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Abstract

Model-based reinforcement learning (RL) has demonstrated
remarkable successes on a range of continuous control tasks
due to its high sample efficiency. To save the computation
cost of conducting planning online, recent practices tend to
distill optimized action sequences into an RL policy during
the training phase. Although the distillation can incorporate
both the foresight of planning and the exploration ability of
RL policies, the theoretical understanding of these methods is
yet unclear. In this paper, we extend the policy improvement
step of Soft Actor-Critic (SAC) by developing an approach
to distill from model-based planning to the policy. We then
demonstrate that such an approach of policy improvement has
a theoretical guarantee of monotonic improvement and con-
vergence to the maximum value defined in SAC. We discuss
effective design choices and implement our theory as a prac-
tical algorithm—Model-based Planning Distilled to Policy
(MPDP)—that updates the policy jointly over multiple future
time steps. Extensive experiments show that MPDP achieves
better sample efficiency and asymptotic performance than
both model-free and model-based planning algorithms on six
continuous control benchmark tasks in MuJoCo.

Introduction
Model-based Reinforcement Learning (RL) has achieved
great success on continuous control tasks (Levine and
Abbeel 2014; Heess et al. 2015; Buckman et al. 2018; Ku-
rutach et al. 2018; Zhang et al. 2022). Model-based RL al-
gorithms learn the true dynamics by fitting a model (usually
a neural network) to the repeated interactions with the en-
vironment and use the model to generate imaginary data or
perform online planning, which provides better sample ef-
ficiency than model-free RL (Mnih et al. 2013; Schulman
et al. 2017; Fujimoto, Hoof, and Meger 2018; Hu et al.
2021).

A typical kind of model-based RL algorithm performs on-
line planning to optimize the future action sequence over a
long time horizon, i.e., model-based planning (Levine and
Abbeel 2014; Chua et al. 2018; Wang and Ba 2019; Ry-
bkin et al. 2021). However, model-based planning has two
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weaknesses. First, it can hardly be applied in real-time, be-
cause it needs to solve an optimization problem on each
time step and cannot remember the solution for reuse in the
future similar states (Wang and Ba 2019). Second, it only
optimizes the maximum of the reward sum over the future
states, rather than the trade-off between exploration and ex-
ploitation, which limits the ability to discover diverse states
and better policies (Levine and Abbeel 2014). To reduce the
time consumption during the application and incorporate the
foresight of planning and the exploration ability of RL, some
recent works distill the result of model-based planning into
an RL policy (Levine and Abbeel 2014; Wang and Ba 2019).
Specifically, POPLIN uses the cross entropy method (CEM)
(Botev et al. 2013) to optimize the action planning and uses
behavior cloning to distill the planning result into the pol-
icy network. However, some essential theoretical properties
of such kind of distillation are not well-understood, i.e., (1)
whether the distilled policy achieves a higher value than the
old policy; (2) whether the distilled policy has a guarantee of
convergence to the optimal policy; (3) whether the distilled
policy incorporates the foresight of planning and achieves a
higher value than the original model-free policy update.

In this paper, we theoretically analyze the problems men-
tioned above. We choose Soft Actor-Critic (SAC) (Haarnoja
et al. 2018) as the RL component of our analysis due to its
state-of-the-art performance in both model-free and model-
based paradigms. Originally, the policy improvement of
SAC is a one-step optimization. We first define a planning
problem by extending the one-step optimization of SAC un-
der the model-based paradigm to a multi-step optimization
problem of action planning. For each state st, the optimal
planning solution returns a policy πH

st
defined on a horizon

of states st:t+H−1 starting from st. Then, we propose a sim-
ple approach to distill the solution of the above multi-step
optimization to the policy, which is an extended form of the
policy improvement of SAC. This approach reserves the re-
turned policy πH

st
(·|st) for the first state st and discards the

returned policy πH
st
(·|st+1:H−1) for the future states.

Afterwards, we derive the theoretical result that the ex-
tended policy improvement is promising to achieve a higher
return and lead the policy to converge to the optimal pol-
icy. Thus the extension incorporates the farsight planning
and has the potential to improve remarkably upon origi-



Algorithms Ensemble Dynamics Multiple Horizon Regularization Planning Theorem

SAC(Haarnoja et al. 2018) % % % %

MBPO(Janner et al. 2019) " % % %

POPLIN(Wang and Ba 2019) " " % %

M2AC(Pan et al. 2020) " " % %

MPDP(our work) " " " "

Table 1: Key features of different model-free and model-based algorithms.

nal one-step policy improvement. Furthermore, to develop
a practical algorithm, we discuss the solver of the defined
multi-step optimization and design regularization to reduce
the model error. Based on the above theory and discus-
sion, we propose a new model-based RL algorithm, Model-
based Planning Distilled to Policy (MPDP). Compared to
POPLIN, which uses behavior cloning for distillation and
realizes the stochastic exploration via the CEM sampling,
MPDP utilizes a distillation approach with theoretically
guaranteed improvement and inherits the stochastic explo-
ration of SAC, thus has a naturally strong ability to explore
better policies. For illustrating the effectiveness of MPDP,
a thorough component comparison of relevant algorithms is
given in Table 1.

