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Abstract
Existing research often posits spurious features
as easier to learn than core features in neural net-
work optimization, but the impact of their rela-
tive simplicity remains under-explored. Moreover,
studies mainly focus on end performance rather
than the learning dynamics of feature learning. In
this paper, we propose a theoretical framework
and an associated synthetic dataset1 grounded in
boolean function analysis. This setup allows for
fine-grained control over the relative complex-
ity (compared to core features) and correlation
strength (with respect to the label) of spurious
features to study the dynamics of feature learn-
ing under spurious correlations. Our findings un-
cover several interesting phenomena: (1) stronger
spurious correlations or simpler spurious features
slow down the learning rate of the core features,
(2) two distinct subnetworks are formed to learn
core and spurious features separately, (3) learn-
ing phases of spurious and core features are not
always separable, (4) spurious features are not for-
gotten even after core features are fully learned.
We demonstrate that our findings justify the suc-
cess of retraining the last layer to remove spurious
correlation and also identifies limitations of popu-
lar debiasing algorithms that exploit early learning
of spurious features. We support our empirical
findings with theoretical analyses for the case of
learning XOR features with a one-hidden-layer
ReLU network.

1. Introduction
There is increasing evidence (Geirhos et al., 2020; Zhou
et al., 2021; Geirhos et al., 2022; Xiao et al., 2020; McCoy
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et al., 2019) indicating that neural networks inherently
tend to learn spurious features in classification tasks.
These features, while correlated with the data label, are
non-causal and lead to enhanced training and in-distribution
performance. However, this inherent tendency overlooks
core or invariant features that are crucial for robustness
against distribution shifts. This phenomenon is attributed
to the relative simplicity of spurious features compared to
core features, reflecting a simplicity bias in neural network
training (Geirhos et al., 2020; Shah et al., 2020; Rahaman
et al., 2019; Nakkiran et al., 2019; Xue et al., 2023), where
networks inherently prefer simpler features over more com-
plex, yet essential ones. Interestingly, recent empirical work
(Kirichenko et al., 2023; Izmailov et al., 2022) has shown
that despite this bias and the compromised predictive perfor-
mance, standard neural network training does in fact learn
the harder core features in its representation, as long as the
spurious correlation is not perfect. However, a fine-grained
understanding of the impact of “simplicity” of the spurious
features on the learning of the robust features has remained
unexplored. Moreover, a precise definition of simplicity that
accounts for computational aspects of learning is lacking.

In our work, we characterize the impact of the relative com-
plexity of spurious features and their correlation strength
with the true label on the dynamics of core feature learn-
ing in neural networks trained with (stochastic) gradient
descent. To ground our exploration, we introduce a versatile
framework and corresponding synthetic datasets based on
the rich theory of boolean functions (see appendix A.1 for
a quick review). We quantify simplicity/complexity using
the computational time/pattern of learning the different fea-
tures (represented as boolean functions) by gradient-based
training, and subsequently study the dynamics of gradient-
based learning on these datasets. We focus on two types
of boolean functions: parity and staircase functions (Abbe
et al., 2022). Our key findings are summarized below:

• Easier spurious features lead to slower core feature
emergence. We find that the presence of spurious
features notably harm the convergence rate of core
feature learning when infinite data is available. This
is particularly evident in scenarios where two parity
functions of differing degrees are being learned; we
give a concrete formula that quantify the initial gradient
gap between them. Notably, we found even spurious
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features that are of similar or slightly lower complexity
than the core feature can substantially slow down the
convergence rate. This delay in convergence manifests
as poor robustness of the model when data availability
is limited.

• The common assumption that the learning phase is
separated into spurious feature learning and then
core feature learning can lead to complete failure of
various debiasing algorithm. (Liu et al., 2021; 2023;
Utama et al., 2020; Nam et al., 2020; Yaghoobzadeh
et al., 2021) heavily depend on early learning of short-
cut features and make an implicit assumption of a clear-
cut separation between the learning phases of core and
spurious features. We show that this assumption is gen-
erally incorrect and provide an insightful counterexam-
ple to demonstrate how such algorithms can fail com-
pletely. Staircase functions—a category of functions
characterized by their hierarchical structure and learn-
ing curves similar to those in real datasets—illustrate
that both core and spurious features are learned concur-
rently. The degree to which core and spurious features
are learned is influenced by their relative complexity
and correlation strength. This observation challenges
the effectiveness of widely adopted machine learning
algorithms.

• Spurious features are retained. We observe that net-
works retain spurious features in their representations,
even after the core feature has been learned sufficiently
well. This retention is particularly notable for spurious
features with lower complexity compared to the core
features. Not only do these spurious features persist in
the network’s representation, but their corresponding
weights in the last layer also remain stable, especially
under high confounder strength. We provide theoret-
ical explanation for such phenomenon and show how
well the spurious feature is being memorized is closely
related to the correlation strength.

• The network is separated into two distinct subnet-
works in learning different features, and Last Layer
Retraining (LLR) decreases reliance on the spuri-
ous subnetwork: (Kirichenko et al., 2023; Izmailov
et al., 2022) show LLR with balanced dataset is able
to improve robustness of the model. While it is clear
from the previous works that the core feature can be
linearly decoded from the last layer, the mechanism
behind this remains elusive. We demonstrate across nu-
merous datasets that this improvement primarily stems
from a reduction in the weights of the last layer that
are connected to the spurious subnetwork. This obser-
vation is based on the finding that spurious and core
representations are disentangled in the last layer.

We use semi-synthetic and real world datasets to validate
the above findings and also provide theoretical justifications
for these observations using our boolean spurious feature
setting.

1.1. Related Work

Datasets for Studying Spurious Correlations. Numerous
datasets have been employed to study learning under spu-
rious correlation. These include synthetic datasets such as
WaterBirds (Sagawa et al., 2020a), Domino Image dataset
(Shah et al., 2020), Color-MNIST (Zhang et al., 2022), and a
series of datasets proposed in (Hermann & Lampinen, 2020).
It’s important to note that these datasets are constructed
in an ad-hoc manner, making it challenging to justify the
complexity of the spurious features. Real datasets known
to contain spurious correlations, such as CivilComments
(Duchene et al., 2023), MultiNLI(Williams et al., 2018),
CelebA (Liu et al., 2015), and CXR (Kermany et al., 2018),
are also used to evaluate algorithms designed to mitigate
shortcut features. A recent work (Joshi et al., 2023) points
out several problems of existing datasets that has been used
to study spurious correlation and evaluating algorithm per-
formances. Our observation provide further support for their
claims (see appendix C.2.2).

Mitigating Spurious Correlations. Learning under spuri-
ous correlation can be interpreted as an Out-Of-Distribution
(OOD) or group imbalance task, as spurious features divide
the dataset into imbalanced groups. Two cases arise: (1)
when the spurious attribute is given, popular methods like
(Sagawa et al., 2020a; Idrissi et al., 2022) can be applied, (2)
when the spurious label is unknown during training, various
algorithms have been proposed to exploit the phenomenon
of simplicity bias (Valle-Pérez et al., 2019; Shah et al., 2020;
Nakkiran et al., 2019), which posits that spurious features
are learned by the model in the early stages of learning, to
upweight underrepresented groups. A representative method
of this type is the “Just Train Twice Algorithm”(Liu et al.,
2021), where a model is first trained to upweight “easy”
samples.It is worth noting that almost all algorithms assume
a balanced validation dataset for extensive hyperparameter
tuning, as observed in (Izmailov et al., 2022). Another line
of work focuses on underspecified tasks where the spuri-
ous features are fully correlated with the label (Teney et al.,
2022; Lee et al., 2023).

Last Layer Retraining. A key line of work related to our
research is (Kirichenko et al., 2023; Izmailov et al., 2022),
where it is demonstrated that last layer retraining on a biased
model with balanced data is enough for achieveing state-of-
art result on many benmark datasets. (LaBonte et al., 2023)
further shows this is even true for some benchmark dataset
when the spurious data is used. The method essentially runs
by first finetune the model then apply logistic regression on
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a group balanced dataset with heavy regularization term to
reweight the last layer. Retraining the last layer has also
been explored widely and shown to be highly efficient in
other settings, such as long-tail learning (Kang et al., 2020),
probing inner representations of a model (Alain & Bengio,
2018), and out-of-distribution learning (Rosenfeld et al.,
2022). In our study, we assess the quality of the learned
representations for both the spurious and core features by
evaluating the model’s performance after reweighting fol-
lowing (Hermann & Lampinen, 2020).

Learning Boolean functions with Neural Network(NN).
The problem of learning Boolean functions has long been
a fundamental challenge in computational learning theory.
A body of work has focused on studying the mechanism of
learning the parity function with neural networks in great
detail (Merrill et al., 2023; Daniely & Malach, 2020; Edel-
man et al., 2023; Barak et al., 2023). Another important
class of functions, referred to as “staircase” functions (Abbe
et al., 2022; 2023) has recently attract great attention and is
explored in our study.

2. Boolean Spurious Features Dataset
To rigorously examine the learning mechanisms of neural
networks in the presence of spurious correlations, we pro-
pose a dataset that encapsulates features via Boolean func-
tions. We create two boolean features on a set of variables:
the core feature which completely predicts the label, and a
spurious feature which is correlated to the core feature, but
with smaller complexity. Formally, consider two boolean
functions

fc : {+1,−1}c → {+1,−1}︸ ︷︷ ︸
core feature

fs : {+1,−1}s → {+1,−1}︸ ︷︷ ︸
spurious feature

We use n := c + s + u to denote the total dimensions
of the vector where the remaining u dimensions are irrel-
evant variables. For a boolean vector x, the coordinates
associated with the functions fc and fs are denoted by
xc ∈ {+1,−1}c, xs ∈ {+1,−1}s and we call them core
coordinates/features and spurious coordinates/features re-
spectively, while xu ∈ {+1,−1}u represents the indepen-
dent or noise coordinates. The spurious dataset is parame-
terized by constant λ ∈ [0, 1] that represents the confounder
strength or correlation of the two features.

In order to define our spurious dataset, we first form two
distributions, and then combine them to form the spurious
distribution Dλ. With DU being the uniform distribution on
the boolean hypercube, we have

• Dsame, where core and spurious label agree:

PDsame(x) := Px∼DU(x | fc(xc) = fs(xs))

• Ddiff, where core and spurious label disagree:

PDdiff(x) := Px∼DU(x | fc(xc) ̸= fs(xs))

• Dλ where with probability λ, a sample is drawn from
Dsame; with probability 1− λ, from Ddiff:

PDλ
(x) := λPDsame(x) + (1− λ)PDdiff(x)

We assume that for both f ∈ {fs, fc}, the probabilities
PU (f(x) = 0) > 0 and PU (f(x) = 1) > 0 (to en-
sure that the conditional probabilities are well-defined) and
Ex∼DU

[f(x)] = 0 (to be unbiased). A sample in our spuri-
ous dataset is (x, y = fc(xc)) where x ∼ Dλ. Without loss
of generality, we assume λ ≥ 0.5, since λ < 0.5 is sym-
metric with the spurious feature being −fs(xs). In simple
words, we can view Dsame as upsampling the distribution
that has fs(x) = fc(x) to add spurious correlations. It is
helpful to recognize that xs−f(xs)−y = f(xc)−xc forms
a markov chain. We show some important properties of this
distribution in lemma A.1. It is noteworthy that our pro-
posed framework/dataset also satisfies the five constraints
proposed in (Nagarajan et al., 2021) to be considered as a
“easy-to-learn” OOD task2.

