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Abstract

Algorithms for full-information online learning are classically tuned to minimize
their worst-case regret. Modern algorithms additionally provide tighter guarantees
outside the adversarial regime, most notably in the form of constant pseudoregret
bounds under statistical margin assumptions. We investigate the multiscale exten-
sion of the problem where the loss ranges of the experts are vastly different. Here,
the regret with respect to each expert needs to scale with its range, instead of the
maximum overall range. We develop new multiscale algorithms, tuning schemes
and analysis techniques to show that worst-case robustness and adaptation to easy
data can be combined at a negligible cost. We further develop an extension with
optimism and apply it to solve multiscale two-player zero-sum games. We demon-
strate experimentally the superior performance of our scale-adaptive algorithm and
discuss the subtle relationship of our results to Freund’s 2016 open problem.

1 Introduction

The abstract problem of online prediction with expert advice [Littlestone and Warmuth, 1994, Freund
and Schapire, 1997] is of fundamental importance in computational learning theory. Efficient and
optimal algorithms for solving it have a substantial impact on various problems in general online
convex optimization [Hazan, 2019], online model selection [Foster et al., 2017], boosting [Freund
and Schapire, 1997], and maximal probabilistic inequalities [Rakhlin and Sridharan, 2017], to name a
few. Concretely, a decision maker chooses among experts’ advices sequentially, and the environment
assigns each advice a scalar loss. If all losses have the same numerical range [−σ, σ], the situation is
well understood. Indeed, Freund and Schapire [1997] showed that, for K experts and t rounds, the
Hedge algorithm guarantees the minimax regret (defined below) σ

√
2t lnK. Furthermore, modern

algorithms additionally guarantee lower or even constant regret when the sequence of losses is more
benign [see De Rooij et al., 2014, Koolen and Van Erven, 2015, Mourtada and Gaïffas, 2019].

In the multiscale setting, where the experts’ loss ranges may differ by orders of magnitude, it is
natural to ask about the existence of algorithms that guarantee an optimal worst-case regret bound that
scales with the loss range of the best expert instead of the maximum range. This question has been
answered affirmatively [Chen et al., 2021, Bubeck et al., 2019, Cutkosky and Orabona, 2018, Foster
et al., 2017]. The algorithms developed in this line of work have had a significant impact in different
areas of computational learning theory and practice. Unfortunately, as we will see, the best known
algorithms still fail to guarantee lower regret even for the simplest benign statistical cases. Ensuring
these goals poses serious technical challenges. In particular, Bernstein’s inequality, the engine of
classical same-scale luckiness arguments, has no suitable multiscale upgrade. Moreover, intuitive
candidate upgrades of same-scale results would contradict recent lower bounds (see Section 7). To
make things worse, in order to obtain multiscale regret bounds, close attention needs to be paid to
terms that are conventionally insignificant but now carry the maximum scale of the problem. This
motivates our main question: can a single algorithm have multiscale worst-case regret guarantees
and, in addition, exhibit constant (pseudo)regret in stochastic lucky cases?
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We answer the previous question affirmatively. The key contribution in this article is MUSCADA
(multiscale adaptive), a computationally efficient algorithm that simultaneously guarantees a worst-
case regret that grows with the scale of the best expert, and constant expected pseudoregret under
a stochastic margin condition. MUSCADA uses a refined version of Follow the Regularized Leader
based on the multiscale entropy of Bubeck et al. [2019]. Its crucial improvement is a second-order
variance-like adaptation, the tightest possible for the analysis of this regularizer. This second-order
adaptation is close in spirit to, and an improvement of, that of AdaHedge by De Rooij et al. [2014]
and those of Chen et al. [2021]. As a result of careful analysis, MUSCADA has the following attractive
properties: it does not need knowledge of the length of the game in advance without resorting to
any doubling trick, the presence of zero-regret rounds does not change the state of the algorithm or
its regret guarantees; it is invariant both under per-round, possibly unknown, translations of each
expert’s losses, and under a global known scaling common to all losses and ranges.

As an application of MUSCADA and its analysis techniques, we build an optimistic variant of
the algorithm and use it to solve two-person zero-sum games that have a multiscale structure. The
optimistic variant makes use of a guess of what the losses in the next round will be, and achieves lower
regret when the guesses are adequate. This interest originates in the fact that optimistic algorithms
converge to the solutions of such games at faster rates than their nonoptimistic counterparts [Syrgkanis
et al., 2015]. We find experimentally that MUSCADA outperforms existing single-scale algorithms
when the payoff matrix of the game exhibits a multiscale structure.

In the rest of this introduction we lay out formally the multiscale experts problem, review existing
work, present a summary of the main contributions (Section 1.1), and outline the rest of the article.