Summary of Contributions: (1) We propose a model-
based extended policy improvement method, which utilizes
model-based planning to distill RL policy and model reg-
ularization to reduce the impact of model errors. (2) We
demonstrate that our method has a theoretical guarantee of
monotonic improvement and convergence. And we theoret-
ically analyze how the planning horizon affects policy im-
provement. (3) Experimental results empirically show that
MPDP achieves better sample efficiency and asymptotic per-
formance than state-of-the-art model-free and model-based
planning algorithms on the MuJoCo (Todorov, Erez, and
Tassa 2012) benchmark.

Related Work
Model-based Reinforcement Learning. Model-based re-
inforcement learning methods show a promising prospect
for real-world decision-making problems due to their data
efficiency. However, learning an accurate model is chal-
lenging, especially in complex environments. Many papers
(Chua et al. 2018; Kurutach et al. 2018; Janner et al. 2019;
Wang et al. 2023) commonly use ensemble probabilistic net-
works to construct uncertainty-aware environment models.

The previously proposed model-based methods (Feinberg
et al. 2018; Buckman et al. 2018; Jia et al. 2021; Voelcker
et al. 2022) allow the model rollout to a fixed depth, and
value estimations are split into a model-based reward and a
model-free value. To guarantee the monotonic improvement,
the recent work (Luo et al. 2019) builds a lower bound of the
expected reward and then maximizes the lower bound jointly
over the policy and the model. Furthermore, model-based
policy optimization (Janner et al. 2019) utilizes short model-
generated rollouts to do policy improvement and evaluation,
and also provides a guarantee of monotonic improvement.

Current model-based RL mainly focuses on better model
usage. For example, M2AC (Pan et al. 2020) implements a
masking mechanism based on the model’s uncertainty to de-
cide whether its prediction should be used or not. Another
line of works (Levine and Abbeel 2014; Heess et al. 2015)
aims to exploit the differentiability of the learned model
in model-based RL. Model-augmented actor-critic (Clavera,
Fu, and Abbeel 2020) uses the path-wise derivative of the
learned model and policy across future time steps. Moreover,
our work estimates value function by utilizing the model er-
ror as regularization.

Model-based Planning. Many recent papers on deep
model-based RL (Chua et al. 2018; Ebert et al. 2018; Tassa,
Erez, and Todorov 2012) optimize the future action trajec-
tories over a given horizon starting from the current state,
which is usually referred as model-based planning. Model
predictive control (Tassa, Erez, and Todorov 2012) is a
common control approach for model-based planning. It fre-
quently solves the action planning over a limited horizon and
conducts the first action on the environment. Random Shoot-
ing optimizes the action sequence among the randomly gen-
erated candidates to maximize the expected reward under the
learned dynamic model, and PETS (Chua et al. 2018) uses
the cross entropy method (Botev et al. 2013) to improve the
efficiency of the random search. However, shooting meth-
ods usually rely on the local search in the action space and
are not effective on high-dimension environments. To solve
this problem, the latest work (Rybkin et al. 2021) utilizes
the collocation-based planning in a learned latent space. In
contrast, we extend the policy improvement step of SAC to
distill from model-based planning to the policy, which re-
duces the cost in the deployment phase.

In addition, some recent works distill the result from
model-based policy planning into an RL policy. POPLIN
(Wang and Ba 2019) formulates action planning at each
time step as an optimization problem w.r.t. the parameters
of the policy network, and uses behavior cloning to distill
the resulted action into the policy network. GPS (Levine and
Koltun 2013; Levine and Abbeel 2014) uses KL divergence
to minimize the distance between the policy and the plan-
ning result. However, the essential theoretical properties of
such distillation are not well-understood. Instead, we pro-
pose an algorithm to improve the policy with the solution of
model-based planning over multiple time steps, and give the
theoretical guarantee of its improvement and convergence.



Actor-Critic Methods. Actor-critic algorithms are typi-
cally derived from policy iteration, which alternates between
policy evaluation and policy improvement. Deep determin-
istic policy gradient (Lillicrap et al. 2016) is a common
model-free actor-critic method, however, the critic is usu-
ally overestimated to predict Q value, which leads to the
worse policy. Moreover, twin delayed deep deterministic
policy (Fujimoto, Hoof, and Meger 2018) mainly utilizes
the clipped double Q learning to alleviate the above over-
estimation. SAC (Haarnoja et al. 2018; Zhou et al. 2022)
is the SOTA algorithm of policy learning under the model-
based paradigm. In the framework of SAC, the actor aims to
maximize expected reward with entropy and the critic eval-
uates the expected cumulative reward with entropy. Due to
the splendid performance of SAC, we choose it as the RL
instance to prove the theoretical properties, by distilling the
planning into an RL policy.

