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ABSTRACT

Latent generative modeling has become the standard strategy for Diffusion Trans-
formers (DiTs), but the autoencoder has barely evolved. Most DiTs still use
the legacy VAE encoder, which introduces several limitations: large convolu-
tional backbones that compromise architectural simplicity, low-dimensional la-
tent spaces that restrict information capacity, and weak representations result-
ing from purely reconstruction-based training. In this work, we investigate re-
placing the VAE encoder–decoder with pretrained representation encoders (e.g.,
DINO, SigLIP, MAE) combined with trained decoders, forming what we call
Representation Autoencoders (RAEs). These models provide both high-quality
reconstructions and semantically rich latent spaces, while allowing for a scalable
transformer-based architecture. A key challenge arises in enabling diffusion trans-
formers to operate effectively within these high-dimensional representations. We
analyze the sources of this difficulty, propose theoretically motivated solutions,
and validate them empirically. Our approach achieves faster convergence without
auxiliary representation alignment losses. Using a DiT variant with a lightweight
wide DDT-head, we demonstrate state-of-the-art image generation performance,
reaching FIDs of 1.18 @256 resolution and 1.13 @512 on ImageNet.
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Figure 1: Representation Autoencoder (RAE) uses frozen pretrained representations as the encoder
with a lightweight decoder to reconstruct input images without compression. RAE enables faster
convergence and higher-quality samples in latent diffusion training compared to VAE-based models.

1 INTRODUCTION

Diffusion models have rapidly become the dominant paradigm for image generation. A key factor in
their success is the use of latent generative modeling (Rombach et al., 2022), where the diffusion pro-
cess is carried out not on pixels but within the compressed latent space of a Variational Autoencoder
(VAE) (Kingma & Welling, 2014). By working in latents, diffusion models can achieve both higher
sample quality and greater computational efficiency compared to pixel-space counterparts. Since the
advent of Diffusion Transformer (DiT) (Peebles & Xie, 2023), the combination of DiT and latent
diffusion modeling has emerged as the standard recipe for scalable generative modeling (Esser et al.,
2024; Liu et al., 2024; Tong et al., 2025; Labs, 2024; Pan et al., 2025).

Despite this progress in diffusion backbone, the VAE widely used today still largely follow the
recipe introduced by Stable Diffusion (SD-VAE) (Rombach et al., 2022), whose design poses many
limitations. First, its heavily compressed latent space restricts information capacity: the higher the
compression, the poorer the reconstruction quality (Yao et al., 2025). Second, aggressive compres-
sion combined with the exclusive use of reconstruction objectives yields weak latent representations.
For this, recent works have incorporated multiple representation-supervision objectives to enhance
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Figure 2: Comparison of SD-VAE and RAE (DINOv2-B). The VAE relies on convolutional backbones
with aggressive down- and up-sampling, while the RAE uses a ViT architecture without compres-
sion. SD-VAE is also more computationally expensive, requiring about 6× and 3× more GFLOPs
than RAE for the encoder and decoder, respectively. GFlops are evaluated on one 256× 256 image.

VAE performance. For instance, VA-VAE (Yao et al., 2025) aligns VAE latents with a pretrained
representation encoder, while MAETok (Chen et al., 2025a), DC-AE 1.5 (Chen et al., 2025d), and
l-DEtok (Yang et al., 2025) integrate mask- or noise-augmented objectives into VAE training. To-
gether, these studies highlight the critical role of representation quality in autoencoder design.

In this work, we raise a simple yet fundamental question: what if we replaced the legacy VAE
with modern representation learning encoders? The wave of pretrained vision models such as DI-
NOv2 (Caron et al., 2021a), SigLIP (Tschannen et al., 2025), and MAE (He et al., 2021) demon-
strates that large-scale representation learning yields semantically rich features. We show that we
can repurpose these frozen pretrained encoders into autoencoders, which we term Representation
Autoencoders (RAEs). With a lightweight learned decoder, RAEs achieve great reconstruction
quality on par with SD-VAE while retain strong representational capability.

The benefits of RAEs come with the challenges of high-dimensional latent spaces. On 256 × 256
images, SD-VAE and RAEs with DINOv2-B produce the same number of tokens, but each RAE
token has 768 dimensions—eight times larger than SD-VAE. Diffusing directly in this space is
difficult: training the same DiT model with RAEs lags significantly behind VAEs. We identify three
main causes for this gap: (1) Transformer design: we show analytically that DiTs can fail to fit even
a single image unless their width exceeds the token dimension, implying the model width must scale
with latent dimensionality. (2) Noise scheduling: we find that the resolution-dependent schedule
shifts in (Chen, 2023; Hoogeboom et al., 2023; Esser et al., 2024), derived from pixel- and VAE-
based inputs, overlook the increased token dimensionality. We therefore generalize the schedule
shift to be full dimension-dependent (3) Decoder robustness: unlike VAEs trained on continuous
latent distributions (Kingma & Welling, 2014), RAE decoders learn from discretely supported latents
but must reconstruct samples from a diffusion model that follow a continuous distribution, which
we address by noise-augmented decoder training.

With these changes, we observe substantial improvements in both generation quality and conver-
gence speed for DiT-XL trained on RAE with DINOv2-B. With only 80 training epochs, DiT-XL
achieves an FID of 4.28 @ 256 resolution without guidance, outperforming most diffusion baselines
trained with SD-VAE (Peebles & Xie, 2023; Ma et al., 2024; Yu et al., 2025; Yao et al., 2025).

To alleviate the quadratic cost of scaling the entire DiT backbone, we introduce the DDT head—a
wide, shallow transformer module dedicated to denoising, inspired by DDT (Wang et al., 2025c).
This augmented architecture, DiTDH, provides sufficient width without enlarging the backbone and
converges much faster than standard DiT with RAE.

DiTDH pushes the generation capability of diffusion on RAE even further. Using DiTDH-XL on
DINOv2-B, we improve the FID to 2.16 @ 256 resolution without guidance at 80 epochs, demon-
strating a 10× training speedup compared to baselines such as VA-VAE (Yao et al., 2025) and
REPA (Yu et al., 2025). With longer training, DiTDH-XL reaches an unguided FID of 1.53 within
800 epochs. Combining with AutoGuidance (Karras et al., 2025) pushes DiTDH-XL’s final FID
scores to 1.18 @ 256 and 1.13 @ 512 resolutions, establishing a new state-of-the-art.

2 RELATED WORKS

Here, we discuss previous work on the line of representation learning and reconstruction/generation.
We present a more detailed related work discussion in Appendix B.
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Representation for Reconstruction. Recent work explores enhancing VAEs with semantic repre-
sentations: VA-VAE (Yao et al., 2025) aligns VAE latents with a pretrained representation encoder,
while MAETok (Chen et al., 2025a), DC-AE 1.5 (Chen et al., 2025d), and l-DEtok (Yang et al.,
2025) incorporate MAE- or DAE (Vincent et al., 2008)-inspired objectives into VAE training. Such
alignment improves reconstruction and generation, but still depends on heavily compressed latents,
which limits both fidelity and representation quality. In contrast, we reconstruct directly from repre-
sentation encoders features without compression. We show that, with a simple ViT decoder on top
of frozen representation encoders features, it achieves reconstruction quality comparable to or better
than SD-VAE (Rombach et al., 2022), while preserving substantially stronger representations.

Representation for Generation. Recent work also explores using semantic representations to im-
prove generative modeling. REPA (Yu et al., 2025) accelerates DiT convergence by aligning its
middle block with representation encoders features. DDT (Wang et al., 2025c) further improves
convergence by decoupling DiT into an encoder–decoder and applying REPAlign on the encoder
output. REG (Wu et al., 2025) introduces a learnable token into the DiT sequence and explicitly
aligns it with a representation encoders representation. ReDi (Kouzelis et al., 2025b) generates both
VAE latents and PCA components of DINOv2 features within a diffusion model. In contrast, we
train diffusion models directly on representation encoders and achieve faster convergence.

3 HIGH FIDELITY RECONSTRUCTION FROM FROZEN REPRESENTATION
ENCODERS

In this section, we challenge the common claim that pretrained representation encoders, such as DI-
NOv2 (Oquab et al., 2023) and SigLIP2 (Tschannen et al., 2025), are unsuitable for the reconstruc-
tion task because they “emphasize high-level semantics while downplaying low-level details” (Tang
et al., 2025b; Yu et al., 2024b). We show that, with a suitable decoder, frozen representation en-
coderss can in fact serve as strong encoders for the diffusion latent space. Our Representation
Autoencoders (RAEs) pair frozen, pretrained representation encoderss with a ViT-based decoder,
yielding reconstructions on par with or even better than SD-VAE. More importantly, RAEs alle-
viate the fundamental limitations of VAEs (Kingma & Welling, 2014), whose heavily compressed
latent space (e.g., SD-VAE maps 2562 images to 322 × 4 (Esser et al., 2021; Rombach et al., 2022))
restricts reconstruction fidelity and more importantly, representation quality.