Full-information online learning. In its simplest form, we must decide sequentially in rounds how
to aggregate the predictions made by a fixed number K of experts. At each round t, we choose an
aggregation strategy, a probability distribution wt ∈ P(K) over experts. After choosing wt, we assess
the quality of the experts’ predictions with a numerical loss ℓt = (ℓt,k)k∈K and judge the performance
of our aggregation strategy by the wt-weighted losses ⟨wt, ℓt⟩ =

∑
k∈K wt,kℓt,k. Our objective is to

minimize the cumulative gap between the losses incurred by our aggregation strategy t 7→ wt and the
best expert in hindsight. This cumulative gap is the regret Rt =

∑t
s=1⟨ws, ℓs⟩−mink∈K

∑t
s=1 ℓt,k.

Other than range restrictions on the losses, no assumptions are made about the mechanism that
generates them. More precisely, for each expert k ∈ K and all rounds t, we only assume that
ℓk,t ∈ [−σk, σk] for known nonnegative scales {σk}k∈K . We call Rt the vector of regrets with
respect to each expert, that is, the vector with entries Rt,k =

∑t
s=1 {⟨ws, ℓs⟩ − ℓs,k}.

Existing results. Several algorithms have been proposed that achieve the worst-case regret in the
multiscale setting, but none of them achieve constant regret in stochastic lucky cases. Motivated by
the problem of online model selection, Foster et al. [2017] used a technique of adaptive relaxations to
produce randomized algorithms that guarantee

EP[Rt,k] = O
(
σk

√
t(ln t+ ln(1/πk) + ln(σk/σmin))

)
as t → ∞,

where π is a prior distribution on experts that generalizes the uniform 1/K of the Hedge algorithm
and the expectation is over the algorithm’s randomness. Bubeck et al. [2019] first proposed a
Follow-the-Regularized-Leader algorithm with a multiscale entropy regularization that guarantees

Rt,k = O
(
σk

√
t(lnK + ln(σmax/σmin))

)
as t → ∞

when the number of rounds t is known in advance. Bubeck et al. [2019, Theorem 20] also construct
an instance of the K = 2 experts problem in which there exists a time t for which any algorithm
must have Rt,k′ ≳ σk′

√
t(lnK + ln(σmax/σmin)) for some expert k′, shedding some light on the

minimax picture. Recently, Chen et al. [2021] designed an optimistic algorithm that uses the same
regulatization as Bubeck et al. [2019] with an additional ingredient: at each round, a second-order
correction is added to the losses before computing the next round’s weights. At every round, their
algorithm makes use of a guess vector mt that can depend on the losses up to time t− 1. The scale
of the guesses mt are assumed to be the same as that of the losses; |mt,k| ≤ σk. For instance, valid
choices for the guess mt are 0 and the loss ℓt−1 of the previous round. The algorithm of Chen et al.
[2021] achieves

Rt,k = O
(
σk

√
βt,k ln t+ σmax ln t

)
as t → ∞,
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now scaling with the expert-dependent “time” βt,k =
∑t

s=1
(ℓs,k−ms,k)

2

σ2
k

≤ 4t. Furthermore, they
show that a different single-scale tuning of their algorithm exhibits stochastic luckiness. Namely, if
the losses are sampled from a distribution with a gap dmin > 0 between the expected loss of the best
expert k∗ and that of any other expert, their algorithm guarantees that

Rt,k∗ = OP

(
ln t

dmin

)
as t → ∞,

where P is the distribution of the losses. Their technique for stochastic luckiness uses the upcoming
learner’s loss as the guess mt,k = ⟨wt, ℓt⟩. Unfortunately, this approach cannot be extended to the
multiscale case, as these guesses may violate the experts’ loss ranges.

1.1 Main results

In this section we present succinctly the regret guarantees for MUSCADA. Firstly, we present
multiscale worst-case regret guarantees. Secondly, we present the stochastic luckiness results and
Massart’s margin condition. We then prove analogs of these results for an optimistic modification of
MUSCADA in Section 4. We close this introduction with an outline of the rest of the article.

Worst-case bounds. We propose two tunings for MUSCADA; they cover the cases where there is
or is not an expert with loss range equal to zero. Our results imply Theorem 1.1 below; it contains
the regret guarantees for MUSCADA, expressed in terms of vt, an implicitly defined variance-like
second-order data-dependent quantity. The quantity vt, defined by the algorithm, is the tightest
allowed by our analysis and enables our luckiness result, Theorem 3.1. We interpret vt through the
upper bounds of Theorem 1.2, also below, as an internal scale-free measure of time, as vt ≤ 4t.
Theorem 1.1 (Regret Bounds). Consider MUSCADA, t 7→ vt defined in Figure 1, and any initial
probability distribution π.

• If σmin = mink∈K σk > 0, Tuning 1 guarantees, for any loss sequence,

Rt,k ≤ c σk

√
vt(ln(1/πk) + ln(σk/σmin)) +O(1) as t → ∞, (1)

where c is a constant depending only on π. The constant c is well-behaved: if maxk∈K πk =
1− ε, then c ≤ 4

√
2(1 + 1/(2 ln(1 + ε))).

