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Abstract

The main challenge that sets transfer learn-
ing apart from traditional supervised learn-
ing is the distribution shift, reflected as the
shift between the source and target models
and that between the marginal covariate dis-
tributions. In this work, we tackle model
shifts in the presence of covariate shifts in the
high-dimensional regression setting. Specifi-
cally, we propose a two-step method with a
novel fused-regularizer that effectively lever-
ages samples from source tasks to improve
the learning performance on a target task
with limited samples. Nonasymptotic bound
is provided for the estimation error of the tar-
get model, showing the robustness of the pro-
posed method to covariate shifts. We further
establish conditions under which the estima-
tor is minimax-optimal. Additionally, we ex-
tend the method to a distributed setting, al-
lowing for a pretraining-finetuning strategy,
requiring just one round of communication
while retaining the estimation rate of the cen-
tralized version. Numerical tests validate our
theory, highlighting the method’s robustness
to covariate shifts.

Transfer learning is a technique that leverages knowl-
edge from source tasks to improve learning perfor-
mance in a related but possibly different target task
(Torrey and Shavlik, 2010). In this paper, we consider
the high-dimensional setting where the target sample
size is much smaller than the number of features. In
this context, applying transfer learning techniques to
extract information from a larger pool of source sam-
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ples can be particularly beneficial in identifying the
model parameters. For example, in genetic studies
of rare diseases, transferring information from larger,
related set of studies could uncover highly disease-
relevant genetic patterns (Taroni et al., 2019).

In contrast to learning from i.i.d. samples, a funda-
mental challenge in transfer learning is handling the
distribution shifts between the source sample (XS ,yS)
and the target sample (XT ,yT ) (Pan and Yang, 2009).
The discrepancy between the distributions typically
shows in two ways: 1) model shift: P (yS |X) ̸=
P (yT |X), indicating a shift in the learning models,
and 2) covariate shift: P (XS) ̸= P (XT ), indicating
a shift in the marginal covariate distributions. In ei-
ther case, models achieving small training errors on
the source tasks may experience high risks on the tar-
get task (Lu et al., 2020). Therefore, to improve the
learning performance of the target model P (yT |X) us-
ing knowledge from the source samples, one should not
only capture and correct the model shift but also be
robust to the covariate shifts. In the high-dimensional
setting, handling such differences becomes even more
difficult due to accumulated noise and limited samples
(Fan et al., 2020). This leads to the following question:

How to tackle model shifts in high-dimensional trans-
fer learning while being robust to covariate shifts?

Apart from the challenge brought by the distribution
shift, modern learning problems often involve datasets
distributed across multiple computing nodes. In such
a scenario, performing centralized training by pooling
all the raw data in a single machine can be undesir-
able due to storage, communication, and privacy is-
sues. This situation prompts another question:

How to transfer knowledge from distributed source
datasets in a communication-efficient manner?

This paper proposes a solution for the above two ques-
tions for high-dimensional linear regression with K

1Correspondence to: J Liu <jingyuan@xmu.edu.cn>.
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source tasks, where the target model is p-dimensional
with sparsity level s. Our contributions are:

• Covariate-Shift Robust Regularizer. We pro-
pose a novel fused-regularizer achieving two pur-
poses: it promotes sparse solutions for the high-
dimensional model parameter while simultaneously
capturing model shifts between source and target
datasets. Our theoretical results further show that this
regularizer can separate model shifts from shared pat-
terns in a robust manner under covariate shifts.

