

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SOPHIAVL-R1: REINFORCING MLLMs REASONING WITH THINKING REWARD

Anonymous authors

Paper under double-blind review

## ABSTRACT

Recent advances have shown success in eliciting strong reasoning abilities in multi-modal large language models (MLLMs) through rule-based reinforcement learning (RL) with outcome rewards. However, this paradigm typically lacks supervision over the thinking process leading to the final outcome. As a result, the model may learn sub-optimal reasoning strategies, which can hinder its generalization ability. In light of this, we propose SophiaVL-R1, as an attempt to add reward signals for the thinking process in this paradigm. To achieve this, we first train a thinking reward model that evaluates the quality of the entire thinking process. Given that the thinking reward may be unreliable for certain samples due to reward hacking, we propose the Trust-GRPO method, which assigns a trustworthiness weight to the thinking reward during training. This weight is computed based on the thinking reward comparison of responses leading to correct answers versus incorrect answers, helping to mitigate the impact of potentially unreliable thinking rewards. Moreover, we design an annealing training strategy that gradually reduces the thinking reward over time, allowing the model to rely more on the accurate rule-based outcome reward in later training stages. Experiments show that our SophiaVL-R1 surpasses a series of reasoning MLLMs on various benchmarks (*e.g.*, MathVisita, MMMU), demonstrating strong reasoning and generalization capabilities. Notably, our SophiaVL-R1-7B even outperforms LLaVA-OneVision-72B on most benchmarks, despite the latter having 10 $\times$  more parameters. All code, models, and datasets will be made publicly available.

## 1 INTRODUCTION

Recent advances have highlighted the potential of rule-based Reinforcement Learning (RL) to elicit reasoning capabilities of Large Language Models (LLMs) (Guo et al., 2025; Yu et al., 2025). In particular, DeepSeek-R1 (Guo et al., 2025) exemplifies the success of applying the GRPO (Shao et al., 2024) reinforcement learning algorithm to incentive strong reasoning with long Chain-of-Thought (CoT) in LLMs. Beyond text-based domains, this paradigm has also shown promising results in Multimodal Large Language Models (MLLMs), with representative models including R1-OneVision (Yang et al., 2025), OpenVLThinker (Deng et al., 2025b), and Video-R1 (Feng et al., 2025). The key of these methods is to utilize a rule-based function that yields accurate outcome reward signals for RL training (Guo et al., 2025; Leng et al., 2025; Deng et al., 2025b).

However, solely relying on the outcome reward usually fails to ensure the quality of the thinking process, which is critical for developing models with generalizable reasoning ability (Lightman et al., 2023). For example, models may produce correct answers through flawed thinking trajectories, as illustrated in Figure 1, rather than through systematic deduction. During GRPO training (Shao et al., 2024), the rule-based outcome reward will equally encourage these responses with correct answers, regardless of whether the underlying thinking process is sound or flawed. Therefore, the model may adopt sub-optimal or even wrong reasoning strategies that generalize poorly, leading to inferior performance. This gives rise to one intuitive thought: *Can we incorporate a reward for the thinking process during GRPO training to explicitly guide correct reasoning?*

To explore this question, we propose **SophiaVL-R1**, an MLLM that enhances reasoning by integrating model-generated thinking rewards with rule-based outcome rewards in RL training. Given that typical process reward models (PRMs) impose rigid step-wise constraints on reasoning and can be

054  
055  
056  
057  
058

Q: In the figure,  $AB$ ,  $BC$  are tangent to circle  $O$  at points  $A$ ,  $C$ , and  $EF$  is tangent to circle  $O$  at point  $D$ . If  $BA = 20$ , what is the perimeter of triangle  $BEF$ ?  
A. 20; B. 40; C. 30; D. 60

059  
060  
061  
062  
063  
064  
065  
066  
067  
068  
069  
070  
071

<think>.....  $BA$  and  $BC$  are tangents to the circle from point  $B$ . Therefore,  $BA = BC$  .....  $BA$  is given as 20, so  $BC$  is also 20. ....  $EF$  is tangent to the circle at point  $D$ , ....,  $ED = DF$ ..... So, the perimeter of triangle  $BEF$  is  $BE + EF + BF$ .  
Since  $BE$  and  $BF$  are the same as  $BA$  and  $BC$  (tangents from  $B$  to the points of tangency on the circle), .... the perimeter of triangle  $BEF$  is  $2 * BA + 2 * BA$  (because  $BA = BC$  and  $ED + DF = EF$ ).  
Therefore, the perimeter is  $2 * 20 + 2 * 20 = 80 / 2 = 40$ .  
The correct answer is B.</think>  
<answer>B</answer>

Wrong Thinking, Correct Answer

072  
073  
074

Thinking Reward: 0.3

<think>..... This means that the lengths of the tangents drawn from an external point to a circle are equal. Therefore,  $BA = BC = 20$ .  
..... This implies that  $ED$  and  $EA$ ,  $DF$  and  $FC$  are also equal in length to the tangents drawn from  $E$  and  $F$  to the circle, respectively.....  
So, the perimeter of triangle  $BEF$  is simply the sum of the lengths of  $BE$ ,  $EF$ , and  $BF$ , which is equal to the sum of the lengths of  $BA$  and  $BC$  because of the tangents' properties.  
Therefore, the perimeter is  $20 + 20 = 40$ .  
The correct answer is B.</think>  
<answer>B</answer>

Correct Thinking, Correct Answer

Figure 1: Examples of model responses and their corresponding thinking rewards.

075  
076  
077  
078  
079  
080  
081  
082  
083  
084  
085  
086  
087  
088  
089  
090  
091  
092  
093  
094  
095  
096  
097  
098  
099  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
10010  
10011  
10012  
10013  
10014  
10015  
10016  
10017  
10018  
10019  
10020  
10021  
10022  
10023  
10024  
10025  
10026  
10027  
10028  
10029  
10030  
10031  
10032  
10033  
10034  
10035  
10036  
10037  
10038  
10039  
10040  
10041  
10042  
10043  
10044  
10045  
10046  
10047  
10048  
10049  
10050  
10051  
10052  
10053  
10054  
10055  
10056  
10057  
10058  
10059  
10060  
10061  
10062  
10063  
10064  
10065  
10066  
10067  
10068  
10069  
10070  
10071  
10072  
10073  
10074  
10075  
10076  
10077  
10078  
10079  
10080  
10081  
10082  
10083  
10084  
10085  
10086  
10087  
10088  
10089  
10090  
10091  
10092  
10093  
10094  
10095  
10096  
10097  
10098  
10099  
100100  
100101  
100102  
100103  
100104  
100105  
100106  
100107  
100108  
100109  
100110  
100111  
100112  
100113  
100114  
100115  
100116  
100117  
100118  
100119  
100120  
100121  
100122  
100123  
100124  
100125  
100126  
100127  
100128  
100129  
100130  
100131  
100132  
100133  
100134  
100135  
100136  
100137  
100138  
100139  
100140  
100141  
100142  
100143  
100144  
100145  
100146  
100147  
100148  
100149  
100150  
100151  
100152  
100153  
100154  
100155  
100156  
100157  
100158  
100159  
100160  
100161  
100162  
100163  
100164  
100165  
100166  
100167  
100168  
100169  
100170  
100171  
100172  
100173  
100174  
100175  
100176  
100177  
100178  
100179  
100180  
100181  
100182  
100183  
100184  
100185  
100186  
100187  
100188  
100189  
100190  
100191  
100192  
100193  
100194  
100195  
100196  
100197  
100198  
100199  
100200  
100201  
100202  
100203  
100204  
100205  
100206  
100207  
100208  
100209  
100210  
100211  
100212  
100213  
100214  
100215  
100216  
100217  
100218  
100219  
100220  
100221  
100222  
100223  
100224  
100225  
100226  
100227  
100228  
100229  
100230  
100231  
100232  
100233  
100234  
100235  
100236  
100237  
100238  
100239  
100240  
100241  
100242  
100243  
100244  
100245  
100246  
100247  
100248  
100249  
100250  
100251  
100252  
100253  
100254  
100255  
100256  
100257  
100258  
100259  
100260  
100261  
100262  
100263  
100264  
100265  
100266  
100267  
100268  
100269  
100270  
100271  
100272  
100273  
100274  
100275  
100276  
100277  
100278  
100279  
100280  
100281  
100282  
100283  
100284  
100285  
100286  
100287  
100288  
100289  
100290  
100291  
100292  
100293  
100294  
100295  
100296  
100297  
100298  
100299  
100300  
100301  
100302  
100303  
100304  
100305  
100306  
100307  
100308  
100309  
100310  
100311  
100312  
100313  
100314  
100315  
100316  
100317  
100318  
100319  
100320  
100321  
100322  
100323  
100324  
100325  
100326  
100327  
100328  
100329  
100330  
100331  
100332  
100333  
100334  
100335  
100336  
100337  
100338  
100339  
100340  
100341  
100342  
100343  
100344  
100345  
100346  
100347  
100348  
100349  
100350  
100351  
100352  
100353  
100354  
100355  
100356  
100357  
100358  
100359  
100360  
100361  
100362  
100363  
100364  
100365  
100366  
100367  
100368  
100369  
100370  
100371  
100372  
100373  
100374  
100375  
100376  
100377  
100378  
100379  
100380  
100381  
100382  
100383  
100384  
100385  
100386  
100387  
100388  
100389  
100390  
100391  
100392  
100393  
100394  
100395  
100396  
100397  
100398  
100399  
100400  
100401  
100402  
100403  
100404  
100405  
100406  
100407  
100408  
100409  
100410  
100411  
100412  
100413  
100414  
100415  
100416  
100417  
100418  
100419  
100420  
100421  
100422  
100423  
100424  
100425  
100426  
100427  
100428  
100429  
100430  
100431  
100432  
100433  
100434  
100435  
100436  
100437  
100438  
100439  
100440  
100441  
100442  
100443  
100444  
100445  
100446  
100447  
100448  
100449  
100450  
100451  
100452  
100453  
100454  
100455  
100456  
100457  
100458  
100459  
100460  
100461  
100462  
100463  
100464  
100465  
100466  
100467  
100468  
100469  
100470  
100471  
100472  
100473  
100474  
100475  
100476  
100477  
100478  
100479  
100480  
100481  
100482  
100483  
100484  
100485  
100486  
100487  
100488  
100489  
100490  
100491  
100492  
100493  
100494  
100495  
100496  
100497  
100498  
100499  
100500  
100501  
100502  
100503  
100504  
100505  
100506  
100507  
100508  
100509  
100510  
100511  
100512  
100513  
100514  
100515  
100516  
100517  
100518  
100519  
100520  
100521  
100522  
100523  
100524  
100525  
100526  
100527  
100528  
100529  
100530  
100531  
100532  
100533  
100534  
100535  
100536  
100537  
100538  
100539  
100540  
100541  
100542  
100543  
100544  
100545  
100546  
100547  
100548  
100549  
100550  
100551  
100552  
100553  
100554  
100555  
100556  
100557  
100558  
100559  
100560  
100561  
100562  
100563  
100564  
100565  
100566  
100567  
100568  
100569  
100570  
100571  
100572  
100573  
100574  
100575  
100576  
100577  
100578  
100579  
100580  
100581  
100582  
100583  
100584  
100585  
100586  
100587  
100588  
100589  
100590  
100591  
100592  
100593  
100594  
100595  
100596  
100597  
100598  
100599  
100600  
100601  
100602  
100603  
100604  
100605  
100606  
100607  
100608  
100609  
100610  
100611  
100612  
100613  
100614  
100615  
100616  
100617  
100618  
100619  
100620  
100621  
100622  
100623  
100624  
100625  
100626  
100627  
100628  
100629  
100630  
100631  
100632  
100633  
100634  
100635  
100636  
100637  
100638  
100639  
100640  
100641  
100642  
100643  
100644  
100645  
100646  
100647  
100648  
100649  
100650  
100651  
100652  
100653  
100654  
100655  
100656  
100657  
100658  
100659  
100660  
100661  
100662  
100663  
100664  
100665  
100666  
100667  
100668  
100669  
100670  
100671  
100672  
100673  
100674  
100675  
100676  
100677  
100678  
100679  
100680  
100681  
100682  
100683  
100684  
100685  
100686  
100687  
100688  
100689  
100690  
100691  
100692  
100693  
100694  
100695<br

