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ABSTRACT

In the realm of neural network training, the question of what is truly being learned
beyond mathematical optimization has intrigued researchers for decades. This
study delves into the essence of neural network weights. By leveraging the prin-
ciples of singular value decomposition, we explore the hypothesis that the or-
thogonal bases of the low-rank decomposition of neural network weights stabilize
during training, and provide experimental evidence to support this notion. Build-
ing upon this insight, we introduce Orthogonality-Informed Adaptive Low-Rank
neural network training. Our novel approach seamlessly integrates into existing
training workflows with minimal accuracy loss, as demonstrated by benchmark-
ing on various datasets and well-established network architectures. We find that,
through standard tuning procedures, our method surpasses the performance of
conventional training setups. Finally, we showcase the effectiveness of our tuned
low-rank training procedure by applying it to a state-of-the-art transformer model
for time series prediction.

1 INTRODUCTION

When you train a neural network, what is it learning? From a technical view, its weights are it-
eratively adjusted based on the loss function’s back-propagated gradients so as to minimize the
difference between predicted outputs and target values. But what does this process look like from
an intuitive standpoint? Does the mathematical optimization of the loss function impose a structure
on the weights? Explaining why a neural network has learned something has intrigued researchers
for decades.

A neural network’s weights are typically represented as numerical values in a tensor. However, the
sizes of these network weights has been increasing for a number of years Bernstein et al. (2021).
One method to cope with these large networks on resource-constrained hardware is by representing
them with low-rank decompositions Hsu et al. (2022). This approximation factorizes a full-rank
matrix, M , into two or more matrices, where the inner dimension, r, is smaller than the dimensions
of the original matrix. It is expressed as Mm×n = Am×rBr×n, with the constraint that r <
min(m,n). A common method for finding a low-rank approximation of a given matrix is singular
value decomposition (SVD). SVD factorizes a matrix into an orthogonal basis U , an orthogonal
cobasis V , and a diagonal matrix of the singular values sorted in descending order Σ, as M =
UΣV T .

It has been shown multiple times that a neural network’s weights can be effectively approximated
by discarding the least significant singular values in their SVD, reducing the inner dimension of
the decomposition Psichogios & Ungar (1994); Fontenla-Romero et al. (2018); Xue et al. (2014);
Waleffe & Rekatsinas (2020). Many of these methods train on U , V , and Σ but do not maintain
the orthogonality of U and V ; those that do require additional training time Povey et al. (2018);
Schotthöfer et al. (2022). Furthermore, low-rank methods often come at the cost of accuracy Ren &
Xia (2023).

We posit that the orthogonal bases of the low-rank decomposition of neural network weights sta-
bilize during training, while subsequent training focuses on the linear mixing of said basis. In this
paper, we show experimental evidence of this hypothesis. We then demonstrate how we harness
the beneficial attributes of orthogonality by carefully structuring the training process and thus ul-
timately producing more effective, streamlined models compared to the original full-rank models.
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We provide implementations of the most common layer types and a method to wrap arbitrary model
architectures for any learning task. We use this approach to train low-rank versions of common
(state-of-the-art) networks. We find that, at best, our low-rank networks outperform their full-rank
counterparts, and at worst show minimal accuracy loss.

Our contributions include:

• We show evidence that the multi-dimensional weights of a neural network stabilize during
training.

• We propose a novel method of Orthogonality-Informed Adaptive Low-Rank (OIALR) neu-
ral network training and provide the tools for any researcher to use it on most networks.

• We demonstrate that our training approach seamlessly integrates into existing training
workflows with minimal accuracy loss by means of benchmarks on multiple datasets, data
modalities, well-known network architectures, and training tasks.

• We show that with tuning, OIALR outperforms conventional full-rank training.

2 RELATED WORK

The objective of network compression is to reduce a network’s size and complexity while retaining
or improving its performance Xu & McAuley (2023). For example, convolution layers have redun-
dancies which can be removed Tai et al. (2016); Hssayni et al. (2022); Boufssasse et al. (2023). The
most common methods of network compression use low-rank approximations. In its simplest form,
a low-rank approximation factorizes a matrix M as Mm×n = Am×rBr×n where r < min(m,n).
This approach is applied in Cahyawijaya et al. (2021) where network weights are decomposed, then
both A and B are trained with standard backpropagation.