Preliminaries
Notation
We consider continuous control tasks which can be formu-
lated as infinite-horizon Markov Decision Processes (MDP)
(S,A, p, r, γ), where the state space S and the action space
A are both continuous. State transition p : S×A×S → R+

and r : S × A → R are the dynamics of the environment
and the reward function, respectively. γ is the discount fac-
tor. Additionally, we define π(a|s) : S × A → R+ as the
RL policy on the state s, with Q(s,a) and V (s) as the cor-
responding value functions.

Soft Actor-Critic
Soft Actor-Critic(SAC) (Haarnoja et al. 2018) develops a
maximum entropy objective to incentivize the policy to ex-
plore more widely, which is the discounted sum of both the
reward and the entropy, formalized as:

Jst(π) = Eat∼π

[ ∞∑
t=0

γt · [r(st,at)− α · logπ(at|st)]

]
.

(1)

The coefficient α balances the importance of the reward
and entropy, and hence controls the exploration of the pol-
icy. we omit α in the rest of this paper for simplicity. The
policy evaluation of SAC is based on the maximum entropy
objective, i.e., the value function Q and V also contain the
discounted sum of the entropy over the subsequent states.
The Bellman backup operator T π of SAC is given by:

T πQ(st,at) = r(st,at) + γ · V (st+1), (2)
V (st) = Eat∼π [Q(st,at)− logπ(at|st)] . (3)

In the policy improvement step of SAC, the new policy
optimizes the V (st) on each state st:

πnew(·|st) = argmax
π

Eat∼π [Q
πold(st,at)− logπ(at|st)] .

(4)

We reformulate the objective as:

πnew(·|st) = argmax
π

Eat∼π [ r(st,at)− logπ(at|st)

+ γ · V πold(st+1) ] .
(5)

This objective leads the new policy to optimize the modi-
fied reward r(st,at)− logπ(at|st) only on the current state
st w.r.t. at, with the subsequent states following the old pol-
icy πold, which is myopic under the model-based paradigm,
because the dynamics of the environment can be approxi-
mated by the environment model, which enables the joint
optimization of actions over multiple future time-steps.

Environment Model
A common setting used in model-based RL is model ensem-
ble (Chua et al. 2018; Kurutach et al. 2018; Janner et al.
2019; Luo et al. 2019; Pan et al. 2020), where an ensem-
ble of models learn the distribution of the transitions from
historical interactions. Typically, the models are paramet-
ric function approximators p1:K(·|s,a) and are trained via
maximum likelihood:

∑K
i=1 E [log(pi(st+1|st,at))].

Distillation from Planning into Policy
In this section, we propose an approach to distilling the so-
lution of model-based planning into the policy, which is a
multi-step extension of the original policy improvement of
SAC. We will first derive this extension. Then, we will verify
its theoretical properties and advantages. Finally, based on
our theory, we will develop a practical reinforcement learn-
ing algorithm by discussing the essential design choices in
the next section.

Multi-step Optimization
The policy improvement of SAC optimizes the trade-off be-
tween the expected cumulative reward and entropy only with
regard to the action distribution on the current time-step
st, with the future states st+1:∞ following the old policy
πold, formalized in Equation (5). Under the model-based
paradigm, we assume that the true dynamics of the envi-
ronment is accessible. Because we can always obtain a dy-
namic model with a lower generalization error (Kurutach
et al. 2018; Janner et al. 2019), as the training proceeds. This
assumption enables us to quantify the expected future state
and the according reward and entropy with regard to the fu-
ture action sequence over a given horizon H , and derive a
more foresighted optimization form than the original SAC.
Specifically, we extend the one-step optimization in Equa-
tion (5) to a multi-step optimization problem of the action
planning over H steps based on the environment model, with
the objective JH

st
(π) on the state st defined as:

JH
st
(π) = Eat∼π

[
H−1∑
i=0

γi · rπ(st+i,at+i) + V πold(st+H)

]
,

(6)
rπ(st+i,at+i) = r(st+i,at+i)− logπ(at+i|st+i). (7)



Here H is the planning horizon, π is the policy only defined
on st and its subsequent H − 1 steps. rπ(s,a) is the sum
of the reward and the logarithmic likelihood, which inherits
the maximum entropy objective of SAC. Specifically, when
H = 1, this objective degenerates to that of SAC.

Extended Policy Improvement
The improvement property of distillation from planning
into an RL policy has not been well discussed. Another
work(Clavera, Fu, and Abbeel 2020) proves that the solu-
tion of action planning achieves a higher value, but it does
not develop a distillation approach to obtain a policy πnew

with provably higher value V πnew(st), i.e., a policy with
higher cumulative rewards. In this section, we propose a dis-
tillation approach, also an extended form of the original pol-
icy improvement step in SAC, based on the multi-step op-
timization. We will show that the proposed extended policy
improvement provably achieves a new policy with a higher
value than the old policy with respect to the maximum en-
tropy target Equation (1) defined in SAC.

