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ABSTRACT

Recent advances have shown success in eliciting strong reasoning abilities in multi-
modal large language models (MLLMs) through rule-based reinforcement learning
(RL) with outcome rewards. However, this paradigm typically lacks supervision
over the thinking process leading to the final outcome. As a result, the model
may learn sub-optimal reasoning strategies, which can hinder its generalization
ability. In light of this, we propose SophiaVL-R1, as an attempt to add reward
signals for the thinking process in this paradigm. To achieve this, we first train
a thinking reward model that evaluates the quality of the entire thinking process.
Given that the thinking reward may be unreliable for certain samples due to reward
hacking, we propose the Trust-GRPO method, which assigns a trustworthiness
weight to the thinking reward during training. This weight is computed based on
the thinking reward comparison of responses leading to correct answers versus
incorrect answers, helping to mitigate the impact of potentially unreliable thinking
rewards. Moreover, we design an annealing training strategy that gradually reduces
the thinking reward over time, allowing the model to rely more on the accurate
rule-based outcome reward in later training stages. Experiments show that our
SophiaVL-R1 surpasses a series of reasoning MLLMs on various benchmarks (e.g.,
MathVisita, MMMU), demonstrating strong reasoning and generalization capabil-
ities. Notably, our SophiaVL-R1-7B even outperforms LLaVA-OneVision-72B
on most benchmarks, despite the latter having 10× more parameters. All code,
models, and datasets will be made publicly available.

1 INTRODUCTION

Recent advances have highlighted the potential of rule-based Reinforcement Learning (RL) to elicit
reasoning capabilities of Large Language Models (LLMs) (Guo et al., 2025; Yu et al., 2025). In
particular, DeepSeek-R1 (Guo et al., 2025) exemplifies the success of applying the GRPO (Shao
et al., 2024) reinforcement learning algorithm to incentive strong reasoning with long Chain-of-
Thought (CoT) in LLMs. Beyond text-based domains, this paradigm has also shown promising
results in Multimodal Large Language Models (MLLMs), with representative models including
R1-OneVision (Yang et al., 2025), OpenVLThinker (Deng et al., 2025b), and Video-R1 (Feng et al.,
2025). The key of these methods is to utilize a rule-based function that yields accurate outcome
reward signals for RL training (Guo et al., 2025; Leng et al., 2025; Deng et al., 2025b).

However, solely relying on the outcome reward usually fails to ensure the quality of the thinking
process, which is critical for developing models with generalizable reasoning ability (Lightman et al.,
2023). For example, models may produce correct answers through flawed thinking trajectories, as
illustrated in Figure 1, rather than through systematic deduction. During GRPO training (Shao et al.,
2024), the rule-based outcome reward will equally encourage these responses with correct answers,
regardless of whether the underlying thinking process is sound or flawed. Therefore, the model
may adopt sub-optimal or even wrong reasoning strategies that generalize poorly, leading to inferior
performance. This gives rise to one intuitive thought: Can we incorporate a reward for the thinking
process during GRPO training to explicitly guide correct reasoning?

To explore this question, we propose SophiaVL-R1, an MLLM that enhances reasoning by integrating
model-generated thinking rewards with rule-based outcome rewards in RL training. Given that
typical process reward models (PRMs) impose rigid step-wise constraints on reasoning and can be
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Wrong Thinking, Correct Answer Correct Thinking, Correct Answer

<think>…… BA and BC are tangents to the circle from 
point B. Therefore, BA = BC …… BA is given as 20, so BC 
is also 20. …… EF is tangent to the circle at point 
D, …… , ED = DF.…… So, the perimeter of triangle BEF is 
BE + EF + BF.
Since BE and BF are the same as BA and BC (tangents 
from B to the points of tangency on the circle), …… the 
perimeter of triangle BEF is 2 * BA + 2 * BA (because 
BA = BC and ED + DF = EF).
Therefore, the perimeter is 2 * 20 + 2 * 20 = 80 / 2 = 
40.
The correct answer is B.</think>
<answer>B</answer> 

<think> …… This means that the lengths of the 
tangents drawn from an external point to a circle are 
equal. Therefore, BA = BC = 20.
…… This implies that ED and EA, DF and FC are also 
equal in length to the tangents drawn from E and F to 
the circle, respectively……
So, the perimeter of triangle BEF is simply the sum of 
the lengths of BE, EF, and BF, which is equal to the 
sum of the lengths of BA and BC because of the 
tangents' properties. 
Therefore, the perimeter is 20 + 20 = 40.
The correct answer is B.</think>
<answer>B</answer>

Q: In the figure, AB, BC are tangent to 
circle O at points A, C, and EF is tangent to 
circle O at point D. If BA = 20, what is the 
perimeter of triangle BEF?
A. 20; B. 40; C. 30; D. 60

Thinking Reward: 0.3 Thinking Reward: 0.9

O

A

C

D

E

F

B

Figure 1: Examples of model responses and their corresponding thinking rewards.

overly exploited (e.g., generating meaningless or repetitive steps), we measure the quality of the
thinking process at a holistic level rather than at the step level. Specifically, we introduce a thinking
reward model trained on annotated reasoning responses collected from GRPO training trajectories.
This model evaluates intermediate reasoning quality based on criteria such as logical soundness,
consistency across steps, and redundancy in the thinking process. By doing so, we provide reward
signals that help the reasoning model distinguish between sound and flawed thinking processes.

Moreover, considering that the model-generated thinking rewards may be unreliable for certain
cases (Ye et al., 2024; Li et al., 2025a), we propose the Trust-GRPO training algorithm to reduce the
risks of reward hacking (Skalse et al., 2022). The core idea of Trust-GRPO is to add a trustworthiness
weight to the thinking reward, which evaluates the reliability of the rewards across a group of responses
to a given question. This weight is determined by comparing the thinking rewards of responses that
produce correct answers with those that yield incorrect answers for the same question. A lower
trustworthiness weight is assigned when high thinking rewards are abnormally given to reasoning
processes that lead to incorrect answers, indicating that the reward signal may be unreliable. Unlike
previous uncertainty estimation methods such as MC Dropout (Gal & Ghahramani, 2016), which
usually require multiple samplings for a single response—an approach that can be computationally
prohibitive for MLLMs—our method introduces no additional cost by leveraging information from
the response group within GRPO. Furthermore, an annealing schedule is introduced to gradually
reduce the influence of the thinking reward throughout training, allowing the model to increasingly
rely on the more reliable and accurate rule-based outcome reward in later stages. In short, our
proposed Trust-GRPO enables the model to receive thinking process rewards in a reliable manner,
thereby guiding the exploration of favorable and generalizable reasoning strategies.