• Optimal Estimation Procedure. Leveraging the
proposed regularizer, we introduce a two-step proce-
dure termed TransFusion. When the source tasks are
sufficiently diverse, we show applying the first step on
the source and target tasks jointly suffices to yield
a fast rate of O( s log p

nT+KnS
+ h̄

√
log p
nS

), where nT is
the target sample size, nS is the source sample size,
and h̄ measures task similarity. The rate significantly
improves over the one achieved on target task with-
out transfer learning, i.e., the rate of O( s log p

nT
), when

nS ≫ h̄n2
T . For cases that do not meet the diversity

criteria, TransFusion incorporates a second step refin-
ing the estimate on the target task, ensuring a rate of
O( s log p

nT+KnS
+ h̄
√

log p
nT

∧ h̄2), which is minimax-optimal
when p ≫ s and h̄ is relatively small.

• Efficient Distributed Learning. We develop
a distributed variant of our method, termed D-
TransFusion, requiring only one-shot communication
of the pre-trained local models from source tasks nodes
to target task node, significantly reducing communi-
cation overhead. More importantly, it offers the flex-
ibility to quickly adapt the models to different down-
stream tasks while avoiding training from scratch. We
further show that when the source sample size nS is
sufficiently large, D-TransFusion achieves the optimal
statistical rate, matching its centralized counterpart.

Related Works: This paper develops transfer learn-
ing methods for high-dimensional regression problems
under both model and covariate shifts. Related works
can be broadly divided into the following categories.

Domain Adaptation methods primarily focus on
handling covariate shifts, usually assuming the un-
derlying models remain the same (Quinonero-Candela
et al. (2008), Redko et al. (2020)). One prevalent ap-
proach in this category focuses on aligning the source
and target covariate distributions by learning domain-
invariant representations (Redko et al. (2020), Man-
sour et al. (2009), Cortes and Mohri (2011), Cortes
and Mohri (2014)). Another line of research involves
correcting estimators to address covariate shifts, often
using the importance weighting (Quinonero-Candela
et al. (2008), Sugiyama and Kawanabe (2012), Chen

et al. (2016)). In contrast, we explicitly address model
shifts and aim for robustness to covariate shifts.

Multitask learning aims to handle model shifts
across multiple tasks and learn shared features to im-
prove the performance of each task (Pan and Yang,
2009). In regression settings, regularization techniques
are often employed to promote information transfer.
Examples include the Frobenius and spectral norm
(Argyriou et al. (2007), Tian et al. (2023)), mixed ℓ2,1
norm (Lounici et al., 2009), hard-thresholding (Huang
et al., 2023), and the total variation norm (Li and Sang
(2019), Zhang et al. (2022), Tang and Song (2016)).
These works typically require all tasks to have a com-
parable sample size and emphasize overall task perfor-
mance. Therefore, they are not directly applicable to
transfer learning problems where the target task, often
with far fewer samples, is the primary focus.

Transfer Learning has been intensively studied
under regression settings (Du et al. (2017), Lei
et al. (2021), Lin and Reimherr (2022;2024)). How-
ever, most works are restricted to low-dimensional
problems. Recently, transfer learning in the high-
dimensional regression settings has been studied in
Takada and Fujisawa (2020), Bastani (2021), Li et al.
(2022) and Tian and Feng (2022). These works, how-
ever, deal with scenarios with only a single source or
are sensitive to covariate shifts across multiple sources,
and their learning accuracy degrades quickly if such
shifts are severe. More recent works such as Li et al.
(2023) and Liu (2023) attempt to mitigate the im-
pact of covariate shifts. However, these methods either
rely on strong assumptions or are computationally de-
manding. Specifically, Li et al. (2023) established the
convergence rate of the proposed estimator assuming
the empirical loss function in the high-dimensional set-
ting is smooth, and computing the estimator requires
solving a nonsmooth optimization problem with mul-
tiple constraints, while Liu (2023) assumes the target
sample has a comparable size as the source sample.
In contrast, theoretical guarantees of our method are
established under weaker, more practical conditions,
and numerically it can be computed efficiently using
algorithms such as iterative soft thresholding.