• Even if mink∈K σk = 0, Tuning 2 ensures, for any loss sequence,

Rt,k ≤ 2σk

√
2 vt(ln(1/πk) + ln(1 + vt))(1 + o(1)) as t → ∞. (2)

The following theorem (proven in Appendix G) shows that vt is bounded by a second-order quantity.
If wt,k are the weights played by MUSCADA at round t and ηt−1,k are its learning rates, vt is bounded
by the variance over experts of the losses w.r.t. a tilted probability distribution w̃t,k ∝ wt,kηt−1,k.
The shape of this quantity may seem surprising, but it is not artificial; our analysis shows that it is the
tightest and, consequently, the natural second-order quantity associated to this choice of regularization.
In Appendix G, we further motivate, via a Taylor approximation, the shape of the resulting upper
bound.
Theorem 1.2. Let w̃t,k be the probability distribution w̃t,k ∝ wt,kηt−1,k and let ∆vt = vt − vt−1.
Then, with either tuning from Figure 2, vt, from Figure 1, satisfies

∆vt ≤ 4
varw̃t

(ℓt)

⟨w̃t,σ2⟩
≤ 4, where varw̃t

(ℓt) = ⟨w̃t, (ℓt − ⟨w̃t, ℓt⟩)2⟩.

Stochastic luckiness. We now turn to our results for stochastic easy data. Not all stochastic
scenarios are easy (in fact, worst-case regret lower bounds are proved using stochastic data). We use
Massart’s margin condition, a standard benchmark for easy data.
Definition 1.3 (Massart’s easiness condition). The losses ℓ1, ℓ2, . . . satisfy Massart’s easiness
condition if they are generated i.i.d. from a distribution P with the following property: there exists a
constant cM and an expert k∗ ∈ K such that

EP[(ℓt,k − ℓt,k∗)2] ≤ cMEP[ℓt,k − ℓt,k∗ ]

for all k ∈ K and t ≥ 1. In that case, k∗ = argmink∈K EP[ℓt,k] for all t.
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Massart’s condition is implied by a more interpretable gap condition [Koolen et al., 2016, Lemma 3].
If there exist a gap dmin > 0 in expectation between the loss of any expert and that of the best one
k∗, that is, if, for every k ̸= k∗, EP[ℓ1,k] ≥ dmin +EP[ℓ1,k∗ ], Massart’s condition is satisfied with
cM = 1/dmin. We show the following theorem.
Theorem 1.4 (Constant regret under Massart’s condition). Under Massart’s condition (Definition 1.3),
MUSCADA with either Tuning 1 or 2 has constant expected pseudoregret over time, that is,

EP[Rt,k∗ ] ≲ 1.

Outline. The rest of this article is organized as follows. In Section 2, we introduce and analyze
MUSCADA. In Section 3, we state the main results on stochastic luckiness for MUSCADA. In
Section 4, we introduce an optimistic variant of MUSCADA, give remarks about its numerical
implementation in Section 5, and apply it to accelerating the solution of multiscale games in Section 6.
We end this article with a discussion of our results in Section 7.

2 The MUSCADA Multiscale Online Learning Algorithm

In this section, we describe our algorithm and motivate its design. We present two useful tunings and
prove the corresponding worst-case regret guarantees. For the sake of intuition, we specialize the
algorithm to the case of same-scale experts with uniform prior and compare its resulting closed form
to AdaHedge [De Rooij et al., 2014]. Stochastic luckiness results are found in Section 3. We begin
by introducing some notation.

Notation. We use boldface type for vectors in RK (Rt,Lt,µt,ηt,σ,u) and distributions on K
experts (p,w,π). We number rounds so that all quantities indexed by t depend on the information
witnessed by the learner in the first t rounds. Exceptionally, we use weights wt at round t. For two
functions f and g we write “f = O(g) as t → ∞” if there exists c > 0 such that limt→∞ f(t)/g(t) ≤
c. Similarly, we write “f(t) ∼ g(t) as t → ∞” if limt→∞ f(t)/g(t) = 1, and f ≲ g if there is c > 0
so that f ≤ cg. We denote the simplex of probability distributions on K experts by P(K) and use K
interchangeably for a number K ∈ N and the set {1, . . . ,K}.

We define MUSCADA in Figure 1 and give its two main tunings in Figure 2. At round t, after
observing cumulative corrected losses Lt−1 + µt−1, MUSCADA plays weights

wt,k = uke
−ηt−1,k(Lt−1,k+µt−1,k+a∗

t−1),

where uk > 0 is a tuning parameter related to the prior weights, ηt−1 are learning rates that decrease
over time, µt are corrections incrementally computed at every round, and the scalar a∗t−1 ensures
normalization (see Lemma F.7). The weights wt are reminiscent of those played by the Hedge
algorithm, but the normalization a∗t cannot be computed explicitly in general. The weights wt are the
result of a Follow-the-Regularized-Leader update on a vector of corrected losses Lt−1 + µt−1. The
regularizer employed is the multiscale entropy: for a fixed u > 0, its Bregman divergence is

w 7→ Dη(w,u) =
∑
k∈K

wk
ln(wk/uk)− (1− uk/wk)

