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ABSTRACT

In this paper, we introduce group convolutional neural networks (GCNNs) equiv-
ariant to color variation. GCNNs have been designed for a variety of geometric
transformations from 2D and 3D rotation groups, to semi-groups such as scale.
Despite the improved interpretability, accuracy and generalizability of these ar-
chitectures, GCNNs have seen limited application in the context of perceptual
quantities. Notably, the recent CEConv network uses a GCNN to achieve equivari-
ance to hue transformations by convolving input images with a hue rotated RGB
filter. However, this approach leads to invalid RGB values which break equivari-
ance and degrade performance. We resolve these issues with a lifting layer that
transforms the input image directly, thereby circumventing the issue of invalid
RGB values and improving equivariance error by over three orders of magnitude.
Moreover, we extend the notion of color equivariance to include equivariance to
saturation shift. Our hue-, saturation-, and color-equivariant networks achieve
strong generalization to out-of-distribution perceptual variations and improved sam-
ple efficiency over conventional architectures. We demonstrate the utility of our
approach on synthetic and real world datasets where we consistently outperform
competitive baselines.

1 INTRODUCTION

The tremendous progress of image classification in the last decade can be readily attributed to the
development of deep convolutional neural networks [1, 2, 3]. The highly nonlinear mapping and large
parameter space does not lend itself to interpretation easily, but even in early networks, representations
of geometry and color were observed and recognized for their importance [1, 4]. While a relatively
large body of literature has worked to improve the robustness of convolutional neural networks to
geometric transformations [5, 6, 7, 8, 9, 10], improving their robustness to perceptual variation has
garnered considerably less attention.

A commonly used heuristic for improving network robustness to color variation is to perform mean
subtraction and normalization on training set examples. This approach can work well when the
training and testing datasets are drawn from the same distribution; however, for data that are collected
at different points in time, or with different sensors, this is not likely to be the case. Consider, for
example, the case of medical imaging where images of tissue samples collected from different labs (or
from the same lab at different points in time) may have different characteristics due to variability in
data collection protocols or imaging processes [11]. This variability presents a significant challenge
for convolutional neural networks which have been found to be sensitive to color variations even on
the level of individual blocks [12]. Moreover, when presented with color perturbations, conventional
networks exhibit a significant drop in classification performance [13]. One approach to mitigate the
effect of color variation is to ignore color entirely by enforcing color invariance. This can be done by
converting input images to grayscale, or enforcing representation similarity across color as is done
in [14]. This approach has its own challenges, however, since in many domains, color is an important
cue for classification. Another approach is to use dataset augmentation, a technique that can improve
robustness in the presence of known transformations [15]. This approach, however, requires extended
training times and does not provide improved interpretability.

In this work, we address the challenge of neural network sensitivity to color variation by leveraging
the geometric structure of color in a group convolutional neural network. Geometric deep learning
has gained strong interest in recent years due to its ability to capture information in interpretable
and generalizable representations; by using a group convolutional neural network, we inherit these
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f(φ(g, x))

φ(g, x) ϕ(g, f(x))

f(x)

(a) Hue equivariance

HueSaturation

Lifting
Input

(b) Lifting layer

Figure 1: Color equivariant network. (a) The equivariance of our hue equivariant model is illustrated
by the commutativity of the (hue) rotation and neural network mapping. A hue rotation of 90◦ in
the input image space (top-left to bottom-left), results in a feature map rotation at each layer of the
network (top-right to bottom-right). Corresponding feature maps are highlighted with a blue border.
(b) An input image (left) is lifted to the hue-saturation group (right) by shifting its hue and saturation
values. For comparison, we illustrate the CEConv [16] lifting layer in Appendix B.1.

characteristics for the context of color variation. We represent color in the hue saturation luminance
(HSL) color space, and leverage the insight that the hue, and saturation can be modeled with
geometric group structure. Using this approach, our network retains color information in a structured
representation throughout the processing pipeline, thereby allowing color information to be used
and/or discarded intentionally.

Recently, Color Equivariant Convolutional Networks [16], proposed a group convolutional neural
network architecture for hue equivariant representation learning. Most notably, CEConv identifies
hue transformations with the 2D rotation group. However, the proposed lifting layer introduces
invalid RGB values which break equivariance, and degrade performance. To resolve this issue,
our lifting layer operates on the input image instead of the network filters, which produces an
equivariant descriptor without projection induced artifacts. This seemingly minor change improves
equivariance error by more than three orders of magnitude, and stabilizes network performance across
discretizations. We also expand the notion of color equivariance to capture variation in saturation.
Specifically, we identify variations in saturation with the 1D translation group. With this identification,
we propose a group equivariant network where variations in hue and saturation are represented as a
geometric transformations.

2 RELATED WORK

Group Convolutional Neural Networks The strong generalization performance of convolutional
neural networks on image processing tasks is attributed, in part, to the equivariance of planar
convolution to 2D translations. This insight has garnered considerable attention and led to a strong
interest in the development of convolutional neural networks equivariant to other symmetry groups [17,
18]. Previous works introduce group convolutional networks for finite and continuous groups. A
framework for finite group convolution was developed in [6], and demonstrated for the 2D rotation,
and reflection groups. The authors achieve equivariance to specific symmetry groups by convolving
input images and feature maps with the group orbit of a learned filter bank. In [19], the authors design
for equivariance to the continuous 2D rotation group by constraining filter representations to have
circular harmonic structure.

Group convolutional networks have also been designed for use in the context of scale symmetry.
In [20], the authors represent input images in log-polar coordinates where 2D rotation and scale
transformations present as 2D translations. To navigate the semi-group structure of scale transfor-
mations, the authors in [21] approximate the scale space as finite and use dilated convolutions in
a group equivariant architecture. The SREN network proposed in [22] designs for equivariance to
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the continuous 2D rotation and isotropic scaling group by constraining filter representations to be
expressed as the linear combination of a windowed Fourier basis.

Group convolutional networks have also been designed for groups acting in higher dimensions.
For 3D rotational symmetry, [23] and [24] use a spherical harmonics based representation with 3D
point clouds and spherical image inputs respectively; and [25] introduce an equivariant network
for transformations of the Euclidean group in 3D. In [26], the authors introduce a framework for
general Lie groups whose exponential map is surjective, and [27] introduces a framework for more
general manifolds. By designing for known symmetries in the task, these works provide improved
interpretability, training efficiency and generalizability over conventional convolutional networks.

Other group equivariance methods encourage transformation equivariance using a soft penalty term
on representation dissimilarity [4, 28]. These methods are separate from the group convolutional
neural network literature, and different from what we propose. Our model leverages the geometric
structure of hue and saturation to design a hue-saturation equivariant network bringing the benefits of
group equivariant networks to perceptual transformations.