As is common in these datasets, we define the majority
group of samples as {x : fc(xc) = fs(xs)} where the core
and spurious features agree (Dsame) and the minority group
as {x : fc(xc) ̸= fs(xs)} where the core and spurious
features disagree (Ddiff).

Boolean Functions: Parity and Staircase. We focus our
study on two choices of the spurious and core features: one
where both core and spurious functions are parity functions
f(x) = χd(x) :=

∏n
i xi, and another where they both take

the form of leap 1 degree d staircase functions (Abbe et al.,
2022) as f(x) = x1 + x1x2 + x1x2x3 + . . . + x1 . . . xd

3.
To adapt the staircase feature to its boolean counterpart, we
define the d degree threshold staircase functions,

scd(x) :=

{
1 if x1 + x1x2 + ...+ x1...xd ≥ 0

−1 else.

We show that threshold staircase function have the
same structure property as the non-threshold version (see
lemma 5) and similar learning dynamic under cross entropy
loss as their unthresholded versions (see fig. 4). Note that
scd is unbiased when d is an odd number.

It is evident that increasing the parameter d in either of these
function classes increase their complexity, which in turn is

2The second criterion Identical Invariant Distribution made
in (Nagarajan et al., 2021) may break when fs(xs) is biased.

3These are referred to as staircase functions since the training
curves look like a staircase where the features are learned one by
one from x1 to xd.
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Figure 1. A comparison of our dataset with the domino image dataset. Here λ = 0.75. We take both fs and fc to be parity function. Dark
grey square on a boolean vector denote 1 and light grey square denote −1.

reflected in the convergence rate of the model. Our choice
for these particular cases is strategic: both functions offer
a solid ground for theoretical analysis, having been exten-
sively examined in the context of deep learning (Barak et al.,
2023; Daniely & Malach, 2020; Edelman et al., 2023; Abbe
et al., 2022; 2023), and despite the same degree d, parity
features are computationally much harder (exponential in
d) to learn than staircase functions (polynomial in d) (Abbe
et al., 2023). Furthermore, staircase functions are arguably
more representative of the intricacies of feature learning
on real dataset due to their hierarchical structure, where
learning lower degrees aids in advancing to higher ones,
and their learning loss curves more closely resemble those
encountered in real dataset.

Why this spurious dataset? Numerous works have pro-
posed different theoretical and experimental setups to study
spurious correlation. It is noteworthy that spurious features
are often used interchangeably with ‘shortcut’ or ‘easier’
features. However, different works have drastically differ-
ent notions to encapsulate the easiness of a feature. For
example, (Shah et al., 2020) examines features along dif-
ferent dimensions, quantifying simplicity by the number
of linear segments needed for perfectly separating the data.
(Wen & Li, 2021; Yang et al., 2023; Sagawa et al., 2020b;
Chen et al., 2023) encapsulate both spurious and core fea-
tures as 1-bit vectors, gauging simplicity by the amount or
variance of noise applied to each feature. Despite our frame-
work bearing resemblance to previously proposed notions
of simplicity, we distinguish ourselves by: (1) employing
non-linear features for both spurious and core attributes, (2)
providing a more general notion of feature complexity and

allowing us to explore functions with different properties
(3) providing a modular, lightweight implementation of our
dataset. Additionally, our dataset allows us to provide the-
oretical explanation for numerous observed behaviours in
learning dynamics under spurious correlation.

We observe that popular semi-synthetic spurious datasets
such as Waterbirds(Sagawa et al., 2020a), Colorful-MNIST
(Zhang et al., 2022), and Domino-Image (Shah et al., 2020)
share characteristic learning dynamics shown on the boolean
feature datasets (see fig. 4). Therefore, our dataset serves as
a good proxy to evaluate algorithms developed to deal with
spurious features. Beyond capturing behaviors of existing
dataset, our dataset additionally provides precise control
over the complexity and structure of the spurious and core
functions, which is under-explored in prior datasets.

3. Empirical Findings
Here, we provide a comprehensive evaluation of a two-
layer4 neural network (width 100) optimized using Batch
Stochastic Gradient Descent with the cross entropy loss on
the boolean features dataset under the online setting. The
exact experimental setup can be found in the Appendix
C.1. We emphasize that our main focus here is on the
online setting, and we provide more experimental findings
regarding limited dataset size in the appendix. We mainly
focus on two metrics to measure feature learning:

Core and spurious correlation: correlation between the

4Neural Networks with more layers share the same behavior.
See Figure 9.
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Figure 2. Influence of confounder strength and complexity of spurious correlation on learning of core features. The y-axis shows the
number of epochs required to reach 0.95 core correlation. The 0 degree bar indicate the epochs required to learn core feature when
spurious correlation is not present i.e λ = 0.5. Each bar of the left two plots is based on 30 repetitions of experiments.

model and core or spurious feature are measured by
Ex∼Dunif

[f(x)sgn(h(x))] where sgn is defined to be the sign
function, h is the model, and f is either fs or fc. Note Dunif

is a group balanced distribution as the functions we studied
are unbiased. Thus the core correlation is exactly the mean
group accuracy, a metric extensively used in the literature.
Additionally, since the spurious correlation is symmetric in
our setting, the core correlation closely matches the worst
group accuracy.

Decoded core and spurious correlation (Kirichenko et al.,
2023; Hermann & Lampinen, 2020; Rosenfeld et al., 2022;
Alain & Bengio, 2018): we first retrain the last layer of a
model with logistic regression to fit either the spurious or
core function using a group balanced dataset. Then mea-
sure the corresponding correlation as above. The decoded
correlation metric is used to capture the extent to which a
feature’s representation has been effectively learned by the
model.

Although our primary focus is on the spurious Boolean
dataset, we emphasize that our findings closely align with
observations from other semi-synthetic datasets such as
Waterbirds (Sagawa et al., 2020a), CMNIST(Zhang et al.,
2022), and Domino Image(Shah et al., 2020). For more
detailed exploration of these datasets, see appendix C.

(R1) Simpler spurious features and higher correlation
strength slow down the convergence rate of core feature
learning (Figure 2). We observe a concave U-shaped
phenomenon in the relationship between the complexity of
spurious features and convergence time, where lower com-
plexity features slow down convergence. Remarkably, even
when the spurious feature approaches the complexity of
the core feature, the model’s performance is still adversely
affected by its presence. Additionally, we find that slower
convergence in learning the core feature leads to poorer over-
all performance on limited-size datasets (see Table C.2.1).
This suggests that the existence of a spurious feature impact
the sample complexity required for learning the core feature.

Our investigations indicate that the learning process remains
relatively insensitive to the confounder strength until a cer-
tain threshold is reached. Beyond this point, there is a
sudden and substantial increase in the computational time
required to learn the core feature5. We hypothesize that
this threshold phenomenon can be attributed to two factors.
Firstly, different features possess varying learning signal
strengths. In the simplest case, exemplified by the parity
function, differences in gradient signals for features with dif-
ferent complexities are noticeable from initialization. The
gradient of a spurious feature can only surpass that of the
core feature if the spurious correlation exceeds a certain
threshold value. Secondly, as we will explore later, when
λ is high, it becomes significantly more challenging for
gradient descent to "unlearn" spurious neurons.

(R2) Spurious and core features are learned by two
separate sub-networks (Figure 3). There exists a
classification of neurons into two groups, “spurious neurons”
which have larger weights on the spurious index and “core
neurons” which have larger weights on the core index in the
late stage of learning. For both parity and staircase tasks,
almost all spurious neurons remain focused on spurious
coordinates, while core neurons, at the start, do not focus
on spurious coordinates and gradually develop an emphasis
on core coordinates. See Appendix C.3.1 for more detail.

In vision tasks, it becomes more challenging to identify
spurious or core neurons. To address this, we retrain the
last layer of the neural network to learn either the spurious
or core function separately. We observe that the set of
neurons with significant weights in both trials is indeed very
small, suggesting that neurons are separated into two distinct
networks, similar to the spurious Boolean case. Our studies
indicate that non-causally related feature representations
are perhaps disentangled (at least in the last layer) from the

5Note that our experiments show that even when the confounder
strength is as high as 0.99, the model eventually fits the core
function perfectly. Refer to Appendix C.2.2 for more details
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Figure 3. Each plot here shows the weight dynamic throughout training within a single selected neuron and each curve here corresponding
to the weight dynamic on a single coordinate. The left two plots are for staircase with deg(fs) = 7, deg(fc) = 14 and the right two plots
are for parity with deg(fs) = 4, deg(fc) = 10. For both experiment, λ = 0.9. We see the neurons are separated into core and spurious
neurons. Spurious neurons remain focus on learning spurious feature and core neuron eventually emerge and learns the core feature.

outset, which aligns with a common goal in the fairness
and model explainability literature (Locatello et al., 2019;
Higgins et al., 2018). Therefore, it is of future interest to
understand what conditions are sufficient for a model to
learn disentangled representations under common training
procedures.
(R3) Spurious correlation strength determine how well
the spurious feature is memorized. (fig. 4, fig. 5). When
λ is high, the decoded spurious correlation and the total
weight within the spurious subnetwork remains high even
after extended training, both in the hidden and last layers.
This phenomenon persists even when regularization is ap-
plied to the loss function.

Notably, when λ is low, around 0.6 in our cases, the decoded
spurious correlation and total weights on the spurious sub-
network decrease over time as the core feature is learned.
In both cases, the learning process for spurious features
plateaus when the core correlation starts to exceed the spu-
rious correlation. Our observation thus illustrates another
kind of in-distribution forgetting that occurs during train-
ing, contrasting with the established catastrophic forgetting,
which happens when training on out-of-distribution (OOD)
data. Thus to learn diverse features, it could be beneficial
to identify and freeze such spurious neurons adaptively as
have been done in (Kirkpatrick et al., 2017; Ye et al., 2023).

(R4) Last Layer Retraining works by decreasing reliance
on spurious subnetwork. We observed that last layer re-
training consistently improves the worst group accuracy or
core function correlation, with the most significant perfor-
mance boost occurring during the early stages of training
(Figure 4). This improvement is attributed to a substan-
tial decrease in the ratio of second-layer weights between
spurious neurons and core neurons (Table 5) which is a

consequence of R2 and R3.

Notably, our findings align with those in (LaBonte et al.,
2023), where we observed that even retraining the last layer
on the training dataset (with heavy l1 regularization) sig-
nificantly enhances robustness. Furthermore, we found the
performance boost is most significant when just a small
amount of group-balanced data is used for LLR (fig. 24).