We train RAEs by fixing a pretrained representation encoders and only learning a ViT decoder to
reconstruct images from its outputs. For an input x ∈ R3×H×W and a ViT encoder E with patch
size pe and hidden size d, we obtain N = HW/p2e tokens with channel d. A ViT decoder D with
patch size pd maps them back to pixels with shape 3 × H pd

pe
×W pd

pe
; By default we use pd = pe,

so the reconstruction matches the input resolution. For all experiments on 256 × 256 images, the
encoder produces 256 tokens, matching the token count of most prior DiT-based models trained
on SD-VAE (Peebles & Xie, 2023; Yu et al., 2025; Ma et al., 2024). We freeze the pretrained
encoder E and train only the decoder D, using a combination of L1, LPIPS (Zhang et al., 2018),
and adversarial losses (Goodfellow et al., 2014), following common practice in VAEs. More details
about the decoder architecture and training are provided in Appendix E.

We select three representative encoders from different pretraining paradigms: DINOv2-B (Oquab
et al., 2023)(pe=14, d=768), a self-supervised self-distillation model; SigLIP2-B (Tschannen et al.,
2025)(pe=16, d=768), a language-supervised model; and MAE-B (He et al., 2021)(pe=16, d=768), a masked
autoencoder. For DINOv2, we also study different model sizes S,B,L (d=384,768,1024). Unless oth-
erwise specified, we use an ViT-XL decoder for all RAEs. We evaluate the rFID-50k on Ima-
geNet (Russakovsky et al., 2015) validation set as our main metric for reconstruction quality.

Reconstruction, scaling, and representation. As shown in Table 1a, RAEs with frozen encoders
achieve consistently better reconstruction quality (rFID) than SD-VAE. For instance, RAE with
MAE-B/16 reaches an rFID of 0.16, clearly outperforming SD-VAE and challenging the assumption
that representation encoders cannot recover pixel-level detail.

We next study the scaling behavior of both encoders and decoders. As shown in Table 1c, reconstruc-
tion quality remains stable across DINOv2-S, B, and L, indicating that even small representation
encoders models preserve sufficient low-level detail for decoding. On the decoder side (Table 1b),
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Model rFID

DINOv2-B 0.49
SigLIP2-B 0.53
MAE-B 0.16

SD-VAE 0.62

(a) Encoder choice. All en-
coders outperform SD-VAE.

Decoder rFID GFLOPs

ViT-B 0.58 22.2
ViT-L 0.50 78.1
ViT-XL 0.49 106.7

SD-VAE 0.62 310.4

(b) Decoder scaling. Scaling
decoders improve rFID, while
still being efficient than VAE.

Encoder rFID

DINOv2-S 0.52

DINOv2-B 0.49
DINOv2-L 0.52

(c) Encoder scaling. rFID is
stable across RAE sizes.

Model Top-1 Acc.

DINOv2-B 84.5
SigLIP2-B 79.1
MAE-B 68.0

SD-VAE 8.0

(d) Representation quality.
RAE has much higher linear
probing accuracy than VAE.

Table 1: RAEs consistently outperform SD-VAE in reconstruction (rFID) and representation quality
(linear probing accuracy) on ImageNet-1K, while being more efficient. If not specified, we use ViT-
XL as the decoder and DINOv2-B as the encoder for RAE. Default settings are marked in gray.

increasing capacity consistently improves rFID: from 0.58 with ViT-B to 0.49 with ViT-XL. Impor-
tantly, ViT-B already outperforms SD-VAE while being 14× more efficient in GFLOPs, and ViT-XL
further improves quality at only one-third of SD-VAE’s cost.

We also evaluate representation quality via linear probing on ImageNet-1K in Table 1d. Because
RAEs use frozen pretrained encoders, they directly inherit the representation of the underlying rep-
resentation encoders. In contrast, SD-VAE achieves only ∼8% accuracy.

4 TAMING DIFFUSION TRANSFORMERS FOR RAE

With RAE demonstrating good reconstruction quality, we now proceed to investigate the diffusabil-
ity of its latent space (Skorokhodov et al., 2025); that is, how easily its latent distribution can be mod-
eled by a diffusion model, and how good the generation performance can be. Among MAE, SigLIP2,
and DINOv2, we find that DINOv2 achieves the best generation performance (Appendix H.1) and
use it as the default encoder for RAE unless otherwise specified.

Following the de facto practice, we adopt the rectified flow objective (Lipman et al., 2023; Liu et al.,
2023) with linear interpolation xt = (1 − t)x + tε, where x ∼ p(x) and ε ∼ N (0, I), and train
the model to predict the velocity v(xt, t) (see Appendix I). We use LightningDiT (Yao et al., 2025),
a variant of DiT (Peebles & Xie, 2023), as our model backbone. We primarily evaluate our models
using FID (Heusel et al., 2017) computed on 50K samples generated with 50 steps of Euler sampler,
and all quantitative results are trained for 80 training epochs on ImageNet@256 unless otherwise
specified. More training details are included in Appendix F.

RAE SD-VAE

DiT-S 215.76 51.74
DiT-XL 23.08 7.13

Table 2: DiT struggles to model
RAE’s latent distribution.

DiT doesn’t work out of box. To our surprise, such standard
diffusion recipe fails with RAE. Training directly on RAE la-
tents causes a small backbone such as DiT-S to completely fail,
while a larger backbone like DiT-XL significantly underper-
forms compared to its performance on SD-VAE latents.

To investigate this failure, we raise several hypotheses detailed
below, which we will discuss in the following sections:

• Suboptimal design for Diffusion Transformers. When modeling high-dimensional
RAE tokens, the optimal design choices for Diffusion Transformers can diverge from
those of the standard DiT, which was originally tailored for low-dimensional VAE tokens.

• Suboptimal noise scheduling. Prior noise scheduling and loss re-weighting tricks are
derived for image-based or VAE-based input, and it remains unclear if they transfer well
to high-dimension semantic tokens.

• Diffusion generates noisy latents. VAE decoders are trained to reconstruct images from
noisy latents, making them more tolerant to small noises in diffusion outputs. In contrast,
RAE decoders are trained on only clean latents and may therefore struggle to generalize.

4.1 SCALING DIT WIDTH TO MATCH TOKEN DIMENSIONALITY

To better understand the training dynamics of Diffusion Transformers with RAE latents, we first
construct a simplified experiment. Rather than training on the entire ImageNet, we randomly select
a single image, encode it by RAE, and test whether the diffusion model can reconstruct it.

Table 2 shows that although RAE underperforms SD-VAE, DiT performance improves with in-
creased capacity. To dissect this effect, we vary model width while fixing depth. Starting from
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Figure 3: Overfitting to a single sample. Left: increasing model width lead to lower loss and better
sample quality; Right: changing model depth has marginal effect on overfitting results.

DiT-S, we increase the hidden dimension from 384 to 784. As shown in Figure 3, sample quality
is poor when the model width d < n = 768, but improves sharply and reproduces the input almost
perfectly once d ≥ n. Training losses exhibit the same trend, converging only when d ≥ n.

One might suspect that this improvement still arises from the larger model capacity. To disentangle
this effect, we fix the width at d = 384 and vary the depth of the SiT-S model. As shown in Figure 3,
even when the depth is increased from 12 to 24, the generated images remain artifact-heavy, and the
training losses shown in Figure 3 fail to converge to similar level of d = 768.

Taken together, these results indicate that successful generation in RAE’s latent space requires the
diffusion model’s width to be at least as large as RAE’s token dimension. In the following, we
provide a theoretical justification for this requirement.

In the following, we provide a theoretical justification for this requirement.

Theorem 1. Assuming x ∼ p(x) ∈ Rn, ε ∼ N (0, In), t ∈ [0, 1]. Let xt = (1− t)x+ tε, consider
the function family

Gd = {g(xt, t) = Bf(Axt, t) : A ∈ Rd×n,B ∈ Rn×d, f : [0, 1]× Rd → Rd} (1)

where d < n, f refers to a stack of standard DiT blocks whose width is smaller than the token
dimension from the representation encoder, and A,B denote the input and output linear projections,
respectively. Then for any g ∈ Gd,

L(g, θ) =
∫ 1

0

Ex∼p(x),ε∼N (0,In)

[
∥g(xt, t)− (ε− x)∥2

]
dt ≥

n∑
i=d+1

λi (2)

where λi are the eigenvalues of the covariance matrix of the random variable W = ε− x.

Notably, when d ≥ n, Gd contains the unique minimizer to L(θ).

Proof. See Appendix C.1.

In our toy setting where p(x) = δ(x− x0), we have W ∼ N (−x, In) and λi = 1 for all i. Thus by
Theorem 1, the lower bound of the average loss becomes L̃(θ) ≥ 1

n

∑n
i=d+1 1 = n−d

n . As shown
in Figure 3, this theoretical bound is consistent with our empirical results.

DiT-S DiT-B DiT-L

DINOv2-S 3.6e−2 ✓ 1.0e−3 ✓ 9.7e−4 ✓
DINOv2-B 5.2e−1 ✗ 2.4e−2 ✓ 1.3e−3 ✓
DINOv2-L 6.5e−1 ✗ 2.7e−1 ✗ 2.2e−2 ✓

Table 3: Overfitting losses. Com-
pared between different combinations
of model width and token dimension.