Color Invariance Several prior works attempt to mitigate the effect of color variation in image
processing tasks, for example, in [29], the authors represent images in a color space where pixel
values are invariant to changes in luminance for luminance invariant image segmentation, and in [14],
the authors penalize changes in their latent representations due to color variation for color invariant
skin lesion identification. While color invariance resolves the effect of color variation, color has been
identified as an important cue in neural network representation learning [12, 13] which is discordant
with the goal of color invariance. In contrast to these approaches, our work leverages the geometric
structure of hue, and saturation to construct a convolutional neural network equivariant to variations
in these quantities by design.

Most similar to ours is the model proposed in [16], a hue equivariant network for improved network
performance in the presence of color variation. Our color equivariant networks differ from the work
proposed in [16] in two important ways. First, we lift the input image instead of the filters of the
first layer which circumvents the issue of invalid hue rotations suffered by the network in [16]; and
second, we expand the notion of color equivariance by introducing networks that are equivariant to
both hue and saturation.

3 PRELIMINARIES

In this section we describe our notation, and review definitions of the group action, equivariance, and
group convolution.

Notation. We use f l to denote the l-th feature map (f0 to denote an input image), and f lj to denote
the j-th channel of that feature map. We use ψl

i to denote the i-th filter of the l-th layer, and ψl
i,j to

denote the j-th channel of that filter.

Group action. Adapted from [30]. Given a set X and a group G, the action of the group G on X is
a function φ : G×X → X satisfying the following:

1. For all g, h ∈ G and all x ∈ X

φ(g, φ(h, x)) = φ(gh, x) (1)

2. For all x ∈ X
φ(1, x) = x (2)

where 1 ∈ G is the identity element of G.

The set X is called a (left) G-set.

Equivariance. Adapted from [30]. Given two G-sets X and Y , and group actions φ : G×X → X
and ϕ : G× Y → Y , a function f : X → Y is said to be equivariant, if and only if for all x ∈ X ,
and g ∈ G,

f(φ(g, x)) = ϕ(g, f(x)). (3)

3
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When f is invariant to the action of G, the group action ϕ is the identity map and we write

f(φ(g, x)) = f(x). (4)

The equivariance of our network to hue shifts is illustrated in Figure 1a.

Group convolution. In a conventional CNN, the input to convolution layer l, denoted f l : Z2 →
RKl

, is convolved with a set of Kl+1 filters, denoted ψl
i : Z2 → RKl

, where i ranges from 1 to
Kl+1. The result of the convolution can be written:

f l+1
i = [f l ∗ ψl

i](x) =
∑
y∈Z2

Kl∑
k=1

f lk(y)ψ
l
i,k(x− y), x ∈ Z2. (5)

The convolution of conventional CNNs is equivariant to the action of the group (Z2,+), that is, the
group formed by summing over the integers. The more general group convolution can be written:

[f l ∗ ψl
i](g) =

∑
h∈G

Kl∑
k=1

f lk(h)ψ
l
i,k(h

−1g), (6)

and is equivariant to the action of the group G.

4 METHOD

In this section we present our color equivariant network. We begin by presenting definitions for the
hue and saturation groups and their group actions, then define the lifting layers, and group convolution
layers for our color equivariant networks.

Hue group and group action. In the HSL color space, hue is represented by angular position, and
can therefore be identified with the 2D rotation group. As in group convolutional network [6], we
consider a finite group representation. Specifically, we identify elements of the discretized hue group,
HN , where the subscript N indicates the cardinality of (i.e. the number of elements in) the group,
with those of the cyclic group CN .

We define the action of hue group on HSL images, x ∈ X where x : Z2 → R3, and functions on
the discrete hue group, y ∈ Y , where y : Z2 ×HN → RK . An element of the hue group acts on
an HSL image by the group action φh : HN ×X → X , which shifts the hue channel of the image.
Concretely, for an HSL image x ∈ X defined as the concatenation of hue, saturation and luminance
channels, i.e., x = (xh, xs, xl), the action of an element hi of the hue group HN is given by

φh(hi, x) = ((xh + hi)(mod c), xs, xl), (7)

where (·)mod(·) denotes the modulus operation and is applied to the pixel value which ranges from 0
to c.

An element of the hue group acts on a function on the discrete hue group by the group action
ϕh : HN × Y → Y , which “rotates” the function on the group. Concretely, for a function f on the
discrete hue group HN defined as the concatenation of functions f = (f1, . . . , fN ), the action of an
element hi in the hue group HN is given by

ϕh(hi, f) = (f(1+i)(mod N), . . . , f(N+i)(mod N)). (8)

The action of φh on an input image, and ϕh on a feature map are shown in Figure 6a. We prove φh

and ϕh are group actions in Appendix A.

Saturation group and group action. We expand the notion of color equivariance proposed in [16]
to include equivariance to saturation shifts. In the HSL color space, saturation can be represented
by a real number in the interval [0, 1]; we introduce two approximations to give the saturation space
group structure. First, we observe that there is a bijection between the real numbers and the open
interval (0, 1), so we can use the structure of the group (R,+). Second, we consider a finite subset
of the group, a necessary and commonly used practice in both conventional CNNs (recall that the
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Figure 2: Saturation equivariant feature maps. We illustrate the equivariance of our saturation-
equivariant model. A saturation shift in the input image space (top-left to bottom-left), results in
a feature map translation at each layer of the network (top-right to bottom-right). Corresponding
feature maps are highlighted with a blue border.

translation group is infinite) and group-equivariant CNNs such as [21]. With these approximations,
we identify elements of the discretized saturation group SN , with those of the integers with addition,
(Z,+).

We define the action of the saturation group on HSL images, x ∈ X where x : Z2 → R3, and
functions on the discrete saturation group, y ∈ Y , where y : Z2 × SN → RK . An element of the
saturation group acts on an HSL image by the group action φs : SN ×X → X , which shifts the
saturation channel of the image. Concretely, for an HSL image x ∈ X defined as the concatenation
of hue, saturation and luminance channels, i.e., x = (xh, xs, xl), the action of an element si of the
saturation group SN is given by

φs(si, x) = (xh,min(xs + si, c), xl). (9)

An element of the saturation group acts on a function on the discrete saturation group by the group
action ϕs : SN × Y → Y , which “translate” the function on the group. Concretely, for a function f
on the discrete saturation group SN defined as the concatenation of functions f = (f1, . . . , fN ), the
action of an element si in the saturation group SN is given by

ϕs(si, f) = (f1+i, . . . , fN ,0, . . . ,0︸ ︷︷ ︸
i

). (10)

The action of φs on an input image, and ϕs on a feature map are shown in Figure 2. We prove φs and
ϕs are group actions in Appendix A. We define the luminance group and group action similarly (see
Appendix E.1).