The most common decomposition method for neural networks is SVD, see Wimmer et al. (2023);
Cohen & Welling (2016); Nesky & Stout (2020); Psichogios & Ungar (1994); Guo et al. (2023),
which comes with pre-existing optimized implementations and has been well-studied outside of the
neural network landscape. To the best of our knowledge, the earliest usage of SVD in neural network
compression is the SVD-NET Psichogios & Ungar (1994). This method reduces redundant hidden
nodes within a simple network by decomposing the network weights with SVD and training U , Σ,
and V . This basic approach has been utilized to great effect in many works, including addressing
dataset imbalances Fontenla-Romero et al. (2018), last layer compression Sainath et al. (2013),
entire network compression and training Xue et al. (2014), and sparse network training Swaminathan
et al. (2020). While many of these methods do not maintain bases orthogonality, those that do show
increased network performance Povey et al. (2018); Schotthöfer et al. (2022).

With the plethora of today’s pre-trained models, researchers have spent substantial effort to fine-
tune them for specific use cases, for which low-rank decompositions have been shown to be effec-
tive. In large language models (LLMs), LoRA Hu et al. (2022) demonstrated that adding a low-rank
weight component alongside the originally trained weights can adapt LLMs to specialized use cases.
DnA Jiang et al. (2022) takes a more extensive approach by reparameterizing the pre-trained model
via a “self-supervised alignment step on the target domain using only unlabeled data before con-
ducting the downstream supervised fine-tuning.”

A version of the Conformer Gulati et al. (2020) was trained using a specialized low-rank decompo-
sition using two matrices informed by the SVD of the original weight matrix Guo et al. (2023). This
method, as well as Fontenla-Romero et al. (2018); Swaminathan et al. (2020); Cohen & Welling
(2016); Ceruti et al. (2021); Hsu et al. (2022) and many of the approaches in Xu & McAuley (2023),
actively train all low-rank matrices in the decomposition. In DLRT Schotthöfer et al. (2022), each of
the three matrices in a model’s singular-value decomposed weights is trained in a separate forward-
backward pass while maintaining orthogonality. Beginning the training in low rank can be detri-
mental to network accuracy, as evidenced by previous work from Waleffe & Rekatsinas (2020);
Bejani & Ghatee (2020). To correct for this, the corresponding methods opt to transition to a low-
rank representation later in the training process. Furthermore, many low-rank methods show better
generalization, i.e. reduced overfitting, during training Winata et al. (2020); Phan et al. (2020);
Cahyawijaya et al. (2021).
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(a) ResNet-RS 101
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(b) Vision Transformer B/16

Figure 1: Stability, Equation (1), measurements of two different networks, both trained on
ImageNet-2012 Russakovsky et al. (2015) measured at a frequency of five epochs, i.e., the bases
of epoch i is compared to the bases of epoch i − 5. X-axis is the epoch number, y-axis is the layer
of the network with layers closest to the input at the top. Darker colors indicate less stability and
lighter colors indicate more stability. Beneath each plot is the mean stability for each epoch shown.

When decomposing a matrix, its orthogonal basis can be viewed as the coordinate system in which
the matrix operates. In this vein, it can be extremely useful for explaining the inner working of
modern black-box neural networks. Intuitively, orthogonal networks are beneficial from an explain-
ability viewpoint. ExNN Yang et al. (2021) utilized methods to preserve projection orthogonality
during training to improve interpretability. Similarly, the Bort optimizer Zhang et al. (2023) aims to
improve model explainability using boundedness and orthogonality constraints.

3 OBSERVING ORTHOGONALITY PRESENT IN NEURAL NETWORK TRAINING

Like any real-valued, multi-dimensional matrix, each of a neural network’s weights can be decom-
posed into an orthogonal matrix and a linear mixing matrix. We hypothesize that the orthogonal
bases in the decomposition of the weights stabilize during training.