ηk
, w ∈ P(K) (3)

[see Bubeck et al., 2019, Chen et al., 2021]. The goal substracting the data-dependent second-order
corrections µt from the experts’ regrets is to keep a scalar potential function Φt negative. Here, the
potential t 7→ Φt is defined by convex conjugacy with respect to the multiscale entropy as

Φt := Φ(Rt − µt,ηt) = max
w∈P(K)

⟨w,Rt − µt⟩ −Dηt
(w,u), (4)

for which wt+1 is the maximizer. The corrections µt and the consequent negativity of the potential
Φt are the main ingredients in the regret analysis of MUSCADA. We next motivate these choices.

The shape of the corrections µt. We designed MUSCADA to favor experts with low corrected
regret Rt−µt. For the sake of informal discussion, our goal is to obtain µt,k ≈ σk

√
vt ln(1/πk). The

algorithm achieves this by additively correcting the regrets in each round. Indeed, from the analysis

of entropy-regularized algorithms, one would expect learning rates of the shape ηt,k ≈ 1
σk

√
ln(1/πk)

vt
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Parameters: A vector uk > 0 of initial weights, initial strictly positive learning rates η0,k ≤
1/(2σk), and real, continuous nonincreasing functions Hk : R+ 7→ R with Hk(0) = 1.
Initialization: Let µ0,k = 0, v0 = 0, R0,k = 0 and L0,k = 0. For each round t = 1, 2, 3, . . .

1. Play (follow the multiscale-entropy regularized leader of the corrected losses)

wt = argmin
w∈P(K)

⟨w,Lt−1 + µt−1⟩+Dηt−1
(w,u), (5)

where Dη is the multiscale relative entropy given in (3).
2. Observe loss ℓt. Update Rt,k = Rt−1,k + ⟨wt, ℓt⟩ − ℓt,k and Lt,k = Lt−1,k + ℓt,k.
3. Compute ∆vt, the value ∆v ≥ 0 such that

Φ(Rt − µt−1 − σ2ηt−1∆v,ηt−1) = Φ(Rt−1 − µt−1,ηt−1), (6)

where Φ is the potential function defined in (4).
4. Compute ∆µt,k = σ2

kηt−1,k∆vt. Update µt,k = µt−1,k+∆µt,k and vt = vt−1+∆vt.
5. Set the new learning rate ηt,k = η0,kHk(vt).

Figure 1: MUSCADA

to be optimal. With this learning rates in mind, the desired correction µt can be approximated using
a Riemann-sum approximation of

√
vt =

∫ vt
0

1
2
√
v
dv. Indeed, for the conjectured learning rates,

our target µt,k satisfies µt,k ≈ σ2
k

∑
s≤t ηs−1,k∆vs, where ∆vt = vt − vt−1. This implies that the

choice ∆µt,k = σ2
kηt−1,k∆vt as our per-round additive correction is helpful for achieving our goal.

We discuss our precise choice of learning rates after the formal statement of Proposition 2.2 below.

Negativity of Φ. Our regret bounds are a direct consequence of the negativity of the potential
t 7→ Φt. Indeed, by its definition, Φ0 ≤ 0, and, because of our choice of nonincresing learning rates
and corrections, the change in potential ∆Φt = Φt − Φt−1 can be bounded by

∆Φt ≤ Φ(Rt − µt,ηt−1)− Φ(Rt−1 − µt−1,ηt−1) = 0,

where the last equality follows from (6), the choice of corrections ∆µt. This implies the following
lemma, of which we give a more general proof in Section C.1.
Lemma 2.1. The potential t 7→ Φt starts at Φ0 ≤ 0 and is decreasing for t ≥ 0.

Once we prove that the potential Φt is negative, we are ready to derive regret guarantees for MUS-
CADA. The maximal nature of the potential t 7→ Φt and its nonpositivity together imply that,
simultaneously for all distributions p ∈ P(K),

⟨p,Rt − µt⟩ ≤ Dηt(p,u). (7)

We choose p concentrated on each expert k ∈ K to deduce the next proposition (proof in Section C.1).
Proposition 2.2. Assume that the learning rates t 7→ ηt are decreasing. MUSCADA guarantees that,
for any t = 1, 2, 3, . . . and all k ∈ K,

Rt,k ≤ µt,k +
ln(1/uk)

ηt,k
+
∑
j∈K

uj

ηt,j
− 1

ηt,k
, (8)

where µt,k = σ2
k

∑
s≤t ηs−1,k∆vs. Furthermore, for ηt,k = η0Hk(vt) as in Figure 1, µt satisfies

µt,k ≤ σ2
kη0,k

∫ vt

0

Hk(x)dx+ σ2
k(η0,k − ηt,k)max

s≤t
∆vs. (9)

Choice of learning rates. Proposition 2.2 guides us in choosing the learning rates presented in
Figure 2. The starting value of the learning rates influences our ability to control vt in terms of
the variance of the losses of the algorithm while their behavior for large vt determines the long-
term growth of the regret bounds. The learning rates presented in Figure 2 interpolate smoothly
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Let π ∈ P(K) be a probability distribution on K experts.