Hue-Saturation group action. We define the action of the hue-saturation group as a composition
of the hue and saturation group actions. An element of the hue-saturation group acts on an HSL
image by the group action φhs : HN × SM × X → X , which shifts both the hue and saturation
channels of the image. For an HSL image x ∈ X defined as the concatenation of hue, saturation
and luminance channels, i.e., x = (xh, xs, xl), the action of an element (hi, sj) of the hue-saturation
group HN × SM is given by

φhs((hi, sj), x) = φh(hi, φs(sj , x)). (11)

An element of the hue-saturation group acts on a function on the discrete saturation group by the
group action ϕhs : HN × SM × Y → Y , which “rotates” and “translates” the function on the
group. Concretely, for a function f on the discrete hue-saturation group HN × SM defined as the
concatenation of functions f = (f11, . . . , f1M , f21, . . . , fNM ), the action of an element (hi, sj) in
the hue-saturation group HN × SM is given by

ϕhs((hi, sj), f) = ϕh(hi, ϕs(sj , f)). (12)

We prove φhs and ϕhs are group actions in Appendix A.

Lifting layer. The first layer of a group convolutional neural network “lifts” the input image to the
group (see Figure 1b). We can lift an input image to the product space of the image grid Z2, and
discretized hue shifts HN = {h0, h1, . . . , hN}, by convolving with hue shifted filters,

[f0 ∗ ψ0
i ](gx,j) =

∑
y∈Z2

K0∑
k=1

f0k (y)hjψ
0
i,k(x− y). (13)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Hue-6*

CEConv-6

Rotated

Rotated Restored

Restored

Figure 3: Impact of cardinality on hue rotation invertibility. Our lifting layer (blue) operates
on HSL input images where each hue rotation is invertible. The lifting layer proposed in CEConv
(orange) operates on RGB filters and suffers from invalid hue rotations for all discretizations of the
hue group except for N = 1 and N = 3 (i.e., symmetries of the axis-aligned RGB cube). (Left) We
show the impact of invalid hue rotations on a four pixel image. We rotate the image 60◦ using our
proposed lifting layer (top-left) and the CEConv lifting layer (bottom-left). Subsequently applying a
−60◦ rotation yields an image that is indistinguishable from the original using our approach (top-left),
and one with visible artifacts using the CEConv approach (bottom-left). (Right) We show the average
restored image error for both approaches. Our approach results in a consistently negligible restored
image error, however, the CEConv approach results in a restored image error exceeding 7% for all
discretizations of the hue group except N = 1 and N = 3.

Here we denote an element of the product space gx,i, where the subscript x references an element
of Z2, and j references the element hj in HN . The input image f0 and lifting filters ψm,n are
functions on Z2. This is the approach taken in CEonv [16]. The authors shift the hue of a filter in the
RGB space by rotating its values about an axis passing through the point p = (1, 1, 1) as shown in
Figure 8b in Appendix B.1. As described in [16], this approach results in invalid hue rotations for all
discretizations of the hue group that are not symmetries of the axis-aligned RGB cube (i.e., N = 1
and N = 3). To remedy this, the authors project invalid RGB values to the nearest point on the RGB
cube. However, this projection breaks invertibility of the hue shift (see Figure 3) yielding a descriptor
that is only approximately hue equivariant.

Lifting to the group can alternatively be achieved by transforming the input image rather than the
filters,

f1(gx,j) = φh(hj , f
0)(x). (14)

We use this approach in our implementation as it circumvents the issue of invalid hue rotations,
producing a reliably equivariant descriptor. The lifting layers for the saturation group, and hue-
saturation group are constructed analogously.

Equivariance of the lifting layer. We can show that our lifting layer is equivariant to hue shifts.
We let f1(gx,j) = φh(hj , f

0)(x) as in equation 14 and show that a hue shift of f0 results in a hue
shift of f1. In the first step we use the fact that φh is a group action (see Appendix A.1), and in the
second step we use commutativity of the hue group:

φh(hj , φh(hm, f
0))(x) = φh(hjhm, f

0)(x) (15)

= φh(hmhj , f
0)(x) (16)

= φh(hm, φh(hj , f
0))(x) (17)

= φh(hm, f
1(gx,j)). (18)

Equivariance of the saturation, and hue-saturation lifting layers can be shown analogously.

Group convolution layer. For all layers after the first layer, the feature maps f l are on the product
space Z2 ×HN . Since hue shifts can only be performed on three dimensional inputs, we leverage
the identification of hue shifts with the discrete 2D rotation group, i.e., HN

∼= CN and interpret the
feature maps f l as functions on the product space G := Z2 × CN . With this interpretation we

6
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Figure 4: Model sample efficiency. We show
the error improvement (higher is better) over
the Z2CNN baseline as a function of the per-
centage of training examples used. The advan-
tage of our Hue-N models increases as the per-
centage of training examples used decreases.

Table 1: Generalization to global hue-shift.
Classification error on the Hue-shift MNIST
dataset is reported. Our hue-equivariant models
(Hue-N ) perform comparably to baselines on the
in-distribution case (A/A), and outperform base-
lines on the out-of-distribution case (A/B).

Network A/A A/B Params

Z2CNN 1.54 (0.10) 57.38 (22.06) 22,130
Hue-3* 1.79 (0.25) 1.81 (0.29) 22,658
Hue-4* 1.97 (0.25) 2.08 (0.15) 25,690
CEConv-3 1.79 (0.13) 1.83 (0.19) 28,739
CEConv-4 3.04 (0.27) 3.09 (0.25) 30,539

perform group convolution on G as follows,

[f l ∗ ψl
i](g) =

∑
h∈H

K0∑
k=1

f lk(h)ψ
l
i,k(g

−1h), (19)

where ψl is a function on G. Group convolution on the saturation, and hue-saturation groups are
performed analogously.

5 EXPERIMENTS

In this section, we highlight improved sample efficiency over a conventional CNN baseline, improved
hue-equivariance over CEConv [16], the utility of saturation equivariance on the Camelyon17
dataset [31], the utility of luminance equivariance on the small NORB dataset [32] in Appendix E.1,
and the utility of our architectures for color based sorting. We additionally demonstrate the strong
performance of our model through extensive experiments and against numerous baselines.

5.1 HUE-SHIFT MNIST CLASSIFICATION

We demonstrate improved generalization to global hue-shifts, and higher sample efficiency compared
to a conventional CNN model with a similar number of parameters on our Hue-shift MNIST dataset.
Our dataset is a variation of MNIST [33] with 60k training examples and 10k test examples classified
into one of 10 categories. Additional details are provided in Appendix C.1.
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(b) Hue-4

Figure 5: Hue shift MNIST feature map visualization. We compare the feature map trajectories of
MNIST digits as their hue is varied from 1 to 360◦. The color of the trajectory corresponds to the
class label. (a) tSNE projection of hue shifted feature map trajectories in the Z2CNN baseline model.
As the hue of the input changes, the location of the digit in the feature space changes significantly.
(b) tSNE projection of hue shifted feature map trajectories in our hue-equivariant CNN. In contrast to
the Z2CNN baseline, the location of the digit in the feature space changes minimally.
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Table 2: Generalization to local hue-shift. Classification error on the 3D Shapes dataset is reported.
Our model (Hue-N ) and CEConv-N achieve improved generalization performance over the conven-
tional CNN model (Z2CNN). Our approach is robust to the choice of hue group discretization, while
the performance of CEConv deteriorates when N is not a symmetry of the axis-aligned RGB cube.