Distillation. We use πH
st

to denote the optimal solution
of JH

st
(π). After the policy improvement, we define the

new policy πnew(·|st) as πH
st
(·|st), i.e., although πH

st
is de-

fine on H steps of states st:t+H−1, we only adopt the pol-
icy πH

st
(·|st) of the current state st and discard the policy

πH
st
(·|st+1:t+H−1) over the following states.

Improvement. We present the improvement property of
this distillation in Lemma 1. Please note that Lemma 1 is a
more general multi-step extension of the Lemma 21 in SAC
(Haarnoja et al. 2018). Our result reveals that, if we optimize
the policy jointly over a horizon starting from each state st
and only adopt the optimal policy on the first state st, the
resulting new policy has a monotonic improvement. Specif-
ically, when H = 1, Lemma 1 degenerates to the Lemma 2
in SAC (see Appendix A. for more details).

Lemma 1. Let πH
st

be the optimizer of the optimization ob-
jective of Equation (6). When the new policy πnew(·|st) =
πH
st
(·|st), V πnew(st) ≥ V πold(st) for all st ∈ S.

Policy Convergence
The monotonic increasing property of our extended form is
crucial, because it facilitates the derivation of the proposition
that this form will provably converge to the optimal maxi-
mum entropy policy defined in SAC. We present the result
in Theorem 2.

Theorem 2. Let π0 be any initial policy. Assuming |A| <
∞, if the policy evaluation in Equation (2) and the pol-
icy improvement with the objective in Equation (6) are al-
ternatively carried out, π0 converges to a policy π∗, with
V π∗(st) ≥ V π(st) for any st ∈ S.

The Effect of Planning Horizon
We have shown that the proposed extension of policy im-
provement, based on optimization of the action planning

1https://arxiv.org/pdf/1801.01290.pdf

over multiple time steps, can always lead to a higher value
via the developed distillation, which is guaranteed to con-
verge to the optimal policy. In this section, we will discuss
another problem: does the extended form of policy improve-
ment incorporate the farsight of planning and benefit SAC?
Or more generally, does a larger planning horizon H always
result in a better value?

Unfortunately, there exist some special cases where a
larger H leads to a smaller value due to a bad initial policy
πold. We construct a counter-example in Appendix C. Nev-
ertheless, although a larger H is not equivalent to a higher
value, we can still show the potential advantage of increas-
ing H in two aspects.

(1) A larger horizon results in a higher optimization ob-
jective defined in Equation (6), as formalized in Lemma 3.

Lemma 3. Let πH
st

and πH+1
st

be the optimal solution of
JH
st
(π) and JH+1

st
(π). Then JH+1

st
(πH+1

st
) ≥ JH

st
(πH

st
) for

all H ≥ 1 and st ∈ S.

(2) Although the resulting policy does not have a value
monotonically increasing with H , we can prove that πnew

converges to the optimal policy as H increases, which is for-
malized in Theorem 4.

Theorem 4. Let πH
st

be the optimal solution of JH
st
(π), and

πnew(·|st) = πH
st
(·|st). π∗ denotes the optimal policy. As H

increases, V πnew and JH
st
(πH

st
) converge to V π∗ for all st ∈

S. Specifically, V πnew ≥ JH
st
(πH

st
) ≥ V π∗(st) − γH ·rmax

1−γ

with rmax the maximum of rπ(s,a) over all π and (s,a) ∈
|S| × |A|.

Starting from Theorem 4, it can be naturally derived that,
we can always find a larger Ĥ than H , which results in a
policy with a larger value. We formalize this conclusion as
Theorem 5.

Theorem 5. Let πH
st

be the optimal solution of JH
st
(π), and

πH
new(·|st) = πH

st
(·|st). There exists another Ĥ > H , with

V πĤ
new ≥ V πH

new for all st ∈ S, assuming |S| <∞.

Proof. According to Theorem 4, we can always find a Ĥ

with V π∗ − V πĤ
new ≤ V π∗ − V πH

new on all states, which
means V πĤ

new ≥ V πH
new .

Implementation
According to the above theory, the proposed extended policy
improvement via planning over multiple time steps can also
guarantee value improvement and convergence to the opti-
mal policy. And the increase of planning horizon has the po-
tential to get a better new policy. In this section, we discuss
some essential design choices for distilling the model-based
planning into SAC (Haarnoja et al. 2018). We further pro-
pose a practical algorithm, Model-based Planning Distilled
to Policy (MPDP), under the model-based paradigm. There
are two essential issues in the design of MPDP, (1) how to
solve the objective in Equation (6), and (2) how to reduce
the bias introduced by the generalization error of the envi-
ronment model.