To test our hypothesis we determine each weight’s orthogonal basis of different neural networks
using the semi-orthogonal bases from its compact SVD. Compact SVD loosens the orthogonality
constraints on U and V to only semi-orthogonal in the column dimension to reduce the inner di-
mension r. More precisely, it factorizes a matrix M ∈ Rm×n into UΣV T , where Σ ∈ Rr×r

is a diagonal matrix with the singular values along its diagonal, U ∈ Rm×r and V ∈ Rn×r are
semi-orthogonal matrices of orthogonal column vectors, and r ≤ min (m,n). To obtain a two-
dimensional (2D) representation of a weight tensor with more than two dimensions we maintain the
original weight’s leading dimension and collapse those remaining. If the resulting 2D weight rep-
resentation is either not square or not tall and skinny, we use its transpose. We then find a compact
SVD of this representation to obtain the orthogonal bases. While the SVD of M is not unique,
UV T is uniquely determined by M(MTM)−1/2 and is thus both unique and orthogonal, making
it ideal for tracking.

To compare a weights’s bases at two distinct times during training, i and j, we define their relative
stability Sij as the average of the dot products of each basis vector:

Sij = (UV T )i · (UV T )j (1)

where (UV T )k represents the basis at a given time k during training. Figure 1 shows how the
layers’ stability evolves for two vastly different network architectures, ResNet-RS 101 Bello et al.
(2021) and the VisionTransformer (ViT) B/16 Dosovitskiy et al. (2021), both trained on ImageNet-
2012 Russakovsky et al. (2015). In both cases, the bases stabilize during training, as shown by the
increase in the relative stability S over the training time.

There are general patterns which quickly emerge from these figures: the weights closer to the output
stabilize faster than those toward the input, the stabilization rate differs depending on the layer
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Algorithm 1: Updating a weight’s basis and cobasis, U and V , from the weight’s actively
trained singular value matrix Σ. U , Σ, and V comprise the current low-rank SVD of with
weight W, variables with a ′ are found from the trained values of Σ.

Input: Basis U , cobasis V , trained Σ matrix
1 U

′
,Σ

′
,V

′T ← SVD(Σ) // W ≈ UΣV T

2 U ← UU
′
,V T ← V

′TV T ,Σ← Σ
′

// W ≈ UU
′
Σ

′
V

′TV T

type, and the stability increases throughout training. These observations intuitively make sense: the
updates for weights closer to the network’s output will have fewer layer terms thus the weights will
get more direct responses for their ‘mistakes,’ a linear layer behaves differently than a convolution
or attention layer, and as we move towards the end of training each layer has learned most of how it
responds to inputs.

We theorize that the stabilization of the orthogonal bases during network training is crucial to the
optimization process. Intuitively, this process resembles language learning Chomsky (1972). First,
you develop a feeling for the language by acquiring a basic vocabulary and some phrases. Then,
you delve into more complex grammar. Once you have learned the grammar, there is no need to re-
learn it from scratch, you only need to learn how to apply it. Similarly, neural networks first grasp
the task’s fundamentals, then discern the roles of each layer, and ultimately fine-tune each layer’s
functionality for its task.

4 ORTHOGONALITY-INFORMED ADAPTIVE LOW-RANK TRAINING

To harness the stabilized orthogonal bases in neural network training, we present a novel algorithm
that reduces the number of trainable parameters while maintaining accuracy and overall time-to-
train.

As shown in Figure 1, most layers’ bases do not stabilize before a few epochs have passed. There-
fore, we start training in a traditional full-rank scheme. After a specified number of iterations d, we
transition the network’s eligible weights to low rank via their SVD. Experimentally, we found that
the delay should be about one third of the total number of iterations. At this point, we no longer
train U and V T with backpropagation and train only the square matrix Σ. After a specified number
training steps ν, the bases U and V T are updated by extracting the new bases from the trained Σ
matrix using an SVD of Σ, as outlined in Algorithm 1. After the basis U and cobasis V T are up-
dated, a new inner rank is found by removing all singular values whose absolute magnitude is less
than β times the largest singular value in the current Σ, where β is a hyperparameter that defaults to
0.1. As the first layers of the network are unstable for longer and likely require most of their ranks,
the update of U and V is only applied to the last ℓ layers of the network where ℓ = L · α · u, where
L is the number of network layers, α is a hyperparameter defaulting to 0.1, and u is the number of
updates which have been completed. This process repeats until the end of training. Optionally, the
first or last layers can be excluded from low-rank training depending on the use case. We provide an
outline of our Orthogonality-Informed Adaptive Low-Rank (OIALR) training in Algorithm 2.