Network A/A A/B A/C Params

Z2CNN 0.00 (0.00) 51.25 (9.59) 26.66 (19.60) 20,192
Hue-3* 0.00 (0.00) 0.03 (0.04) 0.04 (0.03) 19,478
Hue-4* 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 21,832

CEConv-3 0.00 (0.00) 0.02 (0.03) 0.05 (0.04) 26,441
CEConv-4 0.00 (0.03) 0.60 (0.25) 0.53 (0.43) 30,792

Generalization to global hue-shift. The generalization performance of our hue-equivariant models,
Hue-N (N indicates the cardinality of the discrete hue group), and a conventional CNN model,
Z2CNN [6], are reported in Table 1. On the in-distribution test case (A/A), the performance of our
model and the conventional CNN model are comparable. However, on the out-of-distribution test
case (A/B), the performance of our model is preserved, while the performance of the conventional
CNN model deteriorates significantly.

The performance gap on the out-of-distribution test case can be attributed to the difference in internal
representation structure. To understand this better, we generate feature representation trajectories in
the penultimate layer of our network and the baseline architecture by continuously varying the hue of
an input image. We then visualize these trajectories using tSNE [34] projection (see Figure 5). For
the baseline architecture, the trajectories of different digits overlap for some hues (Figure 5a), but for
our model, the trajectories of different digits are confined to separate clusters (Figure 5b).

Model sample efficiency. The sample efficiency of our hue-equivariant models (Hue-N ) and a
conventional CNN model (Z2CNN) are reported in Figure 4. The advantage of our hue-equivariant
models increases as the percentage of the training set used decreases, illustrating improved sample
efficiency [35].

5.2 HUE-SHIFT 3D SHAPES CLASSIFICATION

We demonstrate improved generalization to local hue-shifts, and significantly reduced equivariance
error compared to CEConv on the 3D Shapes classification dataset [36]. The 3D Shapes dataset
consists of RGB images of 3D shapes, where the color of the shape, the floor, and the walls vary
across examples, as does the scale and orientation of the shape. There are 48k examples in the training
set, and 12k examples in each of the test sets. Additional details are provided in Appendix C.2.

Generalization to local hue-shift. The generalization performance of our hue-equivariant mod-
els, Hue-N (N indicates the cardinality of the discrete hue group), a conventional CNN model,

Hue-4* Feature Map CEConv-4 Feature Map
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(a) Hue-shifted feature maps (b) Equivariance error

Figure 6: Hue equivariant feature maps. (a) We qualitatively compare hue-shifted feature maps
produced using our lifting layer and the CEConv lifting layer. Highlighted feature maps obtained
using our lifting layer (Hue-4) are qualitatively indistinguishable, while there are visible discrepancies
in the feature maps of CEConv-4. (b) We quantitatively compare the equivariance-error of the hue-
shifted feature maps for each approach. The equivariance error resulting from our lifting layer (Hue-4)
is more than three orders of magnitude lower than the error resulting from CEConv-4.
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Table 3: Generalization to saturation-shift. Classification error on the Camelyon17 dataset is
reported. Our model (Sat-N and Hue-M -Sat-N ) achieves improved generalization performance over
the conventional CNN model (ResNet50).

Networks Error Param

ResNet50 28.91 (7.58) 23.5M
Sat-3* 16.08 (2.68) 23.3M
Hue-4-Sat-3* 19.06 (4.92) 23.0M
CEConv-3 28.76 (9.93) 23.1M

Z2CNN [6], and the CEConv-N models are reported in Table 2. Our Hue-4 model outperforms
all other models on the in-distribution (A/A), global hue-shift out-of-distribution (A/B) and local
hue-shift out-of-distribution (A/C) test sets. The performance of CEConv-4 is significantly worse
than all other hue-equivariant models. We attribute the relatively poor generalization performance of
the CEConv-4 model to the feature map equivariance error.

Lifting layer equivariance error. The lifting layer equivariance error of our Hue-4 model and the
CEConv-4 model are reported in Figure 6b. As discussed in section 4, our lifting layer operates on
HSL images and does not induce the invalid hue rotations observed in CEConv. We quantitatively
assess how lifting layer invertibility impacts descriptor equivariance following [37]. We compute the
equivariance error as the relative equivariance,

Equivariance Error =
|f(φh(hi, x))− ϕh(hi, f(x))|
|f(φh(hi, x)) + ϕh(hi, f(x))|

(20)

and show that the equivariance error of CEConv-4 is more than three orders of magnitude higher than
our Hue-4 model (see Figure 6b).

5.3 CAMELYON17 CLASSIFICATION: SATURATION SHIFT IN THE WILD

We demonstrate improved generalization to saturation-shifts compared to ResNet50 [3] and CEConv-
3 on the Camelyon17 classification dataset [31]. The Camelyon17 dataset consist of images of human
tissue collected from five different hospitals. Variation in tissue images results from variation in
the data collection and processing procedures. The dataset consists of 387,490 examples, 302,436
of which are used for training and 85,054 of which are used for testing. Hospitals 1, 2, and 3 are
represented in the training set, and hospital 5 is represented in the testing set. Additional details are
provided in Appendix D.3.

Generalization to saturation-shift. We expand the notion of color equivariance proposed in [16] to
capture variation in saturation. The generalization performance of our saturation-equivariant models,

Table 4: Generalization to color-shift. Classification error on the Caltech-101, Oxford-IIT Pets,
Stanford Cars, CIFAR-10, CIFAR-100, STL-10 datasets are reported. Our models (Hue-N , Sat-
N and Hue-M -Sat-N ) outperform CEConv-N models on all datasets, and are competitive with
ResNet. We use ResNet-aug and Resnet-gray to denote a ResNet architecture trained on a color-jitter
augmented dataset and grayscale image dataset respectively.