(R5) Popular debiasing algorithms fail in more general
settings. (Figure 6) In scenarios where a spurious attribute
is absent, debiasing algorithms typically adopt a two-stage
approach (Liu et al., 2021; Yang et al., 2023; Nam et al.,
2020; Kim et al., 2021; 2022). They first train an ini-
tial model using Early Stop Empirical Risk Minimization
(ERM). These algorithms diverge in the second stage, where
different heuristics are applied to distinguish and separate
minority group data based on insights from the initial model.
Implicit in their approach is the assumption of an extreme
bias toward simplicity in the spurious feature, expecting
the early model to prioritize learning the spurious feature
and providing valuable information for segregating minority
group samples.

However, our investigation reveals that the benchmark
datasets commonly used by these algorithms exhibit a cru-
cial dataset bias towards having a much simpler spurious
feature compared to the core feature. This bias creates a dis-
tinct separation between the learning phases of spurious and
core features, as demonstrated in our parity case, allowing
these methods to effectively separate minority groups (see
Figure 6). We demonstrate that this separation may not hold
true in many cases, particularly with limited datasets and
spurious features of similar complexity to the core feature,
as illustrated in the staircase case. To emphasize the practi-
cality of our dataset, we introduce a domino-vision dataset
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Figure 4. Core/spurious correlation and decoded correlation dynamics of different datasets. Leftmost figure shows the fourier coefficients
of both the spurious and core function are fitted from low (light color) to high (deep color) for the staircase function. All of the experiments
have λ = 0.9. Staircase: deg(fs) = 7,deg(fc) = 14; Parity: deg(fs) = 4, deg(fc) = 10; CIFAR-MINST: (c) Truck-car (s) 01.

Figure 5. The two plots are produced by running experiments on
parity cases under different λ, the focus here is on the decoded
spurious correlation. The experiments are run under deg(fs) =
4, deg(fc) = 10. Left: we see when λ is low, the spurious feature
is being forgotten in the later stage of training. Right: when λ
is relatively high, the spurious feature is memorized once it is
learned.

with more challenging spurious and core features and shows
the model is not able to improve further using early stopped
model. To further assess the effectiveness of these debiasing
algorithms, we employ Jaccard scores defined as |A∩B|

|A∪B| and

containment scores |A∩B|
|A| , where A represents the predicted

minority group by the algorithm using an early stop model,
and B represents the ground truth minority group. These
metrics allow us to evaluate the extent to which minority
group data is included in the predictions. For a more de-
tailed discussion of the weaknesses of previous debiasing
algorithms and their performance on real datasets, please
refer to Appendix D.1.

4. Theoretical Explanation
We will focus on the case of parities for our theoretical
analysis. We do not endeavor to present a comprehensive
end-to-end analysis of the feature learning dynamics in the

general spurious parity case i.e fc, fs are different degree
of parity functions. We stress that our understanding of
end-to-end dynamics of feature learning in the boolean case
is still very limited with only recent work (Glasgow, 2023)
providing an analysis on the end-to-end learning dynamics
of 2-parity case. Furthermore, adding spurious correlations,
introduces an additional phase of learning which is not tack-
led by these prior works. However, we hope to provide
justification for each observation under certain assumptions
at the beginning of each phase. We leave the full end-to-end
case analysis to future work.

Setup and Notations. We consider a two layer neu-
ral network with p neurons as h(x) :=

∑p
i=1 aiσ(w

⊤
i x)

where σ is the relu activation function σ(x) = max(0, x).
LD(h) := E(x,y)∼D[ℓ(h(x), y)] is defined as the population
loss of the model on distribution D. We will use cross en-
tropy loss ℓ(ŷ, y) := −2 log(ϕ(yŷ)) where ϕ(x) := 1

1+e−x

is the sigmoid function.

Outline. We begin by quantifying the "Fourier gap" which
represents the difference in population gradient at initializa-
tion between the core and spurious features relative to the
independent coordinates. The gap immediately implies that,
with layer-wise training as proposed in (Barak et al., 2023),
the spurious feature can be learned sufficiently well. After
this phase, we estimate the influence of the learned spurious
feature on core feature learning by analyzing the change in
magnitude of the gradient. Lastly we show that even when
the network has learned the core features, learned spurious
features must still persist. For detailed calculations and
proof, we refer the reader to appendix B.1.

Spurious Feature is Learned First. Following (Barak
et al., 2023), at initialization, the Fourier gap on the spurious
and core coordinates relative to the irrelevant coordinates is
as follows.
Lemma 1 (informal). Let ξk = M̂aj([k]) be the k-th Fourier
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Figure 6. The two plots on the right demonstrate that debasing methods JTT (Liu et al., 2021) and Spare (Yang et al., 2023) is able to infer
points from the minority group successfully on datasets that share the characteristic of the parity case where there is an early spike in
spurious correlation and the spurious feature is much easier than the core feature. While for the spurious staircase experiment and more
challenging Domino dataset shown in the left the highest Jaccard score remains below 0.5. We report the worst group accuracy is not
improving after upsampling based on the inferred group. See appendix D.1 for more detail. The black dash line remark the minority
group proportion in the training dataset.

coefficient of the n = c + s + u variable Majority func-
tion. At initialization, there is a set of neurons such that the
population gradient gap on the variables compared to the
irrelevant variables6 are:

1. Spurious Variable: −(λ− 1
2 )(ξs−1 − ξs+1),

2. Core Variable: − 1
2 (ξc−1 − ξc+1).

We know that |ξk| ≈ Θ
(
n−(k−1)/2

)
is monotonically de-

creasing with k, and thus we see the population gradient gap
is exponentially higher for the spurious feature than the core
feature with respect to the difference in complexity c − s
when λ is large, which would imply the following:

Theorem 4.1 (informal, (Barak et al., 2023)). Layer-wise
training of the two-layer neural network with SGD is able
to learn the spurious parity function up to error ϵ with nO(s)

λ
samples and time when c ≫ s.

After the above layer-wise training, the model would be-
come a Bayes-optimal predictor that depends only on the
spurious coordinates. This corresponds to our empirical
observation in the parity case when the model is fully corre-
lated with the spurious feature and has not learned the core
feature. We have:

Lemma 2. The Bayes-optimal classifier, with respect to
the logistic loss, among the classifiers that depend only on
spurious coordinates is hs(xs) = log

(
λ

1−λ

)
fs(xs).

Slow down of Core Feature Learning. Suppose the net-
work can be divided into a part that has learned this Bayes
optimal and the remaining part, we show that having learned

6These quantities are negative because they refer to the gradient
and when we update the weights using gradient descent, the sign
will cancel to have a positive contribution on the weights.

spurious feature leads to a reduction in the gradient in the
remaining network of the core feature compared to the gra-
dient if there was no spurious feature.

Lemma 3 (informal). Assume the model can be decomposed
into a sub-network hs(xs) that is at the Bayes optimal from
lemma 2 and the remaining network h(x) which is ≈ 0.
Then the gradient with respect to core weights in h is 4λ(1−
λ) smaller relative to the gradient if there was no spurious
correlation.

This implies that the core feature will continue to increase
but at a slower convergence rate which depends on the cor-
relation strength λ. Therefore, if the spurious feature is
simpler, then the core feature gradient reduces to the lower
value earlier, leading to even slower convergence rate. This
is consistent with our empirical observations.

Persistence of Learned Spurious Features. Another em-
pirical observation is the persistence of spurious features
despite the core feature being learned. Here we present
a justification for this in an idealized setup. We consider
a neural network that can be decomposed into two sub-
networks, hs and hc, such that h(x) = hs(x)+hc(x) where
hs(x) =

∑
i∈S aiσ(w

⊤
i xs), hc(x) =

∑
i∈C biσ(v

⊤
i xc).

The S,C represent the index set of spurious and core neu-
rons respectively. Note that we base this assumption on the
empirical finding we have in (R3).

We further make the assumption that the spurious feature is
learned and being Bayes optimal throughout the later stage
of training (as observed in our experiments) while the core
feature is being learned and the model gives homogeneous
response to xc. In particular we assume the following:

Assumption 4.2 (Complete correlation to spurious and core
features). For all x, we have hs(x) = γsfs(x) and hc(x) =
γcfc(x).

8
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The reason we require that the model gives homogesnous
response to xc is due to the property of cross entropy loss
which has caused the slow down to be non-linear for differ-
ent samples if response to xc is not the same.

We first show that spurious neurons are "dead" as they do
not learn core feature in the later stage.

Lemma 4 (informal). If
∑

i∈C |wi| < |wj | for all j ∈ S.
Then the gradient on core coordinates of the spurious neuron
will be 0.

The lemma would also suggest that learned spurious neu-
rons occupy part of the neural network capacity and if the
network is of small size, the core feature may not be learned
at all.

On the other hand, the population loss of the model on Dλ

is given by the equation:

LDλ
(h) = −λ log(ϕ(γc + γs))− (1− λ) log(ϕ(γc − γs)).

The loss function is convex when λ is within the range
[0, 1] with respect to γs. The optimal point occurs when
γc → ∞, at which point γs → 0. However, in practice, due
to bounded iterations of optimization, this ideal scenario
is unattainable. Instead, γc will inevitably be less than
some constant. In such cases, a Bayes optimal model that
considers both features will have a positive value for γs
given that the spurious feature has been learned in the early
stage. We conduct numerical experiment (see fig. 7) to
illustrates the optimal value of γs for varying λ and γc and
the slow down ratio of core feature gradient. The slow
down ratio can be formulated as 2λ(1−ϕ(γ∗

s+γc))
1−ϕ(γc)

where the
numerator is gradient toward core feature under spurious
distribution and the denominator is the same when spurious
and core feature is uncorrelated or λ = 0.5. We use γ∗

s to
denote the optimal value of spurious margin under a fixed
γc and λ.

The left plot in fig. 7 offers insights into the efficacy of
LLR (or data balancing retraining in general) when both the
spurious and core features can be adequately learned. Incor-
porating minority group data points effectively diminishes
the convergence point of the spurious margin by reducing λ,
subsequently decreasing the weights of the spurious subnet-
work, as evidenced by our findings. Additionally, the plot
illustrates that LLR yields more pronounced improvements
when the confidence in the core feature is low, as observed
in (R4) during the early stages of learning. This observation
aligns with the findings in (LaBonte et al., 2023), where the
addition of a small number of minority examples results in
the most significant improvement. The right plot demon-
strates that the slow down is less significant in the later stage
of training although λ plays a key role in determine the em-
pirical convergence point. It is noteworthy that the values of
γs at γc = 0 are equal to the value calculated in lemma 2,

Figure 7. Optimal values of spurious margin under different λ with
varying confidence core margin. The left plot shows how spurious
weights changes with varying λ and confidence on core feature.
The plot implies retraining a model with more balanced data points
would yield most significant improvement when λ is high and core
feature is learned poorly. The right plot shows how core feature
learning is slowed down by the learned spurious feature. Note that
under the cross-entropy loss, the margin represents the confidence
level of a model, hence confidence = ϕ(γ) ≤ 1. For γc = 15,
we have confidence > 0.99999, which is likely to be an empirical
upper bound for most iterative optimization methods. The plots
are generated by fixing λ and γc at various values and optimizing
γs with respect to LDλ .

thereby offering an estimate of the weight dynamics within
the spurious network after lemma 2.