In summary, our contributions are as follows:

• We propose a thinking reward model that evaluates reasoning quality from various di-
mensions at a holistic level, enabling the model to distinguish between sound and flawed
reasoning processes during rule-based RL training.

• We introduce the Trust-GRPO algorithm, which assigns a trustworthiness weight to thinking
rewards based on their reliability. This method guides the model to explore favorable
reasoning policies in a trustworthy manner without extra computational overhead.

• In the experiments, SophiaVL-R1-7B consistently outperforms existing MLLMs on diverse
benchmarks (e.g., MathVista, MMMU), highlighting its strong reasoning and generalization
abilities. Notably, our SophiaVL-R1-7B outperforms LLaVA-OneVision-72B with 10×
more parameters on most benchmarks.
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2 RELATED WORK

2.1 REWARD MODELS

Reward models (RMs) play a crucial role in guiding and shaping the behavior of models (Ouyang
et al., 2022; Zhong et al., 2025). Several studies (Lightman et al., 2023; Yuan et al., 2024; Wang et al.,
2025b; Zhang et al., 2025) demonstrate that process supervision—providing feedback at intermediate
reasoning steps—has the potential to enhance reasoning capabilities. For example, Lightman et al.
(2023) introduce powerful Process Reward Models (PRMs) with step-wise rewards, which have been
applied to mathematical reasoning (Lightman et al., 2023; Wang et al., 2023). ReST-MCTS* (Zhang
et al., 2024a) integrates process supervision and Monte Carlo Tree Search (MCTS) to generate
per-step process rewards, enabling efficient self-training of both policy and reward models without
manual annotation. Beyond the text-based domain, VisualPRM (Wang et al., 2025b) extends PRMs
to the multimodal domain, achieving significant improvements in the reasoning performance of
various MLLMs. Despite these advances, PRMs still face two major challenges: (1) imposing rigid
step-wise constraints requires the model to strictly follow predefined reasoning steps, which can limit
flexibility and generalization—particularly in general tasks (Guo et al., 2025; Cui et al., 2025); and
(2) evaluating the correctness of individual steps is inherently challenging (Zhong et al., 2025), which
may lead models to exploit the reward by repeating valid steps or inserting meaningless ones without
making real progress. ArmoRM (Wang et al., 2024) trains a reward model to give fine-grained
rewards from different perspectives in non-reasoning fields. However, it is not designed for solving
the “wrong thinking, correct answer” phenomenon in R1-like training for reasoning. Therefore, in
contrast to prior approaches, we aim to develop a thinking reward model that evaluates reasoning
quality from multiple dimensions at a holistic level, thereby fostering a more reliable and stable
training pipeline for R1-style models.

2.2 MULTIMODAL LARGE LANGUAGE MODEL REASONING

The field of multimodal large language model reasoning aims to build human-like models capable
of handling complex tasks that require understanding and reasoning across multiple modalities (Li
et al., 2025c). Earlier methods typically depend on fine-grained step-level supervision or learned
reward models to guide the reasoning process (Yao et al., 2024; Wang et al., 2025b; Zang et al., 2025).
In contrast, DeepSeek-R1 (Guo et al., 2025) demonstrates that reinforcement learning with a rule-
based reward model can effectively incentivize strong reasoning abilities without dense supervision.
Following the R1 paradigm, several efforts have explored enhancing MLLM reasoning through rule-
based reinforcement learning (Lai et al., 2025; Feng et al., 2025; Shen et al., 2025; Xia & Luo, 2025;
Wang et al., 2025a). R1-OneVision (Yang et al., 2025) introduces a cross-modal reasoning pipeline
and adopts a supervised fine-tuning followed by RL strategy to strengthen reasoning capabilities.
Curr-ReFT (Wu et al., 2025) introduces a curriculum-based reinforcement learning paradigm for small-
scale MLLMs, combining difficulty-aware rewards and rejection sampling to boost generalization.
Video-R1 (Feng et al., 2025) proposes T-GRPO algorithm to explicitly encourage temporal reasoning
in video. Despite their success on multimodal tasks, these approaches rely exclusively on outcome
rewards, which often overlook the quality of intermediate reasoning steps.

3 METHOD

3.1 DATASET COMPOSITION

We curate a dataset SophiaVL-R1-130k, comprising 130k examples to support the training of thinking
reward model (Section 3.2) and SophiaVL-R1 (Section 3.4). To overcome the scarcity of high-quality
multimodal reasoning data and ensure robust model performance across a wide range of tasks,
we aggregate samples from a combination of text-only and multimodal datasets, all of which are
publicly available. The dataset contains both reasoning-specific tasks and general vision-language
understanding tasks. We organize the data into five categories, covering diverse reasoning scenarios,
as illustrated in Figure 2 (left).
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Figure 2: Left: Composition of our SophiaVL-R1-130k dataset from public sources. Right: Distri-
bution of the SophiaVL-R1-Thinking-156k dataset used to train the thinking reward model.

3.2 THINKING REWARD

To assess fine-grained reasoning quality of MLLMs’ thinking process, we develop a thinking reward
model that assigns a score between 0 and 1 based solely on the quality of intermediate reasoning,
regardless of whether the final answer is correct.

To construct the dataset used for training the thinking reward model, we collected 470,331
(question, response) pairs output by Qwen2.5-VL-7B-Instruct (Bai et al., 2025) during
the GRPO training on the SophiaVL-R1-130k dataset. These data contain both favorable and flawed
reasoning patterns occurred in the training. Then, each response is scored by the advanced MLLM,
Qwen2.5-VL-72B-Instruct (Bai et al., 2025), using the prompt in Appendix A. This results in 470,331
(question, response, thinking reward) tuples. The evaluation is based on five dimen-
sions, which are identified from error patterns observed during GRPO training: Logical Soundness,
Correct Reasoning, Error Identification, Language Consistency, and Redundancy. Detailed examples
of error patterns are provided in Appendix B.

To ensure the quality of labels and maintain a balanced distribution across different reward levels,
we apply manually designed rule-based filtering (Details in Appendix D) to remove noisy samples
and perform uniform sampling to preserve distribution balance. This process results in 156,703
high-quality annotated samples. with 5,000 to 15,000 samples per interval. Each reward interval
corresponds to a discrete range (e.g., [0.0–0.1), [0.1–0.2), ..., [0.9–1.0]). The distribution of the full
(Annotated) and balanced (Selected) datasets is shown in Figure 2 (right). We denote the resulting
dataset as SophiaVL-R1-Thinking-156k, with its detailed composition reported in Appendix C.