Solver
Solving the proposed objective defined by Equation (6) is
a model-based planning problem, which has been widely
discussed in many prior works (Rybkin et al. 2021; Chua
et al. 2018; Wang and Ba 2019). We roughly divide the cur-
rent solvers into two categories, sample-based methods and
gradient-based methods.

Sample-based methods typically include random shoot-
ing and cross-entropy method (CEM) (Botev et al. 2013).
However, sample-based methods are usually inefficient in
complex high-dimensional tasks. Gradient-based methods
include gradient optimization and collocation method (Ry-
bkin et al. 2021), which optimize with reward to the action
sequence and backpropagate the gradient to all actions in the
sequence. Both gradient optimization and collocation meth-
ods suit our formulation due to their accessibility of the gra-
dient. We can develop a practical algorithm based on both
of them. We observe that they perform comparably on the
MuJoCo benchmark in our early-stage experiments.

With the above discussion, we choose gradient optimiza-
tion as our solver, because it naturally suits the framework
of SAC and achieves comparable performance without intro-
ducing extra hyperparameters and computational cost com-
pared to the collocation method.

Algorithm 1: Farsighted Policy Improvement

Require: state batch B, policy networks π0:Hmax−1, dy-
namic models p1:K , threshold uT , coefficient α and β

1: for s in B do
2: s0 = s, J = 0
3: for t = 0 : Hmax − 1 do
4: Sample at ∼ πt

5: Predict st+1 ∼ p1:K(st+1,at)
6: if u(st,at) ≥ uT or st+1 is a terminal state then
7: J = J + γt+1 · V (st+1)
8: break
9: end if

10: J=J+γt · [r(st,at)−α · logπ(at|st)−β ·u(st,at)]
11: end for
12: end for
13: Update π0:Hmax−1 with the mean of∇a0:Hmax−1

J

Model Regularization
The bias resulting from the environment model’s generaliza-
tion error raises two issues for consideration. First, although
increasing the planning horizon has the potential of resulting
in a higher value theoretically, we must consider the trade-
off between the bias of Qπold and the environment model.
A larger H introduces more model bias but reduces the bias
of Qπold . Second, we need to avoid the update of the pol-
icy towards the area where the model has high generaliza-
tion error, because this will result in a sub-optimal solution
and the gradients of the environment model at those unseen
state-action pairs (s, a) are unsupervised and not numeri-
cally stable, i.e., applying the environment model iteratively
for many time steps may lead to gradient explosion (Rybkin
et al. 2021).

Both the two issues need the estimation of the model er-
ror, which has been well discussed in prior works. In this
paper, we use One-vs-Rest (OvR) (Pan et al. 2020), a simple
method to estimate model errors. OvR learns multiple dy-
namic models and uses the KL divergence between models
as an estimator of model error, which is formalized as:

u(s,a) =

K∑
i=1

DKL[pi(·|s,a)∥p−i(·|s,a)]. (8)

Here pi(·|s, a) is the predicted distribution of the one model
and p−i(·|s, a) is the mean of the rest models’ prediction.

Based on OvR, we develop two methods separately for the
above two issues. First, we use adaptive horizons for trajec-
tories starting from different states. The planning stops when
a trajectory generates a state-action pair which has a model
error larger than a pre-defined threshold. Secondly, we de-
velop an additional regularization of model error, which
adds the model error estimated by OvR on our objective
Equation (6). This regularization directs the final solution
to the area where the environment model is more believable
and reduces both the numerical instability and the model er-
ror. Specifically, we add the estimation u(s,a) on the orig-
inal reward rπ(s, a) as a regularization, and re-formalize
Equation (6) as:

JH,u
st

(π) = Ea∼π

[
H−1∑
i=0

γi · rπ,u(st+i,at+i) + V πold(st+H)

]
,

(9)

rπ,u(st+i,at+i) =r(st+i,at+i)− logπ(at+i|st+i)

− β · u(st+i,at+i).
(10)

Algorithm 2: Model-based Planning Distilled to Policy

1: Initialize data buffer D = ∅, dynamic models p1:K , pol-
icy networks π0:Hmax−1, value networks Q and V

2: repeat
3: Collect data from real environment with policy π0:

D ← D ∪ (s, a, r, s′)
4: Train ensemble models p1:K on D
5: Sample a batch B from D
6: Update Q and V with B as in SAC
7: Update π0:Hmax−1 by Algorithm 1.
8: until Convergence