108  
109  
2 RELATED WORK110  
111  
2.1 REWARD MODELS112  
113 Reward models (RMs) play a crucial role in guiding and shaping the behavior of models (Ouyang  
114 et al., 2022; Zhong et al., 2025). Several studies (Lightman et al., 2023; Yuan et al., 2024; Wang et al.,  
115 2025b; Zhang et al., 2025) demonstrate that process supervision—providing feedback at intermediate  
116 reasoning steps—has the potential to enhance reasoning capabilities. For example, Lightman et al.  
117 (2023) introduce powerful Process Reward Models (PRMs) with step-wise rewards, which have been  
118 applied to mathematical reasoning (Lightman et al., 2023; Wang et al., 2023). ReST-MCTS\* (Zhang  
119 et al., 2024a) integrates process supervision and Monte Carlo Tree Search (MCTS) to generate  
120 per-step process rewards, enabling efficient self-training of both policy and reward models without  
121 manual annotation. Beyond the text-based domain, VisualPRM (Wang et al., 2025b) extends PRMs  
122 to the multimodal domain, achieving significant improvements in the reasoning performance of  
123 various MLLMs. Despite these advances, PRMs still face two major challenges: (1) imposing rigid  
124 step-wise constraints requires the model to strictly follow predefined reasoning steps, which can limit  
125 flexibility and generalization—particularly in general tasks (Guo et al., 2025; Cui et al., 2025); and  
126 (2) evaluating the correctness of individual steps is inherently challenging (Zhong et al., 2025), which  
127 may lead models to exploit the reward by repeating valid steps or inserting meaningless ones without  
128 making real progress. ArmoRM (Wang et al., 2024) trains a reward model to give fine-grained  
129 rewards from different perspectives in non-reasoning fields. However, it is not designed for solving  
130 the “wrong thinking, correct answer” phenomenon in R1-like training for reasoning. Therefore, in  
131 contrast to prior approaches, we aim to develop a thinking reward model that evaluates reasoning  
132 quality from multiple dimensions at a holistic level, thereby fostering a more reliable and stable  
133 training pipeline for R1-style models.134  
135  
2.2 MULTIMODAL LARGE LANGUAGE MODEL REASONING136  
137 The field of multimodal large language model reasoning aims to build human-like models capable  
138 of handling complex tasks that require understanding and reasoning across multiple modalities (Li  
139 et al., 2025c). Earlier methods typically depend on fine-grained step-level supervision or learned  
140 reward models to guide the reasoning process (Yao et al., 2024; Wang et al., 2025b; Zang et al., 2025).  
141 In contrast, DeepSeek-R1 (Guo et al., 2025) demonstrates that reinforcement learning with a rule-  
142 based reward model can effectively incentivize strong reasoning abilities without dense supervision.  
143 Following the R1 paradigm, several efforts have explored enhancing MLLM reasoning through rule-  
144 based reinforcement learning (Lai et al., 2025; Feng et al., 2025; Shen et al., 2025; Xia & Luo, 2025;  
145 Wang et al., 2025a). R1-OneVision (Yang et al., 2025) introduces a cross-modal reasoning pipeline  
146 and adopts a supervised fine-tuning followed by RL strategy to strengthen reasoning capabilities.  
147 Curr-ReFT (Wu et al., 2025) introduces a curriculum-based reinforcement learning paradigm for small-  
148 scale MLLMs, combining difficulty-aware rewards and rejection sampling to boost generalization.  
149 Video-R1 (Feng et al., 2025) proposes T-GRPO algorithm to explicitly encourage temporal reasoning  
150 in video. Despite their success on multimodal tasks, these approaches rely exclusively on outcome  
151 rewards, which often overlook the quality of intermediate reasoning steps.152  
153  
3 METHOD154  
155  
3.1 DATASET COMPOSITION156  
157 We curate a dataset SophiaVL-R1-130k, comprising 130k examples to support the training of thinking  
158 reward model (Section 3.2) and SophiaVL-R1 (Section 3.4). To overcome the scarcity of high-quality  
159 multimodal reasoning data and ensure robust model performance across a wide range of tasks,  
160 we aggregate samples from a combination of text-only and multimodal datasets, all of which are  
161 publicly available. The dataset contains both reasoning-specific tasks and general vision-language  
understanding tasks. We organize the data into five categories, covering diverse reasoning scenarios,  
as illustrated in Figure 2 (left).



Figure 2: **Left:** Composition of our SophiaVL-R1-130k dataset from public sources. **Right:** Distribution of the SophiaVL-R1-Thinking-156k dataset used to train the thinking reward model.

### 3.2 THINKING REWARD

To assess fine-grained reasoning quality of MLLMs’ thinking process, we develop a thinking reward model that assigns a score between 0 and 1 based solely on the quality of intermediate reasoning, regardless of whether the final answer is correct.

To construct the dataset used for training the thinking reward model, we collected 470,331 (question, response) pairs output by Qwen2.5-VL-7B-Instruct (Bai et al., 2025) during the GRPO training on the SophiaVL-R1-130k dataset. These data contain both favorable and flawed reasoning patterns occurred in the training. Then, each response is scored by the advanced MLLM, Qwen2.5-VL-72B-Instruct (Bai et al., 2025), using the prompt in Appendix A. This results in 470,331 (question, response, thinking reward) tuples. The evaluation is based on five dimensions, which are identified from error patterns observed during GRPO training: Logical Soundness, Correct Reasoning, Error Identification, Language Consistency, and Redundancy. Detailed examples of error patterns are provided in Appendix B.

To ensure the quality of labels and maintain a balanced distribution across different reward levels, we apply manually designed rule-based filtering (Details in Appendix D) to remove noisy samples and perform uniform sampling to preserve distribution balance. This process results in 156,703 high-quality annotated samples, with 5,000 to 15,000 samples per interval. Each reward interval corresponds to a discrete range (e.g., [0.0–0.1), [0.1–0.2), ..., [0.9–1.0]). The distribution of the full (*Annotated*) and balanced (*Selected*) datasets is shown in Figure 2 (right). We denote the resulting dataset as SophiaVL-R1-Thinking-156k, with its detailed composition reported in Appendix C.