Notation: We use bold upper- and lowercase let-
ters for matrices and vectors, respectively. For a ma-
trix A ∈ Rm×n, we denote its (i, j)-th element by
Aij , maximum eigenvalue by Λmax(A), and minimum
eigenvalue by Λmin(A). We let a∨ b denote max{a, b}
and a ∧ b denote min{a, b}. We use c, c0, c1, . . . to de-
note generic constants independent of n, p and K. Let
an = O (bn) and an ≲ bn denote |an/bn| ≤ c for some
constant c when n is large enough; an = o (bn) and
bn ≫ an if an = O(cnbn) for some cn → 0; a ≍ b if
a = O(b) and b = O(a).



Zelin He, Ying Sun, Jingyuan Liu, Runze Li

1 Preliminaries

We consider a transfer learning problem involving one
target task and K source tasks. For the target task,
we observe a sample (X(0),y(0)) generated from the
target model

y
(0)
i =

(
X

(0)
i·

)⊤
β(0) + ϵ

(0)
i , i = 1, . . . , nT ,

where β(0) ∈ Rp is the parameter of primary interest
and ϵ

(0)
i is the observation noise. We focus on a high-

dimensional scenario where the dimension p is much
larger than the target sample size nT , yet the ground
truth β(0) is a sparse vector with s := ∥β(0)∥0 nonzero
elements, which is much smaller than p, i.e., p ≫ s.

In addition to the target sample, we also have access
to K source samples {(X(k),y(k))}Kk=1, generated from
the source model

y
(k)
i =

(
X

(k)
i·

)⊤
β(k)+ϵ

(k)
i , i = 1, . . . , nS , k = 1, . . . ,K.

For the k-th source model, β(k) ∈ Rp is the unknown
source task-specific parameter, and ϵ

(k)
i accounts for

the observation noise. For simplicity, we assume the
source samples have the same size nS .

Our goal is to estimate β(0) using both the target
and source samples under the challenging scenario
where distributions of the samples are heterogeneous,
as characterized by both model and covariate shift de-
scribed next.

Model Shift. In our context, the model shift is the
situation where each source model differs from the tar-
get model, and is measured by δ(k) := β(k) − β(0)

for 1 ≤ k ≤ K. Throughout the paper, we refer
δ(k) as the “parameter contrast” or “task-specific sig-
nal”. A source task is considered informative for trans-
fer learning if δ(k) is relatively small. Formally, let
β := ((β(0))⊤, (β(1))⊤, . . . , (β(K))⊤)⊤ ∈ R(K+1)p, we
assume β belongs to the following parameter space

Θ(s,h) :=
{
β : ∥β(0)∥0 ≤ s, ∥β(k) − β(0)∥1 ≤ hk

}
,

(1)

with h := (h1, . . . , hK)⊤. In (1), the informative level
of the k-th source task is quantified by the ℓ1-sparsity
of δ(k), and is upper bounded by a factor hk ≥ 0.

Remark 1. We choose an ℓ1-sparse constraint for the
high-dimensional contrast β(k)−β(0), as it aligns well
with practical applications where model shifts typically
spread over multiple dimensions but their overall mag-
nitude does not grow too fast. The results in the paper
can be naturally extended to a general ℓq-sparse case
for q ∈ [0, 1].

Covariate Shift. In addition to the shift in the model
parameters, we also consider the covariate shift, de-
fined as the difference in the distributions of X

(k)
i· s

across the tasks. In this work, we only impose the fol-
lowing mild tail condition on the distribution of X(k)

i· s
but allow other distribution characteristics, such as the
covariance structures, to vary across different tasks.
Assumption 1 (Sub-Gaussian designs). For any
0 ≤ k ≤ K, X

(k)
i· s are independent sub-Gaussian

random vectors with mean zero and covariance
Σ(k). Furthermore, there exists some universal con-
stant c such that 1/c ≤ min0≤k≤K Λmin(Σ

(k)) ≤
max0≤k≤K Λmax(Σ

(k)) ≤ c.