5. Conclusion
Our study uses a detailed set of experiments on the boolean
feature dataset to better understand how spurious features
affect the learning of core features. We show that the dataset
is a valuable tool in highlighting the shortcomings of pre-
vious algorithms that only perform well with simpler, less
challenging spurious features. Our dataset assumes that
spurious and core features are completely separate, which
might not always be the case in real world datasets, thus
improving our dataset to more closely mirror real-world
complexities is an exciting opportunity for future research.

On the theoretical side, studying the end-to-end dynamics
with spurious features is a technically interesting problem,
and may require new tools. Our analysis currently assumes
certain well-motivated conditions to bypass some parts of
the unknown underlying feature learning process, and we
believe that rigorously proving them would be challenging.
Notably, showing that the spurious and core networks re-
main disjoint seems particularly non-trivial to show. A key
finding of our analysis is the persistence of spurious feature
weights, which tend to converge to significant values when
λ is high even if the model has learned the core feature con-
fidently. Our investigation reveals that retraining the model
with more balanced dataset effectively reduces the weights
on the spurious network. While we refer to the observed
correlation as “spurious" in this work, it’s important to ac-
knowledge that there are scenarios where we seek to learn a
diverse array of features.
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Appendix
A. Background
A.1. Boolean Function Analysis Background

See (O’Donnell, 2021) for a comprehensive review for boolean function analysis. We only include the most important tools
here.

Theorem A.1. Any boolean function f : {+1,−1}n → R can be decomposed into an orthogonal basis

f(x) =
∏

S∈[n]

f̂(S)χS(x)

where χS(x) =
∏

i∈S xi and note we have E[χS(x)χS′(x)] = 0 for all S′ ̸= S. Thus we have f̂(S) = E[f(x)χS(x)].

A.2. Properties of Threshold Staircase Function

Lemma 5. For every term S inside scd(x), with d ≥ 2, we have

ŝcd(S) =


( d−1

d
2
−1)

2d−1 if d even
(

d−2
d−1
2
)

2d−2 if d odd

Proof. We outline the proof of staircase function here. Note for each of the term in x1 + x1x2 + x1x2x3, they are
independently distributed. Thus for terms in the staircase the fourier coefficent of them for the threshold staircase is the
same as the majority function for M̂ajd(k) where k = 1. Further, we have

∑
s∈S ŝcd(s)

2 → 2
π as d → ∞ (O’Donnell,

2021) (ch5.3).

A.3. Properties of Boolean spurious distribution

Lemma A.1. Given a spurious boolean distribution defined previously, if either of the feature is unbiased. Then the
distribution is equivalent to a mixture of 2(1− λ)Dunif + (2λ− 1)Dsame.

Proof. This is equivalent to saying that given any boolean vector x, PD(x) = 2(1− λ)Punif(x) + (1− 2λ)Psame(x). Note
that PD(x) = λPsame(x) + (1 − λ)Pdiff(x) = (2λ − 1)Psame(x) + (1 − λ)(Pdiff(x) + Psame(x)). Thus we only need to
argue that Pdiff(x) + Psame(x) = 2Punif(x) forms a uniform distribution. And we have

Pdiff(x) + Psame(x)

=
Px∼U (x = x, fs(x) = fc(x))

P (fs(x) = fc(x))
+

Px∼U (x = x, fs(x) ̸= fc(x))

P (fs(x) ̸= fc(x))

=I[fs(x) = fc(x)]
Px∼U (x = x)

P (fs(x) = fc(x))
+ I[fs(x) ̸= fc(x)]

Px∼U (x = x)

P (fs(x) ̸= fc(x))

=I[fs(x) = fc(x)]
Px∼U (x = x)

P (fs(x) = 1)P (fc(x) = 1) + P (fs(x) = −1)P (fc(x) = −1)

+I[fs(x) ̸= fc(x)]
Px∼U (x = x)

P (fs(x) = 1)P (fc(x) = −1) + P (fs(x) = −1)P (fc(x) = 1)

=I[fs(x) = fc(x)]2Px∼U (x = x) + I[fs(x) ̸= fc(x)]2Px∼U (x = x)

=2Px∼U (x = x)

14
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Lemma A.2. When fc(xc) is unbiased, xs is marginally uniformly distributed on Dsame,Ddiff,Dλ. And when fs(xs) is
unbiased xc is marginally uniformly distributed on Dsame,Ddiff,Dλ

Proof. Consider Px∼U (Xs = xs|f(Xs) = f(Xc)) = P (X=xs)P (fc(Xc)=fs(xs))
P (fc(xc)=−1)P (fs(xs)=−1)+P (fc(xc)=1)P (fs(xs)=1) Suppose

fs(xs) = 1, then we have P (X=xs)P (fc(xc)=1)
P (fc(xc)=−1)P (fs(xs)=−1)+P (fc(xc)=1)P (fs(xs)=1) = PU (Xs = xs). The equality also hold if

we take fs(xs) = −1 or Ddiff. Which would imply this is also true for Dλ Thus we complete the proof.

Lemma A.3. For spurious function fs and core function fc satisfying lemma A.1, we have

E(x,y)∼Dλ
[χS(x)y] = f̂c(S) + (2λ− 1)f̂s(S).

Proof. We have,

EDλ
[χS(x)y] = 2(1− λ)EDunif

[χS(x)fc(xc)] + (2λ− 1)EDunif
[χS(x)fc(xc)|fc(xc) = fs(xs)]

= 2(1− λ)f̂c(S) + (2λ− 1)
EDunif

[χS(x)fc(xc)1[fc(xc)fs(xs) = 1]]

EDunif
[1[fc(xc)fs(xs) = 1]

= 2(1− λ)f̂c(S) + (2λ− 1)
EDunif

[
χS(x)fc(xc)

(
fc(xc)fs(xs)+1

2

)]
EDunif

[
fc(xc)fs(xs)+1

2

]
= 2(1− λ)f̂c(S) + (2λ− 1)

EDunif
[χS(x)(fs(xs) + fc(xc))]

EDunif
[fc(xc)]EDunif

[fs(xs)] + 1

= 2(1− λ)f̂c(S) + (2λ− 1)
(
f̂c(S) + f̂s(S)

)
= f̂c(S) + (2λ− 1)f̂s(S).

From the above, we have

EDλ
[χS(x)y] =


f̂c(S) if S ⊆ [c]

(2λ− 1)f̂s(S) if S ⊆ [s]

0 otherwise.

B. Theory
B.1. Calculation of Gradient Gaps and Revised Proof for Layer Wise Training for Parity Function

B.1.1. SETTING

Recall the definition of the boolean task we defined in the draft. We define 1. x the concatenation of three vectors xs, xc, xu.
The length of xs is s and the length of xc is c with s << c. xu here denote a length u random boolean vector which does
not have any correlation with the label. Thus the length of x is n = s+ c+ u Without loss of generality, we additionally
require c, s to be even length and u to be odd length. 2. fs and fc are parity functions defined as χS(xs) =

∏
i∈[s] xi and

χC(xc) =
∏

i∈[c]. So deg(fs) = s,deg(fc) = c. 3. We then form a spurious distribution as defined in the main paper with
confounder strength λ.

B.1.2. MODEL

We consider a 1 hidden layer ReLU neural network with r neurons

f(x) =

r∑
i=1

aiσ(w
⊤
i x+ bi)

where ai ∈ R, wi ∈ Rn and bi ∈ R. We use logistic loss

ℓ(y, ŷ) = −2 log(ϕ(yŷ))

where ŷ is the output of the model and y is the true label.

15
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B.1.3. INITIALIZATION

Let us consider the following initialization scheme as in (Barak et al., 2023)

1. For all 1 ≤ i ≤ r/2, randomly initialize

w
(0)
i ∼ Unif(+1,−1n), a

(0)
i ∼ Unif(+1,−1), b

(0)
i ∼ Unif(−1 + 1/c,−1 + 2/c, ..., 1− 1/c)

2. For all r/2 < i ≤ r, initialize

w
(0)
i = w

(0)
i−r/2, a

(0)
i = −a

(0)
i−r/2, b

(0)
i = b

(0)
i−r/2

Key properties of this initialization scheme are: (1) It is unbiased, since the model output is 0 on all inputs at initialization,
and (2) Biases b are set such that they enable computing parity linearly once we have the correct coordinates identified. For
the informal lemma in the main paper, we assume wi is the all 1s vector.

We will first analyze the gradients at initialization, then after spurious feature is learned.

B.1.4. POPULATION GRADIENT GAP AT INITIALIZATION

Notice that our initalization makes the model output 0 on all x. Thus l(y, ŷ) = 0 and then we have ∇ŷl
′(y, ŷ) = −y .

We can now formulate the population gradient at initialization. Without loss of generality, we will assume λ > 0.5, then Dλ

is a mixture such that w.p 2(1−λ) we draw a sample x from the uniform distribution Unif({+1,−1}n). And with 2λ−1, we
draw a sample from Dsame where we first draw xc ∼ Unif({+1,−1}c) and then draw a xs ∼ Unif{xs|χS(xs) = χC(xc)}.

Then the population gradient for weight wi,j is

EDλ
[∇wi,j l(f(x; θ0), y)]

= EDλ
[−y∇wi,j

f(x; θ0)]

= EDλ
[−yai1{w⊤

i x+ bi > 0}xj ]

= 2(1− λ)EDunif
[−yai1{w⊤

i x+ bi > 0}xj ] + (2λ− 1)EDs
[−yai1{w⊤

i x+ bi > 0}xj ] (1)

We will study the two terms separately.

Population Gradient on uniform distribution. Set gi,j = EDunif
[−yai1{w⊤

i x+ bi > 0}xj ]. As long as wi ∈ {−1, 1}n,
from (Barak et al., 2023), we have

1. For j ∈ [c]:

gi,j = −1

2
aiξc−1 · χ[c]\{j}(wi)

2. For j ∈ [s] ∪ [u] :

gi,j = −1

2
aiξc+1 · χ[c]∪{j}(wi)

where ξk = M̂aj(S) with |S| = k. Thus we have for the first term gui,j = 2(1− λ)EDunif
[−yai1{w⊤

i x+ bi > 0}xj ]

1. For j ∈ [c]:
gui,j = −(1− λ)aiξc−1 · χ[c]\{j}(wi)

2. For j ∈ [s] ∪ [u]:
gui,j = −(1− λ)aiξc+1 · χ[c]∪{j}(wi)

16
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Population Gradient on label aligned distribution Dsame. Note for the second term of 1,

(2λ− 1)Exc,xs∼Ds [−yai1{w⊤
i x+ bi > 0}xj ]

= (2λ− 1)([Pxc∼u[χ(xc) = −1]Exc,xs∼u[−yai1{w⊤
i x+ bi > 0}xj |χ(xc) = −1, χ(xs) = −1]

+ Pxc∼u[χ(xc) = 1]Exc,xs∼u[−yai1{w⊤
i x+ bi > 0}xj |χ(xc) = 1, χ(xs) = 1])

= (2λ− 1)(
1

2
· 4 · Exc,xs∼u[−yai1{w⊤

i x+ bi > 0}xj1{χ(xc) = 1, χ(xs) = 1}]

+
1

2
· 4 · Exc,xs∼u[−yai1{w⊤

i x+ bi > 0}xj1{χ(xc) = 1, χ(xs) = 1})

= −2ai(2λ− 1) · Exc,xs∼u[yxj1{w⊤
i x+ bi > 0}1{χ(xc) = χ(xs)}] (2)

By the initialization scheme, we have w⊤
i x as an integer and |b| < 1. Thus

1{w⊤
i x+ bi > 0} = 1{w⊤

i x > 0}

We will first ignore the yxj component inside the expectation and study the boolean function q(x) = 1{w⊤
i x >

0}1{χ(xc) = χ(xs)}. Observe that

1{χ(xc) = χ(xs)} = 1{χ(xc)χ(xs) = 1} = 1{χ[c]∪[s](x) = 1}.