The thinking reward model, initialized with Qwen2.5-VL-3B-Instruct (Bai et al., 2025), is then trained on this dataset using SFT, where the model is required to output a thinking reward given a question and its corresponding thinking process. Through this training, the thinking reward model learns to identify diverse reasoning errors and assign appropriate rewards accordingly, thereby playing a crucial role in GRPO training by providing feedback on reasoning quality.

### 3.3 RULE-BASED OUTCOME REWARD

Following DeepSeek-R1 (Guo et al., 2025), we construct rule-based outcome reward functions to generate reward signals. Specifically, we design task-specific functions that assess model outputs by comparing them with ground-truth answers. Tasks are categorized based on their output formats: (1) **Numerical**: A binary reward is assigned based on an exact match between the predicted and ground-truth values; (2) **Multiple Choice**: The reward is defined based on whether the model’s output matches the ground-truth choice; (3) **OCR**: The reward is computed as the negative Word Error Rate (WER), penalizing transcription inaccuracies; (4) **Free-form Text**: The reward is calculated as the average of ROUGE-1, ROUGE-2, and ROUGE-L scores, measuring n-gram and sequence-level similarity (Feng et al., 2025).



Figure 3: An illustration of our proposed Trust-GRPO.

### 3.4 TRUSTWORTHY GROUP RELATIVE POLICY OPTIMIZATION (TRUST-GRPO)

As discussed earlier, integrating the thinking reward into GRPO training could help the model distinguish between favorable and flawed reasoning process. Nevertheless, a direct application may result in reward hacking, given that model-generated rewards are not always trustworthy. To deal with this challenge, we introduce the Trust-GRPO algorithm, as illustrated in Figure 3.

Trust-GRPO optimizes the policy using a combination of two reward types: (1) thinking reward  $R^t$  (Section 3.2) that assigns a score between 0 and 1 based on holistic reasoning quality, and (2) outcome reward  $R^o$  (Section 3.3), derived from rule-based evaluation of outcome answer correctness. To reduce the risk of reward hacking, a trustworthiness weight  $\gamma$  is included to determine the influence of thinking reward  $R^t$ .

The trustworthiness is computed by contrasting the thinking reward  $R^t$  assigned to responses that arrive at correct answers with those leading to incorrect ones. When higher thinking rewards are abnormally associated with incorrect reasoning,  $\gamma$  will be lower, indicating the potential unreliability in the reward signal. Next, we will introduce how to derive it.

First, responses  $o_i$  to a question  $q$  are grouped into correct answer group  $G_{\text{correct}}$  and wrong answer group  $G_{\text{wrong}}$  based on their outcome rewards. Then, we calculate the average thinking reward in  $G_{\text{correct}}$  and  $G_{\text{wrong}}$  as follows:

$$\mu_c = \frac{1}{|G_{\text{correct}}|} \sum_{i \in G_{\text{correct}}} R_i^t, \quad G_{\text{correct}} = \{i \mid R_i^o \geq 0.5\}, \quad (1)$$

$$\mu_w = \frac{1}{|G_{\text{wrong}}|} \sum_{i \in G_{\text{wrong}}} R_i^t, \quad G_{\text{wrong}} = \{i \mid R_i^o < 0.5\}, \quad (2)$$

where  $\mu_c$  and  $\mu_w$  denote the average thinking rewards in the correct answer group and the wrong answer group, respectively.  $R_i^o$  denotes the outcome reward of response  $i$ . The trustworthiness weight  $\gamma$  is defined as follows:

$$\gamma = \begin{cases} 1, & \mu_c \geq \mu_w \\ e^{\mu_c - \mu_w}, & \mu_c < \mu_w \end{cases}. \quad (3)$$



324  
 325 Table 1: Comparison of models on **MathVista** and **MathVerse**. The best is **bold**, and the runner-up  
 326 is underline. <sup>1</sup>Scientific Reasoning, <sup>2</sup>Textbook Question Answering, <sup>3</sup>Arithmetic Reasoning, <sup>4</sup>Math Word  
 327 Problem, <sup>5</sup>Logical Reasoning, <sup>6</sup>Vision Intensive, <sup>7</sup>Vision Only, <sup>8</sup>Vision Dominant, <sup>9</sup>Text Dominant, <sup>10</sup>Text Lite.

| Model                                         | MathVista   |                  |                  |                  |                  |                  |             | MathVerse       |                 |                 |                 |                  |   |   |
|-----------------------------------------------|-------------|------------------|------------------|------------------|------------------|------------------|-------------|-----------------|-----------------|-----------------|-----------------|------------------|---|---|
|                                               | AVG         | SCI <sup>1</sup> | TQA <sup>2</sup> | ARI <sup>3</sup> | MWP <sup>4</sup> | LOG <sup>5</sup> | AVG         | VI <sup>6</sup> | VO <sup>7</sup> | VD <sup>8</sup> | TD <sup>9</sup> | TL <sup>10</sup> |   |   |
| <i>General MLLMs</i>                          |             |                  |                  |                  |                  |                  |             |                 |                 |                 |                 |                  |   |   |
| LLaVA-OneVision-7B (Li et al., 2024)          | 63.2        | 65.6             | 60.8             | 57.8             | 69.4             | 21.6             | 26.2        | -               | -               | -               | -               | -                | - | - |
| LLaVA-OneVision-72B (Li et al., 2024)         | 68.4        | 63.1             | 65.8             | 60.1             | 73.7             | <u>27.1</u>      | 27.2        | -               | -               | -               | -               | -                | - | - |
| Cambrian-1-34B (Tong et al., 2024)            | 50.9        | 53.3             | 55.1             | 45.6             | 51.6             | 16.2             | -           | -               | -               | -               | -               | -                | - | - |
| GPT-4V                                        | 51.8        | 63.1             | 65.8             | 51.8             | 57.5             | 21.6             | 32.8        | -               | -               | -               | -               | -                | - | - |
| <i>Open-Source Math MLLMs</i>                 |             |                  |                  |                  |                  |                  |             |                 |                 |                 |                 |                  |   |   |
| Math-LLaVA-13B (Shi et al., 2024)             | 46.6        | 49.2             | 51.3             | 40.2             | 56.5             | 16.2             | 22.9        | 24.5            | 16.1            | 21.7            | 27.3            | 24.9             |   |   |
| Math-PUMA-Qwen2VL-7B (Zhuang et al., 2025)    | 47.9        | 42.6             | 46.2             | 46.2             | 68.3             | 21.6             | 33.6        | 33.4            | 26.0            | 31.6            | 42.1            | 35.0             |   |   |
| Multimath-7B (Peng et al., 2024)              | 50.0        | -                | 50.0             | -                | 61.8             | -                | 26.9        | 28.1            | 15.0            | 25.9            | 34.8            | 30.8             |   |   |
| URSA-8B (Luo et al., 2025)                    | 59.8        | 58.2             | 63.9             | 53.5             | 75.3             | 21.6             | 45.7        | <b>46.4</b>     | 34.6            | <u>43.9</u>     | 55.3            | <u>48.3</u>      |   |   |
| <i>Open-Source Reasoning MLLMs</i>            |             |                  |                  |                  |                  |                  |             |                 |                 |                 |                 |                  |   |   |
| Curr-ReFT-7B (Deng et al., 2025a)             | 64.5        | -                | -                | -                | -                | -                | -           | -               | -               | -               | -               | -                | - | - |
| R1-OneVision-7B (Yang et al., 2025)           | 64.1        | 61.5             | 62.0             | 56.1             | 64.5             | 16.2             | <u>46.4</u> | -               | 40.0            | -               | -               | -                | - | - |
| InternVL2.5-8B-VisualPRM (Wang et al., 2025b) | 68.5        | 61.5             | 53.9             | 45.9             | 66.8             | 21.2             | 30.7        | 28.9            | 35.8            | 27.3            | 31.7            | 29.7             |   |   |
| Qwen2.5-VL-7B-Instruct (Bai et al., 2025)     | 67.5        | 65.6             | 67.7             | 57.5             | 69.4             | 27.0             | 44.0        | 41.1            | 41.0            | 38.7            | 55.2            | 44.0             |   |   |
| +GRPO                                         | <u>69.9</u> | 68.0             | 69.6             | <u>61.2</u>      | <u>75.8</u>      | 24.3             | 45.3        | 43.0            | <u>41.0</u>     | 41.1            | <u>56.0</u>     | 45.6             |   |   |
| +SFT+GRPO                                     | 66.8        | <b>72.1</b>      | <u>73.4</u>      | 59.8             | 69.9             | 21.6             | 43.1        | 42.5            | 37.1            | 37.3            | 52.2            | 46.3             |   |   |
| SophiaVL-R1-7B                                | <b>71.3</b> | <u>70.5</u>      | <b>73.4</b>      | <b>62.6</b>      | <b>76.9</b>      | <b>35.1</b>      | <b>48.8</b> | <u>45.4</u>     | <b>43.9</b>     | <b>45.1</b>     | <b>58.5</b>     | <b>51.3</b>      |   |   |

## 4 EXPERIMENT

### 4.1 EXPERIMENT SETTINGS

**Benchmarks.** We evaluate our model on both multimodal mathematical reasoning and general multimodal reasoning benchmarks. For mathematical reasoning, we report detailed results on MathVista (Lu et al., 2023) and MathVerse (Zhang et al., 2024b). For general multimodal capabilities, we conduct evaluations on MMMU (Yue et al., 2024), MME (Liang et al., 2024), MMStar (Chen et al., 2024), ChartQA (Masry et al., 2022), and MMBench (Xu et al., 2023).