Finally, we assume that the random noises follow inde-
pendent Gaussian distributions, a typical assumption
for high-dimensional regression analysis.
Assumption 2 (Gaussian random errors). For all 0 ≤
k ≤ K, the ϵ

(k)
i s are independent Gaussian random

variables with zero mean and uniformly upper bounded
variance, and are independent of X(k)s.

2 Covariate-Shift Robust Transfer
Learning

We now introduce a method called TransFusion
(Transfer Learning with a Fused-Regularization), de-
signed to address high-dimensional model shifts in
the presence of covariate shifts, thereby transferring
knowledge from source tasks to the target task. The
method consists of two steps. First, we perform a co-
training step using both source and target samples,
leveraging the ℓ0-sparsity of β(0) and the ℓ1-sparsity
of the contrast δ(k). We show that when the source
tasks are sufficiently diverse, see Definition 1, perform-
ing the first step of the TransFusion method suffices to
ensure a fast rate. When such a condition is not met,
we further perform a second step by fine-tuning the
model on the target dataset. The method is shown to
be rate-optimal and robust to covariate shifts.

2.1 Step 1: Co-Training

We start with the first step, a co-training step involv-
ing both target and source samples. The challenge
is tackling the distribution shifts while extracting the
shared pattern between source and target samples to
estimate β(0). Pooling all data as i.i.d. samples lever-
ages larger sample size and reduces noise, but suffers
from large bias if the source and target distributions
differ significantly. In contrast, training exclusively on
the target sample prevents any information transfer
from the source samples. It is therefore critical to to
strike a balance between these two extremes to im-
prove the estimation of β(0). To this end, we propose
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a co-training step that estimates β(k)s by solving the
following problem:

β̂ ∈ argmin
β∈R(K+1)p

{
1

2N

K∑
k=0

∥y(k) −X(k)β(k)∥22

+λ0

(
∥β(0)∥1 +

K∑
k=1

ak∥β(k) − β(0)∥1
)}

, (2)

where N = KnS + nT is the total sample size, λ0 is
the tuning parameter and {ak}Kk=1 are weights that
will be specified later. In (2), the first term mea-
sures the average fitness of the models with parameter
{β(k)}Kk=0, while the fused-regularization term simul-
taneously promotes the sparsity of β(0) and captures
the ℓ1-sparse contrast between β(0) and β(k) by penal-
izing their difference.

We construct the first-step estimator as ŵ =
nS

N

∑K
k=1 β̂

(k)
+ nT

N β̂
(0)

. The motivation for this es-
timator is twofold: first, averaging across both target
and source estimators utilizes the full sample, yielding
an estimator with low variance. In addition, when the
source datasets are sufficiently diverse, the bias of ŵ
is small. When the reduction in variance dominates
the increase in bias, the one-step estimator ŵ serves
as a promising estimator of β(0) than using the target
sample alone.

We now formally characterize the source task diversity.

Definition 1 (Source task diversity). Given β ∈
Θ(s,h), we quantify the diversity across source tasks
with the metric ∥nS

N

∑K
k=1 δ

(k)∥1 ≤ εD, where δ(k) :=

β(k) − β(0) is the task-specific signal.

A small εD implies that {β(k)}Kk=1 are centered around
β(0) and cover all the directions, such that the average
parameter w := nS

N

∑K
k=1 β

(k)+ nT

N β(0) does not align
with any direction significantly more than β(0). This
kind of assumption is commonly imposed in transfer
learning settings (Du et al. (2020),Tripuraneni et al.
(2020)).

We proceed to establish the statistical estimation rate
for ŵ under the setting of diverse source tasks.