5 EXPERIMENTS

To validate our OIALR training approach, we conducted several experiments using different neural
network architectures and datasets. We focused on demonstrating its effectiveness in terms of re-
ducing the number of trainable parameters while maintaining, or improving, network performance
and training time. We began by naively applying the OIALR method to a standard neural network
training setup to explore what a typical researcher would experience in Sections 5.2 to 5.4. How-
ever, as OIALR changes the network structure during training, we expect the hyperparameters to
vary from those commonly used for full-rank training. For the final two experiments, Sections 5.5
and 5.6, we tuned the hyperparameters for OIALR using Propulate Taubert et al. (2023), an
asynchronous evolutionary optimization algorithm designed for usage on high performance clusters
which has been shown to be effective for neural architecture searches Coquelin et al. (2021).
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Algorithm 2: OIALR training method on an unspecified model M .
Input: Model M , training steps tmax, delay d, low-rank update frequency ν, singular value

cutoff fraction β, percentage of layers in each low-rank update step size α
1 L← Number of possible low-rank weights in M
2 ℓ← L · α
3 for t← 1 to tmax do
4 if t < d then
5 Train full-rank network.
6 else if t = d then
7 Convert network to low rank.
8 else if t mod ν = 0 then
9 for i← L− ℓ to L do

10 Update weight i with Algorithm 1.
11 Remove singular values < β · max(Σi).
12 Reshape Ui, Vi, Σi, and optimizer states.
13 ℓ← ℓ+ L · α
14 else
15 Train low-rank network (Σ for all low-rank weights).

Table 1: Baseline and OIALR trainings of ViT-B/16 and ResNet-RS 101 Bello et al. (2021) on
ImageNet-2012 Russakovsky et al. (2015). ‘Time’ refers to the time to train in hours, the last row
shows the number of trainable parameters in the low-rank model as a percentage of the full-rank
model.

ViT-B/16 ResNet-RS 101

Loss Top-1 Top-5 Time Loss Top-1 Top-5 Time

Baseline 2.16 71.64 % 89.18 % 3.29 h 1.78 78.75 % 94.21 % 5.55 h
OIALR 2.20 70.30 % 88.73 % 3.26 h 1.81 77.95 % 93.95 % 5.92 h

Parameters 16.56 % 15.66 %

In an attempt to showcase how our method would perform on real-world use cases, our experi-
ments used state-of-the-art techniques and models, including strong image transforms Touvron et al.
(2021), dropout Srivastava et al. (2014), learning rate warm-up Gotmare et al. (2019), and cosine
learning rate decay Loshchilov & Hutter (2017), the utilized implementations of which are from
Wightman et al. (2023). We trained all networks using the AdamW Loshchilov & Hutter (2018)
optimizer. The complete sets of hyperparameters are included in Appendix A. We list results as the
average of three runs, all of which have unique random seeds.

5.1 COMPUTATIONAL ENVIRONMENT

We ran all experiments on a distributed-memory, parallel hybrid supercomputer. Each compute node
is equipped with two 38-core Intel Xeon Platinum 8368 processors at 2.4GHz base and 3.4GHz
maximum turbo frequency, 512GB local memory, a local 960GB NVMe SSD disk, two network
adapters, and four NVIDIA A100-40 GPUs with 40GB memory connected via NVLink. Inter-node
communication uses a low-latency, non-blocking NVIDIA Mellanox InfiniBand 4X HDR intercon-
nect with 200Gbit/s per port. All experiments used Python 3.10.6 with CUDA-enabled PyTorch
2.0.0 Paszke et al. (2019). The source code for the implementation is publicly available1.