Tuning 1 Requires σmin > 0. Set uk = πk
σmin

σk
, η0,k = 1

2σmax
, γk = 8

σ2
max

σ2
k

ln(1/uk) and

H1,k(v) =
d

dv

[
v√

1+v/γk

]
= v/γk+2

2(1+v/γk)3/2
.

Tuning 2 Set uk = πk, η0,k = 1
2σmax

, αk = 32
σ2
max

σ2
k

, γk = αk ln(1/uk) and

H2,k(v) =
d

dv

[√
α2
k {(1 + v/αk) ln (1 + v/αk)− v/αk}+ v2

2(1+v/(2γk))

]

=
αk ln (1 + v/αk) +

1
2

2v+v2/(2γk)
(1+v/(2γk))2

2
√
α2
k {(1 + v/αk) ln (1 + v/αk)− v/αk}+ v2

2(1+v/(2γk))

.

If, for some k, σk = 0, define H2,k to be the limit value limσ↓0 H2,k(vt) = 1.

Figure 2: Tunings

between these two regimes by taking the form η
(1)
t,k = η0,kH1,k(vt) and η

(2)
t,k = η0,kH2,k(vt). Here,

the starting learning rates are set to η0,k = 1/(2σmax). The functions H1,k, H2,k ≤ 1 decrease
monotonically from their initial values H1,k(0) = H2,k(0) = 1 in such a way that, as vt → ∞,

η
(1)
t,k ∼

√
2

σk

√
ln(1/πk)

vt
and η

(2)
t,k ∼

√
2

σk

√
ln(1/πk) + ln vt

vt
.

The asymptotic expresion for η(1)t,k is reminiscent of the optimal learning rates for the Hedge algorithm
with the number of rounds t replaced by the refined vt and the uniform lnK replaced by ln(1/πk).
Finally, with the Riemann sum bound (9) from Proposition 2.2 in mind, the learning rates were
chosen as the derivatives of functions that will become the dominant term in the regret guarantees.

Tuned regret bounds. The learning rates from Figure 2 can be readily used in Proposition 2.2 to
derive regret guarantees for MUSCADA. However, to facilitate interpretation, we bound the learning
rates and their reciprocals in order to obtain the regret bounds contained in the following proposition
(proof in Appendix C.2). After its statement, we prove Theorem 1.1 from the introduction.

Proposition 2.3. Let π be a probability distribution on K.

• MUSCADA run with Tuning 1 depicted in Figure 2 guarantees that, for any t = 1, 2, . . . ,

Rt,k ≤ 2σk

√
2vt ln(1/uk)+cσ,πσmin

√
2vt+8σmax ln(1/uk)+4σmax+

σk

2
max
s≤t

∆vs, (10)

where the constant cσ,π =
∑

k∈K πk(1/
√
ln(1/uk)) and uk = πk

σmin

σk
.

• MUSCADA run with Tuning 2 depicted in Figure 2 guarantees that, for any t = 1, 2, . . . ,

Rt,k ≤ 2σk

√
2vt

(
ln
(
1 +

σ2
kvt

32σ2
max

)
+ ln(1/πk)

)
+σk ln(1/πk)Zk+

∑
j∈K

πjσjZj+
σk

2 max
s≤t

∆vt,

(11)

where Zk =
√

vt

2 ln

(
1+

σ2
kvt

32σ2
max

)
1 +

√√√√√min{ln(1/πk),
σ2
kvt

16σ2
max

}

ln

(
1+

σ2
kvt

32σ2
max

)
 = O

(√
vt

ln vt

)
as vt → ∞.
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Proof of Main Theorem 1.1. With Proposition 2.3 at hand, we can prove the claims made in Sec-
tion 1.1. Use the fact that σmin ≤ σk to conclude from (10) that, as t → ∞,

Rt,k ≤ 2σk

√
2vt ln(1/uk) + 2cσ,πσk

√
2vt +O(1).

We can bound cσ,π/
√
ln(1/uk) ≤ 1/ ln(1/πmax), where πmax = maxk∈K πk. Consequently,

Rt,k ≤ 2σk {1 + 1/(2 ln(1 + ε))}
√

2vt ln(1/uk) +O(1)

as t → ∞ any time that πmax = 1− ε. This coincides with (1). Similarly, (11) implies (2).