This gives us

q(x) = 1{w⊤
i x > 0}1{χ[c]∪[s](x) = 1}

=
1 +Majn(wi ⊙ x)

2
·
1 + χ[c]∪[s](x)

2

=
1

4
·
(
1 + χ[c]∪[s](x) +Majn(wi ⊙ x) + χ[c]∪[s](x)Majn(wi ⊙ x)

)
(3)

We can study the fourier spectrum of each of the term in 3 to construct the fourier spectrum of q.

1. For q1(x) = χ[c]∪[s](x), notice that q̂(S) = 0 for all S ⊂ [n] except when S = [c] ∪ [s] where q̂(S) = 1.

2. For q2(x) = Maj(w ⊙ x), notice that Maj(x) can be written in its fourier expansion as Maj(x) =∑
S⊆[n] M̂ajn(S)χS(x). This gives us

q2(x) = Maj(wi ⊙ x) =
∑
S⊆[n]

M̂ajn(S)χS(wi ⊙ x) =
∑
S⊆[n]

M̂ajn(S)χS(x)χS(wi).

Thus we have q̂2(S) = χS(wi)M̂ajn(S).

3. For q3(x) = χ[c]∪[s](x)Majn(wi ⊙ x), we have

q̂3(S) = E[Majn(wi ⊙ x)χS(x)χ[c]∪[s](x)]

= Ex[Majn(wi ⊙ x)χ([s]∪[c])∆S(x)]

− q̂2(([c] ∪ [s])∆S)

= χ([c]∪[s])∆S(wi)M̂ajn(([c] ∪ [s])∆S)

By the orthogonality and linearity of the fourier basis, we thus have

q̂(S) =
1

4
(χS(wi)M̂ajn(S) + χ([c]∪[s])∆S(wi)M̂ajn(([c] ∪ [s])∆S))

for |S| > 0 and S ̸= [s] ∪ [c]. Now let us put it back in 2.
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1. For random index j ∈ [u],

gsi,j = −2ai(2λ− 1) · Exc,xs∼u[yxj1{w⊤
i x+ bi > 0}1{χ(xc) = χ(xs)}]

= −2ai(2λ− 1) · Ex∼u[χ[c]∪j(x)q(x)]

= −2ai(2λ− 1) · q̂([c] ∪ j)

= −1

2
ai(2λ− 1) · (χ[c]∪{j}(wi)ξc+1 + χ[s]∪{j}(wi)ξs+1)

2. For core index j ∈ [c], in a similar manner, we have

gsi,j

= −2ai(2λ− 1) · Exc,xs∼u[yxj1{w⊤
i x+ bi > 0}1{χ(xc) = χ(xs)}]

= −2ai(2λ− 1) · Ex∼u[χ[c]\j(x)q(x)]

= −2ai(2λ− 1) · q̂([c] \ j)

= −1

2
ai(2λ− 1) · (χ[c]\{j}(wi)ξc−1 + χ[s]∪{j}(wi)ξs+1)

3. For spurious index j ∈ [s], in a similar manner, we have

gsi,j = −2ai(2λ− 1) · Exc,xs∼u[yxj1{w⊤
i x+ bi > 0}1{χ(xc) = χ(xs)}]

= −2ai(2λ− 1) · Ex∼u[χ[s]\j(x)q(x)]

= −2ai(2λ− 1) · q̂([s] \ j)

= −1

2
ai(2λ− 1) · (χ[s]\{j}(wi)ξs−1 + χ[c]∪{j}(wi)ξc+1)

Putting it together. We summarize the final population gradient on each type of index.

Lemma 1 (formal). Under the proposed setup, we have the population gradient at initialization for different type of
coordinates as below:

1. For random index j ∈ [u],

gi,j = gui,j + gsi,j

= −(1− λ)aiξc+1 · χ[c]∪{j}(wi)−
1

2
ai(2λ− 1) · (χ[c]∪{j}(wi)ξc+1 + χ[s]∪{j}(wi)ξs+1)

= −ai

(
1

2
ξc+1 · χ[c]∪{j}(wi) +

(
λ− 1

2

)
ξs+1 · χ[s]∪{j}(wi)

)
2. For core index j ∈ [c], in a similar manner, we have

gi,j = gui,j + gsi,j

= −(1− λ)aiξc−1 · χ[c]\{j}(wi)−
1

2
ai(2λ− 1) · (χ[c]\{j}(wi)ξc−1 + χ[s]∪{j}(wi)ξs+1)

= −ai

(
1

2
ξc−1 · χ[c]\{j}(wi) +

(
λ− 1

2

)
ξs+1 · χ[s]∪{j}(wi)

)
3. For spurious index j ∈ [s], in a similar manner, we have

gi,j = gui,j + gsi,j

= −(1− λ)aiξc+1 · χ[c]∪{j}(wi)−
1

2
ai(2λ− 1) · (χ[s]\{j}(wi)ξs−1 + χ[c]∪{j}(wi)ξc+1)

= −ai

(
1

2
ξc+1 · χ[c]∪{j}(wi) +

(
λ− 1

2

)
ξs−1 · χ[s]\{j}(wi)

)
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B.1.5. FINDING HIDDEN FUNCTIONS THAT MAKES GRADIENT DESCENT ON THE LAST LAYER WEIGHTS RECOVER
PARITY FUNCTION

This part is correspond to the lemma 4 claim 5 in the hidden progress paper. What we are going to argue is that there is a
set of functions represented by the hidden layer σ(

∑
i x− bi) such that there is a set of weight ai makes the composition

function equivalent to a parity function. Formally

Lemma B.1. Fix k, there is a set of k + 1 ReLU functions in the form fj(x) = σ(
∑n

i xi + bj) where bj = {k +

1, k − 1, k − 3, ...,−k + 3,−k + 1} and a set of weights uj with ∥u∥2 ≤
√
k modeling the k-degree parity function by

f(x) = χk(x) =
∑k+1

j fj(x).

Proof. This is best illustrated by an example. Consider k = 5, if there is one −1 in x, then f1(x) = 9, f2(x) = 7, f3(x) =
5, f4(x) = 3, f5(x) = 1, f6(x) = 0. Let g(x) denote the number of −1 a sample x has. We have for all {x ∈ X|g(x) = c},
they will have the same value of

∑
x and thus their value on f1, ...f5 will be the same. In this way, we can categorize

samples into 6 cases where g(x) = 0, g(x) = 1, ..., g(x) = 5. And we can form a matrix where each row represent the type
of sample and column represent its value on fj . Thus the matrix we form can be represented as Mi,j = fj(x|g(x) = i). In
the case of k = 5, the matrix is

M =


11 9 7 5 3 1
9 7 5 3 1 0
7 5 3 1 0 0
5 3 1 0 0 0
3 1 0 0 0 0
1 0 0 0 0 0

 (1)

. And we want to find a weight u on the matrix such that Mu = y, where yi represent the corresponding parity value of x
represented by a row. In our example, y = [1,−1, 1,−1, 1,−1]. Notice that the matrix is triangular and full rank, thus there
is a unique u that solve the system. Also, notice that the eigenvalues of the matrix are all 1. Thus the norm of u can be
bounded by ∥u∥2 ≤

√
k.

We are going to relax the condition showing that as long as the weight wi on a set of neuron is not too far from 1. Then there
still exist a u∗ with small norm that solve the system.

Lemma B.2. Fix k, there is a set of k+ 1 ReLU functions in the form fj(x) = σ(w⊤
j xi + bj) with bj = {k+ 1, k− 1, k−

3, ...,−k + 3,−k + 1} where if wj,i satisfy |wj,i − 1| ≤ 1
2k , then there is a set of weights uj with ∥u∥2 ≤ 2

√
k modeling

the k-degree parity function by f(x) = χ(x) =
∑k+1

j=1 ujfj(x).

Proof. From the proof of lemma B.1, we see for the solution u∗ to exist, all we required is the function outputs on different
cases of x form a triangular matrix and the dependency of the upper bound of ∥u∥2 will be on the smallest entry of the
diagonal of the matrix. We will show that given |wj,i − 1| ≤ 1

2k , for all x

1. If
∑

x+ bj ≥ 1, then w⊤
j x+ bj ≥ 1/2

2. If
∑

x+ bj ≤ −1, then w⊤
j x+ bk ≤ −1/2

. Using this result and by the fact that our construction have for all x and a fixed j either
∑

x+ bj ≥ 1 or
∑

x+ bj ≤ −1,
we can replace the function fj = σ(

∑
x + bj) with f ′

j = σ(w⊤
j x + bj) such that the matrix is still triangular and all

diagonal entries M ′
j,j ≥ 1/2,∀j ∈ [k]. This implies the smallest eigenvalue of the matrix λmin(M) ≥ 1/2. And we have

∥y∥2 ≥ λmin(M)∥u∥2, which implies ∥u∥2 ≤ ∥y∥2

λmin(M) = 2
√
k
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We now prove the earlier claim. Note

|wj⊤x+ bj − (
∑

x+ bj)|

= |
∑
i

(wj,i − 1)x|

= | < wj − 1, x > |
≤∥wj − 1∥22∥x∥22
≤k2(|wj − 1|)2

≤1

4

Thus If
∑

x + bj ≥ 1, then we have wj⊤x + bj ≥ 3/4 ≥ 1/2 and if
∑

x + bj ≤ −1, we have wj⊤x + bj ≤ −3/4 ≤
−1/2.

B.1.6. ON A SET OF NEURONS

We first redo the proof of the hidden progress paper with B.3, given the population gradient gap between two indexes, we
can learn the sparse parity function that is defined on the index (which are with higher absolute value of gradient) without
any error with high probability. The difference is that we do thresholding and only requiring the population gradient to be
accurate enough.