The thinking reward model, initialized with Qwen2.5-VL-3B-Instruct (Bai et al., 2025), is then
trained on this dataset using SFT, where the model is required to output a thinking reward given a
question and its corresponding thinking process. Through this training, the thinking reward model
learns to identify diverse reasoning errors and assign appropriate rewards accordingly, thereby playing
a crucial role in GRPO training by providing feedback on reasoning quality.

3.3 RULE-BASED OUTCOME REWARD

Following DeepSeek-R1 (Guo et al., 2025), we construct rule-based outcome reward functions to
generate reward signals. Specifically, we design task-specific functions that assess model outputs
by comparing them with ground-truth answers. Tasks are categorized based on their output formats:
(1)Numerical: A binary reward is assigned based on an exact match between the predicted and
ground-truth values; (2) Multiple Choice: The reward is defined based on whether the model’s output
matches the ground-truth choice; (3) OCR: The reward is computed as the negative Word Error
Rate (WER), penalizing transcription inaccuracies; (4) Free-form Text: The reward is calculated as
the average of ROUGE-1, ROUGE-2, and ROUGE-L scores, measuring n-gram and sequence-level
similarity (Feng et al., 2025).
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Figure 3: An illustration of our proposed Trust-GRPO.

3.4 TRUSTWORTHY GROUP RELATIVE POLICY OPTIMIZATION (TRUST-GRPO)

As discussed earlier, integrating the thinking reward into GRPO training could help the model
distinguish between favorable and flawed reasoning process. Nevertheless, a direct application may
result in reward hacking, given that model-generated rewards are not always trustworthy. To deal
with this challenge, we introduce the Trust-GRPO algorithm, as illustrated in Figure 3.

Trust-GRPO optimizes the policy using a combination of two reward types: (1) thinking reward Rt

(Section 3.2) that assigns a score between 0 and 1 based on holistic reasoning quality, and (2) outcome
reward Ro (Section 3.3), derived from rule-based evaluation of outcome answer correctness. To
reduce the risk of reward hacking, a trustworthiness weight γ is included to determine the influence
of thinking reward Rt.

The trustworthiness is computed by contrasting the thinking reward Rt assigned to responses that
arrive at correct answers with those leading to incorrect ones. When higher thinking rewards are
abnormally associated with incorrect reasoning, γ will be lower, indicating the potential unreliability
in the reward signal. Next, we will introduce how to derive it.

First, responses oi to a question q are grouped into correct answer group Gcorrect and wrong answer
group Gwrong based on their outcome rewards. Then, we calculate the average thinking reward in
Gcorrect and Gwrong as follows:

µc =
1

|Gcorrect|
∑

i∈Gcorrect

Rt
i, Gcorrect = {i | Ro

i ≥ 0.5} , (1)

µw =
1

|Gwrong|
∑

i∈Gwrong

Rt
i, Gwrong = {i | Ro

i < 0.5} , (2)

where µc and µw denote the average thinking rewards in the correct answer group and the wrong
answer group, respectively. Ro

i denotes the outcome reward of response i. The trustworthiness weight
γ is defined as follows:

γ =

{
1, µc ≥ µw

eµc−µw , µc < µw
. (3)
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RESPONSE[6]
<think>Let's break down the graph to determine if there 
is a cycle. We need to check each path to see if we can 
return to a node we've already visited without forming a 
loop. Starting from the top, we see that the nodes 
connect in a way that forms a tree structure, with each 
node branching out to other nodes. If we trace any path 
from the top down, we do not see any node being revisited 
before reaching the bottom. The graph appears to be a 
tree structure without any loops, meaning there is no 
cycle.
Therefore, the answer is A. No.</think>
<answer>A</answer>

RESPONSE[8]
<think>To determine if there is a cycle …… A cycle exists 
if there is a path that starts and ends at the same node, 
passing through at least one other node.
I'll start at the node labeled '15' and trace paths:
- '15' connects to '16'.
……
- '1' connects to '2'.
- '2' connects to '5'.
- '5' connects back to '2'.
I've found a path that starts and ends at '2', passing 
through ‘5’. This is a cycle.
Therefore, the graph contains at least one cycle.</think>
<answer>B</answer> 

𝜇! > 𝜇"

……

𝛾 = 0.49

Q: Is there a cycle in this undirected graph? 
A. No; B. Yes

𝑅!" 0.2𝑅#" 0.8
❌ ✅

Figure 4: Example of trustworthiness weight γ. Incorrect responses (red) receive higher average
thinking rewards than correct ones (green), indicating misalignment between Rt and Ro and the need
for a trustworthiness-aware adjustment.

This comparison between µc and µw allows us to assess the alignment between thinking rewards
and rule-based outcome rewards. A lower γ indicates a discrepancy between Rt and Ro, suggesting
that the thinking reward may be unreliable for this response group and thus should be given reduced
weight. γ dynamically estimates the trustworthiness of thinking rewards for each question’s response
group without incurring additional computational overhead. This average reward–based design is
chosen for its simplicity and efficiency, which are particularly important given the high cost of training
and inference of MLLMs. Additional analyses of alternative design are provided in Appendix E.1.

The i-th reward Ri incorporating the thinking reward with trustworthiness weight is defined as:
Ri = Ro

i + γα ·Rt
i, (4)

where α is a hyperparameter that controls the impact of thinking reward.

We further introduce a time-based annealing strategy that gradually reduces the influence of thinking
reward as training progresses. This encourages the reasoning model to rely increasingly on the more
accurate rule-based outcome reward in later steps. Combining both components, the final reward Ri

is defined as:
Ri = Ro

i + γαe−
steps
T ·Rt

i, (5)

where steps denotes the current global training step and T is the total number of training steps,
controlling the decay rate of thinking reward’s influence over time. Additional analysis of the
time-based annealing strategy design is provided in Appendix E.2.

The advantage Ai is computed using rewards of each response group:

Ai =
Ri − mean({R1, R2, · · · , RN})

std({R1, R2, · · · , RN})
, (6)

Following DeepSeek-R1 (Guo et al., 2025), given a question q, GRPO samples responses o1, . . . , oN
from the old policy πold, and updates the policy πθ by maximizing the following objective:

JGRPO(θ) = E
[
q ∼ P (Q), {oi}Ni=1 ∼ πold(O|q)

]
1

N

N∑
t=1

(
min

(
πθ(oi|q)
πold(oi|q)

Ai, clip
(

πθ(oi|q)
πold(oi|q)

, 1− ϵ, 1 + ϵ

)
Ai

)
− β DKL[πθ∥πref]

)
. (7)

By contrasting the thinking rewards of correct and incorrect responses, Trust-GRPO improves the
reliability of reward signals, thereby encouraging more generalizable reasoning behavior.