2.1 Closed-form solutions in the single-scale uniform-prior case

To help in the interpretation and to illustrate the challenges of the multiscale problem, we instantiate
MUSCADA to a situation where all calculations can be carried out in closed form: when all scales
are the same and equal to σ, and the initial weights πUnif are uniform; πUnif,k = 1/K. This is the
setting in which AdaHedge by De Rooij et al. [2014] operates. In this case, the learning rates and
corrections of MUSCADA are the same for all experts; ηt,k = ηt and ∆µt,k = ∆µt. The potential Φt

and the corrections ∆µt take the familiar form

Φt =
1

ηt
ln

(
1

K

∑
k∈K

eηt(Rt,k−µt,k)

)
, and ∆µt =

1

ηt−1
ln
∑
k∈K

wt,ke
ηt−1(⟨wt,ℓt⟩−ℓt).

These two quantities play a central role in the analysis of AdaHedge, where De Rooij et al. [2014]
called ∆µt the mixability gap, the difference between the average ⟨wt, ℓt⟩ and the mixed average
− 1

ηt−1
ln
∑

k∈K wt,ke
−ηt−1ℓt,k . The main quantity in our analysis, ∆vt, becomes

∆vt =
1

η2t−1σ
2
ln
∑
k∈K

wt,ke
ηt−1(⟨wt,ℓt⟩−ℓt,k).

Using well-known estimates for cumulant generating functions, ∆vt can be bounded by the ratio
varwt(ℓt)/σ

2 . Indeed, Hoeffding’s inequality implies the worst-case bound ∆vt ≤ 1
2 ; Bernstein’s,

the second-order ∆vt ≲ varwt
(ℓt)/σ

2. Since it is vt that appears in the regret bounds in Proposi-
tion 2.3, they are a refinement over those of AdaHegde1. Additionally, the present analysis yields
improvements that are apparent in lower-order terms. Indeed, the last two terms in the regret bound
(8) in Proposition 2.2 vanish, and the analysis used in the proof of Proposition 2.3 with η0 =

√
2/σ

and the instantiation of H1 from Figure 2, H1(x) =
x/ ln(K)+2

2(1+x/ ln(K))3/2
, give the regret bound

Rt ≤
{
c1σvt + c2σ lnK + σ/2 if vt ≤ lnK,

2σ
√
2vt lnK + σ/2 if vt > lnK

with c1 = 3/
√
2 and c2 = 1/

√
2. Unfortunately, multiscale analogs of Bernstein and Hoeffding’s

inequalities on ∆vt are not available; considerably more technical work needs to be carried out to
prove Theorem 1.2. A multiscale analog of Bernstein’s estimate for ∆vt is only available when all
the learning rates are smaller than 1/(2σmax) (see the proof of Theorem 1.2 in Appendix G).

3 Multiscale Stochastic Luckiness

In this section we show, under easiness conditions, that the expected pseudoregret of MUSCADA
is constant. Assume that the loss vectors ℓ1, ℓ2, . . . are i.i.d. and are generated according to a
distribution P that satisfies Massart’s easiness condition (see Definition 1.3). For Tuning 1, assume
that the minimum scale among experts σmin is strictly positive. The analysis technique in this case is
similar to that of Koolen et al. [2016] with an extra step. A use of Theorem 1.2 shows that ∆vt can
be estimated in terms of varwt(ℓt). This estimate possibly incurs in a multiplicative factor that can
be as high as 1/σ2

min. There are examples for which this constant is necessary (not shown). After
this, standard arguments show that the expected pseudoregret is constant. See Appendix E for proofs.

1Our algorithm with learning rate tuning function H(v) =
√

lnK
4v

comes closest to AdaHedge.
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Theorem 3.1. Under Massart’s condition and using Tuning 1 from Figure 2, the expected pseu-
doregret of MUSCADA is bounded by a constant in the number of rounds. Specifically, for any
t ≥ 0,

EP[Rt,k∗ ] ≲ a2cM + b,

where a =

√
2maxi,j∈K

{
1

σiσj

ln(1/πi)+ln(σi/σmin)
ln(1/πj)+ln(σj/σmin)

}(
4σk∗

√
2 ln(1/uk∗) + 2

√
2cσ,πσmin

)
and

b = 8σmax ln(1/uk∗) + 4σmax + 2σk∗ .

For Tuning 2, where we do not assume that σmin > 0, still EP[Rt,k∗ ] ≲ 1 using a different proof
technique. Using the expression for the weights of the algorithm, we show that they concentrate on
the best expert k∗. The analysis here is similar to that of Mourtada and Gaïffas [2019], but the lack of
an expression for the normalizing a∗t presents with an additional technical difficulty. The result is the
following theorem.
Theorem 3.2. Let dk = EP[ℓt,k − ℓt,k∗ ] and assume that mink ̸=k∗ dk > 0. Using Tuning 2 in
Figure 2, MUSCADA guarantees constant expected pseudoregret. Specifically,

EP[Rt,k∗ ] ≤
∑
k∈K

f(dk), where f(d) = O
(

σ2
max

d ln
(

σ2
max

d2

))
as d → 0.

Standard modifications of the arguments presented may be used to prove that the pseudoregret is
constant with P-high probability (not shown).