Theorem B.1. Suppose the population gradient gap between the spurious coordinates [s] and core coordinates [c] is ∆s−c

On a set of neurons in the configuration of appendix B.1.3, if −aiχ[s]\j(w) = sgn(ξs−1),∀j ∈ [s] and −aiχ[s]∪j(w) =

sgn(ξs+1)∀j ∈ [c]. Suppose we take m sample points, and let the first step learning rate to be µ = 1
gs

where gs is the
spurious gradient we found in appendix B.1.4. We then do thresholding by comparing the gradient of each coordinate to
the empirical mean of the absolute value of gradient applied on the whole hidden weight vector. We zero out weights on
coordinates that have gradient small then the mean. Then with m ≥ max{ 2s2 log(2s/δ)

ξ2s−1
, log(2s/δ)n2

2u2∆2
s−c

, log(2s/δ)n2

2c2∆2
s−c

}, the neuron
satisfy the condition in lemma B.2 w.p ≥ 1− δ

Proof. We denote a random sample point by xi and its corresponding gradient imposed on the a neuron weights by
gi
j = [−yajI{w⊤x+ b > 0}xj ].

We will use gs, gc, gu refer to the population gradient calculated in appendix B.1.4. We want bound the probability of the

event 1). Only spurious weights are kept after thresholding. 2).on all spurious indexes |µ
∑m

k=1 ĝ
(k)
i,j

m − 1| ≤ 1
2c by finding the

required number of m. That is for all weights, if the weight j is on a spurious variable, it must satisfy at the same time

|µĝj − 1| ≤ 1

2s
and ĝj −

∑n
k=1 ĝk

n
> 0

and if the weight j is on a core/independent variable, it must satisfy

ĝj −
∑n

k=1 ĝk

n
< 0

where ĝj =
∑m

i=1 gi
j

m . The first inequality can be written as, for j ∈ [s]

|µgj − 1| ≤ 1

2s
⇐⇒ |gj − E[gj]| ≤

gs
2s

Take the expectation for the second formula we have for j ∈ [c] ∪ [u]

E[gj −
∑n

k=1 gk

n
] ≤ − (c+ u)∆s−c

n
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We want bound the probability of bad event by δ we use the hoeffding bound and require, for j ∈ [s]

P [gj − E[gj] ≥
gj
2s

] ≤ δ

n

P [|gj −
∑n

k=1 gk

n
− E[gj −

∑n
k=1 gk

n
]| ≥ (c+ u)∆s−c

n
] ≤ δ

n

and for j ∈ [u]

P [|gj −
∑n

k=1 gk

n
− E[gj −

∑n
k=1 gk

n
]| ≥ s∆s−c

n
] ≤ δ

n

If all three is satisfied then by union bound we would have for a given set of neuron the condition lemma B.2 is not
satified w.p less than δ. In terms, by hoffding bounds, we have when m ≥ max{ 2s2 log(2s/δ)

g2
s

, log(2s/δ)n2

2(c+u)2∆2
s−c

, log(2s/δ)n2

2s2∆2
s−c

},
the condition will be satisfied with error probability less than δ

B.1.7. NUMBER OF NEURONS REQUIRED

Following the same argument in (Barak et al., 2023), we want have a set of neurons that satisfy B.3.

Theorem B.2. Take r ≥ 2s log(2s/δ) and m ≥ max{ 2s2 log(2s/δ)
g2
s

, log(2s/δ)n2

2(c+u)2∆2
s−c

, log(2s/δ)n2

2s2∆2
s−c

}, w.p ≥ 1− δ, after the first
gradient step we will get a set of neurons satisfy lemma B.2.

Proof. For some wi ∼ {±1}n, the probability that wi satisfy the condition 1). −aiχ[s]\j(wi) = sgn(ξs−1),∀j ∈ [s]

is 2−s. 2. Additionally, for some fixed i′ ∈ [s], the probability that bi = −s+ i′ is 1
s . Therefore for some fixed i ∈ [r/2]

and i′ ∈ [s], with probability 1
s2−s , bi = bi+r/2 = −k + i′ and the weight satisfy 1). Taking r ≥ 2s log(s/δ), we get the

probability that there is no i ∈ [r/2] that satisfies the above condition for any fixed i′ is :(
1− 1

n2n−1

)r/2

≤ exp(− r

2n2n−1
) ≤ δ

s

By union bound, w.p ≥ 1− δ, there exist a set of s neurons satisfying the conditions of theorem 3.

B.1.8. STOCHASTIC GRADIENT DESCENT

We use the following result on convergence of SGD (see (Shalev-Shwartz & Ben-David, 2014)).

Theorem B.3. Let M,ρ > 0. Fix T and let µ = M
ρ
√
T

. Let F be a convex function and u∗ ∈ argmin∥u∥2≤M f(u). Let

u(0) = 0 and for every t, let vt be some random variable s.t. E[vt|u(t)] = ∇u(t)F (u(t)) and let u(t+1) = u(t) − µv(t).
Assume that ∥vt∥2 ≤ ρ w.p. 1. Then,

E[F (u(t))] ≤ F (u∗) +
Mρ√
T

Theorem B.4. (SGD on MLPs learns sparse parities) Take r ≥ 2s log(2s/δ),

B ≥ m ≥ max{ 2s2 log(2s/δ)
g2
s

, log(2s/δ)n2

2(c+u)2∆2
s−c

, log(2s/δ)n2

2s2∆2
s−c

}, T ≥ 37srn2

ϵ2 , take the first gradient step with size µ = 1
gs

then w.p

≥ 1− δ, by fixing the hidden layer weights and runs a SGD on the second layer weights a with step size µ = 2
√
s

3
√
rTn

, we
can solve the parity task with error less than ϵ

Proof. We take the first gradient step and then fix the hidden layer. Let F (u) = Ex[l(u
⊤σ(W (1)x+ b(1)), y)]. Thus F is a

convex function. For every t, denote

vt =
1

B

B∑
i=1

∇u(t) l(f(xt,l; θt), y) =
1

B
∇u(t)l((u

(t))⊤σ(W (1)xi,t + b(1)), yl,t).
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Note that by the condition, we have a set of good neurons after first gradient step w.p > 1− δ and there exists ∥u∗∥2 ≤ 2
√
k

s.t F (u∗) = 0 and for all i, x it holds that ∥σ(wix+ bi)∥∞ ≤ 2(n+ 1). Using this, we get

∥v2∥2 ≤ 1

B

B∑
i=1

∥σ(W (1)xi,t + b(1)), yi,t ≤ 2
√
r(n+ 1)

Now we can apply the theorem of SGD with M = 2
√
k and ρ = 3

√
rn and get that w.p > 1− δ over the initalization and

the first step, it holds that

E[mint∈{2,...,T}l(f(x; θt), y)] ≤ E[
1

T − 1

T∑
t=2

l(f(x; θt), y)]

= E[
1

T − 1

T∑
t=2

F (u(t)] ≤ 0 +
6
√
krn

T − 1
≤ ϵ

And finally because m ≤ O( log(2s/δ)n2

2(c+u)2∆2
s−c

), we have m ≤ O( 1
∆2

s−c
) = O( 1

λn−s−n−c )

B.2. Dynamics after spurious feature has been learned

Lemma B.3. Suppose a model only has access to the spurious coordinates xs, then under cross entropy loss with distribution
Dλ, the Bayes optimal model output log( λ

1−λ )fs(xs)

Proof. Let the bayes classifier be g(x). The bayes classifier is defined as infg(x) Ex,y[l(g(x), y)]. Here

inf
g(x)

L(g(x)) =Ex,y[l(g(xs), y)]

=Exs
Ey|xs

[l(g(xs)), y)]

=Exs
[Pfs(xs)=fc(xc)|xs

l(g(xs)) + Pfs(xs) ̸=fc(xc)|xs
l(g(xs))]

=Exs
[λ(− log(ϕ(fc(xc)g(xs)))) + (1− λ)(− log(ϕ(fc(xc)g(xs))))]

=Exs
[λ(− log(ϕ(fs(xs)g(xs)))) + (1− λ)(− log(ϕ(−fs(xs)g(xs))))]

The function is convex and thus has a global optimum. We take the derivative w.r.t g(xs) and set it to zero. We use the
property ϕ(−x) = 1− ϕ(x)

L′(g(x)) =λ(ϕ(fs(xs)g(xs))− 1)fs(xs)− (1− λ)(ϕ(−fs(xs)g(xs))− 1)fs(xs)

=fs(xs)(λ(ϕ(fs(xs)g(xs))− 1)− (1− λ)(ϕ(−fs(xs)g(xs))− 1))

=fs(xs)(λ(ϕ(fs(xs)g(xs))− 1) + (1− λ)(ϕ(fs(xs)g(xs)))

=ϕ(fs(xs)g(xs))− λ = 0

Solving the equation, we get g(xs) = log( λ
1−λ )fs(xs).

Lemma B.4. Suppose a neural network can be decomposed to the sum of two models hs =
∑

i∈S aiσ(wix), hc =∑
i∈C aiσ(wix) which learns different features of the data. The learning process of hc then will be slowed down by

4λ(1− λ) when compared to the gradient where there is no spurious correlation.

Proof. Let the model be m(x) = hs(xs) + h(x). From Lemma 2, we have ϕ(fs(xs)hs(xs)) = λ. Suppose h(x) =
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i=1 biσ(w

⊤
i x). Let us compute the population gradient ∇wi

LDλ
(m(x)):

∇wi
LDλ

(m(x))

=− λ∇wi
EDsame [log(ϕ(fs(xs)m(x))]− (1− λ)∇wi

EDdiff
[log(ϕ(−fs(xs)m(x))]

=− λEDsame

[
(1− ϕ(fs(xs)hs(x)))fs(xs)aiσ

′(w⊤
i x)x

]
+ (1− λ)EDdiff

[
(1− ϕ(−fs(xs)hs(x)))fs(xs)aiσ

′(w⊤
i x)x

]
=− λ(1− λ)EDsame

[
fs(xs)aiσ

′(w⊤
i x)x

]
+ λ(1− λ)EDdiff

[
fs(xs)aiσ

′(w⊤
i x)x

]
=− λ(1− λ)EDunif

[
(fs(xs) + fc(xc))aiσ

′(w⊤
i x)x

]
+ λ(1− λ)EDunif

[
(fs(xs)− fc(xc))biσ

′(w⊤
i x)x

]
=− 2λ(1− λ)EDunif

[
fc(xc)aiσ

′(w⊤
i x)x

]
.

We compare the gradient toward h(x) when λ = 1/2 and we have

−2λ(1− λ)EDunif

[
fc(xc)aiσ

′(w⊤
i x)x

]
− 1

2EDunif

[
fc(xc)aiσ′(w⊤

i x)x
] = 4λ(1− λ)

Lemma B.5. Let Ic denote core coordinates indexes and Is denote spurious coordinates indexes. Suppose a neural network
can be decomposed into hs(xs) + hc(xc). Further, suppose the core network gives the same prediction γcfc(xc) on all xc

i.e hc(xc) = β,∀xc. If
∑

i∈Ic
|wi| < |wj | for all j ∈ Is. Then the gradient on core coordinates of the spurious neuron will

be 0.