5.2 VISION TRANSFORMER ON IMAGENET-2012

For the first experiment, we trained the Vision Transformer (ViT)-B/16 model Dosovitskiy et al.
(2021) in its standard form on the ImageNet-2012 dataset Beyer et al. (2020) using the ReaL val-
idation labels Beyer et al. (2020). The considerable number of parameters in this model provided

1Will be released upon publication
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Figure 2: Training curves from training a ViT-B/16 network on ImageNet-2012 for 125 epochs.

us with a rigorous testing ground for our OIALR training method. We maintained the same hyper-
parameters for both full-rank and adaptive low-rank. To reduce the environmental impact of our
experiments, we trained for 125 instead of the original 300 epochs Dosovitskiy et al. (2021). At this
point in training, the validation accuracy was observed to be nearly stabilized, see Figure 2b. In this
vein, we used an image resolution of 160× 160 instead of 224× 224 to reduce the training time and
energy consumption.

The results are shown in Figure 2 and Table 1. Figure 2a illustrates the top-1 validation score, the
number of trainable parameters as a percentage of the full-rank model, and the average network sta-
bility (as in Figure 1) throughout the training. We observe that, while the baseline stability increases
smoothly throughout the training, OIALR’s stability is less consistent as the ranks of the weights are
reduced. This is caused by the reduction of ranks themselves as the UV T from five epochs prior
contains more basis vectors than the current UV T . An important observation is the momentary drop
in accuracy when the network switches from full-rank to low-rank weights, best seen in Figure 2b,
although it quickly rebounds to higher accuracies than before. We theorize that this is caused by the
left-over momentum states in the optimizer.

OIALR training reduced the training time by approximately 1%, though the resulting low-rank
model showed 1.34 ± 0.39% worse performance in this naive configuration. The OIALR method
decreased the number of trainable parameters to 16.56 ± 0.23% of the full-rank parameters. Fig-
ure 2b shows that the full-rank model has moved into the overfitting regime, where the training
accuracy continues increasing while the validation accuracy does not, and the low-rank model has
not.

5.3 RESNET-RS 101 ON IMAGENET-2012

To show the versatility of our approach, we trained the ResNet-RS 101 Bello et al. (2021) architec-
ture on ImageNet-2012 for image classification. We trained the model for 125 epochs with an image
resolution of 160× 160 and validate using a resolution of 224× 224 on the ReaL labels Beyer et al.
(2020). The results are included in Table 1.

At the end of OIALR training, only 15.66±0.08% of the original full-rank weights remain trainable
with only a minor 1.03 ± 0.16% reduction in top-1 accuracy. Due to implementation limitations
and the conflicting 2D weight representation and 2D convolution operation, low-rank training was
6.67± 0.49% slower than full-rank training.

5.4 ONEFORMER ON CITYSCAPES

In the next experiment, we train the OneFormer Jain et al. (2023) model on the CityScapes Cordts
et al. (2016) dataset for semantic segmentation. OneFormer is “a universal image segmentation
framework that unifies segmentation with a multi-task train-once design” Jain et al. (2023), i.e. this
model trains on multiple tasks at once. We trained the model with the configuration provided by
the original authors with only slight modifications (reduced batch size to fit into GPU VRAM and
model wrapping for OIALR runs). The results are shown in Table 2.
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Table 2: Training the OneFormer on the CityScapes dataset. The rightmost column shows the
number of trainable parameters as a percentage of the full-rank model.

IoU Category IoU Time to train Trainable Parameters

Full rank 72.47 % 88.68 % 32.76 h 100 %
OIALR 68.18 % 87.32 % 32.95 h 28.56 %

Table 3: A mini ViT similar to that used in Hassani et al. (2022) trained on CIFAR-10. Base-
line indicates the full-rank trainings. ‘OAILR, tuned’ trainings used tuned hyperparameters, while
‘OIALR, untuned’ used the same hyperparameters as the baseline. Accuracies and loss values are
determined on the test dataset. The rightmost column shows the number of trainable parameters as
a percentage of the full-rank model.