**Implementation Details.** The thinking reward model is initialized from Qwen2.5-VL-3B-Instruct and trained for 2 epochs with SFT on SophiaVL-R1-Thinking-156k using 4 NVIDIA A800 80GB GPUs. The reasoning model is initialized from Qwen2.5-VL-7B-Instruct and trained on SophiaVL-R1-130k with the Trust-GRPO algorithm. RL training is performed for 1,500 steps using a VeRL (Zheng et al., 2025; Sheng et al., 2024)-based implementation on 8 NVIDIA A800 80GB GPUs. Hyperparameters for RL training are provided in Appendix J. For evaluation, we use default prompts to generate responses. Additional evaluation details are given in Appendix K.

### 4.2 MAIN RESULTS

**Performance on Math Reasoning Benchmarks.** As shown in Table 1, SophiaVL-R1-7B achieves competitive performance on mathematical reasoning benchmarks. On the MathVista benchmark, it attains an accuracy of 71.3%, surpassing both Qwen2.5-VL-7B-Instruct models trained with GRPO and SFT+GRPO, and also outperforming the LLaVA-OneVision-72B model. Compared to the model trained by VisualPRM (Wang et al., 2025b), our model achieves significantly better performance, with an 18.1-point improvement on MathVerse (48.8 vs. 30.7), and consistently outperforms it across all sub-tasks. These results indicate that, compared to PRM-based method, our Trust-GRPO may serve as a more effective approach for providing reward signals, better guiding the model toward improved reasoning ability.

**Performance on General Benchmarks.** Many task-specific reasoning models, such as those optimized for mathematical problem-solving or other specialized tasks, excel within their respective

378 Table 2: Comparison on general ability benchmarks. The best is **bold**, and the runner-up is underline.  
379

| 380 <b>Model</b>                                  | 381 <b>MMMU</b> | 382 <b>MME</b> | 383 <b>ChartQA</b> | 384 <b>MMBench</b> | 385 <b>MMStar</b> |
|---------------------------------------------------|-----------------|----------------|--------------------|--------------------|-------------------|
| <i>General MLLMs</i>                              |                 |                |                    |                    |                   |
| 383 LLaVA-OneVision-7B (Li et al., 2024)          | 48.8            | 1998.0         | 80.0               | -                  | 61.7              |
| 384 LLaVA-OneVision-72B (Li et al., 2024)         | 56.8            | 2261.0         | 83.7               | -                  | <u>66.1</u>       |
| 385 Cambrian-1-34B (Tong et al., 2024)            | 49.7            | 1689.3         | 75.6               | 81.4               | 54.2              |
| 386 GPT-4V                                        | 56.8            | 1926.0         | 78.5               | 75.0               | 57.1              |
| <i>Open-Source Math MLLMs</i>                     |                 |                |                    |                    |                   |
| 388 URSA-8B (Luo et al., 2025)                    | 43.1            | 1605.7         | 44.4               | 55.5               | 42.3              |
| <i>Open-Source Reasoning MLLMs</i>                |                 |                |                    |                    |                   |
| 392 Curr-ReFT-7B (Deng et al., 2025a)             | -               | -              | -                  | 79.0               | -                 |
| 393 R1-Onevision-7B (Yang et al., 2025)           | 51.6            | 2223.3         | -                  | 75.6               | 59.1              |
| 394 InternVL2.5-8B-VisualPRM (Wang et al., 2025b) | 56.2            | -              | 60.8               | 83.5               | 63.4              |
| 396 Qwen2.5-VL-7B-Instruct (Bai et al., 2025)     | 58.7            | 2306.0         | 86.3               | 83.3               | 64.3              |
| 397   +GRPO                                       | 58.0            | 2298.2         | 87.2               | 83.4               | 65.6              |
| 398   +SFT+GRPO                                   | <u>59.1</u>     | <u>2344.1</u>  | <b>89.2</b>        | <u>84.6</u>        | 64.7              |
| 399 SophiaVL-R1-7B                                | <b>61.3</b>     | <b>2403.8</b>  | <u>88.5</u>        | <b>85.4</b>        | <b>66.7</b>       |

401 Table 3: Performance of reward models on VLRewardBench.  
402

| 403 <b>Model</b>                   | 404 <b>General</b> | 405 <b>Hallucination</b> | 406 <b>Reasoning</b> | 407 <b>Overall Accuracy</b> | 408 <b>Macro Accuracy</b> |
|------------------------------------|--------------------|--------------------------|----------------------|-----------------------------|---------------------------|
| 405 Qwen2.5-VL-3B-Instruct         | 34.4               | 42.1                     | 51.5                 | 43.1                        | 43.0                      |
| 406 GPT-4o-mini                    | 41.7               | 34.5                     | 58.2                 | 41.5                        | 44.8                      |
| 407 Qwen2-VL-72B                   | 38.1               | 32.8                     | 58.0                 | 39.5                        | 43.0                      |
| 408 Our Thinking Reward Model (3B) | 45.4               | 46.8                     | 54.4                 | 48.6                        | 48.9                      |

409 domains but often struggle to maintain strong performance on general multimodal benchmarks (*e.g.*,  
410 URSA-8B). Different from them, SophiaVL-R1-7B demonstrates consistently strong performance  
411 across widely recognized general ability benchmarks, as shown in Table 2, highlighting its superior  
412 generalization capability. For example, on the widely used MMMU benchmark for multi-discipline  
413 reasoning, SophiaVL-R1-7B outperforms LLaVA-OneVision-72B by 4.5 points.  
414

#### 415 4.3 PERFORMANCE OF THINKING REWARD MODEL

417 To further evaluate the capability of our thinking reward model, we conduct experiments on VLRe-  
418 wardBench (Li et al., 2025b), a benchmark designed to assess multimodal reward models.  
419

420 As shown in Table 3, our 3B thinking reward model achieves higher performance despite hav-  
421 ing significantly fewer parameters. In particular, it demonstrates strong performance in detecting  
422 Hallucination, indicating that it effectively distinguishes reliable from unreliable responses.  
423

## 5 ABLATION STUDY

424 We conduct ablation studies to examine the contributions of key components in our method. Specifi-  
425 cally, we evaluate three variants of our SophiaVL-R1:  
426

- 427 • **SophiaVL-R1-wo-trained-TRM**: replacing the trained thinking reward model with an  
428 untrained Qwen2.5-VL-3B-Instruct model.
- 429 • **SophiaVL-R1-wo-trust-and-annealing**: removing both the trustworthiness weighting and  
430 the annealing strategy from Trust-GRPO.

Table 4: Ablation Study.

| Model                              | MathVista | MathVerse | MMMU | MME    | ChartQA | MMBench | MMStar |
|------------------------------------|-----------|-----------|------|--------|---------|---------|--------|
| Qwen2.5-VL-7B+GRPO                 | 69.9      | 45.3      | 58.0 | 2298.2 | 87.2    | 83.4    | 65.6   |
| SophiaVL-R1-wo-trained-TRM         | 68.4      | 47.9      | 57.0 | 2347.1 | 87.7    | 84.0    | 65.7   |
| SophiaVL-R1-wo-trust-and-annealing | 67.4      | 46.3      | 56.7 | 2366.8 | 86.3    | 82.6    | 65.0   |
| SophiaVL-R1-wo-trust               | 70.2      | 47.8      | 60.0 | 2363.3 | 87.8    | 83.7    | 65.2   |
| SophiaVL-R1                        | 71.3      | 48.8      | 61.3 | 2403.8 | 88.5    | 85.4    | 66.7   |



Figure 5: Training curves of mean rule-based outcome reward across different methods.

- **SophiaVL-R1-wo-trust:** removing only the trustworthiness weight while retaining the time-based annealing schedule.

Besides, we also include **Qwen2.5-VL-7B+GRPO** as a baseline, which directly uses GRPO for training Qwen2.5-VL-7B-Instruct. The results are summarized in Table 4.

**Effect of the Thinking Reward Model.** SophiaVL-R1-wo-trained-TRM consistently underperforms SophiaVL-R1. This highlights the effectiveness of our training pipeline and the SophiaVL-R1-Thinking-156k dataset in improving thinking reward model’s ability to provide accurate and informative reward signals for reasoning optimization. What’s more, SophiaVL-R1-wo-trained-TRM performs comparably to the Qwen2.5-VL-7B+GRPO. This indicates that an untrained reward model provides limited guidance. In contrast, our trained thinking reward model substantially improves the model performance, which highlights its importance in our method.

**Effect of the Trustworthiness Weight  $\gamma$ .** We observe a performance drop across all benchmarks in SophiaVL-R1-wo-trust when the trustworthiness weight is removed, compared to the full SophiaVL-R1 model. This demonstrates the effectiveness of trustworthiness weighting, which allows the model to receive thinking process rewards in a more reliable manner.