Network Caltech 101 CIFAR-10 CIFAR-100 Stanford Cars Oxford Pets STL-10

ResNet 32.68 (1.55) 7.86 (1.14) 32.00 (0.63) 25.41 (0.96) 31.52 (2.05) 18.59 (1.65)
ResNet-gray 33.79 (3.09) 8.45 (0.68) 32.04 (0.66) 24.71 (0.93) 30.38 (0.35) 18.71 (1.47)
ResNet-aug 32.90 (0.82) 8.33 (0.44) 32.27 (0.18) 22.38 (1.65) 30.06 (0.52) 17.89 (1.48)
Hue-3* 34.32 (0.34) 8.41 (0.39) 33.28 (0.63) 22.19 (2.20) 31.37 (3.50) 19.82 (0.98)
Hue-4* 32.23 (1.07) 8.83 (0.64) 34.70 (0.89) 20.38 (1.06) 27.39 (0.68) 20.73 (1.11)
Hue-4-Sat-3* 38.14 (1.07) 10.68 (0.78) 33.27 (0.31) 24.79 (3.87) 29.84 (1.34) 20.53 (0.73)
Sat-3* 41.64 (1.40) 9.24 (0.27) 39.33 (0.45) 31.90 (10.03) 36.87 (5.57) 20.71 (1.10)
CEConv-3 34.74 (0.83) 8.86 (0.33) 34.95 (0.44) 23.97 (1.56) 31.08 (2.54) 24.29 (1.31)
CEConv-4 33.52 (0.48) 9.28 (0.24) 35.46 (0.35) 24.08 (0.66) 33.70 (1.50) 21.90 (1.64)
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(a) Hue-4

(b) ResNet44

Figure 7: Color sorting on CIFAR-10. We show images from CIFAR-10 automobile class ordered
by pairwise distance using Hue-4 and ResNet44 feature maps. The structure of the Hue-4 feature
maps naturally allow for color based sorting, whereas the ResNet44 feature maps do not. We include
visualizations of the entire automobile class sorted using Hue-N and CEConv-N in Appendix B.3.

Resnet50 [3], and CEConv-3 are reported in Table 3. Our saturation- and color-equivariant models
outperforms all other models, while CEConv performs comparably to the conventional CNN model.

5.4 COLOR SHIFT IN THE WILD

We demonstrate improved generalization to global color-shifts compared to ResNet [3] and CEConv
on the Caltech-101 [38], Oxford-IIT Pets [39], Stanford Cars [40], STL-10 [41], CIFAR-10 and
CIFAR-100 [42]. Additional details are provided in Appendix D.

Generalization to color-shift. The generalization performance of our hue-equivariant models,
Hue-N , saturation-equivariant model, Sat-N , color-equivariant models Hue-M -Sat-N , ResNet44
model, and the CEConv-N models are reported in Table 4.

Color sorting on CIFAR-10. While our hue-equivariant model performs on-par with the conven-
tional CNN model on this dataset, the structure of our representation can be leveraged for tasks that
are not possible with conventional architectures alone. To illustrate this, we use our model to sort
images in the automobile class by hue (see Figure 7a). To produce an hue ordering, we compute
the hue-shifted pairwise Euclidean distance between hue group feature maps of instances in the
automobile class. Images x1 and x2 are close in the hue space if

argmin
i
∥ϕh(hi,Ψ(x1)),Ψ(x2)∥= 0, (21)

where Ψ(xj) denotes the penultimate feature map for image j and hi is the i-th element of the hue
group. Sorting using the penultimate feature map of the ResNet44 model is shown in Figure 7b.

6 CONCLUSION

In this paper we address the challenge of learning hue- and saturation-equivariant representations.
Leveraging the observation that these perceptual transformations have geometric structure, we
propose a group structure for each, and a group convolutional neural network that is equivariant to the
transformations by design. By encoding perceptual variation in a finite group structure, we achieve
strong generalization performance and sample efficiency and can use learned representations for tasks
such as color based sorting.

6.1 LIMITATIONS AND FUTURE WORK

GCNs are more computationally expensive than their conventional counterparts since they require
computation of the filter orbit at each layer. Concretely, the computational cost of GCNNs is
approximately equal to that of conventional CNNs with a filter bank size equal to that of the
augmented filter bank used in GCNNs [6]. This is compounded with the requirement for a finite filter
orbit which can at best approximate a continuous group. Future work will investigate a continuous
representation of the group to address both of the aforementioned challenges.
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7 REPRODUCIBILITY STATEMENT

Source code will be open-sourced upon acceptance. Proofs for hue and saturation group actions
are shown in Appendix A. Proof of equivariance of the proposed lifting layer is shown in Section 4.
Datasets, training and implementation details are described in Appendix C.
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APPENDIX

A HUE AND SATURATION GROUP ACTION

In this section we prove the proposed hue group action and saturation group action satisfy the axioms
for a group action. By definition of a group action, φh is a group action if it satisfies the following
properties:

1. For all g, h ∈ G and all x ∈ X

φ(g, φ(h, x)) = φ(gh, x) (22)

2. For all x ∈ X
φ(1, x) = x (23)

where 1 ∈ G is the identity element of G.

In the remainder of this section we refer to equation 22 as ‘property one’ and equation 23 as ‘property
two’.

A.1 HUE GROUP ACTION

Here we show that the proposed hue group action is indeed a group action. The proposed hue group
action on the input space is defined:

φh(hi, x) = ((xh + hi)(mod 255), xs, xl), (24)
in equation 7 of the main text.

First we show the proposed hue group action φh satisfies property one. For any hue shifts hi and hj ,
we have

φh(hi, φh(hj , x)) = φh(hi, ((xh + hj)(mod 255), xs, xl)) (25)
= (((xh + hj)(mod 255) + hi)(mod 255), xs, xl)) (26)
= (((xh + (hj + hi))(mod 255), xs, xl)) (27)
= φh((hj + hi), x), (28)

which shows that φh satisfies the property one. Now we show φh satisfies property two. We have the
identity element hue transformation h0 = 0, and

φh(h0, x) = ((xh + h0)(mod 255), xs, xl) (29)
= (xh, xs, xl) = x, (30)

which shows φh satisfies property two. Having shown that φh satisfies all properties of a group
action, we have that φh is, in fact, a group action.

A.2 SATURATION GROUP ACTION

Here we show the proposed saturation group action is a group action. The proposed saturation group
action is defined:

φs(si, x) = (xh,min(xs + si, 255), xl), (31)
in equation 9 of the main text. First we show the proposed saturation group action φs satisfies
property one. For any saturation shifts si and sj , we have

φs(si, φs(sj , x)) = φs(si, (xh,min(xs + sj , 255), xl)) (32)
= (xh,min(min(xs + sj , 255) + si, 255), xl) (33)
= (xh,min(xs + (sj + si), 255), xl) (34)
= φs((sj + si), x), (35)

which shows φs satisfies property one. Now we show φs satisfies property two. We have the identity
element saturation transformation s0 = 0, and

φs(s0, x) = (xh,min(xs + s0, 255), xl) (36)
= (xh, xs, xl) = x, (37)

which shows φs satisfies property two. Having shown that φs satisfies all properties of a group action,
we have that φs is, in fact, a group action.
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B CECONV EXPERIMENTS

B.1 LIFTING LAYER

HueSaturation

Lifting
Input

(a) Hue-N Lifting (b) CEConv Lifting

Figure 8: Lifting layer. (a) In Hue-N, an input image (left) is lifted to the hue-saturation group
(right) by shifting its hue and saturation values. (b) CEConv shifts the hue of a filter in the RGB
space by rotating its values about an axis passing through the point p = (1, 1, 1). This approach
results in invalid hue rotations for all discretizations of the hue group that are not symmetries of the
axis-aligned RGB cube (i.e., N = 1 and N = 3). (Top) N = 3. Rotations symmetric to axis-aligned
RGB cube and yields valid rotations. (Bottom) N = 4. Rotations yield results where invalid RGB
values that lie outside of the RGB cube and needs to be projected.