4 Optimism

In this section we show an optimistic variant of MUSCADA. Suppose that, before round t, we count
on guesses mt for what ℓt will be. Assume that mt is of the same scale as ℓt, that is, |mt,k| ≤ σk.
In particular, this entails that |ℓt,k − mt,k| ≤ 2σk. A modification of MUSCADA, presented in
Figure 1, puts these guesses to good use. These modifications allow for regret guarantees similar to
those contained in Proposition 2.3, but in this case ∆v◦t ≲ varw̃◦

t
(ℓt −mt)/⟨w̃◦

t ,σ
2⟩, where the

superscript ◦ signals the optimistic analogs of the quantities from MUSCADA. These modifications
are shown in Figure 3 and the regret bounds in the following proposition (proofs in Appendix D).
Proposition 4.1. If t 7→ v◦t is the variance process defined by Optimistic MUSCADA in Figure 3,
the same regret bounds presented Proposition 2.3 hold with two modifications: v◦t instead of vt
and all scales doubled, that is, 2σ instead of σ. Furthermore, for each t = 1, 2, . . . , ∆v◦t ≤
4 varw̃◦

t
(ℓt −mt)/⟨w̃◦

t ,σ
2⟩ ≤ 4t, where w̃◦

t,k ∝ w◦
t,kηt−1,k.

1’ Compute the guess mt and play

w◦
t = argmin

w∈P(K)

⟨w,Lt−1 +mt + µt−1⟩ −Dηt−1
(w,u).

3’ Let ∆v◦t be the value ∆v◦ ≥ 0 such that

Φ(Rt−µt−1−ηt−1σ
2∆v◦,ηt−1) = Φ(Rt−1+⟨w◦

t ,mt⟩−mt−µt−1,ηt−1). (12)

Tuning 1’ and Tuning 2’. As in Figure 2 but with halved starting learning rate η0,k = 1
4σmax

.

Figure 3: Optimistic MUSCADA, given as update w.r.t. Figure 1.

5 Computation

At each round, MUSCADA requires two computations. We now argue that both can be executed
to machine precision in O(K) time. First, computing the weights (5) given the losses Lt−1 and
correction terms µt−1 can be reduced, by Lemma F.6, to a single scalar convex minimization problem.
Cancelling the derivative of the objective amounts to searching for the normalizing offset at. To that

8



Figure 4: Left: empirical mean and quartiles of 2000 realizations of the regret t 7→ Rt,k∗ of
MUSCADA. For easy i.i.d. Massart distribution, the regret is constant; for a hard distribution without
a gap, Ω(

√
t). Right: optimistic MUSCADA (solid red) achieves an iterate-average saddle-point gap

of σreal/t where σreal = σmax/100 is the relevant scale of the Nash equilibrium. Other methods
scale as σmax/t.

end, binary search to machine precision takes O(K) time per round. Notice that this also allows us
to compute the potential value. Second, for computing the variance contribution (6), we observe
that the right hand side of (6) is decreasing in ∆vt. Since the potential can be computed in O(K)
time, we can use an outer binary search to compute ∆vt to machine precision in O(K) time as well.
Alternatively, Newton’s method may be employed; both of the previous problems require finding a
root of a convex function. When deferring to a convex optimization library, a convenient expression
is the jointly convex minimization form (see Lemma F.6)

∆vt = inf
a,∆v

∆v subject to a+
∑
k∈K

wt,k
eηt−1,k(⟨wt,ℓt⟩−ℓt,k−a)−η2

t−1,kσ
2
k∆v − 1

ηt−1,k
≤ 0.

6 Experiments on Synthetic Data

We investigate the performance of our multiscale method on two experiments: one for illustrating
the performance of MUSCADA under Massart’s condition, another for solving multiscale two-player
zero-sum games.

The aim of the first experiment is to compare the performance of MUSCADA in easy and hard
stochastic data sequences. To this end, we compared a sequence of hard stochastic data with no
gap vs. easy data sampled i.i.d. from a distribution satisfying Massart’s condition. We witnessed
constant regret for the easy data, as shown in Figure 4 (Left). We take K = 50 experts and set
σk = 1/k for each k ∈ K. To generate our data, we fix some mean λk ∈ [−σk, σk] and generate
binary expert losses ℓt,k ∈ {−σk,+σk} independently between rounds and experts, with probability
P {ℓt,k = σk} = σk+λk

2σk
. For the hard case, we set λk = 0 for all k. For the lucky case, we set

λ2 = −1/5 instead. Generating this figure with the code in the supplementary material takes 3
seconds on an Intel i7-7700 processor.