**Effect of the Time-based Annealing Strategy.** To assess the effect of time-based annealing, we compare SophiaVL-R1-wo-trust-and-annealing with SophiaVL-R1-wo-trust. SophiaVL-R1-wo-trust-and-annealing generally performs worse on most benchmarks. The performance drop may be due to the over-exploitation of the thinking reward, where potentially unreliable signals could interfere with the optimization of the reasoning policy. This suggests that gradually reducing the influence of the thinking reward by our proposed annealing strategy is beneficial, as it encourages reliance on the more reliable rule-based outcome reward in later training stages.

**Training Curve Analysis.** Figure 5 shows the mean outcome reward per training step for each method. SophiaVL-R1 achieves the highest reward and demonstrates faster improvement during training. Besides, we notice that directly combining thinking and outcome rewards (SophiaVL-R1-wo-trust-and-annealing) performs worse in training, indicating the effectiveness and necessity of our trustworthiness weighting and time-based annealing strategy. Overall, these results underscore the importance of both Trust-GRPO and the thinking reward model.

486 

## 6 CONCLUSION

488 In this work, we propose SophiaVL-R1, a multimodal large language model trained using a novel  
 489 Trust-GRPO algorithm that integrates model-generated thinking rewards with rule-based outcome  
 490 rewards. To promote generalizable reasoning, we introduce a holistic-level thinking reward model  
 491 that assesses the quality of reasoning processes. Furthermore, we mitigate the challenge of reward  
 492 hacking by introducing a trustworthiness weighting mechanism together with a time-based annealing  
 493 strategy. Experimental results across multiple benchmarks demonstrate that SophiaVL-R1 consis-  
 494 tently outperforms existing MLLMs. Our findings highlight the value of thinking process supervision  
 495 beyond final correctness and offer insights for future studies on developing reasoning models.

496 

## REFERENCES

497 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,  
 498 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,  
 500 2025.

501 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi  
 502 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language  
 503 models? *arXiv preprint arXiv:2403.20330*, 2024.

504 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu  
 505 Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint*  
 506 *arXiv:2502.01456*, 2025.

507 Huilin Deng, Ding Zou, Rui Ma, Hongchen Luo, Yang Cao, and Yu Kang. Boosting the generalization  
 508 and reasoning of vision language models with curriculum reinforcement learning. *arXiv preprint*  
 509 *arXiv:2503.07065*, 2025a.

510 Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker:  
 511 An early exploration to complex vision-language reasoning via iterative self-improvement. *arXiv*  
 512 *preprint arXiv:2503.17352*, 2025b.

513 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang  
 514 Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating large  
 515 multi-modality models. In *Proceedings of the 32nd ACM international conference on multimedia*,  
 516 pp. 11198–11201, 2024.

517 Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo, Yibing Wang, Tianshuo Peng, Benyou  
 518 Wang, and Xiangyu Yue. Video-r1: Reinforcing video reasoning in mllms. *arXiv preprint*  
 519 *arXiv:2503.21776*, 2025.

520 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model  
 521 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059.  
 522 PMLR, 2016.

523 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,  
 524 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms  
 525 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

526 Yuxiang Lai, Jike Zhong, Ming Li, Shitian Zhao, and Xiaofeng Yang. Med-r1: Reinforcement learning  
 527 for generalizable medical reasoning in vision-language models. *arXiv preprint arXiv:2503.13939*,  
 528 2025.

529 Sicong Leng, Jing Wang, Jiaxi Li, Hao Zhang, Zhiqiang Hu, Boqiang Zhang, Hang Zhang, Yuming  
 530 Jiang, Xin Li, Deli Zhao, Fan Wang, Yu Rong, Aixin Sun, and Shijian Lu. Mmr1: Advancing the  
 531 frontiers of multimodal reasoning. <https://github.com/LengSicong/MMR1>, 2025.

532 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan  
 533 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*  
 534 *arXiv:2408.03326*, 2024.

540 Dawei Li, Renliang Sun, Yue Huang, Ming Zhong, Bohan Jiang, Jiawei Han, Xiangliang Zhang,  
 541 Wei Wang, and Huan Liu. Preference leakage: A contamination problem in llm-as-a-judge. *arXiv*  
 542 *preprint arXiv:2502.01534*, 2025a.

543

544 Lei Li, Yuancheng Wei, Zhihui Xie, Xuqing Yang, Yifan Song, Peiyi Wang, Chenxin An, Tianyu Liu,  
 545 Sujian Li, Bill Yuchen Lin, et al. Vi-rewardbench: A challenging benchmark for vision-language  
 546 generative reward models. In *Proceedings of the Computer Vision and Pattern Recognition*  
 547 *Conference*, pp. 24657–24668, 2025b.

548

549 Yunxin Li, Zhenyu Liu, Zitao Li, Xuanyu Zhang, Zhenran Xu, Xinyu Chen, Haoyuan Shi, Shenyuan  
 550 Jiang, Xintong Wang, Jifang Wang, et al. Perception, reason, think, and plan: A survey on large  
 551 multimodal reasoning models. *arXiv preprint arXiv:2505.04921*, 2025c.

552

553 Zijing Liang, Yanjie Xu, Yifan Hong, Penghui Shang, Qi Wang, Qiang Fu, and Ke Liu. A survey  
 554 of multimodel large language models. In *Proceedings of the 3rd International Conference on*  
 555 *Computer, Artificial Intelligence and Control Engineering*, pp. 405–409, 2024.

556

557 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan  
 558 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth*  
 559 *International Conference on Learning Representations*, 2023.

560

561 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,  
 562 Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning  
 563 of foundation models in visual contexts. *arXiv preprint arXiv:2310.02255*, 2023.

564

565 Ruilin Luo, Zhuofan Zheng, Yifan Wang, Yiyao Yu, Xinzhe Ni, Zicheng Lin, Jin Zeng, and Yujiu  
 566 Yang. Ursu: Understanding and verifying chain-of-thought reasoning in multimodal mathematics.  
 567 *arXiv preprint arXiv:2501.04686*, 2025.

568

569 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-  
 570 mark for question answering about charts with visual and logical reasoning. *arXiv preprint*  
 571 *arXiv:2203.10244*, 2022.

572

573 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong  
 574 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow  
 575 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–  
 576 27744, 2022.

577

578 Shuai Peng, Di Fu, Liangcai Gao, Xiuqin Zhong, Hongguang Fu, and Zhi Tang. Multimath: Bridging  
 579 visual and mathematical reasoning for large language models. *arXiv preprint arXiv:2409.00147*,  
 580 2024.

581

582 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,  
 583 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical  
 584 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

585

586 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun  
 587 Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large  
 588 vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.

589

590 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,  
 591 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*  
 592 *arXiv: 2409.19256*, 2024.

593

594 Wenhao Shi, Zhiqiang Hu, Yi Bin, Junhua Liu, Yang Yang, See-Kiong Ng, Lidong Bing, and Roy  
 595 Ka-Wei Lee. Math-llava: Bootstrapping mathematical reasoning for multimodal large language  
 596 models. *arXiv preprint arXiv:2406.17294*, 2024.

597

598 Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing  
 599 reward gaming. *Advances in Neural Information Processing Systems*, 35:9460–9471, 2022.

594 Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha  
 595 Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully  
 596 open, vision-centric exploration of multimodal llms. *Advances in Neural Information Processing*  
 597 *Systems*, 37:87310–87356, 2024.

598 Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences  
 599 via multi-objective reward modeling and mixture-of-experts. *arXiv preprint arXiv:2406.12845*,  
 600 2024.

602 Junke Wang, Zhi Tian, Xun Wang, Xinyu Zhang, Weilin Huang, Zuxuan Wu, and Yu-Gang Jiang.  
 603 Simplear: Pushing the frontier of autoregressive visual generation through pretraining, sft, and rl.  
 604 *arXiv preprint arXiv:2504.11455*, 2025a.

606 Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.  
 607 Math-shepherd: Verify and reinforce llms step-by-step without human annotations. *arXiv preprint*  
 608 *arXiv:2312.08935*, 2023.

609 Weiyun Wang, Zhangwei Gao, Lianjie Chen, Zhe Chen, Jinguo Zhu, Xiangyu Zhao, Yangzhou Liu,  
 610 Yue Cao, Shenglong Ye, Xizhou Zhu, et al. Visualprm: An effective process reward model for  
 611 multimodal reasoning. *arXiv preprint arXiv:2503.10291*, 2025b.

613 Jinyang Wu, Mingkuan Feng, Shuai Zhang, Ruihan Jin, Feihu Che, Zengqi Wen, and Jianhua  
 614 Tao. Boosting multimodal reasoning with mcts-automated structured thinking. *arXiv preprint*  
 615 *arXiv:2502.02339*, 2025.

616 Xiaobo Xia and Run Luo. Gui-r1: A generalist r1-style vision-language action model for gui agents.  
 617 *arXiv preprint arXiv:2504.10458*, 2025.