Model-based Planning Distilled to Policy
We conclude our extended policy improvement in Algo-
rithm 1. The algorithm processes a batch of states at each
iteration and the model rollouts states until the task ter-
minates, that is to say, the pair of (st,at) has a larger
model error than the threshold uT , or the rollout reaches the
max horizon Hmax. And we maintain the policy networks
π0:Hmax−1 at H time steps. The policy networks generate
the actions for each step and are updated jointly in our ex-
tended improvement step. After the model rollouts, the pol-
icy networks π0:Hmax−1 are updated with the gradients to
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Figure 1: Performance curves for our method (MPDP) and baselines on MuJoCo continuous control benchmarks. Solid lines
depict the mean of four trials and shaded regions correspond to standard deviation among trials. The dashed lines indicate the
asymptotic performance of PETS at the corresponding training steps (15k steps for InvertedPendulum, 100k steps for Hopper,
and 200k steps for the other tasks) and SAC at 2M steps.

the action sequence. The complete algorithm is described in
Algorithm 2. The method alternates among using the policy
π0 on the first step to interact with the environment, training
an ensemble of models, and updating the policy with policy
evaluation and our extended policy improvement.

Experiment
Our experiment goal is to investigate the following ques-
tions: (1) How the sample efficiency and the asymptotic
performance of MPDP compared to state-of-the-art(SOTA)
model-based planning algorithms? (2) How the proposed ex-
tended policy improvement and the design choices affect the
performance?

Comparison
Baseline. In this section, we focus on understanding how
well MPDP performs compared to SOTA model-based plan-
ning algorithms. We choose PETS (Chua et al. 2018), which
uses CEM to perform model-based action planning; and
POPLIN (Wang and Ba 2019), which extends CEM from
action space to the domain of policy network parameters
and distills the planning results into the policy with behavior
cloning. Additionally, we compare our proposed approach
to the SOTA model-free methods and model-based meth-
ods without planning. For model-free algorithms, we com-

pare to SAC (Haarnoja et al. 2018) and DDPG (Lillicrap
et al. 2016), which are the two competitive policy learning
algorithms. For model-based RL, we choose MBPO (Janner
et al. 2019) and M2AC (Pan et al. 2020), which are the previ-
ous SOTA model-based baselines. MPDP, PETS, POPLIN,
MBPO and M2AC share the same model architecture. The
implementation details of our method are in Appendix B.

Results. The performance curves on all six environments
of MuJoCo are shown in Figure 1. It demonstrates that
MPDP significantly outperforms the SOTA model-based
planning algorithms (PETS and POPLIN) on both sample
efficiency and asymptotic performance. For example, on the
highly dimensional Ant task, MPDP’s performance at 140k
steps is equivalent to that of POPLIN at 200k steps.

Further, the results in Figure 1 reveal that MPDP achieves
much higher convergence speed than the SOTA of model-
free algorithms (SAC and DDPG) on the all tasks and ob-
tains comparable asymptotic performance, which also val-
idates that incorporating our extended policy improvement
benefits a lot. We also observe that MPDP achieves bet-
ter performance than the SOTA model-based algorithms,
MBPO and M2AC on some complex tasks like Humanoid,
and is comparable to them on the rest of tasks.



Ablation Study
In this section, we conduct a series of ablation studies on
MPDP to investigate the effect of the designed adaptive hori-
zon and regularization on the model error. We choose the
Hopper task in the MuJoCo for the experiments.

Horizon. To verify that our method can really adapt the
horizon to the model error, i.e. the adaptive horizon does not
fall into a very small range and increases as the model gener-
alizes better, we profile the average horizon of MPDP during
the training on Hopper with different error threshold uT in
Figure 2. As shown in the curves, the horizon grows from
2 to 12 as the training proceeds, where the model becomes
more accurate in Figure 3. It also proves that MPDP does
not degenerate to SAC.
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Figure 2: This figure demonstrates the length of the adap-
tive horizon of MPDP. The solid lines denote the average
horizon length evaluated on each training batch. As the in-
teractions accumulate, the model generalizes better and our
method rapidly adapts to longer horizons.

Model Error. We validate that the regularization based on
OvR does push the policy to explore areas with low dynamic
model error. We vary β at Equation (10) with {0.2, 0.5, 0.7}
and evaluate the model error as shown in Figure 3. The result
demonstrates that the model error decreases with β, which
verifies the effectiveness of the designed regularization. We
also plot the final performance of corresponding β in Fig-
ure 4. However, we find that a too large regularization harms
the asymptotic performance due to the excessive restriction
on the exploration area of the policy. Figure 4 also implies
that a larger regularization brings more stable results.