We further extend our investigation to a more practical setting
by examining three models of varying width—{DiT-S, DiT-
B, DiT-L}. Each model is overfit on a single image encoded
by {DINOv2-S, DINOv2-B, DINOv2-L}, respectively, cor-
responding to different token dimensions. As shown in Sec-
tion 4.1, convergence occurs only when the model width is
at least as large as the token dimension (e.g., DiT-B with
DINOv2-B), while the loss fails to converge otherwise (e.g.,
DiT-S with DINOv2-B).

• Suboptimal design for Diffusion Transformers. We now fix the width of DiT to be at
least as large as the RAE token dimension. For the DINOv2-B RAE, we use DiT-XL in our
following experiments.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 DIMENSION-DEPENDENT NOISE SCHEDULE SHIFT

Many prior works (Teng et al., 2023; Chen, 2023; Hoogeboom et al., 2023; Esser et al., 2024) have
observed that, for inputs z ∈ RC×H×W , increasing the spatial resolution (H × W ) reduces infor-
mation corruption at the same noise level, impairing diffusion training. These findings, however,
are based mainly on pixel- or VAE-encoded inputs with few channels (e.g., C ≤ 16). In practice,
the Gaussian noise is applied to both spatial and channel dimensions; as the number of channels in-
creases, the effective “resolution” per token also grows, reducing information corruption further. We
therefore argue that proposed resolution-dependent strategies in these prior works should be gener-
alized to the effective data dimension, defined as the number of tokens times their dimensionality.

gFID

w/o shift 23.08
w/ shift 4.81

Table 4: Impact of schedule shift.

Concretely, we adopt the shifting strategy of Esser et al. (2024):
for a schedule tn ∈ [0, 1] and input dimensions n,m, the shifted
timestep is defined as tm = αtn

1+(α−1)tn where α =
√
m/n is

a dimension-dependent scaling factor. We follow (Esser et al.,
2024) in using n = 4096 as the base dimension and set m to
the effective data dimension of RAE. As shown in Table 4, this yields significant performance gains,
underscoring its importance for training diffusion in the high-dimensional RAE latent space.

• Suboptimal noise scheduling. We now default the noise schedule to be dimension-
dependent for all our following experiments.

4.3 NOISE-AUGMENTED DECODING

Unlike VAEs, where latent tokens are encoded as a continuous distribution N (µ, σ2I) (Kingma &
Welling, 2014), the RAE decoder D is trained to reconstruct images from the discrete distribution
p(z) =

∑
i δ(x − zi), where zi denotes the training set processed by the RAE encoder E. At

inference time, however, the diffusion model may generate latents that are noisy or deviate slightly
from the training distribution due to imperfect training and sampling Abuduweili et al. (2024). This
creates a significant out-of-distribution challenge for D, hindering sampling quality.

To mitigate this issue, inspired by prior works on Normalizing Flows (Dinh et al., 2017; Ho
et al., 2019; Zhai et al., 2025), we augment the RAE decoder training with an additive noise
n ∼ N (0, σ2I). Concretely, rather than decoding directly from the clean latent distribution p(z), we
train D on a smoothed distribution pn(z) =

∫
p(z − n)N (0, σ2I)(n)dn to enhance the decoder’s

generalization to the denser output space of diffusion models. We further introduce stochasticity
into σ by sampling it from |N (0, τ2)|, which helps regularize training and improve robustness.

gFID rFID

z ∼ p(z) 4.81 0.49
z ∼ pn(z) 4.28 0.57

Table 5: Impact of pn(z).

We evaluate impact of pn(z) on both reconstruction and gen-
eration. As shown in Table 5, it improves gFID but slightly
worsens rFID. This trade-off is expected: noise smooths the
latent distribution and mitigates OOD issues for the decoder,
but also removes fine details, reducing reconstruction quality.
We conduct more experiments on τ and different encoders
in Appendix H.2

• Diffusion generates noisy latents. We now adopt the noise-augmented decoding for all
our following experiments.
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Figure 4: DiT w/ RAE: faster convergence and
better FID.

Integrating the above techniques, our improved dif-
fusion recipe achieves a gFID of 4.28 (Figure 4) after
only 80 epochs and 2.39 after 720 epochs in RAE’s
latent space. This not only surpasses prior diffu-
sion baselines (Ma et al., 2024) trained on VAE la-
tents (achieving a 47× training speedup), but also
matches the convergence speed of recent methods
based on representation alignment (Yu et al., 2025),
achieving a 16× training speedup. Next, we explore
how to further push RAE generation toward state-of-
the-art performance.
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Figure 6: Scalability of DiTDH. With RAE latents, DiTDH scales more efficiently in both training
compute and model size than RAE-based DiT and VAE-based methods.

5 IMPROVING THE MODEL SCALABILITY WITH WIDE DIFFUSION HEAD

As discussed in Section 4, within the standard DiT framework, handling higher-dimensional RAE
latents requires scaling up the width of the entire backbone, which quickly becomes computationally
expensive. To overcome this limitation, we draw inspiration from DDT (Wang et al., 2025c) and
introduce the DDT head—a wide, shallow transformer module dedicated to denoising. By attaching
this head to a standard DiT, we effectively increase model width without incurring quadratic growth
in FLOPs. We refer to this augmented architecture as DiTDH throughout the remainder of the paper.
We also conduct experiment of the design choice of DDT head in Appendix H.3

DiT

D
D

T H
ead

Figure 5: The Wide DDT Head.

Wide DDT head. Formally, a DiTDH model consists
of a base DiT M and an additional wide, shallow trans-
former head H . Given a noisy input xt, timestep t, and
an optional class label y, the combined model predicts the
velocity vt as

zt = M(xt | t, y),
vt = H(xt | zt, t),

DiTDH converges faster than DiT. We train a series of DiTDH models with varying backbone
sizes (DiTDH-S, B, L, and XL) on RAE latents. We use a 2-layer, 2048-dim DDT head for all DiTDH

models. Performance is compared against the standard DiT-XL baseline. As shown in Figure 6a,
DiTDH is substantially more FLOP-efficient than DiT. For example, DiTDH-B requires only ∼40%
of the training FLOPs yet outperforms DiT-XL by a large margin; when scaled to DiTDH-XL under
a comparable training budget, DiTDH achieves an FID of 2.16—nearly half that of DiT-XL.

Model
DINOv2

S B L

DiT-XL 3.50 4.28 6.09
DiTDH-XL 2.42 2.16 2.73

Table 6: DiTDH outperforms DiT
across RAE encoder sizes.

DiTDH maintains its advantage across RAE scales. We com-
pare DiTDH-XL and DiT-XL on three RAE encoders—DINOv2-
S, DINOv2-B, and DINOv2-L. As shown in Section 5, DiTDH

consistently outperforms DiT, and the advantage grows with en-
coder size. For example, with DINOv2-L, DiTDH improves FID
from 6.09 to 2.73. We attribute this robustness to the DDT head.
Larger encoders produce higher-dimensional latents, which am-
plify the width bottleneck of DiT. DiTDH addresses this by satis-
fying the width requirement discussed in Section 4 while keeping
features compact. It also filters out noisy information that be-
comes more prevalent in high-dimensional RAE latents.
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Method Epochs #Params Generation@256 w/o guidance Generation@256 w/ guidance

gFID↓ IS↑ Prec.↑ Rec.↑ gFID↓ IS↑ Prec.↑ Rec.↑

Pixel Diffusion

ADM (Dhariwal & Nichol, 2021) 400 554M 10.94 101.0 0.69 0.63 3.94 215.8 0.83 0.53
RIN (Jabri et al., 2023) 480 410M 3.42 182.0 - - - - - -
PixelFlow (Chen et al., 2025e) 320 677M - - - - 1.98 282.1 0.81 0.60
PixNerd (Wang et al., 2025b) 160 700M - - - - 2.15 297.0 0.79 0.59
SiD2 (Hoogeboom et al., 2025) 1280 - - - - - 1.38 - - -

Latent Diffusion with VAE

DiT (Peebles & Xie, 2023) 1400 675M 9.62 121.5 0.67 0.67 2.27 278.2 0.83 0.57
MaskDiT (Zheng et al.) 1600 675M 5.69 177.9 0.74 0.60 2.28 276.6 0.80 0.61
SiT (Ma et al., 2024) 1400 675M 8.61 131.7 0.68 0.67 2.06 270.3 0.82 0.59
MDTv2 (Gao et al., 2023) 1080 675M - - - - 1.58 314.7 0.79 0.65

VA-VAE (Yao et al., 2025) 80 675M 4.29 - - - - - - -
800 2.17 205.6 0.77 0.65 1.35 295.3 0.79 0.65

REPA (Yu et al., 2025) 80 675M 7.90 122.6 0.70 0.65 - - - -
800 5.90 157.8 0.70 0.69 1.42 305.7 0.80 0.65

DDT (Wang et al., 2025c) 80 675M 6.62 135.2 0.69 0.67 1.52 263.7 0.78 0.63
400 6.27 154.7 0.68 0.69 1.26 310.6 0.79 0.65

REPA-E (Leng et al., 2025) 80 675M 3.46 159.8 0.77 0.63 1.67 266.3 0.80 0.63
800 1.83 217.3 0.77 0.66 1.26 314.9 0.79 0.66

Latent Diffusion with RAE (Ours)

DiT-XL (DINOv2-S) 800 676M 1.87 209.7 0.80 0.63 1.41 309.41 0.80 0.63

DiTDH-XL (DINOv2-B)
20

839M
3.71 198.7 0.86 0.50 – – – –

80 2.16 214.8 0.82 0.59 – – – –
800 1.53 238.8 0.79 0.64 1.18 253.42 0.77 0.67

Table 7: Class-conditional performance on ImageNet 256×256. RAE reaches a gFID of 1.53 at
800 epochs without guidance, outperforming all prior methods by a large margin. It also achieves
a state-of-the-art FID of 1.18 with AutoGuidance (details in Appendix D). Besides, RAE surpasses
VA-VAE within just 80 training epochs, demonstrating a 10× speedup in convergence.