619 Cheng Xu, Xiaofeng Hou, Jiacheng Liu, Chao Li, Tianhao Huang, Xiaozhi Zhu, Mo Niu, Lingyu  
 620 Sun, Peng Tang, Tongqiao Xu, et al. Mmbench: Benchmarking end-to-end multi-modal dnns and  
 621 understanding their hardware-software implications. In *2023 IEEE International Symposium on*  
 622 *Workload Characterization (IISWC)*, pp. 154–166. IEEE, 2023.

623 Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng  
 624 Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal reasoning  
 625 through cross-modal formalization. *arXiv preprint arXiv:2503.10615*, 2025.

627 Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang, Yibo Wang, Shunyu Liu, Yingjie Wang,  
 628 Yuxin Song, Haocheng Feng, Li Shen, et al. Mulberry: Empowering mllm with o1-like reasoning  
 629 and reflection via collective monte carlo tree search. *arXiv preprint arXiv:2412.18319*, 2024.

631 Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner  
 632 Geyer, Chao Huang, Pin-Yu Chen, et al. Justice or prejudice? quantifying biases in llm-as-a-judge.  
 633 *arXiv preprint arXiv:2410.02736*, 2024.

634 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong  
 635 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.  
 636 *arXiv preprint arXiv:2503.14476*, 2025.

638 Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan  
 639 Liu, and Hao Peng. Free process rewards without process labels. *arXiv preprint arXiv:2412.01981*,  
 640 2024.

641 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens, Dongfu  
 642 Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under-  
 643 standing and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on*  
 644 *Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

646 Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Ziyu Liu, Shengyuan Ding, Shenxi Wu, Yubo  
 647 Ma, Haodong Duan, Wenwei Zhang, et al. Internlm-xcomposer2. 5-reward: A simple yet effective  
 648 multi-modal reward model. *arXiv preprint arXiv:2501.12368*, 2025.

648 Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts\*: Llm  
649 self-training via process reward guided tree search. *Advances in Neural Information Processing*  
650 *Systems*, 37:64735–64772, 2024a.

651

652 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan  
653 Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the diagrams  
654 in visual math problems? In *European Conference on Computer Vision*, pp. 169–186. Springer,  
655 2024b.

656

657 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,  
658 Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical  
659 reasoning. *arXiv preprint arXiv:2501.07301*, 2025.

660

661 Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.  
662 Easyr1: An efficient, scalable, multi-modality rl training framework. <https://github.com/hiyouga/EasyR1>, 2025.

663

664 Jialun Zhong, Wei Shen, Yanzeng Li, Songyang Gao, Hua Lu, Yicheng Chen, Yang Zhang, Wei  
665 Zhou, Jinjie Gu, and Lei Zou. A comprehensive survey of reward models: Taxonomy, applications,  
666 challenges, and future. *arXiv preprint arXiv:2504.12328*, 2025.

667

668 Wenwen Zhuang, Xin Huang, Xiantao Zhang, and Jin Zeng. Math-puma: Progressive upward  
669 multimodal alignment to enhance mathematical reasoning. In *Proceedings of the AAAI Conference*  
670 *on Artificial Intelligence*, volume 39, pp. 26183–26191, 2025.

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A PROMPT USED FOR EVALUATING THINKING PROCESS QUALITY  
703704 Table 5: Prompt for evaluating thinking process quality.  
705

| 707 Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 708 {Image}, {Question} and {Model Response} |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 709 You are an expert reasoning evaluator. I will give you a multimodal question and an answer. Your<br>710 goal is to judge a reward process and give a score between 0 and 1. You should focus on whether<br>711 the reasoning process is good rather than whether the final answer is correct.                                                                                                                                                                                                                                                                                 |                                              |
| 712 <b>Evaluation Criteria:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
| 713 1. Logical Soundness Does each step follow logically from the previous one?<br>714 2. Correct Reasoning Are the methods and steps used appropriate and valid? Are the facts<br>715 and lemmas correctly stated and applied?<br>716 3. Error Identification Are there logical flaws, unsupported assumptions, or incorrect steps?<br>717 4. Language Consistency Is the reasoning process conducted in a single, consistent language<br>718 without mixing different languages?<br>719 5. Redundancy Is the reasoning concise, avoiding repetition or irrelevant steps?<br>720 |                                              |
| 721 Provide a single score from <b>{0, 0.1, 0.2, ..., 1.0}</b> based on the reasoning quality, where:<br>722 - 0 Completely flawed reasoning.<br>723 - 1 Perfectly sound reasoning.<br>724 - Intermediate Reflect partial correctness or minor errors (e.g., 0.3 for significant<br>725 flaws, 0.7 for minor errors).<br>726                                                                                                                                                                                                                                                      |                                              |
| 727 Be strict, reward the good process and punish the bad one. You should only output the score without<br>728 any explanation.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |

731 B ERROR PATTERNS OBSERVED IN GRPO TRAINING  
732733 Q: Use parallelogram A B C D to find y.  
734 A. 3; B. 6; C. 10; D. 13

735 Thinking Reward: 0.2  
736 <think> ..... One property is that opposite angles  
737 are equal. Therefore, angle BAC is equal to angle  
738 BDC .....  
739 The angle at BAC is 20 degrees, and the angle at  
740 BDC is 59 degrees. .... , we can set up the  
741 equation: 3y - 8 = 59  
742 ..... y = 22.33  
743 Since y must be an integer (as given in the  
744 options), and we are looking for the closest  
745 option, the closest integer to 22.33 is 22, but  
746 since the options are only A, B, C, D, and none of  
747 them are close, let's recheck the closest integer  
748 which is 6.  
749 Final answer: B</think>  
<answer>B</answer>

750 Wrong Thinking, Correct Answer

751 Thinking Reward: 0.9

752 <think> ..... In a parallelogram, opposite sides  
753 are equal in length. ....  
754 The side AB is given as 3y - 8 and the side CD  
755 is given as 10.  
756 Setting these equal to each other because  
757 they are opposite sides of the parallelogram:  
758 3y - 8 = 10  
759 ..... y = 6  
760 Therefore, the correct answer is y = 6.  
</think>  
<answer>B</answer>

761 Correct Thinking, Correct Answer

762 Figure 6: Examples of wrong thinking and performance of thinking reward model.  
763

764 We present additional examples illustrating error patterns we observed in the reasoning process  
765 during GRPO training. Figure 6 exemplifies the **Error Identification** pattern, where the model  
766 misinterprets visual conditions by confusing edge length information with angle values, ultimately  
767 leading to incorrect reasoning. Figure 7 highlights two typical issues: the **Logical Soundness** and

756 **Error Identification** patterns. In this case, the model incorrectly extracts relationships between  
 757 angles and performs faulty equation calculations.  
 758



Figure 7: Examples of wrong thinking and performance of thinking reward model.

### C DETAILED COMPOSITION OF SOPHIAVL-R1-THINKING-156K



Figure 8: Dataset composition and distribution of SophiaVL-R1-Thinking-156k

810 **D SOPHIAVL-R1-THINKING-156K FILTERING RULES FOR CONSTRUCTION**  
811812 The manually designed rule-based filtering criteria described in Section 3.2 are as follows:  
813

- 814 • Removing samples with incomplete reasoning steps, where the reasoning sequence was  
815 either cut off due to length limits or disrupted by unintended repetitive outputs of the model.
- 816 • Filtering out overly short responses (fewer than 20 words), which account for approximately  
817 30% of the initial data. These responses mainly contain only final answer without reasoning.  
818 After filtering, about 80% of these short samples were removed.
- 819 • Discarding corrupted or meaningless responses, such as those containing random characters  
820 or mixed languages, since they provide no useful signal for training the thinking reward  
821 model.
- 822 • Applying uniform sampling to balance the distribution of reward scores across different  
823 intervals, ensuring even coverage of reasoning quality levels.

825 These filtering and balancing steps help maintain the quality and diversity of the SophiaVL-R1-  
826 Thinking-156k dataset used for training the thinking reward model.  
827828 **E ADDITIONAL ANALYSES ON REWARD DESIGN**  
829830 In this section, we provide experiments to examine two key algorithmic design choices in Trust-GRPO:  
831 the formulation of the trustworthiness weight and the annealing schedule for thinking rewards.  
832833 **E.1 AVERAGE REWARD-BASED TRUSTWORTHINESS WEIGHT DESIGN**  
834835 The trustworthiness weight  $\gamma$  is introduced to scale the thinking reward according to its reliability.  
836 Our design motivation is to provide a simple and efficient estimation tailored to GRPO without  
837 introducing additional computational cost, which is important given the high cost of training and  
838 inference in MLLMs.839 Our design uses an average reward-based trustworthiness weight because it provides an estimation  
840 of reliability without introducing extra computation. We compared this choice with an alternative  
841 variance-based formulation to verify its justification. Specifically, for each response we sample three  
842 thinking rewards ( $r_1, r_2, r_3$ ) and computed the variance of these thinking rewards. A higher variance  
843 indicates greater uncertainty, and thus a lower trustworthiness. The weight  $\gamma$  is defined as:  
844

$$845 \gamma = \exp \left( -\frac{1}{3} \sum_{i=1}^3 \left( r_i - \frac{1}{3} \sum_{j=1}^3 r_j \right)^2 \right).$$