Loss Top-1 Top-5 Time to train Trainable Parameters

Full rank 0.88 85.17 % 98.34 % 12.14 min 100 %
OIALR, untuned 0.91 83.05 % 98.38 % 11.99 min 30.98 %
OIALR, tuned 0.85 86.33 % 98.53 % 11.19 min 9.97 %

As expected, when using hyperparameters designed for full-rank training, we note a reduction in the
class IoU of 4.29 ± 0.21% and a slight reduction in the categorical IoU of 1.02 ± 0.09%. While
the OIALR model had 28.56 ± 0.02% of the full-rank model’s trainable parameters, it required
0.58± 0.02% more time to train, this equates to 11.5min longer in wallclock time.

5.5 ABLATION STUDY ON MINI VIT ON CIFAR-10

To show how OIALR performs with proper tuning, we trained a reduced-size ViT model on the
CIFAR-10 dataset with and without tuning. The runs without tuning utilize the same hyperparame-
ters as the baseline runs. As reduced size ViT models have been shown to perform superbly Hassani
et al. (2022) at a fraction of the compute time, we elect to use a ViT-B/16 variant with a patch size of
8, 6 layers, and 6 attention heads in this experiment (original values are a patch size of 16, 12 layers,
and 12 attention heads). The results of this experiment are shown in Table 3 and Figure 3.

The top-1 test results are shown in Figure 3a alongside the stability measurements and number of
trainable parameters for both the tuned OAILR runs and the baseline runs. We can see here that the
baseline stability is nearly constant the entire training, indicating that the network was only tuning
the linear mixing of the bases after the fifth epoch. The stability of OIALR runs shows a saw-tooth
pattern each time the rank was lowered as the previous bases was composed with basis vectors which
had since been removed.

Interestingly, the best learning rate schedule for the OIALR trainings which was found in the hyper-
parameter search increases the learning rate as the number of parameters is reduced, see Figure 3b.
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Figure 4: MSE and percentage of trainable parameters as opposed to the full-rank network for the
Autoformer trained on the ETTm2 dataset using two different prediction lengths in 15min time
steps.

This result makes intuitive sense: as the number of trainable parameters decreases, the learning rate
applied to the gradients of the remaining parameters can be increased without the model degrading.

The tuned OIALR model reduced the number of trainable parameters by 90.03 ± 0.13% while in-
creasing predictive performance over the baseline from 85.17± 0.42% to 86.33± 0.71%. Further-
more, training time was reduced by 8.52± 0.82% over the baseline. Although the untuned OIALR
model reduced the number of trainable parameters by 69.02± 0.07%, the top-1 test accuracy drops
by over 2 %.

5.6 ABLATTION STUDY ON AUTOFORMER ON ETTM2

This use case serves as a crucial test for OIALR training as it demonstrates the method’s versatility
by applying it to a model in a radically different domain. Furthermore, it serves to validate that the
findings depicted in Figure 1 remain applicable in non-image scenarios.

The Electricity Transformer Dataset Zhou et al. (2021) (ETT) measures load and oil temperature of
electrical transformers. It contains 70,000 measurements, available in different levels of granularity,
each with seven different features and is primarily used for time series forecasting. We focus on the
ETTm2 dataset, which uses a 15-minute resolution. Common prediction lengths for this dataset are
96, 192, 336, and 720 time steps. The Autoformer Wu et al. (2021) is a well-known transformer
model contained in Hugging Face’s repository. Unlike the other tested transformers, this model uses
auto-correlation layers and one-dimensional convolutions. Due to its success at the time, it was
deployed at the 2022 Winter Olympics for weather forecasting.

As the baseline for this experiment suffers quickly from overfitting, see Figure 4, we start in low
rank instead of transitioning during training. Although we do see some overfitting in the OIALR
results, it is much less severe than in the baseline. As Table 4 indicates, the tuned OIALR models

Table 4: Training of the Autoformer model on the ETTm2 dataset. Baseline and untuned OIALR
hyperparameters were chosen as the default parameters in the original source. Tuned OIALR hyper-
paramters found via Propulate. Prediction lengths are in 15min time steps. The optimal values
for the mean squared error (MSE) and mean absolute error (MAE) are both zero. The last two rows
show the number of trainable parameters as a percentage of the full-rank model for untuned and
tuned OIALR training respectively.