5.1 STATE-OF-THE-ART DIFFUSION MODELS

Convergence. We compare the convergence behavior of DiTDH-XL with previous state-of-the-art
diffusion models (Peebles & Xie, 2023; Ma et al., 2024; Yu et al., 2025; Gao et al., 2023; Yao et al.,
2025) in terms of FID without guidance. In Figure 6b, we show the convergence curve of DiTDH-XL
with training epochs/GFLOPs, while baseline models are plotted at their reported final performance.
DiTDH-XL already surpasses REPA-XL, MDTv2-XL, and SiT-XL around 5 × 1010 GFLOPs, and
by 5× 1011 GFLOPs it achieves the best FID overall, requiring over 40× less compute.

Method Generation@512

gFID↓ IS↑ Prec.↑ Rec.↑

BigGAN-deep (Brock et al., 2019) 8.43 177.9 0.88 0.29
StyleGAN-XL (Sauer et al., 2022) 2.41 267.8 0.77 0.52

VAR (Tian et al., 2024) 2.63 303.2 - -
MAGVIT-v2 (Yu et al., 2024a) 1.91 324.3 - -
XAR (Ren et al., 2025) 1.70 281.5 - -

ADM 3.85 221.7 0.84 0.53
SiD2 1.50 - - -

DiT 3.04 240.8 0.84 0.54
SiT 2.62 252.2 0.84 0.57
DiffiT (Hatamizadeh et al., 2024) 2.67 252.1 0.83 0.55
REPA 2.08 274.6 0.83 0.58
DDT 1.28 305.1 0.80 0.63
EDM2 (Karras et al., 2024) 1.25 - - -

DiTDH-XL (DINOv2-B) 1.13 259.6 0.80 0.63

Table 8: Class-conditional performance on Im-
ageNet 512×512. Baseline methods are reported
with guidance. DiTDH with guidance achieves a new
state-of-the-art FID score of 1.13.

Scaling. We compare DiTDH with recent meth-
ods of different model at different scales. As
shown in Figure 6c, increasing the size of DiTDH

consistently improves the FID scores. The small-
est model, DiTDH-S, reaches a competitive FID
of 6.07, already outperforming the much larger
REPA-XL. When scaling from DiTDH-S to DiTDH-
B, the FID improves significantly from 6.07 to
3.38, surpassing all prior works of similar or even
larger scale. The performance continues to im-
prove with DiTDH-XL, setting a new state-of-the-
art result of 2.16 at 80 training epochs.

Performance. Finally, we provide a quantitative
comparison between DiTDH-XL, our most perfor-
mant model, with recent state-of-the-art diffusion
models on ImageNet 256 × 256 and 512 × 512
in Table 7 and Table 8. Our method outperforms

8
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all prior diffusion models by a large margin, setting new state-of-the-art FID scores of 1.53 without
guidance and 1.18 with guidance at 256 × 256. On 512 × 512, DiTDH-XL further achieves a new
state-of-the-art FID of 1.13 with guidance, surpassing the previous best performance achieved by
EDM2 (1.25) within 400 training epochs. We provide visualization samples in Appendix L and
unconditional generation results in Appendix K.

6 DISCUSSIONS

6.1 HOW CAN RAE EXTEND TO HIGH-RESOLUTION SYNTHESIS EFFICIENTLY?

A central challenge in generating high-resolution images is that resolution scales with the number
of tokens: doubling image size in each dimension requires roughly four times as many tokens. To
address this, we propose to shift the resolution burden to the decoder. Specifically, we allow the
decoder patch size pd to differ from the encoder patch size pe. When pd = pe, the output matches
the input resolution; setting pd = 2pe upsamples by 2× per dimension, reconstructing a 512× 512
image from the same tokens used at 256× 256.

Method #Tokens gFID ↓ rFID↓
Direct 1024 1.13 0.53
Upsample 256 1.61 0.97

Table 9: Comparison on ImageNet 512 × 512.
Direct: directly increasing tokens; Upsamling:
use decoder upsamling. Both models are trained
for 400 epochs.

Since the decoder is decoupled from both the en-
coder and the diffusion process, we can reuse dif-
fusion models trained at 256 × 256 resolution, sim-
ply swapping in an upsampling decoder to produce
512 × 512 outputs without retraining. As shown
in Table 9, this approach slightly increases rFID but
achieves competitive gFID compared to VAE-based
methods, while being 4× more efficient than qua-
drupling the number of tokens.

6.2 DOES DITDH WORK WITHOUT RAE?

In this work, we propose and study RAE and DiTDH. In Section 4, we showed that RAE with DiT
already brings substantial benefits, even without DiTDH. Here, we ask the reverse question: can
DiTDH still provide improvements, without the latent space of RAE?

VAE DINOv2-B

DiT-XL 7.13 4.28
DiTDH-XL 11.70 2.16

Table 10: Performance on VAE. DiTDH

yields worse FID than DiT, despite using ex-
tra compute.

To investigate, we train both DiT-XL and DiTDH-XL
on SD-VAE latents with a patch size of 2, alongside
DINOv2-B for comparison, for 80 epochs, and report un-
guided FID. As shown in Table 10, DiTDH-XL performs
even worse than DiT-XL on SD-VAE, despite the addi-
tional computation introduced by the diffusion head. This
indicates that the DDT head provides little benefit in low-
dimensional latent spaces, and its primary strength arises
in high-dimensional diffusion tasks introduced by RAE.

6.3 HOW IMPORTANT IS STRUCTURED REPRESENTATION IN HIGH-DIMENSIONAL
DIFFUSION?

DiTDH achieves strong performance when paired with the high-dimensional latent space of RAE.
This raises a key question: is the structured representation of RAE essential, or would DiTDH work
equally well on unstructured high-dimensional inputs such as raw pixels?

Pixel DINOv2-B

DiT-XL 51.09 4.28
DiTDH-XL 30.56 2.16

Table 11: Comparison on pixel diffusion.
Pixel Diffusion has much worse FID than
diffusion on DINOv2-B.

To test this, we train DiT-XL and DiTDH-XL directly on
pixels, matching the dimensionality of DINOv2-B latents
with a patch size of 16, and report unguided FID at 80
epochs. As shown in Table 11, DiTDH does significantly
improve over DiT on pixels, but both models perform
far worse than their counterparts trained on RAE latents.
These results demonstrate that high dimensionality alone
is not sufficient: the structured representation provided by
RAE is what makes the gains truly substantial.

9
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A LLM USE CLAIM

We utilized a large language model (LLM) to assist in the writing and editing process of this
manuscript. The LLM was primarily used for improving grammar, clarity, and readability. This
included tasks such as rephrasing sentences, correcting spelling and grammatical errors, and ensur-
ing consistent style throughout the paper. All authors have reviewed and edited the final version of
the manuscript and take full responsibility for its content.

B EXTENDED RELATED WORK

Representation encoder as autoencoder. Recent studies have investigated leveraging semantic
representations for reconstruction, particularly in MLLMs where diffusion decoders are conditioned
on semantic tokens (Sun et al., 2024; Chen et al., 2025b; Pan et al., 2025; Tong et al., 2025). While
this improves visual quality, the reliance on large pretrained diffusion decoders makes reconstruc-
tions less faithful to the input, limiting their effectiveness as true autoencoders. Very recently,
UniLIP (Tang et al., 2025b) employs a one-step convolutional decoder on top of InternViT (Zhu
et al., 2025), achieving reconstruction quality surpassing SD-VAE. However, UniLIP relies on ad-
ditional large-scale fine-tuning of pretrained ViTs, arguing that frozen pretrained representation en-
coders lacks sufficient visual detail. In contrast, we show this is not the case: frozen representation
encoders achieves comparable reconstruction performance while enabling much faster convergence
in diffusion training.

Another line of related work also try to utilize representation encoders directly as tokenizers. VFM-
Tok (Zheng et al., 2025) and DiGIT (Zhu et al., 2024) applies vector-quantization directly to pre-
trained representation encoders like Dino or SigLIP. These approaches transform representation en-
coders into an effective tokenizer for AR models, but still suffer from the information capacity
bottleneck brought by quantization.