Theorem 1. Under Assumption 1 and 2, if nS ≫
s log p, then by choosing λ0 = c0

√
log p/N for some

universal constant c0 and ak = 8
√
nS/N , we have

∥ŵ −w∥22 ≲
s log p

N
+ (1 + vn)h̄

√
log p

nS
, (3)

and

∥ŵ − β(0)∥22 ≲
s log p

N
+ (1 + vn)h̄

√
log p

nS
+ ε2D, (4)

with probability at least 1 − c1 exp(−c2nT ) −
c3 exp (−c4 log p), where vn :=

√
K2 log p/nS h̄ and

h̄ := nS

N

∑K
k=1 hk.

Let us break down the upper bound provided by equa-
tion (4). The first term, s log p/N , represents the rate
from estimating an s-sparse coefficient β(0) based on
N = KnS + nT i.i.d. samples. This term reveals the
benefit of using both the source and target datasets
for estimating the target parameter β(0). The second
term, h̄

√
log p/nS , accounts for the estimation error

of δ(k) unique to each source task and thus is limited
by the source sample size nS . The factor vn is sample
dependent and is negligible when nS ≫ h̄2K2 log p.
The first two terms together quantify the estimation
error ∥ŵ − w∥22. The third term, ε2D, measures the
difference between w and β(0) and contributes to the
bias introduced by averaging. Notably, to obtain the
bound (4), we do not require a homogeneous distribu-
tion of the covariates X(k)s but only impose the mild
tail assumption as outlined in Assumption 1, and the
bound does not depend on the target sample size nT .

As a comparison, if we apply the LASSO regression
on the target data, the estimation error is of or-
der O(s log p/nT ). Therefore, if N ≫ nT , nS ≫
h̄2(n2

T ∨K2 log p) and εD ≪
√

s log p/nT , that is, the
source tasks are sufficiently diverse with adequately
large sample size, then one-step TransFusion method
achieves a sharper estimation rate. This corroborates
our design intuition and quantitatively shows the bene-
fit of transferring information from diverse source tasks
even under covariate shifts.

Remark 2 (Adaptive version of TransFusion). In
Theorem 1, we choose a weight ak that does not de-
pend on hk, as we treat hk as an unknown priori. As
a compromise, the estimation rate depends on h̄, the
averaged magnitude of model shifts. In fact, for a gen-
eral choice of λ0 and ak, TransFusion could yield a
bound

∥ŵ − β(0)∥22 ≲ sλ2
0 +

K∑
k=1

akλ0hk + ε2D

under certain conditions (cf. Lemma 5). So if we
have some information on hk, we may adjust ak ac-
cordingly, focusing more on informative datasets with
small hk and less or not at all on those with large
hk. In such cases, this adaptive version of TransFu-
sion could potentially yield a fast estimation rate that
is less sensitive to the magnitude of model shifts.

Remark 3 (Scalability with task number K). Trans-
Fusion incorporates a novel fused regularizer capturing
the task-specific signals in the joint learning step. This
technique robustifies the method against covariate-shift
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and introduces a dependency of the convergence rate
on K as a tradeoff. Specifically, the convergence rate
of the first-step estimator is given by (3) with vn :=√

K2 log p/nS h̄ due to the non-strong convexity of the
local empirical loss (cf. Lemma 4). If we increase K
while fixing nS, for large K, the sum will be dominated
by the second term, which grows with K. Otherwise,
if we increase nS with K, TransFusion would have a
consistent error improvement. This is supported by the
simulation results and discussions in Appendix E.

2.2 Step 2: Local Debias

Despite its merits, the one-step TransFusion method
may experience large bias when εD is large. This is
especially the case when the source tasks exhibit a
skewed model shift towards one specific direction than
β(0). In such cases, we employ an additional debias
step that refines the initial estimator ŵ and mitigates
the impact of εD. Specifically, we correct ŵ using the
target sample as:

δ̂ ∈ argmin
δ∈Rp

{
1

2nT

∥∥∥y(0) −X(0)ŵ −X(0)δ
∥∥∥2
2
+ λ̃∥δ∥1

}
,

β̂
(0)

TransFusion = ŵ + δ̂. (5)