B.2 HUE-SHIFT MNIST FEATURE MAP VISUALIZATION
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Figure 9: Hue shift MNIST feature map visualization. tSNE projection of hue shifted feature map
trajectories in Hue-3 and CEConv-3.
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Figure 10: Hue shift MNIST feature map visualization. tSNE projection of hue shifted feature
map trajectories in Hue-4 and CEConv-4. In contrast Hue-4, there is more ambiguous scatter in the
feature maps of CEConv-4.
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B.3 COLOR SORTING ON CIFAR-10

Figure 11: Color sorting on CIFAR-10. We show images from CIFAR-10 automobile class ordered
by pairwise distance using Hue-3.

Figure 12: Color sorting on CIFAR-10. We show images from CIFAR-10 automobile class ordered
by pairwise distance using CEConv-3.

Figure 13: Color sorting on CIFAR-10. We show images from CIFAR-10 automobile class ordered
by pairwise distance using Hue-4.

Figure 14: Color sorting on CIFAR-10. We show images from CIFAR-10 automobile class ordered
by pairwise distance using CEConv-4.
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C DATASETS

C.1 HUE-SHIFT MNIST

We introduce the Hue-shift MNIST dataset to evaluate the performance of our equivariant architectures
in the presence of global hue shift. Examples in the training set are randomly assigned a hue between
0◦ and 240◦ (see Figure 15a) and examples in the test set are partitioned into an in-distribution set
and an out-of-distribution set. In-distribution examples are randomly assigned a hue from the same
distribution as the training set, and out-of-distribution examples are randomly assigned a hue outside
of the training set distribution (i.e., between 240◦ and 360◦) (see Figure 15b).

(a) Dataset A examples (b) Dataset B examples

Figure 15: Hue-shift MNIST dataset. (a) Examples from the training dataset and in-distribution
testing dataset A are colored with a randomly selected hue between 0◦ and 240◦. (b) Examples from
out-of-distribution testing dataset B are colored with a randomly selected hue between 240◦ and
360◦.

(a) Dataset A examples (b) Dataset B examples (c) Dataset C examples

Figure 16: Hue-shift 3D Shapes dataset. (a) Examples from the training dataset and in-distribution
testing dataset A. The color of the wall, the floor and the shape are randomly selected from the first
half of the color space (colors 0-4). (b) Examples from the out-of-distribution testing dataset B. The
color of the wall, the floor and the shape are randomly selected from the second half of the color
space (colors 5-9). (c) Examples from the out-of-distribution testing dataset C. The color of the wall
and the floor are randomly selected from the first half of the color space, and the color of the shape is
randomly selected from the second half of the color space.

C.2 HUE-SHIFT 3D SHAPES

We introduce the Hue-shift 3D Shapes dataset to evaluate the performance of our equivariant archi-
tectures in the presence of local hue shift. Examples in the training set are randomly assigned a hue
from the first half of the color space (colors 0-4 as defined in [36]) and examples in the test set are are
partitioned into an in-distribution set and two out-of-distribution sets. The out-of-distribution test sets
are designed to measure robustness to global hue-shift, and local hue-shift. In the out-of-distribution
test set designed to measure robustness to global hue-shift, the color of the wall, the floor and the
shape are randomly selected from the second half of the color space (colors 5-9 as defined in [36]),
and in the out-of-distribution test set designed to measure robustness to local hue-shift, the color of
the wall and the floor are randomly selected from the first half of the color space, and the color of the
shape is randomly selected from the second half of the color space.
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C.3 SMALL NORB

We use the small NORB dataset to evaluate the performance of our equivariant architectures in
the presence of luminance shifts. Examples in the training set are assigned with medium lighting
conditions (2-3 as defined in [32]). and examples in the test set are are partitioned into an in-
distribution set and two out-of-distribution sets. Examples in testset A are in-distribution with
lighting label 2-3 as defined in [32]; examples in testset B are out-of-distribution with lower lighting
(lighting label 0-1 as defined in [32]); and examples in testset C are out-of-distribution with higher
lighting (lighting label 4-5 as defined in [32]). The out-of-distribution testsets are designed to measure
robustness to luminance-shift.

(a) Dataset A examples (b) Dataset B examples (c) Dataset C examples

Figure 17: Small NORB dataset. (a) Examples from the training dataset and in-distribution testing
dataset A. (b) Examples from the out-of-distribution testing dataset B with lower lighting conditions.
(c) Examples from the out-of-distribution testing dataset C with higher lighting conditions.

C.4 TINY-IMAGENET

We use the Tiny-ImageNet dataset to evaluate the performance of our equivariant architectures in the
presence of color shifts in large datasets. The Tiny-ImageNet dataset [43] is a downsized subset of
ImageNet consisting of 100k 64x64 RGB images. Of the 1000 classes represented in ImageNet, 200
are represented in Tiny-ImageNet, each with 500 training examples, 50 validation examples, and 50
unlabeled test examples.

D IMPLEMENTATION AND TRAINING DETAILS

In this section we provide architectural details for our equivariant networks, and training details for
each experiment.

All experiments were performed over multiple random seeds to assess the robustness of the model to
initialization. Performance statistics on the Hue-shift MNIST, Hue-shift 3D Shapes, and CIFAR-10
datasets were computed over three random seeds (i.e., 1999, 2000, and 2001). Performance statistics
the on Camelyon17 dataset were computed over five random seeds (i.e., 1997, 1998, 1999, 2000, and
2001).

All models except Tiny-ImageNet were trained on a shared research computing cluster. Each compute
node allocates an Nvidia L40 GPU, 24 core partitions of an Intel Xeon Gold 5320 CPU, and 24GBs
of DDR4 3200MHz RDIMMs. Tiny-ImageNet was trained on compute nodes with 4 Nvidia L40
GPUs.

D.1 HUE-SHIFT MNIST

For this task, we compare against the Z2CNN architecture proposed in Cohen and Welling [6]. Our
hue-equivariant architecture has the same number of layers as Z2CNN, but with a reduced filter count
to maintain a similar number of parameters at each layer. In the final layer of our hue-equivariant
architecture, we perform hue group pooling to yield an hue-invariant representation.