Compressed Image Tokenizers. Autoencoders have long been used to compress images into
low-dimensional representations for reconstruction (Hinton & Salakhutdinov, 2006; Vincent et al.,
2008). VAEs (Kingma & Welling, 2014) extend this paradigm by mapping inputs to Gaussian
distributions, while VQ-VAEs (Oord et al., 2017; Razavi et al., 2019) introduce discrete latent
codes. VQGAN (Esser et al., 2021) adds adversarial objectives, and ViT-VQGAN (Esser et al.,
2021; Cao et al., 2023) modernizes the architecture with Vision Transformers (ViTs) (Dosovitskiy
et al., 2021). Other advances include multi-stage quantization (Lee et al., 2022; Zheng et al., 2022),
lookup-free schemes (Mentzer et al., 2024; Zhao et al., 2025), token-efficient designs such as TiTok
and DCAE (Yu et al., 2024b; Chen et al., 2025c), and structure-preserving approaches like EQ-
VAE (Kouzelis et al., 2025a). (Hansen-Estruch et al., 2025) further explores the scaling behavior of
VAEs. LARP, CRT, REPA-E (Wang et al., 2025a; Ramanujan et al., 2025; Yu et al., 2025) tried to
improve VAE with generative priors via back-propagation. In contrast, we dispense with aggressive
compression and instead adopt a pretrained representation encoders as encoder. This avoids the en-
coder collapsing into shallow features optimized only for reconstruction loss, while providing strong
pretrained representations that serve as a robust latent space.

Generative Models. Modern image generation is dominated by two paradigms: autoregressive
(AR) models and diffusion models. AR models (Ramesh et al., 2022; Yu et al., 2022; Parmar et al.,
2018; Chen et al., 2020) generate images sequentially, token by token, and benefit from powerful
language-model architectures but often suffer from slow sampling. Diffusion models (Ho et al.,
2020; Nichol & Dhariwal, 2021; Rombach et al., 2022; Ma et al., 2024; Peebles & Xie, 2023)
instead learn to iteratively denoise noisy signals, offering superior sample quality and scalability,
though at the cost of many sampling steps. In this work, we build on diffusion models but adapt
them to high-dimensional latent spaces provided by pretrained representation encoders. We find
representation encoders provide faster convergence and improved scaling behavior.

Robust decoders for generation. Recent works suggest that incorporating masking or latent de-
noising losses can improve tokenizer training. l-DeTok (Yang et al., 2025) shows that combining
both losses yields strong VAEs for second-stage MAR (Li et al., 2024b; Fan et al., 2025b) generation,
while RobusTok (Qiu et al., 2025) demonstrates that training with perturbed tokens makes decoders
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more robust. Notably, Yang et al. (2025) report that denoising loss only increase performance when
encoder and decoder are jointly trained, whereas we observe substantial gains in generation quality
with frozen encoders.

C PROOFS

C.1 PROOF OF LOWER BOUND FOR TRAINING LOSS

Theorem 1. Assuming x ∼ p(x) ∈ Rn, ε ∼ N (0, In), t ∈ [0, 1]. Let xt = (1− t)x+ tε, consider
the function family

Gd = {g(xt, t) = Bf(Axt, t) : A ∈ Rd×n,B ∈ Rn×d, f : [0, 1]× Rd → Rd} (1)

where d < n, f refers to a stack of standard DiT blocks whose width is smaller than the token
dimension from the representation encoder, and A,B denote the input and output linear projections,
respectively. Then for any g ∈ Gd,

L(g, θ) =
∫ 1

0

Ex∼p(x),ε∼N (0,In)

[
∥g(xt, t)− (ε− x)∥2

]
dt ≥

n∑
i=d+1

λi (2)

where λi are the eigenvalues of the covariance matrix of the random variable W = ε− x.

Notably, when d ≥ n, Gd contains the unique minimizer to L(θ).

Proof. By Albergo et al. (2023), the distribution ρt of xt satisfies ρ0 = p(x), ρ1 = N (0, In), and
∂tρ+∇·(vρ) = 0 where v is the optimal velocity predictor defined as v(xt, t) = E[ε−x|xt]. Also,
by Theorem 2.7 in Albergo et al. (2023), there exists f∗ ∈ C0((C1(Rn))n; [0, 1])1 that uniquely
minimizes the L(f, θ) and perfectly approximates v.

By our training setting, it’s reasonable to assume that x ∼ p(x) and ε ∼ N (0, In) are independent.
Then the distribution of the objective y = ε − x ∼ py(y) satisfies py(y) =

∫
Rn N (0, In)(y +

x)p(x)dx. Clearly, py has full support on Rn and is strictly positive, indicating y has a non-
zero probability anywhere in Rn. Similarly, for xt = (1 − t)x + tε, given any t, pxt(w) =∫
Rn N (0, t2In)(w−x) 1

(1−t)p(
x

1−t )dx also has full support on Rn and is strictly positive, indicating
xt has a non-zero probability anywhere in Rn as well.

Recall that for any function f : X → Y , Im(f) = {f(x) : x ∈ X}. Then for linear transformation
f(x) = Mx with M ∈ Rd×n, Im(f) = {Mx : x ∈ Rn}; we denote this as Im(M). Now, for
any g ∈ Gd, Im(g) = {Bf(Ax) : x ∈ Rn} ⊆ {By : y ∈ Rd} = Im(B). Since rank(B) ≤ d,
dim Im(g) ≤ rank(B) ≤ d < n, therefore Im(g) ⊆ Im(B) ⊂ Rn.

Now, given g ∈ Gd and the deterministic pair (xt,y, t) ∈ (Rn,Rn, [0, 1]), by Projection Theorem,

∥g(xt, t)− y∥2 ≥ ∥ug − y∥2 (3)

where ug ∈ Im(g) is the unique minimizer and ug − y is orthogonal to Im(g). Since ∥ · ∥2 ≥ 0, we
can take expectation on both sides

inf
g∈Gd

Ex∼p(x),ε∼N (0,In)

[
∥g(xt, t)− y∥2

]
≥ inf

g∈Gd
E
[
∥ug − y∥2

]
≥ inf

u∈S;dimS≤d
E
[
∥u− y∥2

]
≥ inf

S;dimS≤d
E
[
∥y∥2 − ∥PSy∥2

]
(4)

1family of functions f : [0, 1]×Rn → Rn that is continuous in t for all (x, t) ∈ [0, 1]×Rn, and f(·, t) is
a continuously differentiable function from Rn to Rn.
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where PS denote the projection matrix from Rn onto S. Without loss of generality, we assume
E[x] = 02, then Eq 4 can be expanded as

inf
g∈Gd

Ex∼p(x),ε∼N (0,In)

[
∥g(xt, t)− y∥2

]
≥

n∑
i=1

E[y2
i ]− sup

S;dimS≤d

n∑
i=1

E[(PSy)
2
i ]

= Tr(Cov(y))− sup
S;dimS≤d

Tr(Cov(PSy))

≥
n∑

i=1

λi −
d∑

i=1

λi =

n∑
i=d+1

λi (5)

where Eq 5 is obtained via Ky-Fan Maximum Principle.

When d ≥ n, supS E[∥PSy∥2] = E[∥y∥2], leading to a trivial lower bound in Eq 5, and Gd =
C0((C1(Rn))n; [0, 1]).

C.2 PROOF OF LOWER BOUND FOR INFERENCE LOSS

Theorem 2. Consider the same setup as Theorem 1. Let x1 be the initial random variables in the
sampling process, and

x0 = ODE(g,x1, 1 → 0)

x∗0 = ODE(f∗,x1, 1 → 0)

where ODE(f,x, t → s) refers to any ODE solver that integrates f from time t to s using x as the
initial condition. We further assume for any (x,y, t) ∈ (Rn,Rn, [0, 1]), there exists constant L > 0
such that

∥f∗(x, t)− f∗(y, t)∥ ≤ L∥x− y∥

then

∥x∗0 − x0∥ ≥ 1− e−L

L

n∑
i=d+1

λi (6)

Proof. We first define a forward ODE that integrates from 0 → 1 x←−
t
:= x−t, and

dx←−
t
= g(x←−

t
, t)dt

dx∗←−
t
= f∗(x∗←−

t
, t)dt

Then

d

dt
∥x∗←−

t
− x←−

t
∥ = ∥f∗(x∗←−

t
, t)− g(x←−

t
, t)∥

≥ ∥f∗(x←−
t
, t)− g(x←−

t
, t)∥ − ∥f∗(x∗←−

t
, t)− f∗(x←−

t
, t)∥

≥ ∥∆∥ − L∥x∗←−
t
− x←−

t
∥ (7)

where ∆ denotes the approximation error to f∗ for g ∈ Gd. Applying Gronwall’s Lemma, we have

eL
←−
t ∥x∗←−

t
− x←−

t
∥
∣∣∣∣1
0

≥
∫ t

0

eLs∥∆∥ds

=⇒ ∥x∗0 − x0∥ = ∥x∗←−
1
− x←−

1
∥ ≥ (1− e−L)

L

n∑
i=d+1

λi (8)

where by Theorem 1, ∥∆∥ ≥
∑n

i=d+1 λi.

2Non-centered x with E[x] = µ will additionally introduce ∥µ∥2 −∥PSµ∥2 to the lower bound; we ignore
this term since most data processing pipelines will center the data
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Figure 7: Reconstruction examples. From left to right: input image, RAE (DINOv2-B), RAE
(SigLIP2-B), RAE (MAE-B), SD-VAE. Zoom in for details.

D GUIDANCE

We primarily adopt AutoGuidance (Karras et al., 2025) as our guidance method, as it is easier to
tune than CFG with interval (Ho & Salimans, 2022; Kynkäänniemi et al., 2024) and consistently
delivers better performance. CFG is used only for the DiT-XL + DINOv2-S with guidance result
reported in Table 7.