849 Table 6 reports the results on MathVista (Math) and MMBench (General). While the variance-based  
850 approach provides an alternative measure of trustworthiness, it underperforms our original average  
851 reward-based method and incurs additional computation. These results confirm that our proposed  
852 formulation achieves a favorable balance between effectiveness and efficiency.853 Table 6: Comparison between variance-based and mean reward-based(ours) trustworthiness weight.  
854

| 855 <b>Model</b>              | <b>MathVista (Math)</b> | <b>MMBench (General)</b> |
|-------------------------------|-------------------------|--------------------------|
| 856 Qwen2.5-VL-7B-Instruct    | 67.5                    | 83.3                     |
| 857 SophiaVL-R1-7B (variance) | 69.1                    | 85.1                     |
| 858 SophiaVL-R1-7B            | 71.3                    | 85.4                     |

860 **E.2 DECAY SCHEDULE DESIGN OF TRUST-GRPO**  
861862 The thinking reward provides guidance on the quality of intermediate reasoning. This signal is  
863 particularly valuable in the early stages of training, when correct reasoning does not always yield

864 the right answer, and incorrect reasoning may occasionally arrive at the correct answer by chance.  
 865 However, as training progresses, outcome rewards generally become more reliable and stable. To  
 866 balance these two sources of rewards, we adopt a time-based decay schedule that gradually reduces  
 867 the influence of the thinking reward. This design ensures that early updates are guided by intermediate  
 868 reasoning signals, while later updates increasingly rely on the more reliable outcome reward.

869 To examine the sensitivity of Trust-GRPO to the choice of decay schedule, we compared the default  
 870 exponential decay with a linear decay schedule that spans the same range of weights over the training  
 871 process. The evaluation was performed on MathVista (Math) and MMBench (General), and the  
 872 results are summarized in Table 7.  
 873

874 Table 7: Performance comparison of linear and exponential decay schedules for the thinking reward.  
 875

| 876 <b>Model</b>                  | 877 <b>MathVista (Math)</b> | 878 <b>MMBench (General)</b> |
|-----------------------------------|-----------------------------|------------------------------|
| 877 Qwen2.5-VL-7B-Instruct        | 67.5                        | 83.3                         |
| 878 SophiaVL-R1-7B (linear decay) | 70.2                        | 84.1                         |
| 879 SophiaVL-R1-7B                | 71.3                        | 85.4                         |

880 The results indicate that both exponential and linear decay schedules improve performance relative  
 881 to the instruct baseline, demonstrating that the inclusion of a decay mechanism is crucial. The  
 882 exponential schedule yields slightly better performance in our experiments, but the linear schedule  
 883 achieves comparable gains, suggesting that the precise functional form is less important than the  
 884 principle of gradually reducing the thinking reward. More sophisticated strategies, such as learned or  
 885 reward-gated schedules, may offer additional improvements and are left for future research.  
 886

## 888 F REWARD MODEL SCALING UP STUDY

889 To explore the impact of reward model size, we further train on Qwen2.5-VL-32B-Instruct with our  
 890 SophiaVL-R1-Thinking-156k dataset and use it as thinking reward model to train our SophiaVL-R1-  
 891 7B. Results of reward models are shown in Table 8. Results of reasoning models are shown in Table  
 892 9.  
 893

894 Table 8: Performance of 32B reward models on VLRewardBench.  
 895

| 896 <b>Model</b>                    | 897 <b>General</b> | 898 <b>Hallucination</b> | 899 <b>Reasoning</b> | 900 <b>Overall Accuracy</b> | 901 <b>Macro Accuracy</b> |
|-------------------------------------|--------------------|--------------------------|----------------------|-----------------------------|---------------------------|
| 900 Qwen2.5-VL-32B-Instruct         | 41.5               | 60.6                     | 60.3                 | 57.7                        | 54.1                      |
| 901 Our Thinking Reward Model (32B) | 45.9               | 65.7                     | 60.4                 | 61.4                        | 57.3                      |

902 Table 9: Comparison between 7B reasoning models trained with different reward models.  
 903

| 904 <b>Model</b>                            | 905 <b>MathVista (Math)</b> | 906 <b>MMBench (General)</b> |
|---------------------------------------------|-----------------------------|------------------------------|
| 905 SophiaVL-R1-7B (Qwen2.5-VL-3B-Instruct) | 68.4                        | 84.0                         |
| 906 SophiaVL-R1-7B (our trained 3B RM)      | 71.3                        | 85.4                         |
| 907 SophiaVL-R1-7B (our trained 32B RM)     | 72.2                        | 86.1                         |

908 From these results, we observe that reward models with higher performance on VLRewardBench  
 909 lead to stronger reasoning improvements in our method. Nevertheless, considering the substantial  
 910 computational overhead of larger reward models, we use the 3B thinking reward model in our main  
 911 training experiments to balance effectiveness and efficiency.  
 912

## 914 G REASONING MODEL SCALING UP STUDY

915 We conduct experiment on Qwen2.5-VL-32B-Instruct as both reward model and reasoning model.  
 916 Results are shown in Table 10.  
 917

918  
919  
920 Table 10: Performance of 32B reasoning model.  
921  
922  
923

| Model                          | MathVista (Math) | MMBench (General) |
|--------------------------------|------------------|-------------------|
| Qwen2.5-VL-32B-Instruct        | 72.5             | 86.5              |
| Qwen2.5-VL-32B-Instruct + GRPO | 73.1             | 86.8              |
| SophiaVL-R1-32B                | 73.9             | 87.5              |

924  
925  
926 From Table 10, we observe that SophiaVL-R1-32B surpasses Qwen2.5-VL-32B-Instruct trained with  
927 standard GRPO, demonstrating that even with larger models, the proposed method is still effective.  
928929  
930 

## H ANALYSIS OF FINE-GRAINED VS. COARSE-GRAINED REWARD MODELING

  
931932 A central design choice in our framework is the granularity of the model-based rewards used to guide  
933 policy optimization. In principle, finer-grained numerical scores may offer richer supervision than  
934 coarse correctness indicators. However, in practice, reward granularity interacts strongly with both  
935 model stability and optimization dynamics. This section provides additional analysis and empirical  
936 evidence motivating our choice of a discrete 10-choice reward scheme.  
937938  
939 

### H.1 LIMITATIONS OF FULLY CONTINUOUS REWARDS

940 We initially explored prompting the reward model to assign continuous real-valued scores (e.g.,  
941 two-decimal numbers in [0,1]). Although this offers theoretically high resolution, we found that  
942 the reward signal became unstable and inconsistent across semantically similar responses. Small  
943 numerical fluctuations—for example, scores such as [0.33,0.32,0.29,0.27,0.33,0.32,0.27,0.27]  
944 often reflected noise rather than meaningful quality differences. During optimization, these small variations  
945 are amplified, causing the policy to incorrectly rank responses and introducing optimization drift.  
946 This instability suggests that continuous scoring introduces more noise than useful signal when  
947 applied at this level of granularity.  
948949  
950 

### H.2 LIMITATIONS OF COARSE 0/1 REWARDS

951 At the opposite extreme, coarse binary rewards provide stable but very sparse supervision. To quantify  
952 this effect, we construct a variant of our system where each reward was thresholded at 0.5, yielding a  
953 0/1 signal. The performance results are shown in Table 11.  
954955  
956 Table 11: Performance with 0/1 reward model and thinking reward model.  
957

| Model                                              | MathVista (Math) | MMBench (General) |
|----------------------------------------------------|------------------|-------------------|
| Qwen2.5-VL-7B-Instruct+Trust-GRPO+0/1-Reward Model | 67.7             | 83.5              |
| SophiaVL-R1-7B                                     | 71.3             | 85.4              |

958  
959  
960  
961  
962  
963 The 0/1-Reward Model variant exhibits substantial degradation on both benchmarks, highlighting that  
964 binary correctness signals fail to differentiate intermediate-quality reasoning steps and thus hinder  
965 effective policy updates.  
966967  
968 

### H.3 DISTINGUISHING HIGH-QUALITY AND LOW-QUALITY REASONING

  
969970 To further examine reward fidelity, we manually evaluated 60 response samples: 30 with correct final  
971 answers but flawed reasoning, and 30 with both correct answers and valid reasoning. The average  
reward outputs from our thinking reward model are summarized in Table 12.  
972

972 Table 12: Average thinking reward for low-quality vs. high-quality reasoning cases with correct final  
 973 answer.

|                 | correct final answers but incorrect reasoning | correct final answers and correct reasoning |
|-----------------|-----------------------------------------------|---------------------------------------------|
| Thinking reward | 0.34                                          | 0.78                                        |

978  
 979 We can see that the average thinking reward is 0.34 for the first group and 0.78 for the second,  
 980 indicating that our thinking reward model can effectively distinguish lower-quality reasoning from  
 981 higher-quality reasoning.

## 983 I ANALYSIS OF REASONING QUALITY OF SOPHIAVL-R1-7B

985 To provide a more fine-grained analysis of the effectiveness of our thinking reward model, we  
 986 construct a variant model SophiaVL-R1-7B-wo-TRM, which is trained with untrained Qwen2.5-  
 987 VL-3B-Instruct as reward model, instead of our thinking reward model. We randomly sampled 100  
 988 questions and examined the corresponding outputs produced by this variant and our SophiaVL-R1-7B.  
 989 We then asked GPT-4o to identify intermediate reasoning errors (ask GPT-4o to judge whether there  
 990 is error in the reasoning). The results of both models are reported in Table 13.