Prediction length 96 192 336 720
MSE MAE MSE MAE MSE MAE MSE MAE

Base 0.2145 0.2994 0.2737 0.3356 0.3277 0.3640 0.4194 0.4157
OIALR, untuned 0.2140 0.2974 0.2773 0.3336 0.3253 0.3632 0.4213 0.4186
OIALR, tuned 0.2112 0.2942 0.2686 0.3305 0.3212 0.3591 0.4120 0.4147
Parameters, untuned 49.09 % 43.59 % 45.67 % 51.33 %
Parameters, tuned 27.53 % 8.85 % 4.88 % 4.47 %
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were more accurate for all prediction lengths with a drastically decreased number of parameters,
The untuned OIALR models outperformed the baseline in some cases, and succeeded in reducing
the number of trainable parameters by 47.42% on average. Interestingly, the tuned OIALR model
required more trainable parameters for predicting shorter time-spans.

In contrast to the previous experiment, the best learning rate scheduler found for this use case more
closely resembles a traditional scheduler, featuring a warm-up phase followed by a gradual decay.
This may be related to the fact that the networks, both low-rank and full-rank, overfit the training
dataset quickly.

6 CONCLUSION

There has long been curiosity about what is being learned within a neural network during training.
This study aimed to shed light on this question by exploring the nature of neural network weights
during training through their singular value decomposition. Our findings revealed that the orthogonal
component of the a neural network’s weights stabilize early in the training process. Building on this
discovery, we introduced Orthogonality-Informed Adaptive Low-Rank (OIALR) training.

We used the OIALR training method to train low-rank versions of common and state-of-the-art net-
works across various data modalities and tasks. While our method may not improve upon traditional
training techniques per se, it can outperform them in terms of accuracy and time to train when tuned
appropriately. Notably, its true potential lies in significantly reducing the number of trainable pa-
rameters, enabling model fine-tuning and production on resource-constrained devices and reducing
the amount of data to communicate during distributed training.

Integrating orthogonality-based training methods into the deep learning researcher’s toolkit offers
promising possibilities for a wide range of applications. With this work, we hope to inspire further
exploration and refinement of orthogonality-informed methods, ultimately advancing the field of
machine learning and its practicality across diverse domains.
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Steffen Schotthöfer, Emanuele Zangrando, Jonas Kusch, et al. Low-rank lottery tickets:
finding efficient low-rank neural networks via matrix differential equations. Advances
in Neural Information Processing Systems, 35:20051–20063, December 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/hash/
7e98b00eeafcdaeb0c5661fb9355be3a-Abstract-Conference.html.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, et al. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. Journal of Machine Learning Research, 15(56):1929–1958,
2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

11

http://arxiv.org/abs/1608.03983
https://openreview.net/forum?id=rk6qdGgCZ
https://doi.org/10.1007/s00521-019-04531-z
https://www.isca-speech.org/archive/interspeech_2018/povey18_interspeech.html
https://www.isca-speech.org/archive/interspeech_2018/povey18_interspeech.html
https://doi.org/10.1007/978-981-99-2897-2_8
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://proceedings.neurips.cc/paper_files/paper/2022/hash/7e98b00eeafcdaeb0c5661fb9355be3a-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/7e98b00eeafcdaeb0c5661fb9355be3a-Abstract-Conference.html
http://jmlr.org/papers/v15/srivastava14a.html


Under review as a conference paper at ICLR 2024

Sridhar Swaminathan, Deepak Garg, Rajkumar Kannan, and Frederic Andres. Sparse low rank fac-
torization for deep neural network compression. Neurocomputing, 398:185–196, July 2020. ISSN
0925-2312. doi: 10.1016/j.neucom.2020.02.035. URL https://www.sciencedirect.
com/science/article/pii/S0925231220302253.

Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, and Weinan E. Convolutional neural net-
works with low-rank regularization, February 2016. URL http://arxiv.org/abs/1511.
06067. arXiv:1511.06067 [cs, stat].

Oskar Taubert, Marie Weiel, Daniel Coquelin, et al. Massively parallel genetic optimization through
asynchronous propagation of populations. In International Conference on High Performance
Computing, pp. 106–124. Springer, 2023.