AutoGuidance. We adopt AutoGuidance (Karras et al., 2025) as our primary guidance method.
The idea is to use a weaker diffusion model to guide a stronger one, analogous to the principle of
Classifier-Free Guidance (CFG) (Ho & Salimans, 2022). We observe that weaker base models and
shorter training epochs consistently yield better guidance. Accordingly, for all RAE experiments,
we find it sufficient to employ the smallest variant of DiTDH, namely DiTDH-S, as the base model,
using an early checkpoint at 20 training epochs. We sweep the guidance scale to optimize FID.
Notably, training this base model costs only 0.06% of the compute required for the guided model
(DiTDH-XL trained for 800 epochs).

Classifier-Free Guidance. We also evaluate CFG (Ho & Salimans, 2022) on RAE. Interestingly,
CFG without interval does not improve FID; in fact, applying it from the first diffusion step increases
FID. With Guidance Interval (Kynkäänniemi et al., 2024), CFG can achieve competitive FID after
careful grid search over scale and interval. However, on our final model (DiTDH-XL with DINOv2-
B), the best CFG result remains inferior to AutoGuidance. Considering both performance and tuning
overhead, we adopt AutoGuidance as our default guidance method.

E RAE IMPLEMENTATION

E.1 ENCODER NORMALIZATION

For any given frozen representation encoders, we discard any [CLS] or [REG] token produced by
the encoder, and keep the all of patch tokens. We then apply a layer normalization to each token
independently, to ensure each token has zero mean and unit variance across channels. We note that
all representation encoders we use adopt the standard ViT architecture (Dosovitskiy et al., 2021),
which have already applied layer normalization after the last transformer block. Therefore, we only
need to cancel the affine parameters of the layer normalization in representation encoders. This does
not affect the representation quality of representation encoders, as it is a linear transformation.

Practical Notes. Specifically, we use DINOv2 with Registers (Darcet et al., 2025). Since DINOv2
only provides variants with pe = 14, we interpolate the input images to 224× 224 but set pd = 16,
ensuring the model still produces 256 tokens while reconstructing 256× 256 images.
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E.2 DECODER TRAINING DETAILS

Datasets. We primarily use ImageNet-1K for training all decoders. Most experiments are conducted
at a resolution of 256 × 256. For 512-resolution synthesis without decoder upsampling, we train
decoders directly on 512× 512 images.

Decoder Architecture. The decoder takes the token embeddings produced by the frozen encoder
takes the token embedding reconstructs them back into the pixel space using the same patch size
as the encoder. As a result, it can generate images with the same spatial spatial resolution as the
encoder’s inputs input. Following He et al. (2021), we prepend a learnable [CLS] token decoder’s
input sequence and discard it after decoding.

Discriminator Architecture. We include the majority of our decoder training details in Table 12.
We follow most of the design choices in StyleGAN-T (Sauer et al., 2023), except for using a frozen
Dino-S/8 (Caron et al., 2021b) instead of Dino-S/16 as the discriminator. We found using Dino-S/8
stabilizes training and avoid the decoder to generate adversarial patches. We also remove the virtual
batch norm in Sauer et al. (2023) and use the standard batch norm instead. All input is interpolated
to 224× 224 resolution before feeding into the discriminator.

Table 12: Training configuration for decoder and discriminator.

Component Decoder Discriminator
optimizer Adam Adam
max learning rate 2× 10−4 2× 10−4

min learning rate 2× 10−5 2× 10−5

learning rate schedule cosine decay cosine decay
optimizer betas (0.5, 0.9) (0.5, 0.9)
weight decay 0.0 0.0
batch size 512 512
warmup 1 epoch 1 epoch
loss ℓ1 + LPIPS + GAN adv.
Model ViT-(ViT-B, ViT-L, ViT-XL) Dino-S/8 (frozen)
LPIPS start epoch 0 –
disc. start epoch – 6
adv. loss start epoch 8 –
Training epochs 16 10

Losses. We set ωL = 1. and ωG = 0.75. We use the same losses as in StyleGAN-T Sauer et al.
(2023) for discriminator, and a GAN loss as in Esser et al. (2021). We also adopt the adaptive weight
λ for GAN loss proposed in Esser et al. (2021) to balance the scales of reconstruction and adversarial
losses. λ is defined as:

λ =
∥∇x̂Lrec∥

∥∇x̂ GAN(x̂, x)∥+ ϵ
,

Augmentations. For data augmentation, we first resize the input image to 384× 384 and then ran-
domly crop to 256× 256. We also apply differentiable augmentations with default hyperparameters
in Zhao et al. (2020) before discriminator.

E.3 VISUALIZATIONS

We present visualizations of reconstructions from different RAEs. As shown in Figure 7, all RAEs
achieve satisfactory reconstruction fidelity.
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F DIFFUSION MODEL IMPLEMENTATION

Datasets. We primarily use ImageNet-1K for training all decoders. Most experiments are conducted
at a resolution of 256 × 256. For 512-resolution synthesis without decoder upsampling, we train
diffusion models directly on 512× 512 images.

Model Config Dim Num-Heads Depth

S 384 6 12
B 768 12 12
L 1024 16 24
XL 1152 16 28
XXL 1280 16 32
H 1536 16 32
G 2048 16 40
T 2688 21 40

Table 13: Model configurations for different sizes.

Models. By default, we use LightningDiT (Yao
et al., 2025) as the backbone of our diffu-
sion model. We use a continuous time for-
mulation of flow matching and restrict the
timestep input to real values in [0, 1]. Fol-
lowing prior work (Song et al., 2021), we re-
place the timestep embedding with a Gaussian
Fourier embedding layer. We also add Abso-
lute Positional Embeddings (APE) to the in-
put tokens in addition to RoPE, though we do
not observe significant performance difference
with or without APE.

For DiTDH, we generally follow the same architecture as DiT, and does not reapply APE for the
DDT head input. We use a linear layer to map the DiTDH encoder output to the DiTDH decoder
dimension when the dimension of DiT and DDT head mismatches.

Patch Size. For all models on RAE, we use a patch size of 1. For baselines experiments on VAE
and pixel, we use a patch size of 2 and 16, respectively. For all 256× 256 experiments, the diffusion
accepts a token sequence length of 256.

Optimization. For DiT, we strictly follow the optimization strategy in LightningDiT (Yao et al.,
2025), using AdamW with a constant learning rate of 2.0× 10−4, a batch size of 1024 and an EMA
weight of 0.9999. We do not observe instability or abnormal training dynamics with this recipe on
DiT. For DiTDH, we found using the recipe in (Yao et al., 2025) leads to loss spikes at later epochs
and slow EMA model convergence at early epochs. We instead use a linear decay from 2.0× 10−4

to 2.0× 10−5 with a constant warmup of 40 epochs. To encourage the convergence of EMA model,
we change the EMA weight from 0.9999 to 0.9995. Other optimization hyperparameters are the
same as DiT. All models are trained for 80 epochs unless otherwise specified. We only report EMA
model performance.

Sampling. We use standard ODE sampling with Euler sampler and 50 steps by default. We find the
performance generally converges above 50 steps. We use the same sampling hyperparameters for
both DiT and DiTDH.

G THEORY EXPERIMENT SETUP

In this section we list the setup of experiments in Section 4 for overfitting images.

Models. By default, we use a DiT with depth 12, width 768 and a attention head of 4. The depth
varies in {384.512, 640, 768, 896} and width varis in {4, 12, 16, 24} in Figure 3. Other configura-
tions are the same as Appendix F.

Targets. We use three images for overfitting experiments, and all numbers reported are the average
on three independent run on each images. We do resize all targets to 256× 256 and not use any data
augmentation .

Optimizations & Sampling. For a single target image, the batch size only influences the timestep.
We therefore use a relatively small batch size of 32 and a constant learning rate of 2 × 10−4, op-
timized with AdamW (β = (0.9, 0.95)). The model is trained for 1200 steps without EMA. For
sampling, We use standard ODE sampling with Euler sampler and 25 steps by default.
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(a) gFID and rFID of different encoders w/
and w/o noisy-robust decoding.

Model gFID rFID
DINOv2-B 4.81 / 4.28 0.49 / 0.57
SigLIP2-B 6.69 / 4.93 0.53 / 0.82
MAE-B 16.14 / 8.38 0.16 / 0.28

(b) gFID and rFID of different DINOv2
sizes w/ and w/o noisy-robust decoding.

Model gFID rFID
S 3.83 / 3.50 0.52 / 0.64
B 4.81 / 4.28 0.49 / 0.57
L 6.77 / 6.09 0.52 / 0.59

(c) Scaling τ for DINOv2-B.

τ gFID rFID
0.0 4.81 0.49
0.5 4.39 0.54
0.8 4.28 0.57
1.0 4.20 0.60

Table 14: Ablations on noise-augmented decoder training. Despite minor drop in rFID, the noise-
augmented training strategy can greatly improve the gFID across different encoders and model sizes.