Figure 4 illustrates a case where the trustworthiness weight γ helps identify potentially unreliable
thinking rewards. Responses with incorrect answers are shown in red and those with correct answers
in green. Despite being incorrect, the red group receives a higher average thinking reward, indicating
a misalignment between Rt and Ro. This implies that the thinking reward has potential risk of
unreliability, thus should be assigned less weight. More examples can be found in Appendix L.
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Table 1: Comparison of models on MathVista and MathVerse. The best is bold, and the runner-up
is underline. 1Scientific Reasoning, 2Textbook Question Answering, 3Arithmetic Reasoning, 4Math Word
Problem, 5Logical Reasoning, 6Vision Intensive, 7Vision Only, 8Vision Dominant, 9Text Dominant, 10Text Lite.

Model
MathVista MathVerse

AVG SCI1 TQA2 ARI3 MWP4 LOG5 AVG VI6 VO7 VD8 TD9 TL10

General MLLMs

LLaVA-OneVision-7B (Li et al., 2024) 63.2 65.6 60.8 57.8 69.4 21.6 26.2 - - - - -

LLaVA-OneVision-72B (Li et al., 2024) 68.4 63.1 65.8 60.1 73.7 27.1 27.2 - - - - -

Cambrian-1-34B (Tong et al., 2024) 50.9 53.3 55.1 45.6 51.6 16.2 - - - - - -

GPT-4V 51.8 63.1 65.8 51.8 57.5 21.6 32.8 - - - - -

Open-Source Math MLLMs

Math-LLaVA-13B (Shi et al., 2024) 46.6 49.2 51.3 40.2 56.5 16.2 22.9 24.5 16.1 21.7 27.3 24.9

Math-PUMA-Qwen2VL-7B (Zhuang et al., 2025) 47.9 42.6 46.2 46.2 68.3 21.6 33.6 33.4 26.0 31.6 42.1 35.0

Multimath-7B (Peng et al., 2024) 50.0 - 50.0 - 61.8 - 26.9 28.1 15.0 25.9 34.8 30.8

URSA-8B (Luo et al., 2025) 59.8 58.2 63.9 53.5 75.3 21.6 45.7 46.4 34.6 43.9 55.3 48.3

Open-Source Reasoning MLLMs

Curr-ReFT-7B (Deng et al., 2025a) 64.5 - - - - - - - - - - -

R1-OneVision-7B (Yang et al., 2025) 64.1 61.5 62.0 56.1 64.5 16.2 46.4 - 40.0 - - -

InternVL2.5-8B-VisualPRM (Wang et al., 2025b) 68.5 61.5 53.9 45.9 66.8 21.2 30.7 28.9 35.8 27.3 31.7 29.7

Qwen2.5-VL-7B-Instruct (Bai et al., 2025) 67.5 65.6 67.7 57.5 69.4 27.0 44.0 41.1 41.0 38.7 55.2 44.0

+GRPO 69.9 68.0 69.6 61.2 75.8 24.3 45.3 43.0 41.0 41.1 56.0 45.6

+SFT+GRPO 66.8 72.1 73.4 59.8 69.9 21.6 43.1 42.5 37.1 37.3 52.2 46.3

SophiaVL-R1-7B 71.3 70.5 73.4 62.6 76.9 35.1 48.8 45.4 43.9 45.1 58.5 51.3

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Benchmarks. We evaluate our model on both multimodal mathematical reasoning and general
multimodal reasoning benchmarks. For mathematical reasoning, we report detailed results on
MathVista (Lu et al., 2023) and MathVerse (Zhang et al., 2024b). For general multimodal capabilities,
we conduct evaluations on MMMU (Yue et al., 2024), MME (Liang et al., 2024), MMStar (Chen
et al., 2024), ChartQA (Masry et al., 2022), and MMBench (Xu et al., 2023).

Implementation Details. The thinking reward model is initialized from Qwen2.5-VL-3B-Instruct
and trained for 2 epochs with SFT on SophiaVL-R1-Thinking-156k using 4 NVIDIA A800 80GB
GPUs. The reasoning model is initialized from Qwen2.5-VL-7B-Instruct and trained on SophiaVL-
R1-130k with the Trust-GRPO algorithm. RL training is performed for 1,500 steps using a
VeRL (Zheng et al., 2025; Sheng et al., 2024)-based implementation on 8 NVIDIA A800 80GB
GPUs. Hyperparameters for RL training are provided in Appendix J. For evaluation, we use default
prompts to generate responses. Additional evaluation details are given in Appendix K.

4.2 MAIN RESULTS

Performance on Math Reasoning Benchmarks. As shown in Table 1, SophiaVL-R1-7B achieves
competitive performance on mathematical reasoning benchmarks. On the MathVista benchmark, it
attains an accuracy of 71.3%, surpassing both Qwen2.5-VL-7B-Instruct models trained with GRPO
and SFT+GRPO, and also outperforming the LLaVA-OneVision-72B model. Compared to the model
trained by VisualPRM (Wang et al., 2025b), our model achieves significantly better performance,
with an 18.1-point improvement on MathVerse (48.8 vs. 30.7), and consistently outperforms it across
all sub-tasks. These results indicate that, compared to PRM-based method, our Trust-GRPO may
serve as a more effective approach for providing reward signals, better guiding the model toward
improved reasoning ability.

Performance on General Benchmarks. Many task-specific reasoning models, such as those
optimized for mathematical problem-solving or other specialized tasks, excel within their respective
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Table 2: Comparison on general ability benchmarks. The best is bold, and the runner-up is underline.

Model MMMU MME ChartQA MMBench MMStar

General MLLMs

LLaVA-OneVision-7B (Li et al., 2024) 48.8 1998.0 80.0 - 61.7

LLaVA-OneVision-72B (Li et al., 2024) 56.8 2261.0 83.7 - 66.1

Cambrian-1-34B (Tong et al., 2024) 49.7 1689.3 75.6 81.4 54.2

GPT-4V 56.8 1926.0 78.5 75.0 57.1

Open-Source Math MLLMs

URSA-8B (Luo et al., 2025) 43.1 1605.7 44.4 55.5 42.3

Open-Source Reasoning MLLMs

Curr-ReFT-7B (Deng et al., 2025a) - - - 79.0 -

R1-Onevision-7B (Yang et al., 2025) 51.6 2223.3 - 75.6 59.1

InternVL2.5-8B-VisualPRM (Wang et al., 2025b) 56.2 - 60.8 83.5 63.4

Qwen2.5-VL-7B-Instruct (Bai et al., 2025) 58.7 2306.0 86.3 83.3 64.3

+GRPO 58.0 2298.2 87.2 83.4 65.6

+SFT+GRPO 59.1 2344.1 89.2 84.6 64.7

SophiaVL-R1-7B 61.3 2403.8 88.5 85.4 66.7

Table 3: Performance of reward models on VLRewardBench.