Next, we demonstrate that with an appropriate choice
of estimation strategy and tuning parameters, we can
attain an optimal estimation rate of β(0) without re-
quiring a small εD. Define the event

A =
{
s log p/nS ≥ h̄

√
log p/nT

}
, (6)

and Ac as its complement. The following theorem es-
tablishes an upper bound on the estimation error for
the two-step TransFusion algorithm.
Theorem 2. Under the assumptions of Theorem 1,
if nT ≳ s log p, nS ≳ K2s log p and h̄

√
log p/nT +

Ks log p/nS = o(1), then by choosing the parameters

λ0 = c0

(√
log p

N
1A +

√
log p

nS
1Ac

)
,

ak = 8

(√
nS

N
1A +

nS

N
1Ac

)
,

and λ̃ = c1
√
log p/nT for some universal constants

c0 and c1, the solution of the two-step TransFusion
method satisfies

∥β̂
(0)

TransFusion − β(0)∥22 ≲
s log p

N
+ h̄

√
log p

nT
, (7)

with probability at least 1− c2 exp (−c3 log p).

By comparing the results of Theorem 1 and 2 [cf. (4)
and (7)], we see when

√
log p/nT ≲ ε2D/h̄, perform-

ing the second step improves the estimation precision.

The ratio εD/h̄ quantifies the normalized (by the mag-
nitude of δ(k)s) source task diversity, and thus our re-
sult shows applying the second step is beneficial for
non-diverse source tasks. Note that the condition on
the sample size nT and nS in Theorem 2 is stronger
than Theorem 1. Such a condition is required to en-
sure the target-specific signals δ(k) being accurately
captured to perform the correction in (5).

On the other hand, if
√
log p/nT ≳ ε2D/h̄ applying the

second step may even harm the model performance.
Therefore, choosing between the one-step and two-step
TransFusion methods carefully is key to getting the op-
timal estimation results. The following corollary pro-
vides guidelines for making this choice.
Corollary 1. Under the assumptions of Theorem 2, if
we apply the one-step TransFusion method when nT ≲
log p/h̄2 and apply the two-step TransFusion method

otherwise, then obtained estimator β̂
(0)

TransFusion−2 sat-
isfies

∥β̂
(0)

TransFusion−2 − β(0)∥22 ≲
s log p

N
+ h̄

√
log p

nT
∧ h̄2,

(8)

with probability at least 1− c2 exp (−c3 log p).

Next, we establish the minimax optimality of the
above strategy under certain conditions. The following
result follows from minor modifications of Theorem 2
in Li et al. (2022).
Proposition 1. Under Assumption 1 and Assumption
2, if N ≫ s log p, hk ≍ h̄ and h̄

√
log p/nT = o(1),

then any estimator β̂
′
that is a measurable function of

the sample {(X(k),y(k))}0≤k≤K satisfies

inf
β̂
′

sup
β∈Θ(s,h)

∥∥∥β̂′
− β(0)

∥∥∥2

2
≳

s log p

N
+

s log p

nT
∧ h̄

√
log p

nT
∧ h̄2,

(9)

with probability at least 1/2.

Comparing with the upper bound (8), we can conclude
that, given the conditions outlined in Theorem 2, if
source datasets are sufficient informative such that h̄ ≲
s
√
log p/nT , then the proposed procedure is minimax

optimal, even under covariate shifts.
Remark 4 (Implementation of TransFusion). Notice
that although the two-step TransFusion method only
involves one tuning parameter in each step, as dis-
cussed in Theorem 2 and Corollary 1, it relies on
a dichotomous strategy that depends on the value of
h̄. However, it can still be practically applied without
knowing h̄ in advance by implementing both choices
and selecting the one with smaller validation error.
On the computation front, the global minimizer of each
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TransFusion step can be efficiently found by numeri-
cal algorithms such as iterative soft-thresholding. The
implementation details are provided in Appendix D.