We train our equivariant networks and the conventional architectures for 5 epochs with a batch
size of 128. We optimize over a cross-entropy loss using the Adam optimizer [44] with β1 = 0.9,
and β2 = 0.999. We use an initial learning rate of 10−3 for the Z2 network, and 10−4 for the
hue-equivariant network. We train CEConv architectures using the hyperparameters reported in [16].
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D.2 HUE-SHIFT 3D SHAPES

For this task we compare against the Z2CNN architectures proposed in [6]. Our hue-equivariant
architectures are designed with the same network structure as the baselines, but with a reduced
filter count to maintain a similar number of parameters at each layer. In the final layer of our
hue-equivariant architectures, we perform hue group pooling to yield an hue-invariant representation.

Following [45], we train the ResNet architectures for 100k iterations with a batch size of 128. We
optimize over a cross-entropy loss using SGD with a learning rate of 10−2. Images are down-sampled
by a factor of 2 to train the CNN architectures. CNN architectures are trained as described in
Section D.1.

D.3 CAMELYON17

For this task, we compare against the ResNet50 architecture [3]. Our hue- and saturation-equivariant
architectures have the same number of layers as ResNet50, but with a reduced filter count to maintain
a similar number of parameters at each layer. In the final layer of our hue- and saturation-equivariant
architectures, we perform a group pooling to yield group invariant representation.

We train our equivariant networks and the conventional architectures for 10k iterations with a
batch size of 32. We optimize over a cross-entropy loss using the Adam optimizer [44] with an
initial learning rate of 10−2, β1 = 0.9, and β2 = 0.999. We train CEConv architectures using the
hyperparameters reported in [16].

Figure 18: Camelyon-17 dataset saturation statistics. Example images and saturation statistics by
node (hospital).

We present experimental results for four discretizations of the saturation space. Our choice of
discretizations, i.e., d ∈ {1/20, 1/10, 3/20, 1/2}, are determined with consideration of the saturation
range of the training and validation set (see Figure 18). For a given choice of discretization d, an
element si ∈ SN shifts the saturation of an input image by si = i ∗ d ∗ c, where c is the maximum
pixel value. We limit computational expense of lifting and convolution by performing these operations
over the truncated set {s−1, s0, s1} for our Sat-3 model.

D.4 CIFAR-10

For this task, we compare against the ResNet44 architecture proposed in [6]. Our hue-, saturation-
and color-equivariant architectures have the same number of layers as ResNet44, but with a reduced
filter count to maintain a similar number of parameters at each layer. In the final layer of our networks,
we perform group pooling to yield group invariant representation.

We train our equivariant networks and the conventional architectures for 300 epochs, and a batch size
of 128. We optimize over a cross-entropy loss using SGD with an initial learning rate of 10−1 and a
cosine-annealing scheduler. We evaluate the performance of our model in the presence of natural hue
shifts on the CIFAR-100 [42] classification dataset. The dataset consists of 60k examples, 50k of
which are used for training and 10k for testing.
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D.5 CIFAR-100

For this task, we compare against the ResNet44 architecture proposed in [6]. Our hue-, saturation-
and color-equivariant architectures have the same number of layers as ResNet44, but with a reduced
filter count to maintain a similar number of parameters at each layer. In the final layer of our networks,
we perform group pooling to yield group invariant representation.

We train our equivariant networks and the conventional architectures for 300 epochs, and a batch size
of 128. We optimize over a cross-entropy loss using SGD with an initial learning rate of 10−1 and a
cosine-annealing scheduler. We evaluate the performance of our model in the presence of natural hue
shifts on the CIFAR-100 [42] classification dataset. The dataset consists of 60k examples, 40k of
which are used for training, 10k for validation, and 10k for testing.

D.6 CALTECH-101

For this task, we compare against the ResNet18 architecture proposed in [3]. Our hue-, saturation-
and color-equivariant architectures have the same number of layers as ResNet18, but with a reduced
filter count to maintain a similar number of parameters at each layer. In the final layer of our networks,
we perform group pooling to yield group invariant representation.

We train our equivariant networks and the conventional architectures for 300 epochs, and a batch
size of 16. We optimize over a cross-entropy loss using Adam [44] with an initial learning rate
of 10−2. We evaluate the performance of our model in the presence of natural hue shifts on the
Caltech-101 [38] classification dataset. The dataset consists of 9,146 examples, 2/3 of which are used
for training and 1/3 for testing.

D.7 STL-101

For this task, we compare against the ResNet18 architecture proposed in [3]. Our hue-, saturation-
and color-equivariant architectures have the same number of layers as ResNet18, but with a reduced
filter count to maintain a similar number of parameters at each layer. In the final layer of our networks,
we perform group pooling to yield group invariant representation.

We train our equivariant networks and the conventional architectures for 300 epochs, and a batch size
of 16. We optimize over a cross-entropy loss using Adam [44] with an initial learning rate of 10−2.
We evaluate the performance of our model in the presence of natural hue shifts on the STL-10 [41]
classification dataset. The dataset consists of 5k training examples and 8k testing examples.

D.8 STANFORD CARS

For this task, we compare against the ResNet18 architecture proposed in [3]. Our hue-, saturation-
and color-equivariant architectures have the same number of layers as ResNet18, but with a reduced
filter count to maintain a similar number of parameters at each layer. In the final layer of our networks,
we perform group pooling to yield group invariant representation.

We train our equivariant networks and the conventional architectures for 300 epochs, and a batch
size of 16. We optimize over a cross-entropy loss using Adam [44] with an initial learning rate
of 10−2. We evaluate the performance of our model in the presence of natural hue shifts on the
Stanford Cars [40] classification dataset. As the original host for the Stanford cars dataset is no longer
maintained, the dataset was constructed from the images [46], the devkit [47], and the annotation
files [48]. The dataset consists of 8,144 training examples and 8,041 testing examples.

D.9 OXFORD-IIT PETS

For this task, we compare against the ResNet18 architecture proposed in [3]. Our hue-, saturation-
and color-equivariant architectures have the same number of layers as ResNet18, but with a reduced
filter count to maintain a similar number of parameters at each layer. In the final layer of our networks,
we perform group pooling to yield group invariant representation.

We train our equivariant networks and the conventional architectures for 300 epochs, and a batch size
of 16. We optimize over a cross-entropy loss using Adam [44] with an initial learning rate of 10−2.
We evaluate the performance of our model in the presence of natural hue shifts on the Oxford-IIT
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Pets [39] classification dataset. The dataset consists of 3,680 training examples and 3,669 testing
examples.

D.10 SMALL NORB

For this task, we compare against the ResNet18 architecture proposed in [3]. Our luminance-
equivariance architectures have the same number of layers as ResNet18, but with a reduced filter
count to maintain a similar number of parameters at each layer. In the final layer of our networks, we
perform group pooling to yield group invariant representation.