Model General Hallucination Reasoning Overall Accuracy Macro Accuracy
Qwen2.5-VL-3B-Instruct 34.4 42.1 51.5 43.1 43.0

GPT-4o-mini 41.7 34.5 58.2 41.5 44.8

Qwen2-VL-72B 38.1 32.8 58.0 39.5 43.0

Our Thinking Reward Model (3B) 45.4 46.8 54.4 48.6 48.9

domains but often struggle to maintain strong performance on general multimodal benchmarks (e.g.,
URSA-8B). Different from them, SophiaVL-R1-7B demonstrates consistently strong performance
across widely recognized general ability benchmarks, as shown in Table 2, highlighting its superior
generalization capability. For example, on the widely used MMMU benchmark for multi-discipline
reasoning, SophiaVL-R1-7B outperforms LLaVA-OneVision-72B by 4.5 points.

4.3 PERFORMANCE OF THINKING REWARD MODEL

To further evaluate the capability of our thinking reward model, we conduct experiments on VLRe-
wardBench (Li et al., 2025b), a benchmark designed to assess multimodal reward models.

As shown in Table 3, our 3B thinking reward model achieves higher performance despite hav-
ing significantly fewer parameters. In particular, it demonstrates strong performance in detecting
Hallucination, indicating that it effectively distinguishes reliable from unreliable responses.

5 ABLATION STUDY

We conduct ablation studies to examine the contributions of key components in our method. Specifi-
cally, we evaluate three variants of our SophiaVL-R1:

• SophiaVL-R1-wo-trained-TRM: replacing the trained thinking reward model with an
untrained Qwen2.5-VL-3B-Instruct model.

• SophiaVL-R1-wo-trust-and-annealing: removing both the trustworthiness weighting and
the annealing strategy from Trust-GRPO.
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Table 4: Ablation Study.

Model MathVista MathVerse MMMU MME ChartQA MMBench MMStar

Qwen2.5-VL-7B+GRPO 69.9 45.3 58.0 2298.2 87.2 83.4 65.6

SophiaVL-R1-wo-trained-TRM 68.4 47.9 57.0 2347.1 87.7 84.0 65.7

SophiaVL-R1-wo-trust-and-annealing 67.4 46.3 56.7 2366.8 86.3 82.6 65.0

SophiaVL-R1-wo-trust 70.2 47.8 60.0 2363.3 87.8 83.7 65.2

SophiaVL-R1 71.3 48.8 61.3 2403.8 88.5 85.4 66.7

Figure 5: Training curves of mean rule-based outcome reward across different methods.

• SophiaVL-R1-wo-trust: removing only the trustworthiness weight while retaining the
time-based annealing schedule.

Besides, we also include Qwen2.5-VL-7B+GRPO as a baseline, which directly uses GRPO for
training Qwen2.5-VL-7B-Instruct. The results are summarized in Table 4.

Effect of the Thinking Reward Model. SophiaVL-R1-wo-trained-TRM consistently underperfor-
mances SophiaVL-R1. This highlights the effectiveness of our training pipeline and the SophiaVL-
R1-Thinking-156k dataset in improving thinking reward model’s ability to provide accurate and
informative reward signals for reasoning optimization. What’s more, SophiaVL-R1-wo-trained-TRM
performs comparably to the Qwen2.5-VL-7B+GRPO. This indicates that an untrained reward model
provides limited guidance. In contrast, our trained thinking reward model substantially improves the
model performance, which highlights its importance in our method.

Effect of the Trustworthiness Weight γ. We observe a performance drop across all benchmarks in
SophiaVL-R1-wo-trust when the trustworthiness weight is removed, compared to the full SophiaVL-
R1 model. This demonstrates the effectiveness of trustworthiness weighting, which allows the model
to receive thinking process rewards in a more reliable manner.

Effect of the Time-based Annealing Strategy. To assess the effect of time-based annealing, we
compare SophiaVL-R1-wo-trust-and-annealing with SophiaVL-R1-wo-trust. SophiaVL-R1-wo-trust-
and-annealing generally performs worse on most benchmarks. The performance drop may be due to
the over-exploitation of the thinking reward, where potentially unreliable signals could interfere with
the optimization of the reasoning policy. This suggests that gradually reducing the influence of the
thinking reward by our proposed annealing strategy is beneficial, as it encourages reliance on the
more reliable rule-based outcome reward in later training stages.

Training Curve Analysis. Figure 5 shows the mean outcome reward per training step for each
method. SophiaVL-R1 achieves the highest reward and demonstrates faster improvement during
training. Besides, we notice that directly combining thinking and outcome rewards (SophiaVL-R1-
wo-trust-and-annealing) performs worse in training, indicating the effectiveness and necessity of our
trustworthiness weighting and time-based annealing strategy. Overall, these results underscore the
importance of both Trust-GRPO and the thinking reward model.
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6 CONCLUSION

In this work, we propose SophiaVL-R1, a multimodal large language model trained using a novel
Trust-GRPO algorithm that integrates model-generated thinking rewards with rule-based outcome
rewards. To promote generalizable reasoning, we introduce a holistic-level thinking reward model
that assesses the quality of reasoning processes. Furthermore, we mitigate the challenge of reward
hacking by introducing a trustworthiness weighting mechanism together with a time-based annealing
strategy. Experimental results across multiple benchmarks demonstrate that SophiaVL-R1 consis-
tently outperforms existing MLLMs. Our findings highlight the value of thinking process supervision
beyond final correctness and offer insights for future studies on developing reasoning models.
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A PROMPT USED FOR EVALUATING THINKING PROCESS QUALITY

Table 5: Prompt for evaluating thinking process quality.

Input {Image}, {Question} and {Model Response}

You are an expert reasoning evaluator. I will give you a multimodal question and an answer. Your
goal is to judge a reward process and give a score between 0 and 1. You should focus on whether
the reasoning process is good rather than whether the final answer is correct.

Evaluation Criteria:
1. Logical Soundness Does each step follow logically from the previous one?

2. Correct Reasoning Are the methods and steps used appropriate and valid? Are the facts
and lemmas correctly stated and applied?

3. Error Identification Are there logical flaws, unsupported assumptions, or incorrect steps?

4. Language Consistency Is the reasoning process conducted in a single, consistent language
without mixing different languages?