Hugo Touvron, Matthieu Cord, Matthijs Douze, et al. Training data-efficient image transformers &
distillation through attention. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 10347–10357. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/touvron21a.html.

Roger Waleffe and Theodoros Rekatsinas. Principal Component Networks: Parameter Reduction
Early in Training. CoRR, abs/2006.13347, 2020. URL https://arxiv.org/abs/2006.
13347.

Ross Wightman, Nathan Raw, Alexander Soare, et al. rwightman/pytorch-image-models:
v0.8.10dev0 Release, February 2023. URL https://zenodo.org/record/4414861.

Paul Wimmer, Jens Mehnert, and Alexandru Paul Condurache. Dimensionality reduced training by
pruning and freezing parts of a deep neural network: a survey. Artificial Intelligence Review, May
2023. ISSN 1573-7462. doi: 10.1007/s10462-023-10489-1. URL https://doi.org/10.
1007/s10462-023-10489-1.

Genta Indra Winata, Samuel Cahyawijaya, Zhaojiang Lin, Zihan Liu, and Pascale Fung. Lightweight
and Efficient End-To-End Speech Recognition Using Low-Rank Transformer. In ICASSP 2020 -
2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
6144–6148, May 2020. doi: 10.1109/ICASSP40776.2020.9053878. ISSN: 2379-190X.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition Trans-
formers with Auto-Correlation for Long-Term Series Forecasting. In Advances in Neural Infor-
mation Processing Systems, 2021.

Canwen Xu and Julian McAuley. A Survey on Model Compression and Acceleration for Pretrained
Language Models. Proceedings of the AAAI Conference on Artificial Intelligence, 37(9):10566–
10575, June 2023. ISSN 2374-3468. doi: 10.1609/aaai.v37i9.26255. URL https://ojs.
aaai.org/index.php/AAAI/article/view/26255. Number: 9.

Jian Xue, Jinyu Li, Dong Yu, Mike Seltzer, and Yifan Gong. Singular value decomposition based
low-footprint speaker adaptation and personalization for deep neural network. In 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6359–6363,
May 2014. doi: 10.1109/ICASSP.2014.6854828. ISSN: 2379-190X.

Zebin Yang, Aijun Zhang, and Agus Sudjianto. Enhancing explainability of neural networks through
architecture constraints. IEEE Transactions on Neural Networks and Learning Systems, 32(6):
2610–2621, 2021. doi: 10.1109/TNNLS.2020.3007259.

Borui Zhang, Wenzhao Zheng, Jie Zhou, and Jiwen Lu. Bort: Towards Explainable Neural Networks
with Bounded Orthogonal Constraint. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=My57qBufZWs.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, et al. Informer: Beyond Efficient Transformer for Long
Sequence Time-Series Forecasting, March 2021. URL http://arxiv.org/abs/2012.
07436. arXiv:2012.07436 [cs].

12

https://www.sciencedirect.com/science/article/pii/S0925231220302253
https://www.sciencedirect.com/science/article/pii/S0925231220302253
http://arxiv.org/abs/1511.06067
http://arxiv.org/abs/1511.06067
https://proceedings.mlr.press/v139/touvron21a.html
https://proceedings.mlr.press/v139/touvron21a.html
https://arxiv.org/abs/2006.13347
https://arxiv.org/abs/2006.13347
https://zenodo.org/record/4414861
https://doi.org/10.1007/s10462-023-10489-1
https://doi.org/10.1007/s10462-023-10489-1
https://ojs.aaai.org/index.php/AAAI/article/view/26255
https://ojs.aaai.org/index.php/AAAI/article/view/26255
https://openreview.net/forum?id=My57qBufZWs
http://arxiv.org/abs/2012.07436
http://arxiv.org/abs/2012.07436

	Introduction
	Related Work
	Observing Orthogonality Present in Neural Network Training
	Orthogonality-Informed Adaptive Low-Rank Training
	Experiments
	Computational Environment
	Vision Transformer on ImageNet-2012
	ResNet-RS 101 on ImageNet-2012
	OneFormer on CityScapes
	Ablation Study on Mini ViT on CIFAR-10
	Ablattion Study on Autoformer on ETTm2

	Conclusion