We train our equivariant networks and the conventional architectures for 300 epochs, and a batch size
of 16. We optimize over a cross-entropy loss using Adam [44] with an initial learning rate of 10−2.
We evaluate the performance of our model in the presence of natural luminance shifts smallnorbs [32]
classification dataset.

D.11 TINY-IMAGENET

For this task, we compare against the ResNet18 architecture proposed in [3]. Our hue-equivariant
architectures have the same number of layers as ResNet18, but with a reduced filter count to maintain
a similar number of parameters at each layer. In the final layer of our networks, we perform group
pooling to yield group invariant representation.

We train our equivariant networks and the conventional architectures for 100 epochs, and a batch
size of 128. We optimize over a cross-entropy loss using Adam [44] with an initial learning rate
of 10−2. We evaluate the performance of our model in the presence of natural hue shifts on the
Tiny-ImageNet [43] classification dataset. The dataset consists 200 categories, each with 500 training
and 50 validation images. The 50 validation images were split into 25 validation and 25 testing in
lieu of the original 50 unlabeled testing images.

E ADDITIONAL RESULTS

E.1 LUMINANCE SHIFT SMALL NORB

We demonstrate improved generalization to luminance-shifts compared to ResNet18 [3] on the small
NORB classification dataset [32]. The small NORB dataset consist of 5 categories of objects under
different lighting conditions. Variation in images reflects variation in the location and strength of the
lighting. Additional details are provided in Appendix C.3.

Lum-7* Feature Map
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Figure 19: Luminance equivariant feature maps. We illustrate the equivariance of our luminance-
equivariant model. A luminance shift in the input image space (top-left to bottom-left), results in
a feature map translation at each layer of the network (top-right to bottom-right). Corresponding
feature maps are highlighted with a blue border.

Table 5: Generalization to luminance-shift. Classification error on the small NORB dataset is
reported. Our model (Lum-3) achieves improved generalization performance over the conventional
CNN model (ResNet18).

Networks A/A A/B A/C Params

ResNet18 8.32 (0.86) 37.70 (1.51) 33.88 (5.11) 11.2M
Lum-3* 7.04 (0.65) 18.45 (4.83) 25.14 (1.07) 11.1M
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Luminance group and group action. We expand the notion of color equivariance proposed in [16]
to include equivariance to luminance shifts. In the HSL color space, luminance can be represented
by a real number in the interval [0, 1]. Using the approximations presented for construction of the
discretized saturation group SN , we similarly identify elements of the discretized luminance group
LN , with those of the integers with addition, (Z,+).

We define the action of the luminance group on HSL images, x ∈ X where x : Z2 → R3, and
functions on the discrete luminance group, y ∈ Y , where y : Z2 × LN → RK . An element of the
luminance group acts on an HSL image by the group action φl : LN ×X → X , which shifts the
luminance channel of the image. Concretely, for an HSL image x ∈ X defined as the concatenation
of hue, saturation and luminance channels, i.e., x = (xh, xs, xl), the action of an element li of the
luminance group LN is given by

φl(li, x) = (xh, xs,min(xl + li, c)), (38)

where c is the maximum luminance value. An element of the luminance group acts on a function on
the discrete luminance group by the group action ϕl : LN × Y → Y , which “translate” the function
on the group. Concretely, for a function f on the discrete luminance group LN defined as the
concatenation of functions f = (f1, . . . , fN ), the action of an element li in the luminance group LN

is given by
ϕl(li, f) = (f1+i, . . . , fN ,0, . . . ,0︸ ︷︷ ︸

i

). (39)

The action of φl on an input image, and ϕl on a feature map are shown in Figure 19.

Generalization to luminance-shift. We expand the notion of color equivariance proposed in [16]
to capture variation in luminance. The generalization performance of our luminance-equivariant
models and Resnet18 [3] are reported in Table 5. Our luminance-equivariant model significantly
outperforms the ResNet model in all out-of-distribution cases.

E.2 TINY-IMAGENET

We include classification results on the Tiny-ImageNet dataset [43]. Additional details are provided
in Appendix D.

Table 6: Generalization to color-shift. Classification error on the Tiny-ImageNet dataset is reported.
Our model (Hue-3) achieves generalization performance on-par with conventional CNN model
(ResNet18) and baseline (CEConv-3).

Networks Error Params

ResNet18 52.95 (1.09) 11.3M
Hue-3* 53.62 (0.35) 11.1M
CEConv-3 54.50 (0.81) 11.1M

E.3 FOREGROUND-BACKGROUND SEGMENTATION

We demonstrate the utility of our method to foreground-background segmentation on the Caltech-101
dataset [38]. The dataset consists of 9,146 examples with annotations containing bounding boxes
and contours, which are used to generate ground truth foreground masks. The training set consists of
6941 examples, the validation set consists of 868 examples, and the test set consists of 868 examples.
For uniformity of the dataset, we resize all input images and target masks to have a height and width
of 224x224.

For this task, we compare the quantitative and qualitative performance of a conventional foreground-
background segmentation architecture with our hue-equivariant variant. Each architecture is based on
the bottleneck segmentation backbone described in Table 7 where all convolutional layers use residual
connections, and each is followed by a batch normalization layer [49] and ReLU [50] activation
function. In the final layer, the conventional architecture uses a max pooling layer followed by a
sigmoid activation function to produce the predicted foreground-background segmentation mask. Our

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

hue-equivariant architecture is designed similarly, but uses a group pooling layer instead of a max
pooling layer.

We report the quantitative performance of our hue-equivariant model and the conventional model in
Table 8, and provide a qualitative comparison of the predicted foreground-background segmentation
masks in Figure 20.

Table 7: Foreground-background segmentation network backbone.

Layer # Layer type Kernel size Output channels

0 input - 3
1 conv 7x7 32
2 conv 7x7 64
3 conv 7x7 128
4 conv 7x7 256
5 conv 1x1 256
6 conv 1x1 256
7 conv 1x1 256
8 deconv 7x7 128
9 deconv 7x7 64
10 deconv 7x7 32
11 deconv 7x7 32
12 deconv 7x7 3
13 pooling - 1

Hue-3* ConvMaskImage

Figure 20: Foreground-background segmentation. We show the foreground mask predicted by our
approach and a conventional architecture. (Left to right) We show the input image, the ground truth
foreground segmentation mask, the foreground segmentation mask predicted by our color-equivariant
network, and the foreground segmentation mask predicted by a conventional architecture.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 8: Foreground-background segmentation. Segmentation error on the Caltech-101 dataset
is reported. Our proposed color-equivariant convolutions achieve improved performance over the
conventional convolutions.

Convolution Error Params

Hue-3* 9.67 (0.23) 1.2M
Conv 11.25 (0.12) 1.1M
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