5. Redundancy Is the reasoning concise, avoiding repetition or irrelevant steps?

Provide a single score from {0, 0.1, 0.2, . . . , 1.0} based on the reasoning quality, where:

- 0 Completely flawed reasoning.

- 1 Perfectly sound reasoning.

- Intermediate Reflect partial correctness or minor errors (e.g., 0.3 for significant
flaws, 0.7 for minor errors).

Be strict, reward the good process and punish the bad one. You should only output the score without
any explanation.

B ERROR PATTERNS OBSERVED IN GRPO TRAINING

Wrong Thinking, Correct Answer Correct Thinking, Correct Answer

<think> …… One property is that opposite angles 
are equal. Therefore, angle BAC is equal to angle 
BDC ……
The angle at BAC is 20 degrees, and the angle at 
BDC is 59 degrees. …… , we can set up the 
equation: 3y - 8 = 59
…… y = 22.33
Since y must be an integer (as given in the 
options), and we are looking for the closest 
option, the closest integer to 22.33 is 22, but 
since the options are only A, B, C, D, and none of 
them are close, let's recheck the closest integer 
which is 6.
Final answer: B</think>
<answer>B</answer>

<think> …… In a parallelogram, opposite sides 
are equal in length. ……
The side AB is given as 3y - 8 and the side CD 
is given as 10.
Setting these equal to each other because 
they are opposite sides of the parallelogram:
3y - 8 = 10
…… y = 6 

Therefore, the correct answer is y = 6.

</think>
<answer>B</answer> 

Q: Use parallelogram A B C D to find y.
A. 3; B. 6; C. 10; D. 13

Thinking Reward: 0.2 Thinking Reward: 0.9

Figure 6: Examples of wrong thinking and performance of thinking reward model.

We present additional examples illustrating error patterns we observed in the reasoning process
during GRPO training. Figure 6 exemplifies the Error Identification pattern, where the model
misinterprets visual conditions by confusing edge length information with angle values, ultimately
leading to incorrect reasoning. Figure 7 highlights two typical issues: the Logical Soundness and
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Error Identification patterns. In this case, the model incorrectly extracts relationships between
angles and performs faulty equation calculations.

<think>Let's break this down step by step.……, 
the angle α is the exterior angle of the 
triangle on the left relative to the triangle on 
the right……
The angle adjacent to α in the left triangle 
is …… α must be 180° - 30° = 150°.
However, this 150° is not the measure of α
itself but the total angle it contributes to. 
We need the exterior angle which would be 
180° - 150° = 30° + 45° = 75°.
So, the measure of angle α is 75°.
Final answer: B</think>
<answer>B</answer>

<think>Let's break this down step by step……
We know that the angle at the bottom left 
is 45°.The angle at the top left is 60°.
……
The triangle at the top has angles 60° and 
45°. Let's call the unknown angle at the top 
α. So, we have:
60° + 45° + α = 180°
105° + α = 180°
α = 180° - 105°
α = 75°
So, the measure of angle α is 75°.</think>
<answer>B</answer>

Q: Given some triangles stacked as 
shown in the image, what is the measure 
of angle α?
A. 105°; B. 75°; C. 110°; D. 120°

Thinking Reward: 0.7 Thinking Reward: 0.9

Wrong Thinking, Correct Answer Correct Thinking, Correct Answer

Figure 7: Examples of wrong thinking and performance of thinking reward model.

C DETAILED COMPOSITION OF SOPHIAVL-R1-THINKING-156K
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Figure 8: Dataset composition and distribution of SophiaVL-R1-Thinking-156k
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D SOPHIAVL-R1-THINKING-156K FILTERING RULES FOR CONSTRUCTION

The manually designed rule-based filtering criteria described in Section 3.2 are as follows:

• Removing samples with incomplete reasoning steps, where the reasoning sequence was
either cut off due to length limits or disrupted by unintended repetitive outputs of the model.

• Filtering out overly short responses (fewer than 20 words), which account for approximately
30% of the initial data. These responses mainly contain only final answer without reasoning.
After filtering, about 80% of these short samples were removed.

• Discarding corrupted or meaningless responses, such as those containing random characters
or mixed languages, since they provide no useful signal for training the thinking reward
model.

• Applying uniform sampling to balance the distribution of reward scores across different
intervals, ensuring even coverage of reasoning quality levels.

These filtering and balancing steps help maintain the quality and diversity of the SophiaVL-R1-
Thinking-156k dataset used for training the thinking reward model.

E ADDITIONAL ANALYSES ON REWARD DESIGN

In this section, we provide experiments to examine two key algorithmic design choices in Trust-GRPO:
the formulation of the trustworthiness weight and the annealing schedule for thinking rewards.

E.1 AVERAGE REWARD-BASED TRUSTWORTHINESS WEIGHT DESIGN

The trustworthiness weight γ is introduced to scale the thinking reward according to its reliability.
Our design motivation is to provide a simple and efficient estimation tailored to GRPO without
introducing additional computational cost, which is important given the high cost of training and
inference in MLLMs.

Our design uses an average reward–based trustworthiness weight because it provides an estimation
of reliability without introducing extra computation. We compared this choice with an alternative
variance-based formulation to verify its justification. Specifically, for each response we sample three
thinking rewards (r1, r2, r3) and computed the variance of these thinking rewards. A higher variance
indicates greater uncertainty, and thus a lower trustworthiness. The weight γ is defined as:

γ = exp

−1

3

3∑
i=1

ri −
1

3

3∑
j=1

rj

2
 .

Table 6 reports the results on MathVista (Math) and MMBench (General). While the variance-based
approach provides an alternative measure of trustworthiness, it underperforms our original average
reward–based method and incurs additional computation. These results confirm that our proposed
formulation achieves a favorable balance between effectiveness and efficiency.

Table 6: Comparison between variance-based and mean reward–based(ours) trustworthiness weight.

Model MathVista (Math) MMBench (General)
Qwen2.5-VL-7B-Instruct 67.5 83.3
SophiaVL-R1-7B (variance) 69.1 85.1
SophiaVL-R1-7B 71.3 85.4

E.2 DECAY SCHEDULE DESIGN OF TRUST-GRPO

The thinking reward provides guidance on the quality of intermediate reasoning. This signal is
particularly valuable in the early stages of training, when correct reasoning does not always yield
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the right answer, and incorrect reasoning may occasionally arrive at the correct answer by chance.
However, as training progresses, outcome rewards generally become more reliable and stable. To
balance these two sources of rewards, we adopt a time-based decay schedule that gradually reduces
the influence of the thinking reward. This design ensures that early updates are guided by intermediate
reasoning signals, while later updates increasingly on the more reliable outcome reward.