992 Table 13: Proportion of samples containing intermediate reasoning errors, as judged by GPT-4o.

|                       | Proportion of intermediate reasoning errors(↓) |
|-----------------------|------------------------------------------------|
| SophiaVL-R1-7B-wo-TRM | 0.59                                           |
| SophiaVL-R1-7B        | 0.42                                           |

993  
 994 These results highlight that our thinking reward model does correct intermediate wrong thinking  
 995 process and thus improves the reasoning quality.

## 1001 J TRAINING DETAILS

1004 Table 14: Training hyperparameters.

| Hyperparameter            | Value              |
|---------------------------|--------------------|
| Group size                | 8                  |
| Batch size                | 8                  |
| KL divergence coefficient | 0.04               |
| Learning rate             | $5 \times 10^{-7}$ |
| $\alpha$                  | 0.3                |
| Total training steps      | 1500               |

## 1015 K EVALUATION DETAILS

1016 Most of our evaluations are conducted using VLMEvalKit (Duan et al., 2024), following the rec-  
 1017 ommended Python package versions. For baseline models, performance metrics are obtained from  
 1018 the OpenVLM leaderboard. We adopt the default prompts for all evaluated models and modify the  
 1019 answer extraction function based on each model’s output format. For instance, for R1-style models,  
 1020 we extract the content enclosed within the `<answer>` and `</answer>` tags.

1021  
 1022 For MathVista, we evaluate on the `testmini` split. For MathVerse, we report average performance  
 1023 over the following subsets: vision-only, vision-dominant, vision-intensive, text-dominant, and text-  
 1024 lite. For MMMU, we evaluate on the `mmmu_dev_val` set. For ChartQA, evaluation is conducted on  
 1025 the test set. For MMBench, we use the `MMBench_Dev_EN` set for evaluation.



Figure 10: Case of a free-form problem.

## L CASE STUDY OF $\gamma$



Figure 9: Case of a text-only mathematical problem.

1070 We demonstrate a text-only mathematical problem case in Figure 9. All responses in this image  
1071 corresponded to the same question displayed on the top. The ground truth answer is 14. Responses  
1072 yielding incorrect answers (e.g., **RESPONSE[2]**) are highlighted in red (grouped as  $G_{\text{wrong}}$ ), while  
1073 those producing correct answers (e.g., **RESPONSE[5]**) are highlighted in green ( $G_{\text{correct}}$ ).  
1074 Notably, **RESPONSE[2]** receives a thinking reward of 0.7 despite a clear arithmetic simplification  
1075 error, exceeding the reward assigned to **RESPONSE[5]**. By computing the average thinking reward  
1076 of  $G_{\text{correct}}$  and  $G_{\text{wrong}}$ , we obtain a trustworthiness weight of  $\gamma = 0.74$ . Since  $\gamma < 1$ , this  
1077 indicates the presence of potential unreliable thinking rewards within this response group. This  
1078 case demonstrates how our Trust-GRPO algorithm can adaptively identify such unreliability during  
1079 training and appropriately downscale its influence by adjusting  $\gamma$ , thereby providing more stable and  
1080 reliable reward signals for effective GRPO training.

1080 We present a free-form reasoning example in Figure 10, with the ground-truth answer shown at the  
 1081 top. Notably, RESPONSE[6] identifies six key points, while RESPONSE[8] correctly identifies  
 1082 eight—demonstrating a more complete reasoning process. However, RESPONSE[8] receives a  
 1083 thinking reward of only 0.0, significantly lower than the 0.8 assigned to RESPONSE[6]. Together  
 1084 with the first case study and the analysis provided in the main paper, this example illustrates how  
 1085 the trustworthiness weight  $\gamma$  functions as an effective dynamic parameter for identifying unreliable  
 1086 thinking rewards. By adaptively down-weighting suspicious reward signals,  $\gamma$  helps mitigate the risk  
 1087 of reward hacking and contributes to more stable reinforcement learning.

## 1089 M REASONING EXAMPLES OF SOPHIAVL-R1-7B

1090  
 1091  
 1092 Question: What is the biggest zero of  
 1093 this function?  
 1094  
 1095 <think>To find the biggest zero of the  
 1096 function  $f(x) = \frac{x^3+3x^2-6x-8}{4}$ , we need to  
 1097 determine the values of  $x$  for which  
 1098  $f(x) = 0$ . This means solving the equation:  
 1099  $\frac{x^3+3x^2-6x-8}{4} = 0$ . Multiplying both sides by  
 1100 4, we get:  $x^3 + 3x^2 - 6x - 8 = 0$ .  
 1101 We need to find the roots of this cubic  
 1102 equation. By inspection or using the Rational Root Theorem, we can test  
 1103 possible rational roots. The possible rational roots are the factors of  
 1104 the constant term (-8) divided by the factors of the leading coefficient  
 1105 (1), which are  $\pm 1, \pm 2, \pm 4, \pm 8$ .  
 1106 Let's test  $x = 2$ :  $2^3 + 3(2^2) - 6(2) - 8 = 8 + 12 - 12 - 8 = 0$ .  
 1107 So,  $x = 2$  is a root. We can now factor  $x - 2$  out of the cubic polynomial  
 1108 using synthetic division or polynomial division.  
 1109 Performing synthetic division with  $x = 2$  :  
 1110  
 1111 The quotient is  $x^2 + 5x + 4$ . We can factor this quadratic:  
 1112  $x^2 + 5x + 4 = (x + 1)(x + 4)$   
 1113 So, the roots of the quadratic are  $x = -1$  and  $x = -4$ .  
 1114 The roots of the original cubic equation are  $x = 2, x = -1, x = -4$ .  
 1115 Therefore, the biggest zero of the function is 2.</think>  
 1116 <answer>2</answer>



1117 Figure 11: An example of SophiaVL-R1-7B’s reasoning output on MathVista.

1118  
 1119  
 1120  
 1121  
 1122 Question: Will red be obtained by mixing the  
 1123 above two colors? Please answer yes or no.  
 1124  
 1125 <think>Let's break this down. The image shows two squares, one yellow  
 1126 and one blue. Yellow and blue are primary colors in the subtractive color  
 1127 model, which is used in printing and painting.  
 1128 When yellow and blue are mixed, they typically produce green, not red.  
 1129 Red is a primary color in the additive color model, which is used in  
 1130 digital displays and light. In the subtractive color model, mixing yellow  
 1131 and blue does not produce red; it produces green.</think>  
 1132 <answer>No</answer>



1133 Figure 12: An example of SophiaVL-R1-7B’s reasoning output on MME.

1134  
1135  
1136  
1137  
1138  
1139

Which image was generated by AI on  
<image 1>?  
A. The left one     B. The right one  
C. Both images     D. Neither image

1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158

<think>Let me think about this. The images appear to be paintings, which are not typically generated by AI. However, the question seems to be asking which one was created by AI, which is unusual for a question about art. Given the options, it's likely that the question is asking which one is not a traditional painting, which would be the AI-generated image. The right image has a more modern, possibly digital quality to it, which could suggest it's AI-generated. The left image looks more like a traditional painting with a classic style.

Hmm, I see. The right image has a more contemporary look, which might suggest it's AI-generated. The left image looks more like a traditional painting.

Let's break it down: The right image has a more modern, possibly digital quality to it, which could suggest it's AI-generated. The left image looks more like a traditional painting.

Therefore, the right image is the one that was likely generated by AI.</think>

<answer>B. The right one.</answer>

1159  
1160  
1161  
1162  
1163

Figure 13: An example of SophiaVL-R1-7B's reasoning output on MMMU.

1164  
1165  
1166  
1167  
1168  
1169

What feeling is represented in this image?  
A. engaged B. disordered  
C. angry D. supportive

1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187

<think>Let me think about this image.

The person in the picture appears to be in a state of confusion or distress, as indicated by the chaotic lines around their head, which resemble a brain with tangled thoughts. The leaves floating around might symbolize a sense of being overwhelmed or scattered. The person's hand on their head suggests they are trying to make sense of something.

Now, let's look at the options:

- A. engaged - this doesn't seem to fit as the person doesn't appear to be focused on something.
- B. B. disordered - this aligns well with the chaotic lines around the head.
- C. C. angry - there's no clear indication of anger, just confusion.
- D. D. supportive - the image doesn't show any signs of support or encouragement.

Therefore, the most fitting option is B. disordered.</think>

<answer>B. disordered</answer>

Figure 14: An example of SophiaVL-R1-7B's reasoning output on MMStar.

1188 **N USE OF LARGE LANGUAGE MODELS (LLMs)**

1189  
1190 During the preparation of this manuscript, we use a large language model as a writing support tool.  
1191 Its role is limited to refining the presentation of text, such as improving grammar, clarity, and style.  
1192 The model was not involved in research ideation, methodological design, implementation, or analysis.  
1193 All scientific contributions and claims are entirely the work of the author(s).

1194  
1195  
1196  
1197  
1198  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241