outer-loop approach. The follower best-response
is implemented using a simple tabular Q-learning approach. We ran two versions of this: In one,
the follower Q-table was reset between leader updates; in the other, it was not. Figure 3 shows
leader performance for four different seeds for both approaches. As can be seen, when the follower
policy is reset between leader updates, learning consistently converges to the unique Stackelberg
equilibrium in the game. When follower learning is continuous, however, the system converges to
a different behavior. In one seed, learning failed entirely; in the other three, agents converge to a
non-Stackelberg behavior, specifically the other pure Nash equilibrium, where they coordinate on the
follower’s preferred choice. This happens because the follower gets “stuck” in that behavior: Notice
that for a uniformly random leader policy which goes to each restaurant with equal probability, the
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Figure 3: Leader reward in “Battle of the Sexes” with Q-
learning follower best-response with weight re-initialization
between leader updates (blue) and continuous learning (or-
ange).

follower’s best response is to go to
their preferred restaurant (yielding
happiness 2 with probability 0.5, com-
pared to happiness 1 with probabil-
ity 0.5 when going to less-preferred
restaurant). In fact, this is true for
any leader policy that goes to the fol-
lower’s preferred restaurant with prob-
ability at least 1/3. Therefore, for
a randomly initialized leader policy,
that is the best-response behavior the
follower will likely learn. With contin-
uous follower learning, the follower
might then never move away from
this behavior, even if the leader ex-
plores a policy where this is not the
best-response. In turn, the leader may
never explore that part of its policy
space for long enough.

Whether this failure happens in prac-
tice will depend on the specific setting, choice of leader and follower learning algorithms and their
hyperparameters. However, we take the fact that it can happen as further evidence that a more
rigorous approach on generalizing between leader policies is warranted.
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C Further Experiment Details

Environments. We use the 12 canonical symmetric matrix games identified in [20] and also used
by [3]. During training, we scale rewards to be centered at 0, i.e. taking values −1.5, −0.5, 0.5, 1.5,
but we report results offset to match the reward scales used by [3]. This has no effect on comparability
of results. We use n = 10 steps per episode.

Algorithm. Algorithm 1 details the two-phase learning algorithm we use. In all the experiments
shown in the main text, we use policy gradient to train the follower meta-policy in the pre-training
loop. We use PG [23], PPO [21] and DQN [14, 15] in the main training loop, as indicated in
the respective figures. We use linear models, and disable exploration in the leader policy while
pre-training the follower and vice versa. Table D lists the hyperparameters used for each of these
algorithms. Any hyperparameters not listed were left at default values in rllib version 2.0.0. All
experiments were run with a single rollout worker (per experiment), and using Torch.

Equilibrium Verification. At the end of every experiment, we freeze the leader policy and further
train the follower policy for n = 50 iterations. Unlike in the pre-training phase, we here train
them only against the specific leader policy trained in the main training loop. This is to further
verify that the policies indeed form a Stackelberg equilibrium, and in particular that the follower
meta-policy is best-responding to the trained leader. If this is the case, we should not see any change
in leader or follower performance in this post-training phase. If the follower meta-policy was not
already best-responding to the leader, we may see an increase in follower performance during this
post-training phase. In all of the experiments in this paper (except the ones designed to show failure
modes) we see no follower improvement, i.e. behavior consistent with a Stackelberg equilibrium.
This is not shown in the training curves in the figures, but can be reproduced from the source code.

Implementation and Environment. All experiments were implemented using Ray / RLlib 2.0.0
[12]. Experiments were run on recent Intel Xeon processors with a single core and 2GB RAM per
experiment.

Hyperparameter Tuning. Learning rates and batch sizes were tuned using grid search, with some
additional tuning using HyperOpt and BayesOpt Python packages, yielding no further improvement
however.

D Further Details on Performance Comparisons

In Figure 1 we compare our Meta-RL approach with the PPO+Q-learn approach of [6] and the
ES-MD approach of [3].

For [5], we implement follower Q-learning using information therein. Hyperparameters for both the
leader and the follower were tuned using the HyperOpt package [4]. In Figure 1 we plot learning
curves up to 200k timesteps, as our approach converges before that point. We show in Figure ??
learning curves until 2M timesteps. We can see that in some cases PPO+Q-learn eventually converges
to the optimum, while in the majority of cases this still has not happened by 2M timesteps.

For [3], we estimate their performance from Figure 2 therein. Notice that that figure is not a learning
curve, but represents a single inner loop at the end of their training procedure. In the ES-MD case,
[3] report their performance after 1.28 billion environment steps. In the Diff-MD case, a comparison
of sample complexity is difficult, as that approach uses a description of the environment rather
than sample access. The closest we can come to a like-for-like comparison is noting that [3] report
performance for Diff-MD after 500k computed expected reward per 10-step episode. In some sense
this could be seen to be equivalent to 5M environment steps as a lower bound.
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Algorithm 1 Contextual Policy
Pre-Training Loop
Initialize follower policy πF

for each pre-training iteration do
for each episode per sample batch do

Sample a random leader policy πr
L

for each oL ∈ OL do
Query πr

L for πr
L(oL)

end for
Set context ω = πr

L(oL), oL ∈ OL

for each episode step do
Return oL,t to leader, (ω, oF,t) to follower
Step environment using aL = πr

L(oL), aF = πF (ω, oF,t)
end for

end for
Update follower policy πF using collected sample batch using PG/PPO/DQN

end for
Main Training Loop
Initialize leader policy πL

for each training iteration do
for each episode per sample batch do

for each oL ∈ OL do
Query πL for πL(oL)

end for
Set context ω = πL(oL), oL ∈ OL

for each episode step do
Return oL,t to leader, (ω, oF,t) to follower
Step environment using aL = πr

L(oL), aF = πF (ω, oF,t)
end for

end for
Update leader policy πL using collected sample batch using PG/PPO/DQN

end for
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Table 1: Hyper-Parameter Configuration Table
Follower Policy Gradient
Hyper-Parameter Value Hyper-Parameter Value
algorithm PG rollout_fragment_length 100
lr 0.02 train_batch_size 100
iterations 500 batch_mode complete_episodes

Leader Policy Gradient
Hyper-Parameter Value Hyper-Parameter Value
algorithm PG rollout_fragment_length 100
lr 0.156 train_batch_size 100
iterations 1200 batch_mode complete_episodes

Leader PPO
Hyper-Parameter Value Hyper-Parameter Value
algorithm PPO rollout_fragment_length 1000
lr 0.008 train_batch_size 1000
entropy_coeff 0.0 sgd_minibatch_size 1000
iterations 500 batch_mode complete_episodes

Leader DQN
Hyper-Parameter Value Hyper-Parameter Value
algorithm SimpleQ rollout_fragment_length 10
lr 0.001 train_batch_size 1024
learning_starts 5000 exploration_type ParameterNoise
exploration_initial_stddev 1.0 exploration_random_timesteps 0
iterations 20000 batch_mode complete_episodes
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