To examine the sensitivity of Trust-GRPO to the choice of decay schedule, we compared the default
exponential decay with a linear decay schedule that spans the same range of weights over the training
process. The evaluation was performed on MathVista (Math) and MMBench (General), and the
results are summarized in Table 7.

Table 7: Performance comparison of linear and exponential decay schedules for the thinking reward.

Model MathVista (Math) MMBench (General)
Qwen2.5-VL-7B-Instruct 67.5 83.3
SophiaVL-R1-7B (linear decay) 70.2 84.1
SophiaVL-R1-7B 71.3 85.4

The results indicate that both exponential and linear decay schedules improve performance relative
to the instruct baseline, demonstrating that the inclusion of a decay mechanism is crucial. The
exponential schedule yields slightly better performance in our experiments, but the linear schedule
achieves comparable gains, suggesting that the precise functional form is less important than the
principle of gradually reducing the thinking reward. More sophisticated strategies, such as learned or
reward-gated schedules, may offer additional improvements and are left for future research.

F REWARD MODEL SCALING UP STUDY

To explore the impact of reward model size, we further train on Qwen2.5-VL-32B-Instruct with our
SophiaVL-R1-Thinking-156k dataset and use it as thinking reward model to train our SophiaVL-R1-
7B. Results of reward models are shown in Table 8. Results of reasoning models are shown in Table
9.

Table 8: Performance of 32B reward models on VLRewardBench.

Model General Hallucination Reasoning Overall Accuracy Macro Accuracy
Qwen2.5-VL-32B-Instruct 41.5 60.6 60.3 57.7 54.1

Our Thinking Reward Model (32B) 45.9 65.7 60.4 61.4 57.3

Table 9: Comparison between 7B reasoning models trained with different reward models.

Model MathVista (Math) MMBench (General)
SophiaVL-R1-7B (Qwen2.5-VL-3B-Instruct) 68.4 84.0
SophiaVL-R1-7B (our trained 3B RM) 71.3 85.4
SophiaVL-R1-7B (our trained 32B RM) 72.2 86.1

From these results, we observe that reward models with higher performance on VLRewardBench
lead to stronger reasoning improvements in our method. Nevertheless, considering the substantial
computational overhead of larger reward models, we use the 3B thinking reward model in our main
training experiments to balance effectiveness and efficiency.

G REASONING MODEL SCALING UP STUDY

We conduct expriment on Qwen2.5-VL-32B-Instruct as both reward model and reasoning model.
Results are shown in Table 10.
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Table 10: Performance of 32B reasoning model.

Model MathVista (Math) MMBench (General)
Qwen2.5-VL-32B-Instruct 72.5 86.5
Qwen2.5-VL-32B-Instruct + GRPO 73.1 86.8
SophiaVL-R1-32B 73.9 87.5

From Table 10, we observe that SophiaVL-R1-32B surpasses Qwen2.5-VL-32B-Instruct trained with
standard GRPO, demonstrating that even with larger models, the proposed method is still effective.

H ANALYSIS OF FINE-GRAINED VS. COARSE-GRAINED REWARD MODELING

A central design choice in our framework is the granularity of the model-based rewards used to guide
policy optimization. In principle, finer-grained numerical scores may offer richer supervision than
coarse correctness indicators. However, in practice, reward granularity interacts strongly with both
model stability and optimization dynamics. This section provides additional analysis and empirical
evidence motivating our choice of a discrete 10-choice reward scheme.

H.1 LIMITATIONS OF FULLY CONTINUOUS REWARDS

We initially explored prompting the reward model to assign continuous real-valued scores (e.g.,
two-decimal numbers in [0,1]). Although this offers theoretically high resolution, we found that
the reward signal became unstable and inconsistent across semantically similar responses. Small
numerical fluctuations—for example, scores such as [0.33,0.32,0.29,0.27,0.33,0.32,0.27,0.27]—often
reflected noise rather than meaningful quality differences. During optimization, these small variations
are amplified, causing the policy to incorrectly rank responses and introducing optimization drift.
This instability suggests that continuous scoring introduces more noise than useful signal when
applied at this level of granularity.

H.2 LIMITATIONS OF COARSE 0/1 REWARDS

At the opposite extreme, coarse binary rewards provide stable but very sparse supervision. To quantify
this effect, we construct a variant of our system where each reward was thresholded at 0.5, yielding a
0/1 signal. The performance results are shown in Table 11.

Table 11: Performance with 0/1 reward model and thinking reward model.

Model MathVista (Math) MMBench (General)
Qwen2.5-VL-7B-Instruct+Trust-GRPO+0/1-Reward Model 67.7 83.5

SophiaVL-R1-7B 71.3 85.4

The 0/1-Reward Model variant exhibits substantial degradation on both benchmarks, highlighting that
binary correctness signals fail to differentiate intermediate-quality reasoning steps and thus hinder
effective policy updates.

H.3 DISTINGUISHING HIGH-QUALITY AND LOW-QUALITY REASONING

To further examine reward fidelity, we manually evaluated 60 response samples: 30 with correct final
answers but flawed reasoning, and 30 with both correct answers and valid reasoning. The average
reward outputs from our thinking reward model are summarized in Table 12.
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Table 12: Average thinking reward for low-quality vs. high-quality reasoning cases with correct final
answer.

correct final answers but incorrect reasoning correct final answers and correct reasoning
Thinking reward 0.34 0.78

We can see that the average thinking reward is 0.34 for the first group and 0.78 for the second,
indicating that our thinking reward model can effectively distinguish lower-quality reasoning from
higher-quality reasoning.

I ANALYSIS OF REASONING QUALITY OF SOPHIAVL-R1-7B

To provide a more fine-grained analysis of the effectiveness of our thinking reward model, we
construct a variant model SophiaVL-R1-7B-wo-TRM, which is trained with untrained Qwen2.5-
VL-3B-Instruct as reward model, instead of our thinking reward model. We randomly sampled 100
questions and examined the corresponding outputs produced by this variant and our SophiaVL-R1-7B.
We then asked GPT-4o to identify intermediate reasoning errors (ask GPT-4o to judge whether there
is error in the reasoning). The results of both models are reported in Table 13.

Table 13: Proportion of samples containing intermediate reasoning errors, as judged by GPT-4o.

Proportion of intermediate reasoning errors(↓)
SophiaVL-R1-7B-wo-TRM 0.59
SophiaVL-R1-7B 0.42

These results highlight that our thinking reward model does correct intermediate wrong thinking
process and thus improves the reasoning quality.

J TRAINING DETAILS

Table 14: Training hyperparameters.