Conclusion and Future Work
In this paper, we investigate the theoretical guarantee of dis-
tillation from model-based planning into an RL policy. We
first extend the one-step optimization of SAC to a multi-step
optimization formulation. Then, we develop a distillation
approach based on the solution of the proposed multi-step
optimization. It provably has the guarantee of monotonic
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Figure 3: This figure shows the model error curves of MPDP
with β varying from 0.2 to 0.7, measured by the average L2

norm of the predicted states on every 250 interactions. The
model error decreases with β, which verifies that optimizing
under our regularization effectively restricts behavior policy
in the areas with low model error.
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Figure 4: This figure displays the performance of MPDP
with β varying from 0.2 to 0.7 along with MBPO on the
Hopper task, evaluated over 4 trials. As β increases, the
performance increases at first then decreases due to the too
strong restriction on the exploration.

improvement and convergence to the optimal policy. We fur-
ther theoretically verify its potential to incorporate the fore-
sight planning. Based on the theory, we discuss several de-
sign choices to instantiate a practical algorithm MPDP. Ex-
perimental results confirm that MPDP outperforms the state-
of-the-art model-based planning algorithms in both sample
efficiency and asymptotic performance on a range of contin-
uous control tasks in MuJoCo.

One limitation is that the generalization ability of the
horizon-adapted policy may not be strong enough because
we fit the horizon to the model error for fast convergence
speed. Thus, our method is efficient for task-specific but not
exploration-oriented problems. We leave this to future work.
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Appendix: Theoretically Guaranteed Policy Improvement

Distilled from Model-Based Planning

A. Proof of Lemma and Theorem
In this section, we provide proofs for bounds presented in the main paper.

Lemma 1 (Policy Improvement). Let πH
st

be the optimizer of the optimization objective of Equation (6). When the new
policy πnew(·|st) = πH

st
(·|st), V πnew(st) ≥ V πold(st) for all st ∈ S.

Proof. Before the proof, we need to show that

V πold(st) ≤ JH
st
(πH

st
), (11)

because πH
st

is the optimal solution and V πold(st) = JH
st
(πold) ≤ JH

st
(πH

st
).

Next, we will prove that

JH
st
(πH

st
) ≤ Eat∼πH

st

[
rπ

H
st (st,at) + γ · JH

st+1
(πH

st+1
)
]
, (12)

which follows

JH
st
(πH

st
) = Eat:t+H−1∼πH

st

[
rπ

H
st (st,at) + · · ·+ γH−1 · rπ

H
st (st+H−1,at+H−1) + γH · V πold(st+H)

]
= Eat:t+H−1∼πH

st
,at+H∼πold

[
rπ

H
st (st,at) + · · ·+ γH−1 · rπ

H
st (st+H−1,at+H−1)

+ γH · rπold(st+H ,at+H) + γH+1 · V πold(st+H+1)
]

= Eat∼πH
st

,at+1:t+H−1∼πH
st

,at+H∼πold

[
rπ

H
st (st,at) + γ · [ rπ

H
st (st+1,at+1) + · · ·+ γH−2 · rπ

H
st (st+H−1,at+H−1)

+ γH−1 · rπold(st+H ,at+H) + γH · V πold(st+H+1) ]
]

≤ Eat∼πH
st

,at+1:t+H∼πH
st+1

[
rπ

H
st (st,at) + γ · [ rπ

H
st+1 (st+1,at+1) + · · ·+ γH−1 · rπ

H
st+1 (st+H−1,at+H−1)

+ γH · V πold(st+H+1) ]
]

= Eat∼πH
st

[
rπ

H
st (st,at) + γ · JH

st+1
(πH

st+1
)
]
.

We finish the proof by applying Equation (11) and iteratively applying Equation (12):

V πold(st) ≤ JH
st
(πH

st
)

≤ Eat∼πH
st

[
rπ

H
st (st,at) + γ · JH

st+1
(πH

st+1
)
]

≤ Eat∼πH
st

,at+1∼πH
st+1

[
rπ

H
st (st,at) + γ · rπ

H
st+1 (st+1,at+1)

]
...

≤ Eat∼πnew

[
rπnew(st,at) + ...

]
= V πnew(st).

Theorem 2 (Policy Convergence). Let π0 be any initial policy. Assuming |A| <∞, if the policy evaluation in Equation (2)
and the policy improvement with the objective in Equation (6) are alternatively carried out, π0 converges to a policy π∗, with
V π∗(st) ≥ V π(st) for any st ∈ S.



Proof. First, let πi be the policy at the i-th iteration. Because V πi(st) monotonically increases with i and is bounded, the
sequence πi converges to some π∗.

We will next prove that, when the old policy πold = π∗, V π∗(st) = JH
st
(πH

st
). First, because πH

st
is the optimal solution

of JH
st
(πH

st
), as shown in the proof of Lemma 1, V π∗(st) = V πold(st) ≤ JH

st
(πH

st
). Secondly, because π∗ is the fixed point,

πnew = πold = π∗ and V π∗(st) = V πnew(st) ≥ JH
st
(πH

st
), which completes the proof.

Finally, let π be any other policy with π ̸= π∗. We have V π∗(st) = JH
st
(πH

st
) ≥ JH

st
(π) and expand the inequality as:

V π∗(st) ≥ JH
st
(π) = Eat:t+H−1∼π

[
rπ(st,at) + · · ·+ γH−1 · rπ(st+H−1,at+H−1) + γH · V π∗(st+H)

]
≥ Eat:t+2H−1∼π

[
rπ(st,at) + · · ·+ γ2H−1 · rπ(st+2H−1,at+2H−1) + γ2H · V π∗(st+2H)

]
...