H ADDITIONAL ABLATION STUDIES

H.1 GENERATION PERFORMANCE ACROSS ENCODERS

As shown in Table 14a, DINOv2-B achieves the best overall performance. MAE performs substan-
tially worse in generation, despite yielding much lower rFID. This shows that a low rFID does not
necessarily imply a good image tokenizer. Therefore, we use DINOv2-B as the default encoder for
our image generation experiments.

H.2 DESIGN CHOICES FOR NOISE-AUGMENTED DECODING

We first analyze how noise-robust decoding affects reconstruction and generation. Table 14c shows
that larger τ improves generative FID (gFID) consistently, but slightly worsens reconstruction FID
(rFID). This supports our intuition: noise encourages the decoder to learn smoother mappings that
generalize better to imperfect latents, improving generation quality, but reducing exact reconstruc-
tion accuracy.

To test the robustness of this trade-off, we evaluate different encoders (Table 14a) with σ = 0.8.
Across all encoders, noisy training improves gFID while mildly harming rFID. The effect is
strongest for weaker encoders such as MAE-B, where gFID improves from 16.14 to 8.38. Finally,
Table 14b shows that the benefit holds across encoder sizes, suggesting that robust decoder training
is broadly applicable.

Together, these results highlight a general principle: decoders should not only reconstruct clean
latents, but also handle their noisy neighborhoods. This simple change enables RAEs to serve as
stronger backbones for diffusion models.

H.3 DESIGN CHOICES FOR THE DDT HEAD

Depth Width GFLops FID ↓
6 1152 (XL) 25.65 2.36
4 2048 (G) 53.14 2.31
2 2048 (G) 26.78 2.16

Table 15: DDT head needs to be wide
and shallow.

2-768 2-1536 2-2048 2-2688

Dino-S 2.66 2.47 2.42 2.43
Dino-B 2.49 2.24 2.16 2.22
Dino-L N/A 2.95 2.73 2.64

Table 16: Unguided gFID of different RAE and DDT
head. Larger RAE benefits more from wider DDT head.
d-w: a DDT head with d layers and width w.

We now investigate design variants of the DDT head to identify those that serve its role more ef-
fectively. Two factors turn out to be crucial: (a) the head needs to be wide and shallow, and (b) its
benefit depends on the size of the underlying RAE encoder.

Width and Depth. We first vary the architecture of the DDT head, sweeping both width and depth
while keeping the total parameter count approximately fixed. As shown in Table 15, a 2-layer, 2048-
dim (G) head outperforms a 6-layer, 1152-dim (XL) head by a large margin, despite having similar
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GFlops. Moreover, a 4-layer, 2048-dim head does not improve over the 2-layer version, even though
it has double the GFlops. This suggests that a wide and shallow head is more effective for denoising.

Dependence on Encoder Size. Next, we analyze how the effect of the DDT head scales with
the size of the RAE encoder. We fix the DiT backbone as DiT-XL and vary the DDT head width
from 768 (B) to 1536 (H), 2048 (G), and 2688 (T). We train DiTDH models on top of three RAEs:
DINOv2-S, DINOv2-B, and DINOv2-L. As shown in Table 16, the optimal DDT head width in-
creases as the encoder scales. When using DINOv2-S and DINOv2-B, the performance converges
at a DDT head width of 2048 (G), while 2688 (T) head still brings performance gains on DINOv2-L.
This suggests that the larger RAE encoders benefit more from a wider DDT head.

By default, we use a 2-layer, 2048-dim DDT head for all DiTDH models in the rest of the paper.

I DESCRIPTIONS FOR FLOW-BASED MODELS

Diffusion Models (Ho et al., 2020; Dhariwal & Nichol, 2021; Karras et al., 2022) and more generally
flow-based models (Albergo et al., 2023; Lipman et al., 2023; Liu et al., 2023) are a family of
generative models that learn to reverse a reference “noising” process. One of the most commonly
used “noising” process is the linear interpolation between i.i.d Gaussian noise and clean data (Esser
et al., 2024; Ma et al., 2024):

xt = (1− t)x+ tε

where x ∼ p(x), ε ∼ N (0, In), t ∈ [0, 1], and we denote xt’s distribution as ρt(x) with ρ0 = p(x)
and ρ1 = N (0, I). Generation then starts at t = 1 with pure noise, and simulates some differential
equation to progressively denoise the sample to a clean one. Specifically for flow-based models, the
differential equations (an ordinary differential equation (ODE) or a stochastic differential equation
(SDE)) are formulated through an underlying velocity v(xt, t) and a score function s(xt, t)

ODE dxt = v(xt, t)dt

SDE dxt = v(xt, t)dt−
1

2
wts(xt, t)dt+

√
wtdw̄t

where wt is any scalar-valued continuous function (Ma et al., 2024), and w̄t is the reverse-time
Wiener process. The velocity v(xt, t) is represented as a conditional expectation

v(xt, t) = E[ẋt|xt] = E[ε− x|xt]

and can be approximated with model vθ by minimizing the following training objective

Lvelocity(θ) =

∫ 1

0

Ex,ε

[
∥vθ(xt, t)− (ε− x)∥2

]
dt

The score function s(xt, t) is also represented as a conditional expectation

s(xt, t) = −1

t
E[ε|xt]

Notably, s is equivalent to v up to constant factor (Albergo et al., 2023), so it’s enough to estimate
only one of the two vectors.

J EVALUATION DETAILS

J.1 EVALUATION

We strictly follow the setup and use the same reference batches of ADM (Dhariwal & Nichol, 2021)
for evaluation, following their official implementation.3 We use TPUs for generating 50k samples
and use one single NVIDIA A100 80GB GPU for evaluation.

In what follows, we explain the main concept of metrics that we used for the evaluation.

3https://github.com/openai/guided-diffusion/tree/main/evaluations
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• FID (Heusel et al., 2017) evaluates the distance between the feature distributions of real
and generated images. It relies on the Inception-v3 network (Szegedy et al., 2016) and
assumes both distributions follow multivariate Gaussians.

• IS (Salimans et al., 2016) also uses Inception-v3, but evaluates logits directly. It mea-
sures the KL divergence between the marginal label distribution and the conditional label
distribution after softmax normalization.

• Precision and recall (Kynkäänniemi et al., 2019) follow their standard definitions: preci-
sion reflects the fraction of generated images that appear realistic, while recall reflects the
portion of the training data manifold covered by generated samples.

K UNCONDITIONAL GENERATION

We are also interested in how RAEs perform in unconditional generation. To evaluate this, we train
DiTDH-XL on RAE latents without labels. Following RCG (Li et al., 2024a), we set labels to null
during training and use the same null label at generation time. While classifier-free guidance (CFG)
does not apply in this setting, AutoGuidance remains applicable. We therefore train DiTDH-XL for
200 epochs with AG (detailed in Appendix D).

Method gFID ↓ IS ↑
DiT-XL + VAE 30.68 32.73
DiTDH-XL + DINOv2-B (w/ AG) 4.96 123.12

RCG + DiT-XL 4.89 143.2

Table 17: Comparison of unconditional gener-
ation on ImageNet 256 × 256.

As shown in Table 17, our model achieves substan-
tially better performance than DiT-XL trained on
VAE latents. Compared to RCG, a method specif-
ically designed for unconditional generation, our ap-
proach attains competitive performance while being
much simpler and more straightforward, without the
need for two-stage generation.

L VISUAL RESULTS

We show uncurated 512 × 512 samples sampled from our most performant model: DiTDH-XL on
DINOv2-B with autoguidance scale = 1.5.
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Figure 8: Uncurated 512 × 512 DiTDH-XL
samples.
AutoGudance Scale = 1.5
Class label = ”golden retriever” (207)

Figure 9: Uncurated 512 × 512 DiTDH-XL
samples.
AutoGudance Scale = 1.5
Class label = ”husky” (250)
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Figure 10: Uncurated 512×512 DiTDH-XL
samples.
AutoGudance Scale = 1.5
Class label = ”cliff” (972)

Figure 11: Uncurated 512×512 DiTDH-XL
samples.
AutoGudance Scale = 1.5
Class label = ”macaw” (88)
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Figure 12: Uncurated 512×512 DiTDH-XL
samples.
AutoGudance Scale = 1.5
Class label = ”arctic fox” (279)

Figure 13: Uncurated 512×512 DiTDH-XL
samples.
AutoGudance Scale = 1.5
Class label = ”balloon” (417)
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Method
Compute@256 Compute@512

AE Diffusion Wall-clock gFID AE Diffusion Wall-clock gFID
Param. GFlops Param. GFlops Param. GFlops Param. GFlops

Latent Diffusion with SD-VAE

SiT (Ma et al., 2024)
84M 445.87

675M 118.64 8.88 steps/sec 2.06
84M 1783.49

675M 524.60 2.49 steps/sec 2.62
REPA (Yu et al., 2025) 675M 118.64 8.88 steps/sec 1.42 675M 524.60 2.49 steps/sec 2.08
DDT (Wang et al., 2025c) 675M 118.64 8.12 steps/sec 1.26 675M 508.46 2.31 steps/sec 1.25

Latent Diffusion with RAE (Ours)

DiTDH-XL (DINOv2-B) 501M 129.02 839M 145.03 7.20 steps/sec 1.13 501M 513.57 839M 638.83 2.07 steps/sec 1.13
DiTDH-XL (DINOv2-B, Upsampling) - - - - - – 503M 129.70 839M 129.02 7.20 steps/sec 1.61

Table 18: Compute comparison. Wall-clock numbers are measured end-to-end on identical hard-
ware.