Proof. We have for any weight on a core coordinate c ∈ Ic, ∇wcLDλ
(m(x)) = −λ∇wcEDsame [log(ϕ(fs(xs)m(x))]− (1−

λ)∇wc
EDdiff

[log(ϕ(−fs(xs)m(x))]. We will show ∇wc
EDsame [log(ϕ(fs(xs)m(x))] = 0 and the same can be shown in a

similar manner for Ddiff .

∇wc
EDsame [log(ϕ(fs(xs)m(x))]

=EDsame [(1− ϕ(fs(xs)hs(xs) + γc)fs(xs)aσ
′(w⊤x)xc]

=2aEDunif
[(1− ϕ(fs(xs)hs(xs) + γc)fs(xs)

fs(xs)fc(xc) + 1

2
xc]

=aEDunif
[(1− ϕ(fs(xs)hs(xs) + γc)(fs(xs) + fc(xc))σ

′(w⊤
s xs)xc]

=aEDunif
[(1− ϕ(fs(xs)hs(xs) + γc)χIc\{c}σ

′(w⊤
s xs)] + aEDunif

[(1− ϕ(fs(xs)hs(xs) + γc)fs(xs)σ
′(w⊤

s xs)xc]

=0 + 0

C. Additional Experiments
C.1. Detailed Experiments configuration

In this section, we conduct a more detailed experiment report and discussion of the results and claims presented in the main
paper. We first show the training procedure we adopt.

Model and Default Hyper-Parameters All training experiments were conducted using PyTorch(Paszke et al., 2019).
While the majority of networks evaluated in our primary empirical findings are relatively compact, we trained a substantial
number of models to validate the breadth of the "robust space" outcomes. These experiments utilized NVIDIA T4 and
Quadro RTX 8000 GPUs, cumulatively consuming around 2,500 GPU hours.

Neural networks were initialized using a uniform distribution (as by the default setting of pytorch). For all the boolean
experiments, without further specification, we use a 2-layer, 100 neurons NN. For the Domino and Waterbird datasets, we
adopt the ResNet-50 and add an additional linear layer on top of it based on the number of class label. The model is trained
either from scratch with randomly initialized weights or finetuned with IMAGENET1K_V1 pre-trained weights. The default
optimization parameters is listed in table 2. We adopt the parameters based on (LaBonte et al., 2023; Sagawa et al., 2020a;
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Idrissi et al., 2022; Kirichenko et al., 2023; Izmailov et al., 2022) with minor modifications to ensure consistency across
different experiments. Notably, for different boolean datasets and domino datasets we control the number of gradient updates
of one epoch to be the same. This ensure us to compare them in a consistent manner. We provide further experiments to
check how different hyper-parameters choices affect learning dynamics on different datasets fig. 9, fig. 10 and fig. 8.

Table 1. Default Training Hyper-Parameters Across Datasets

Dataset η β Optimizer Weight Decay B Reweight Method Sample per Epoch

boolean 0.0001 0.5 SGD 0 64 N/A 10000
domino 0.001 0.9 Adam 0 64 N/A 5000
waterbirds 0.003 0.5 SGD 0.0001 32 reweight 500
celebA 0.001 0.5 SGD 0.0001 100 resample dataset size
cmnist 0.003 0.5 SGD 0.0001 32 N/A dataset size
multinli 0.00001 N/A AdamW 0.0001 16 resample dataset size
civilcomment 0.00001 N/A AdamW 0.0001 16 resample dataset size

Table 2. The optimization hyperparameters for various datasets are outlined in the table with η: learning rate, β: momentum, B: batch
size. There are three possible methods for "Label Class Reweight." For class balanced dataset, such as the Domino, CMnist, and boolean
datasets, no class balancing technique is necessary. In cases of class imbalance, we employ either resampling, which ensures each batch
contains an equal number of samples from each class, or reweighting, which assigns greater importance or weight to samples from the
minority class, as discussed in (Idrissi et al., 2022). Should there be any deviations from these default parameters in specific experiments,
such changes will be explicitly noted.

Training and Evaluation Procedure As specified in the main paper, we mainly use correlation and decoded correlation
to assess the state of the model. For datasets that has more than two labels or spurious classes (MultiNli, CivilComments,
CMnist), we use a generalized metrics of correlation corr(fc, h) = Px[fc(x) = h(x)]− Px[fc(x) ̸= h(x)] where fc is the
core/ground truth label and h(x) represent the prediction made by the trained model.

The decoded correlation is calculated in the following procedure:

1. At the end of each epoch, we select min(2000, ⌈n/2⌉) samples from the group balanced validation dataset and use the
model to output their embeddings, where n is the size of the group balanced dataset.

2. We then fit a logistic regression model on the output embeddings with default hyperparameters provided by the
Scikit-learn package (Pedregosa et al., 2011).

3. Finally, we take another min(2000, ⌈n/2⌉) samples from the validation dataset and output their embeddings. We then
evaluate the correlation of the trained logistic regression model on the output embeddings. We note that the default
hyperparameters in most cases could provide the near optimal correlation score, and adjusting the hyperparameters like
the regularization term or strength only yields marginal improvement.

C.2. Additional Experiments on the interplay between Confounder Strength and Complexity

We divide this section into two sections to provide a comprehensive review of the influence of the two factors, complexity
and confounder strength on learning either on a online setting learning or a finite dataset.

C.2.1. COMPLEXITY

Parity fig. 11, fig. 12 show the learning dynamics of parity functions under different deg(fs). Note that the variance
between repeated experiments is significant when λ and the complexity of the spurious function (deg(fs)) are both high. In
the context of learning parity with finite datasets, numerous runs converging to a low core correlation value. For learning
under finite dataset, it is worth highlighting that the end performance of the network is heavily influenced by the randomness
of initialization. Note here the total length of the feature vector is fixed to 20 so the computational complexity in learning
core parity function stay fixed if λ = 0.5 for each case.
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Figure 8. Learning dynamics on Spurious Boolean Dataset under different weight decay/l2 regularization values.

Figure 9. Learning dynamics on Spurious Boolean Dataset under different model depths.

Figure 10. Learning dynamics on Waterbirds under different hyperparameters. λ = 0.95. Model is pretrained ResNet. lr=0.001. Weight
Decay is 0.0001 or 0, β is Momentum.
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Figure 11. Online Parity Learning: Upper: repeated experiments. Bottom: single experiment taken from the repeated experiments.
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Figure 12. Finite Parity Learning with 20000 Sampled Points. Upper: repeated experiments Bottom: single experiment
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Figure 13. Online Staircase: Upper: repeated experiments. Bottom: single experiment

Staircase Refer to fig. 13 and fig. 14. In the case of the staircase task, the influence of simpler spurious features on
convergence slowdown becomes more obvious. Different from the parity cases, the learning dynamics remain consistently
stable across repeated runs in the staircase task.

Domino See fig. 15. We adhere to the convention of employing three image datasets as spurious features: MNIST-01,
MNIST-79, and Fashion dress-coat, arranged in ascending order of difficulty with CIFAR-truck-automobile as the core
feature (Izmailov et al., 2022; Kirichenko et al., 2023). It is noteworthy that the semi-real datasets including the domino
datasets utilized in spurious correlation research are inherently noisy, meaning that the model cannot learn the core feature
perfectly or achieve 0 generalization error, as highlighted in (Kirichenko et al., 2023). In fact, we see the the core correlation
of the model is well below 0.9. Furthermore, these datasets are limited in size, with only 10,000 images available for
CIFAR-truck-automobile.

Previous studies have primarily focused on utilizing pretrained models to learn the spurious task. However, such an approach
can obscure our understanding of feature learning dynamics, as pretrained models often achieve exceptionally high decoded
core correlations from the outset, as noted in (Joshi et al., 2023). To better show this point, we present the learning dynamics
for both pretrained and randomly initialized weights. We also found that pretrained models are more robust to spurious
features at different complexities.
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Figure 14. Finite Staircase with 60000 Sampled Points: λ = 0.90

Figure 15. Learning dynamics of Domino dataset. The spurious dataset become harder from left to right. The subplot title shows the
spurious task. mnist01: Classification task of handwritten digits images of 0 and 1 taken from the MNIST dataset. mnist79: Classification
task of handwritten digits images of 7 and 9 taken from the MNIST dataset. fashion dress coat: Classification task of dress and coat
images taken from the FashionMnist dataset. The core task is classification of Truck and AutoMobile images taken from the CiFar dataset.
The plots shows similar to the staircase dataset, harder spurious feature has less influence of the end performance of the model. Note
confounder strength λ = 0.95 is fixed.
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Figure 16. Online Parity: Upper: repeated experiments Bottom: single experiment

C.2.2. CONFOUNDER STRENGTH

The impact of confounder strength on learning is more straight forward than the complexity. As confounder strength
increases, the number of epochs needed for convergence also rises significantly. Notably, learning remains relatively
insensitive to confounder strength until it reaches a threshold of 0.8, at which point we observe a notable increase in training
epochs.The information of spurious feature i.e how well the spurious feature is learned and than memorized depends heavily
on the confounder strength.

Parity For parity functions (fig. 16), we see when confounder strength surpass 0.9, it converge much slower after the
phase transition when compared to the experiment with lower λ. The slower convergence reflect on learning under finite
dataset where the end performance of the model is significantly impaired (fig. 17).

Staircase At higher confounder strength, the model has higher correlation to the spurious, simpler staircase function at the
early stage of learning. This imply the spurious staircase function is learned and memorized better by the model. We see
higher λ cause harm to the end performance under finite dataset just as parity (fig. 18).

Domino-Image, WaterBirds (figs. 19 and 20) Surprisingly, our observations indicate that the pretrained model exhibits
not only insensitivity to spurious features across a spectrum of complexities but also a remarkable resistance to higher λ
values. Additionally, when compared to the initialization with random weights, models with pretrained weights consistently
maintain low spurious correlations throughout the training process.

Regarding the waterbirds dataset, it is noteworthy that initialization with random weights fails to learn the core feature
entirely, as reported in (Kirichenko et al., 2023; Joshi et al., 2023).

C.3. Core and Spurious subnetwork

C.3.1. MORE NEURON PLOTS ON A 2 LAYER NN

Refer to fig. 21, fig. 22. We show the dynamics of a random batch of spurious neurons and core neurons for both the parity
and staircase spurious learning task. It can be seen that spurious neurons have higher weights on spurious coordinates
throughout training. And core neurons which has significant weights on the core coordinates are specifically the neurons
which does not have spurious weight spike at the start when the spurious feature is learned.
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Figure 17. Finite Parity with 40000 Sampled Points: Upper: repeated experiments. Bottom: single experiment

Figure 18. Staircase. Upper: Learning dynamics under sampling. Bottom: Learning dynamics under finite dataset.
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(a) Domino-Image: Pretrained Weights

(b) Domino-Image: Random Weights

Figure 19. Domino-Image. The plot shows pretrained model is more robust to the existence of a spurious feature across varying
counfounder strength.