2.3 Understanding the Robustness of the
TransFusion Method to Covariate Shift

In this section, we discuss the underlying mechanisms
that make the TransFusion method robust to covari-
ate shifts via comparing with the two-step method
proposed in Li et al. (2022) and Tian and Feng
(2022). While both methods aim to address the high-
dimensional transfer learning problem, we take a sig-
nificantly different approach in the first co-training
step.

In their approach, the first step pools samples from
both target and source tasks, and performs a sparse
regression to obtain the initial estimator. In the lin-
ear regression setting, this estimator comes with an
asymptotic bias expressed as

δPooling :=

(
K∑

k=1

Σ(k)

)−1 K∑
k=1

Σ(k)δ(k). (10)

Due to the weights introduced by the covariance ma-
trices, the contrast δ(k)s can be amplified by a factor
of CΣ, defined as

CΣ := 1+max
j≤p

max
k

∥∥∥∥∥∥e⊤j
(
Σ(k) −Σ(0)

) ∑
1≤k≤K

1

K
Σ(k)

−1∥∥∥∥∥∥
1

.

Consequently, in the linear regression setting, their es-
timator yields the following estimation rate (Li et al.,
2022, Theorem 4):

s log p

N
+

(
CΣ

√
log p

nT
h̄

)
∧
(
C2

Σh̄
2
)
.

When the Σ(k)s are dissimilar, the factor CΣ can di-
verge with dimension p even if Assumption 1 holds,
considerably deteriorating the estimation accuracy.
See Appendix C for a detailed discussion.

In contrast, as shown in (8), our method is robust
to such covariance heterogeneity and thus doesn’t in-
volve the CΣ factor. This is achieved by incorporating
a fused-regularizer, allowing us to accurately capture
task-specific signals under covariate shifts. Solving the
objective leads to an initial estimator with asymptotic
bias

δTransFusion :=
1

K

K∑
k=1

δ(k),

which is free from the impact of the covariance ma-
trices. This bias is much smaller than δPooling under
covariate shift settings with a large CΣ.

3 D-TranFusion: Distributed Transfer
Learning in One-Shot

In this section, we consider the distributed transfer
learning problem where the target and K source sam-
ples are stored by different computing nodes. Such
a setting is of primary interest in learning problems
involving a massive amount of training data, where
brute-forcely pooling the raw data is not admissible
due to practical constraints such as storage limitation,
communication cost, and privacy concerns.

This motivates us to consider developing a
communication-efficient distributed TransFusion
method, termed D-TransFusion. Our method is based
on TransFusion and leverages the idea of divide-
and-conquer to facilitate communication efficiency,
aiming to achieve a comparable estimation error as
TransFusion but using only one-shot communication.
Specifically, D-TransFusion consists of the following
two steps.

Step 1. Each node k computes an estimator β̃
(k)

(to be specified later) locally based on source sample
(X(k),y(k)) and transmits it to the target node. The
target node then aggregates them with its own sample
(X(0),y(0)) via solving the following problem:

β̂C ∈ argmin
β∈R(K+1)p

{
1

2N

K∑
k=1

∥
√
nS(β̃

(k)
− β(k))∥22

+
1

2N
∥y(0) −X(0)β(0)∥22 + λ0R(β)

}
, (11)

where R(β) := ∥β(0)∥1+
∑K

k=1 ak∥β
(k)−β(0)∥1. With

the solution β̂C , the target node computes ŵC =
nS

N

∑K
k=1 β̂

(k)

C + nT

N β̂
(0)

C .

Step 2. The target node corrects ŵC on its local
sample (X(0),y(0)) by solving

δ̂C ∈ argmin
δ∈Rp

{
1

2nT

∥∥∥y(0) −X(0)ŵC −X(0)δ
∥∥∥2

2
+ λ̃∥δ∥1

}
,

and outputs the estimator β̂
(0)

D-TransFusion = ŵC + δ̂C .