M COMPUTATION COSTS

In this section, we compare the computational costs of RAE-based and VAE-based models in terms
of GFLOPs, parameter counts, and wall-clock training time. We report the per-forward GFLOPs
for each model, as backward and total training GFLOPs scale proportionally. Wall-clock time is
measured end-to-end without latent caching on identical hardware (a v5p-128 TPU Pod utilizing a
JAX codebase). We note that due to hardware differences, absolute timings on GPUs may vary.

As shown in Table 18, RAE requires 3.5× fewer GFLOPs than SD-VAE at both 256 and 512 reso-
lutions. While DiTDH-XL incurs approximately 22% more GFLOPs than the DiT-XL baseline (on
SD-VAE) due to the overhead of the DDT Head—resulting in slower training times—the use of de-
coder upsampling offers significant gains. Specifically, DiTDH-XL on DINOv2-B achieves a 13.8×
reduction in GFLOPs for the autoencoder and a 4.1× reduction for diffusion, all while maintaining
competitive FID scores compared to VAE-based baselines.

N TEXT-TO-IMAGE SYNTHESIS WITH RAE

To rigorously evaluate the scalability and generalizability of the proposed RAE, we extend our
investigation to the domain of text-to-image (T2I) generation. Although still in progress, preliminary
experimental results provide strong evidence that the architectural advantages of RAE over standard
VAEs persist in generative settings beyond ImageNet.

N.1 TRAINING RAE ON WEBIMAGES

We first extend RAE decoder training to web-scale images to investigate the generalizability and
scalability of the model. By default, we employ SigLIP2 ViT-So (Tschannen et al., 2025), a prevalent
choice for large-scale multimodal encoding, as our RAE encoder. We also experiment with webSSL
ViT-L (Fan et al., 2025a), a DINOv2 variant pre-trained on general web images. We re-tune our
GAN training recipe for the web data regime and, for comparison, train a separate decoder for
SigLIP2 ViT-So on ImageNet. We report both quantitative (rFID, PSNR, SSIM) and qualitative
results. We evaluate the reconstruction performance on ImageNet validation set and a 50k subset
drawn from YFCC (Thomee et al., 2016), a webimage dataset.

Family Model ImageNet YFCC

rFID ↓ PSNR ↑ SSIM ↑ rFID ↓ PSNR ↑ SSIM ↑

VAE SD-VAE 0.978 24.78 0.705 0.987 25.25 0.738
FLUX 0.288 30.92 0.894 0.410 32.18 0.920

RAE
DINOv2-L* 0.388 22.18 0.637 0.556 22.52 0.669
SigLIP2-So (IN) 0.462 20.82 0.563 0.970 20.95 0.591
SigLIP2-So (Web) 0.435 21.34 0.593 0.702 21.75 0.628

Table 19: Quantitative comparison of reconstruction performance. We report rFID (↓), PSNR
(↑), and SSIM (↑) on ImageNet and YFCC. ‘(IN)’ denotes training on ImageNet, while others are
trained on web-scale data. Default settings are marked in green. *: we use WebSSL (Fan et al.,
2025a), a variant of DINOv2.
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Figure 14: RAE decoders trained on more data generalize across domains. Decoders trained
only on ImageNet reconstruct natural images well but struggle with text-rendering scenes. Training
on webimages improves text reconstruction while maintaining natural-image quality. Compared to
proprietary VAEs, our RAE achieves competitive overall fidelity. *: we use WebSSL (Fan et al.,
2025a), a variant of DINOv2.

As shown in Figure 14, scaling the decoder training significantly mitigates reconstruction artifacts,
particularly for text and small objects. The results in Appendix N.1 demonstrate that training on
web images enhances the generalizability of RAE decoders for both in-domain (web images) and
out-of-domain (ImageNet) reconstruction. Notably, the decoder trained on web images outperforms
the ImageNet-trained counterpart even on ImageNet evaluation, suggesting that training on larger
and more diverse data substantially improves general reconstruction capabilities. Although they
still trail FLUX-VAE, both RAEs utilizing SigLIP2 and WebSSL outperform SDXL-VAE in rFID,
demonstrating highly competitive reconstruction ability.

N.2 TRAINING TEXT-TO-IMAGE MODELS ON RAE

Model Architecture. Following recent progress in T2I generation, we build upon the open-source
MetaQuery (Pan et al., 2025) framework. Our instantiation uses a 1.5B-parameter Qwen2.5 LLM
and a 2.4B-parameter DiT as the generative backbone. We employ SigLIP2 ViT-So as the RAE
encoder together with our web-trained RAE decoder. Unlike MetaQuery, our setup initializes from
a base LLM rather than a pretrained vision–language model.

Data. The training corpus consists of text–image pairs curated from open-source datasets used in
fuseDiT (Tang et al., 2025a), augmented with synthetic images generated by FLUX (Labs, 2024).
We additionally incorporate Cambrian7M (Tong et al., 2024) to better align RAE latents with the
LLM.

Training. During training, the RAE is kept frozen; we jointly train the LLM, DiT, and lightweight
adapters end-to-end. For VQA-style data, we compute a cross-entropy loss Lc, and for generation
data we use a diffusion loss Ld. The total objective is

L = Lc + 2Ld.

Baselines. We compare against a strong VAE baseline by replacing the RAE tokenizer with
FLUX-VAE—the state-of-the-art VAE used in modern T2I systems—while keeping all other com-
ponents identical. Both models are trained for 30k steps with a global batch size of 2048.

N.3 PRELIMINARY RESULTS

Convergence. Empirical results highlight the efficiency of RAE in text-to-image synthesis. As
illustrated in Figure 15, the RAE-based model exhibits significantly faster convergence than its
VAE counterpart. Quantitatively, RAE achieves a 3.75× speedup on GenEval and DPGBench,
underscoring its computational efficiency and suitability for large-scale generative tasks.
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Figure 15: RAE converges faster than VAE.
RAE achieves a 3.75× speedup compared to
the VAE counterpart.

Model MMEP TVQA AI2D Seed MMMU MMMUP

Und.-only 1374.8 44.7 63.9 67.1 40.2 20.5
RAE-based 1468.7 39.6 66.7 69.8 41.1 19.8

Table 20: Generative training leaves under-
standing intact. Across VL benchmarks, the
RAE-based model maintains performance com-
parable to the understanding-only baseline.

Figure 16: RAE-based text-to-image model demonstrates strong prompt-following ability.
Top: generations without decoder upsampling (224 resolution). Bottom: generations with decoder
upsampling to 378 resolution.

Decoder upsampling. As demonstrated in Section 6.1, we can directly leverage a generative
model pretrained at low resolution for high-resolution synthesis via decoder upsampling. To val-
idate the effectiveness of this approach for T2I, we train an upsampling decoder that increases the
resolution from 224 to 378. As shown in Figure 16, the generated images are of high quality and
maintain content consistency with their non-upsampled 224-resolution counterparts.

Image understanding. Since we utilize a base LLM without vision-language pretraining, the
model’s image understanding capability is determined jointly by the understanding and generation
data used during end-to-end training. As shown in Table 20, our model exhibits understanding
abilities comparable to a VQA-only baseline (where generation data is excluded). This indicates
that within the RAE framework, the inclusion of generation data does not degrade understanding
performance.

O INTERPRETING THE DIFFUSABILITY OF RAE VIA TSNE

A key remaining question is how the choice of RAE encoder influences generation performance.
While we demonstrated in Appendix E.1 that the encoder choice dramatically impacts results, the
underlying mechanism requires further explanation. We perform tSNE visualizations on the repre-
sentations from various RAE encoders, using SD-VAE as a baseline. To extract features for visual-
ization, we use the [CLS] token for encoders that possess one (MAE, DINOv2), and apply global
pooling over all patch tokens for those that do not (SigLIP2, SD-VAE).

As illustrated in Figure 17, we observe a clear hierarchy in class separation: SD-VAE < MAE <
SigLIP2 < DINOv2. DINOv2 exhibits the most distinct clustering among classes, while MAE
shows the least separation among the discriminative encoders, though it still surpasses SD-VAE.
Intuitively, well-separated class clusters simplify the learning of the generative model; the class-
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Figure 17: tSNE examples. We use 50 images per class from ImageNet validation set, and 100
classes for tSNE visualization.

Figure 18: Noise-augmented decoding refines high-frequency details in generated images.
Zoom in for details.

conditioned velocity becomes more coherent within classes and distinct between them, making the
diffusion process easier to fit.

P ADDITIONAL RESULTS

Qualitative samples of noise-augmented decoding. We provide visual examples illustrating the
effect of noise-augmented decoding. As shown in Figure 18, noise-augmented decoding adds more
high-frequency details to the generated images, resulting in improved FID and IS.

Training dynamics. We examine how model scale affects training loss in Figure 19. Increasing
the model’s computational capacity leads DiTDH to converge faster and reach a lower final loss
without loss spikes.
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Figure 19: Training loss of DiTDH on DINOv2-B. We use an EMA weight of 0.9 to smooth the
loss. No loss spikes is observed during training.
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