Hyperparameter Value

Group size 8
Batch size 8
KL divergence coefficient 0.04
Learning rate 5× 10−7

α 0.3
Total training steps 1500

K EVALUATION DETAILS

Most of our evaluations are conducted using VLMEvalKit (Duan et al., 2024), following the rec-
ommended Python package versions. For baseline models, performance metrics are obtained from
the OpenVLM leaderboard. We adopt the default prompts for all evaluated models and modify the
answer extraction function based on each model’s output format. For instance, for R1-style models,
we extract the content enclosed within the <answer> and </answer> tags.

For MathVista, we evaluate on the testmini split. For MathVerse, we report average performance
over the following subsets: vision-only, vision-dominant, vision-intensive, text-dominant, and text-
lite. For MMMU, we evaluate on the mmmu dev val set. For ChartQA, evaluation is conducted on
the test set. For MMBench, we use the MMBench Dev EN set for evaluation.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

RESPONSE[6]
<think>Let me think about the key elements in this picture. 
The image shows a sign with a bright blue background and 
yellow text that reads “Gullfoss”. The text is prominent and 
legible. The sign has a yellow arrow pointing to the right, 
indicating a direction. The background is a flat, barren 
landscape, likely a desert or plain, under a cloudy sky. ……
There are no other objects or signs in the frame.</think>
<answer>The key elements in this picture are the road sign
with the word "Gullfoss" and a yellow arrow pointing to the 
right, the barren landscape background, and the cloudy sky. 
The sign is the most prominent feature, serving as a clear 
directional indicator.
</answer>

RESPONSE[8]
<think>Let me think about the key elements in this picture. 
The image prominently features a road sign. The sign is blue 
with yellow text and an arrow pointing to the right. The 
text …… “Gullfoss”. This suggests that the sign is directing 
towards the Gullfoss waterfall. The background …… this sign 
is located in a rural area or a place of natural beauty. …… 
suggesting they are part of a system designed to guide 
travelers.</think>
<answer>The key elements in this picture are the road sign 
indicating “Gullfoss”, the blue color of the sign, the yellow 
arrow pointing to the right, the text “Gullfoss”, the cloudy 
sky, the open landscape in the background, and the pole 
holding the sign. The sign‘s purpose is to guide travelers 
towards the Gullfoss waterfall in Iceland.</answer>

+6 +8

……

𝛾 = 0.45

Q: What are the key elements in this picture?
The image captures a moment on a road in Iceland, where a signpost stands tall against 
the backdrop of a cloudy sky and a barren landscape. The signpost, mounted on a metal 
pole, is painted in a striking blue color with yellow text that reads "Gullfoss". The arrow 
on the sign points to the right, indicating the direction towards Gullfoss, a renowned 
waterfall in Iceland. The sign serves as a guide for travelers, leading them towards the 
natural beauty of Gullfoss.

TR 0TR 0.8 𝑅!"   0.0𝑅#" 0.8

𝜇! > 𝜇"

Figure 10: Case of a free-form problem.

L CASE STUDY OF γ

RESPONSE[2]
<think>Let me think through this step by step. First, 
let‘s calculate the total bill before the tip …… So the 
total bill is 16 + x …… Let’s solve this equation for x.
First, factor out (16 + x) :

16 + 𝑥
2 + 0.2 16 + 𝑥 = 21

16 + 𝑥
2 + 0.1 16 + 𝑥 = 21

…… So, the value of the unknown variable x is 
19.</think>
<answer>19</answer>

RESPONSE[5]
<think>Let me think about this step by step.
1. First, we need to calculate the total cost of the 

meal……
4. James pays his half of the bill plus the tip. So 
James‘ payment is !

"
16 + 𝑥 + 0.2 16 + 𝑥 .

5. We know that James' payment is 21. So we can set 
up the equation:

1
2 16 + 𝑥 + 0.2 16 + 𝑥 = 21

……
8. Solve for x: x = 30 – 16 =14</think>
<answer>14</answer>

……

𝛾 = 0.74

Q: James goes out to eat. He orders a steak and egg meal for $16. He is with his friend, 
who orders chicken fried steak for x. His friend pays for half the bill and James pays 
the tip along with his half of the bill. They tip 20%. How much did James pay?

TR 0.5TR 0.7
❌ ✅

𝑅!" 0.5𝑅#" 0.7
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Figure 9: Case of a text-only mathematical problem.

We demonstrate a text-only mathematical problem case in Figure 9. All responses in this image
corresponded to the same question displayed on the top. The ground truth answer is 14. Responses
yielding incorrect answers (e.g., RESPONSE[6]) are highlighted in red (grouped as Gwrong), while
while those producing correct answers (e.g., RESPONSE[8]) are highlighted in green Gcorrect.
Notably, RESPONSE[6] receives a thinking reward of 0.7 despite a clear arithmetic simplification
error, exceeding the reward assigned to RESPONSE[8]. By computing the average thinking reward
of Gcorrect and Gwrong, we obtain a trustworthiness weight of γ = 0.74. Since γ < 1, this
indicates the presence of potential unreliable thinking rewards within this response group. This
case demonstrates how our Trust-GRPO algorithm can adaptively identify such unreliability during
training and appropriately downscale its influence by adjusting γ, thereby providing more stable and
reliable reward signals for effective GRPO training.
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We present a free-form reasoning example in Figure 10, with the ground-truth answer shown at the
top. Notably, RESPONSE[6] identifies six key points, while RESPONSE[8] correctly identifies
eight—demonstrating a more complete reasoning process. However, RESPONSE[8] receives a
thinking reward of only 0.0, significantly lower than the 0.8 assigned to RESPONSE[6]. Together
with the first case study and the analysis provided in the main paper, this example illustrates how
the trustworthiness weight γ functions as an effective dynamic parameter for identifying unreliable
thinking rewards. By adaptively down-weighting suspicious reward signals, γ helps mitigate the risk
of reward hacking and contributes to more stable reinforcement learning.

M REASONING EXAMPLES OF SOPHIAVL-R1-7B

Figure 11: An example of SophiaVL-R1-7B’s reasoning output on MathVista.

Figure 12: An example of SophiaVL-R1-7B’s reasoning output on MME.
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Figure 13: An example of SophiaVL-R1-7B’s reasoning output on MMMU.

Figure 14: An example of SophiaVL-R1-7B’s reasoning output on MMStar.
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N USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we use a large language model as a writing support tool.
Its role is limited to refining the presentation of text, such as improving grammar, clarity, and style.
The model was not involved in research ideation, methodological design, implementation, or analysis.
All scientific contributions and claims are entirely the work of the author(s).
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