Figure 20. Learning Dynamics on Waterbirds
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(a) Parity: Core Neurons at λ = 0.95

(b) Parity: Spurious Neurons at λ = 0.95

(c) Parity: All first layer neurons at λ = 0.95

Figure 21. Dynamics of neurons on Parity task.
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(a) Staircase: Core Neurons at λ = 0.90

(b) Staircase: Spurious Neurons at λ = 0.90

(c) Staircase: All neurons at λ = 0.90

Figure 22. Dynamics of neurons on Staircase task.
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Figure 23. Dynamics of Multi-layer neurons on Staircase task. The plot shows the neurons in third layers are also separated into core
and spurious neurons. The color of each line corresponds to the legend shown in fig. 3 with core coordinates being the core neurons
identified in the previous layer and the same for spurious neurons.

C.3.2. NEURONS PLOTS ON A MULTI-LAYER-NN

We show a Multilayer Perceptron (MLP) may also seperate into two subnetworks. We take a 4-layer MLP trained on a
staircase boolean task with deg(fs) = 10, deg(fc) = 14, λ = 0.9 as an example. At each layer, starting from the bottom
layer to the top layer, we recursively categorized neurons into spurious and core neurons. We observed that core neurons in
the next hidden layer primarily focus on core neurons in the current hidden layer, and the same applies to spurious neurons.
See fig. 23 for a plot on a random batch of neurons in the third layer. This discovery implies that the theory we derived in
the main paper can also be extended to MLP architectures.

C.3.3. SPURIOUS/CORE NEURONS ON VISION DATASETS

We show the finding here that neural networks trained on vision datasets are also separated/distangled into a spurious
sub-network and a core sub-network. We retrain the model either on the core or spurious feature and record the retrained
correlation score. We further zero out the weights on intersected neurons which is higher than a threshold value. The result
is shown in table 3, table 4.

Dataset Core Neurons Spurious Neurons Intersected Neurons Before Retrain

Waterbirds 135 72 6 1622
Domino 86 81 5 74
CelebA 149 134 12 1449

Table 3. Number of different types of neurons. The table shows the number of each type of neurons before and after retraining on core,
spurious feature. Before Retrain: Number of activated neurons before retrain. Threshold are 0.01, 0.05, 0.01 for waterbirds, Domino and
CelebA respectively.

Dataset Core Spurious Core w.o Spurious Spurious w.o core

Waterbirds 0.834 0.826 0.779 0.816
Domino 0.804 1 0.8 1
CelebA 0.814 0.578 0.792 0.542

Table 4. Performance of the Retrained model using neurons in table 3. Core/Spurious:Retrained the model on a group balanced dataset
to predict core/spurious feature. Core w.o Spurious/Spurious w.o Core: Performance of the model after removing intersected neuron
weights.
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Figure 24. Hard Staircase: Core Correlation After Retrained On Dataset with Different λ. We see the result follows the same trend as
observed in (LaBonte et al., 2023) and is correctly predicted by our theory.

C.3.4. LAST LAYER RETRAINING REDUCES SPURIOUS SUB-NETWORK WEIGHTS

See table 5. We compare the last layer weights ratio between core and spurious sub-network after Lat Layer Retraining
either with spurious dataset and balanced dataset. We see after retraining, the ratio increase significantly in both cases,
which has also been observed in (LaBonte et al., 2023).

Parity Staircase

Core Spurious Ratio Core Spurious Ratio

Before Retrain 1.53 0.97 1.58 1.38 0.77 1.79

Retrain Spurious 0.57 0.16 3.56 0.17 0.08 2.13

Retrain Clean 0.57 0.01 57.00 0.17 0.01 17.00

Table 5. The table shows the mean weights of core and spurious neurons before and after retraining with either the original spurious
dataset Dλ or group balanced dataset Dλ=0.5. Comparison of Core and Spurious Ratios in Parity and Staircase Cases before and after
training with spurious dataset and clean dataset. The ratio shows Core

Spurious .

D. Discussion
D.1. Limitations of Existing Debiasing Algorithms

In instances where a spurious attribute is absent, numerous debiasing algorithms (Liu et al., 2021; 2023; Utama et al., 2020;
Nam et al., 2020; Yaghoobzadeh et al., 2021) typically follow a two-stage methodology. The first stage involves training a
conventional model using Early Stop Empirical Risk Minimization (ERM). These algorithms diverge in the second stage,
where each implements a distinct heuristic to distinguish and separate data from minority groups. This separation is based
on the initial model, which is then utilized to either upweight or upsample these data points in the next stage. We find these
methods have several inherent limitations, evident even in our toy settings: (1) identifying the right time for early stopping,
(2) assessing whether the first model sufficiently identifies minority group data points, (3) determining the quantity of data
points to be selected, (4) establishing the appropriate degree of upweighting for the selected points.It is also unclear whether
the first model provide enough information to separate data points in the first place. If the algorithm aims to accurately
identify data points from a minority group, then we can use the Jaccard score and Containment score to evaluate their
performance.

These methods implicitly assume a distinct separation in the learning phases of spurious and core features, often influenced
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Figure 25. Performance of different debiasing methods on widely-used spurious datasets. Staircase: λ = 0.9, deg(fs) = 10, deg(fc) =
14,Dataset Size 60000; Domino: λ = 0.95. the core feature is Cat-Dog and the spurious feature is truck-automobile from CI-
FAR(Krizhevsky) dataset (see fig. 29 for an sample batch of images from this dataset). We additional report that after upsampling the
inferred group (performing the second training using the best group inference result among all early stopped models), the worst group
accuracy for the hard staircase and hard domino dataset are 0.42 and 0.53 respectively; Parity: λ = 0.9, deg(fs) = 10,deg(fc) = 4;
CMNIST, CelebA, CivilComments, MultiNLI: λ = 0.9; WaterBirds: λ = 0.95.

by the simplicity of the spurious feature and the strength of confounders. This is particularly apparent in JTT, which
upweights all misclassified points in the second stage, implicitly assuming a specific temporal point where the model
correlates more with spurious features than core features. This assumption holds true in cases where the spurious feature is
trivial to learn compared to the core feature. such as with parity cases and popular spurious datasets like the image Domino
dataset (Shah et al., 2020), Waterbirds (Sagawa et al., 2020a), and Color-MNIST (Arjovsky et al., 2020). However, our
findings suggest that this demarcation can remain unclear throughout training, particularly with more challenging spurious
features and limited datasets, as demonstrated by the limited hard staircase dataset and the hard domino dataset. As a result,
these debiasing algorithms struggle to accurately distinguish minority groups from others, leading to unwanted bias in the
model, as evidenced by low Jaccard scores and containment score(refer to the right two plots in Figure fig. 6).

Unlike clustering methods such as JTT and SPARE, (LaBonte et al., 2023) proposes a more generalized approach. Instead
of segregating points into groups for upweighting based on the inferred group’s size, this method selects points using the
initial model, focusing on those with the highest cross-entropy or KL divergence loss from a subsequently trained model.
Assuming we can accurately determine the timing for early stopping, the challenge then becomes deciding on the number
of points to select. We observe that minority group samples tend to rank higher in terms of loss, as indicated by a high
containment score relative to the number of selected points. However, identifying the optimal number of points without
explicit knowledge of the spurious attribute can be challenging, limiting the practicality of the algorithm. Detailed statistics
for four methods—JTT, Spare, Highest CE loss, Highest Disagreement Score—over six popular spurious datasets are
provided in the appendix, showcasing the accuracy of these methods in identifying minority groups. For the assessment of
the ranking methods, we select the number of points to be equivalent to the total number of minority points present in the
spurious dataset.

Note despite not directly using a spurious attribute in training, previous algorithms often presume the availability of a
validation dataset for hyperparameter tuning, which is impractical. Consequently, the reported performance typically reflects
models tuned with optimal hyperparameters.

Our experiments employed the SpuCo library (Joshi et al., 2023). At each epoch, we paused the initial model’s training to
perform group inference, following which we calculated the Jaccard and containment score to measure the accuracy of the
inferred minority group against the actual minority group.
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Figure 26. Training dynamics of different spurious datasets with default pretrained weights: Dataset specification is outlined in fig. 25

Figure 27. Training dynamics of different spurious datasets with random weights: Dataset specification is outlined in fig. 25
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Figure 28. Core/spurious correlation and decoded correlation dynamics of the designed Hard Domino Dataset. Clean: λ = 0.5; Spurious:
λ = 0.95. Even when the spurious feature in the domino task is challenging, it significantly influences the learning of the core feature.
Thus justify its appropriateness as an benchmark that can be considered by future debiasing methods. The core correlation achieved by the
model in the clean case represents the maximum possible correlation that any debiasing algorithm could achieve.

Figure 29. A sample batch of images from the constructed Hard Domino dataset.
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Dataset/Metric clean original CE KL JTT SPARE clean LLR
Hard Staircase 0.76 0.56 -0.31 0.28 0.28 0.15 0.62
Hard Domino 0.70 0.375 -0.22 0 0.15 0.02 0.55

Table 6. End Performance of Different Debiasing methods on designed experiments: clean: Trained from scratch with λ = 0.5 which can
be seen as a optimal case. original: Before Retraining with λ = 0.95 for Hard Domino task and λ = 0.9 for staircase task.clean LLR:
Last Layer Retraining with λ = 0.5 dataset. The value here denote core correlation after retraining. It is observed that previous debiasing
algorithms either failed on the designed spurious task or cause failure to core feature learning.

D.2. Discussion on spurious real dataset

Real-world datasets typically used to study spurious correlations, such as MultiNLI(Williams et al., 2018) and Civilcom-
ment(Duchene et al., 2023), often do not meet the properties of the boolean spurious datasets where core feature and spurious
feature are disentangled and realizable. In these datasets, spurious attributes are intricately intertwined at the word level,
such that the removal of a negative word can significantly alter a sentence’s semantic meaning. Furthermore, it has been
reported that the labels in these datasets are not entirely clear-cut and may be inherently ambiguous, posing challenges for
semantic labeling even for human annotators, thereby violating the realizability condition. We observe that the training
dynamics in such real-world datasets are diversified and not fully understood, as indicated by (Izmailov et al., 2022; Joshi
et al., 2023) (refer to fig. 26, fig. 27). It lacks justifications whether these datasets are suitable to be used in studying spurious
correlation.

As previous studies (LaBonte et al., 2023; Idrissi et al., 2022) have repeatedly shown, class-balanced training achieves
comparable performance to other, more sophisticated debiasing algorithms, or even group-balanced training such as DRO
(Sagawa et al., 2020a) on real dataset. The analysis of Jaccard and containment scores reveals that the debiasing methods
tested exhibit poor performance on all the tested real spurious dataset, casting doubt on their effectiveness for enhancing the
second model. Therefore, the potential of these methods to improve core feature learning is questionable. The pervasive use
of pretrained models further complicates the evaluation of debiasing algorithms. A deeper understanding of the complex
nature of real-world data, an area that remains largely unexplored, is crucial for a comprehensive understanding of the
training dynamics in these scenarios.
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