The aim of the second experiment is to show the performance of MUSCADA for solving multiscale
zero-sum games. Here, the payoff matrix is unknown, but row and column scales are available and
vastly different. As detailed in Appendix A, we run two instances of appropriately tuned Optimistic
MUSCADA against each other. As shown in Figure 4 (Right), the pair of time-average iterates
converges to the saddle point with a suboptimality gap of order σreal/t instead of the worst-case
σmax/t, where σreal is the maximum range within the support of the saddle point. In Appendix A,
we conjecture that this rate holds for any such game and prove a weaker result: without optimism, the
slower but scale-adaptive rate σreal/

√
t is achieved.
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7 Discussion

We developed a new algorithm for multiscale online learning that is both worst-case safe and achieves
constant pseudoregret in stochastic lucky cases. Our method is a refinement of the Follow-the-
Regularized-Leader template with a weighted entropy. The main innovation is in the correction terms
added to the losses, which are the tightest the technique admits. This suggests that these variance-like
terms are in fact intrinsic to the problem of obtaining scale-dependent regret bounds. Lastly, we relate
this newfound variance to the variance asked for by Freund [2016], we comment on the advantage of
second-order guarantees over zeroth-order ones, and we state an open problem.

Quantile bounds and solving Freund’s problem. Freund [2016] asked whether quantile
adaptivity and variance adaptivity are compatible, that is, whether one can have ⟨p,Rt⟩ ≤√
KL(p,u)

∑
s≤t varws

(ℓs) for all comparator distributions p ∈ P(K) simultaneously. Even
though our tuning of ηt does not yield quantile bounds, these can, however, be added employing a
now-standard method [Koolen and Van Erven, 2015]. Namely, instead of only including every expert
with a private learning rate tuned to its prior complexity level (the typical lnK or ln(1/πk) term),
we include multiple copies of each expert, each with a learning rate tuned to a smaller complexity
level. We then start from (7) with comparator distribution p concentrated on the ε-quantile of interest
and carry out all future steps (from Proposition 2.2 on), ending up with the quantile regret bound
⟨p,Rt⟩ ≤ maxk:pk>0 σk

√
vt (lnC +Dη0

(p,u)), where C is the number of learning rates thus
created. As these learning rates can be exponentially spaced in an interval of width lnK, C is
of order ln lnK. Does this procedure answer Freund’s question? For our notion of variance, vt,
which our results suggest is a rather useful notion, the answer is yes. However, to relate ∆vt to
varwt(ℓt), we incur a multiplicative ratio ηt,max/ηt,min, which, for the quantile case, is of order√
lnK, turning the prior-in-the-square-root bound into a prior-outside-the-square-root bound. The

latter was already achievable by not tuning η to the prior complexities at all. This problem does not
arise in the same-scale uniform-prior case; there, ∆vt is bounded by a small multiple of varwt

(ℓt)
[De Rooij et al., 2014]. Note that this problem is present even when K is fixed while t grows, which
is narrowly outside the scope of the impossibility results of Marinov and Zimmert [2021]. This
discussion sheds light from another angle on why Freund’s problem is hard; we present a desirable
multiscale alternative.

Luckiness, gap, and Massart’s condition. We now address the advantage of MUSCADA’s refined
second-order measure of time vt over the zeroth-order number of rounds t. Multiscale zeroth-order
regret bounds (growing with t) can be guaranteed either by tuning MUSCADA crudely to a constant
multiple of t or by building an any-time improvement of the algorithm of Bubeck et al. [2019], also
tuned to t. Both t-tuned and vt-tuned algorithms have constant expected pseudoregret in stochastic
lucky cases, but the constant can be widely different. Indeed, the constant for t-tuned algorithms
scales with the inverse 1/dmin of the gap dmin = mink ̸=k∗ E[ℓt,k − ℓt,k∗ ], while the constant for
vt-tuned algorithms scales with the constant cM from Massart’s condition (see Definition 1.3). The
difference stems from the fact that cM is at most 1/dmin, but it can be arbitrarily smaller. This
separation appears to be fundamental. In the single-scale uniform-prior case, the above t-tuned
algorithms are closely related to Decreasing Hedge [Mourtada and Gaïffas, 2019], just as MUSCADA
is related to AdaHedge (see Section 2.1). Mourtada and Gaïffas [2019] show that, in the single-scale
case, even under Massart’s condition with cM = 1, Decreasing Hedge and, consequently, Bubeck
et al.’s algorithm with decreasing learning rates, has expected pseudoregret E[RB

t,k] ≳ 1/dmin. If the
smallest scale σmin > 0, by taking dmin small, this lower bound can be made arbitrarily worse than
the guarantee of MUSCADA, E[RMUSCADA

t,k∗ ] ≲ cM + 1, from Theorem 3.1.

Open problem. Our ability to incorporate an arbitrary prior suggests that the results should extend
to countably many experts. However, the current techniques do break down. When maxk∈N σk < ∞
MUSCADA with Tuning 1 (if infk∈N σk > 0) or Tuning 2 would still deliver the worst-case bound.
Yet our luckiness result currently requires maxk,l,t

ηt,k

ηt,lσ2
l

< ∞. Even with a common scale σ,
this is never the case due to the dependence of ηt on the prior π, which is necessarily decreasing.
Is luckiness actually possible, for example, in the online learning analog of the elegant challenge
example presented by Talagrand [2014, Chapter 2]?
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