≥ Eat:∞∼π

[
rπ(st,at) + · · ·

]
= V π(st).

Lemma 3 (Policy Monotone with Horizon). Let πH
st

and πH+1
st

be the optimizer of JH
st
(π) and JH+1

st
(π). Then

JH+1
st

(πH+1
st

) ≥ JH
st
(πH

st
) for all H ≥ 1 and st ∈ S.

Proof.

JH
st
(πH

st
) = Eat:t+H−1∼πH

st

[
rπ

H
st (st,at) + · · ·+ γH−1 · rπ

H
st (st+H−1,at+H−1) + γH · V πold(st+H)

]
= Eat:t+H−1∼πH

st
,at+H∼πold

[
rπ

H
st (st,at) + · · ·+ γH−1 · rπ

H
st (st+H−1,at+H−1)

+ γH · rπold(st+H ,at+H) + γH+1 · V πold(st+H+1)
]

≤ Eat:t+H∼πH+1
st

[
rπ

H+1
st (st,at) + · · ·+ γH · rπ

H+1
st (st+H ,at+H) + γH+1 · V πold(st+H+1)

]
= JH+1

st
(πH+1

st
).

Theorem 4 (Policy Convergence with Horizon). Let πH
st

be the optimal solution of JH
st
(π), and πnew(·|st) = πH

st
(·|st).

π∗ denotes the optimal policy. As H increases, V πnew and JH
st
(πH

st
) converge to V π∗ for all st ∈ S. Specifically, JH

st
(πH

st
) ≥

V π∗(st)− γH ·rmax

1−γ with rmax the maximum of rπ(s,a) over all π and (s,a) ∈ |S| × |A|.

Proof. We have show that V πnew ≥ JH
st
(πH

st
) in the proof of Lemma 1, hence we only need to prove that JH

st
(πH

st
) converges

to V π∗ . We start the proof with the fact that JH
st
(πH

st
) ≥ JH

st
(π∗) and expand this inequality as:

JH
st
(πH

st
) ≥ Eat:t+H−1∼π∗

[
rπ∗(st,at) + · · ·+ γH−1 · rπ∗(st+H−1,at+H−1) + γH · V πold(st+H)

]
= Eat:t+H−1∼π∗

[
rπ∗(st,at) + · · ·+ γH−1 · rπ∗(st+H−1,at+H−1)

+ γH · V π∗(st+H) + γH · V πold(st+H)− γH · V π∗(st+H)
]

= V π∗(st)− γH · Eat:t+H−1∼π∗

[
V π∗(st+H)− V πold(st+H)

]
≥ V π∗(st)− γH · ∥V π∗ − V πold∥∞,

≥ V π∗(st)−
γH · rmax

1− γ
.



B. Implementation
B.1 Experiment Setup
We implement MPDP based on the open-source platform DI-engine 2. And Table 2 provides the key hyperparameters in MPDP.
We follow the original implementations for all baseline algorithms with regard to the reward sum over 1000 steps. We evaluate
MPDP along with the baseline algorithms on six continuous control tasks provided in MuJoCo-v2 (Todorov, Erez, and Tassa
2012).

Hyperparameter Value

Ensemble size 7
Replay buffer size 106

Batch size 256
Learning rate 3 · 10−4

Threshold uT -5
Entropy coefficient α 0.2

Regularization coefficient β 0.5
Maximum horizon Hmax 25

Policy updates per environment step 20
Environment steps per model training 250

Table 2: Hyperparameter setup for MPDP.

B.2 Experiment Environments
We visualize the six continuous control tasks in MuJoCo-v2 including InvertedPendulum, Hopper, HalfCheetah, Ant, Walker2d,
and Humanoid, as shown in Figure 5. The first task InvertedPendulum is designed to control the pole to keep balance, and the
other five tasks aim to keep the agent moving forward without falling.

(a) InvertedPendulum (b) Hopper (c) HalfCheetah

(d) Ant (e) Walker2d (f) Humanoid

Figure 5: The screenshots of MuJoCo-v2 simulation environments used in our experiments.

2https://github.com/opendilab/DI-engine



C. Counter Example
In Figure 6, we provide a counter example where increasing horizons (H) could result in a lower value. This setting is a simple
state transition of MDP problem. We use the circle to denote the state. In the left part, we use the arrow and the number to
denote the action and the corresponding reward, respectively. In the right part, we use the arrow to denote the action of πold and
the number to denote the value V πold of each state.

Note that starting from πold and performing our extended policy improvement on this environment, H = 3 leads to a worse
value of 20 than H = 1 of 10000.
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Figure 6: A counter example where H = 3 leads to a worse value than H = 1.