Comparing with (2) and (5), we can see that D-
TransFusion differs from the centralized TransFusion
method only in the first step. To avoid the involve-
ment of source samples, D-TransFusion replaces the
least square loss ∥y(k)−X(k)β(k)∥22 by the squared loss
∥√nS(β̃

(k)
−β(k))∥22, wherein β̃

(k)
serves as a “pseudo

sample” summarizing the information of β(k) that the
k-th source sample contains. By doing so, only one-
shot communication is required to transmit the sum-
mary statistics β̃

(k)
from the source to the target

node, significantly reducing the communication over-
head. Here, β̃

(k)
is carefully selected as a de-biased
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LASSO estimator (Javanmard and Montanari, 2014)
that minimizes estimator variance while also control-
ling the bias under a given threshold. See Appendix G
for a detailed discussion. This choice ensures that D-
TransFusion can significantly reduce communication
overhead while achieving the minimum loss of sample
efficiency compared to centralized TransFusion.

More importantly, D-TransFusion allows for pre-
training on each source data nodes before transfer
learning. The decoupling of training on the source and
target samples eliminates the need for training from
scratch when the target samples change, and thus en-
hances the model’s adaptability to downstream tasks.

We now establish the statistical precision of the one-
step D-TransFusion method. Define δk = s log p

N +

nS

N

√
log p
nS

hk and δ0 = Ks log p
N +

√
log p
nS

h̄. The following
theorem provides an upper bound for the estimation
error of the one-step D-TransFusion estimator ŵC .

Theorem 3. Under Assumption 1 and 2 and the as-
sumptions nS ≫ Ks2 log p, nS ≳ (h̄2 ∨ K2)s log p,
hk ≍ h̄, if we construct {β̃

(k)
}Kk=1 through (57)

and (58) with parameters λ̃k = µk = c1
√

log p/nS,
and solve problem (11) with parameters λ0 and
{ak}k=1,...,K chosen such that

λ0 = c0

(√
log p

N
+ δ0

)
,

akλ0 = c0

(
8 ∨ h̄

hk

)(√nS

N

log p

N
+ δk

)
, (12)

for some universal constant c0 and c1, then with prob-
ability at least 1− c2 exp (−c3nT )− c4 exp (−c5 log p),

∥ŵC − β(0)∥22 ≲ s
log p

N
+

√
log p

nS
h̄+ ε2D + sδ20 +

K∑
k=1

δkhk,

(13)

if we further assume h̄ = O(1), then we have

∥ŵC − β(0)∥22 ≲ s
log p

N
+

√
log p

nS
h̄+ ε2D. (14)

Let us now compare the result to Theorem 1. Under
the additional assumption nS ≫ Ks2 log p, nS ≳ (h̄2∨
K2)s log p, hk ≍ h̄, which requires the source tasks
roughly equally informative with sufficiently large size,
the estimation error of D-TransFusion is larger than
TransFusion by sδ20+

∑K
k=1 δkhk. This reflects the cost

of sample efficiency for achieving one-shot communi-
cation. When h̄ = O(1), such difference is negligible
compared to the estimation error of TransFusion, the
statistical accuracy of ŵC matches that of the central-
ized counterpart ŵ in the asymptotic sense.

The second step of D-TransFusion can be designed
in analogue to that of TransFusion. Recall the event
A = {s log p/nS ≥ h̄/

√
log p/nT } defined in (6). The

following theorem establishes the statistical estimation
rate of the final estimator obtained from the two-step
D-TransFusion method.

Theorem 4. Under the assumptions of Theorem 3, if
further assume nT ≳ s log p, h̄

√
log p/nT = o(1), then

by choosing λ0 and {ak}k=1,...,K such that

λ0 = c0

(√
log p

N
1A +

√
log p

nS
1Ac + δ0

)
,

akλ0 = c0

(
8 ∨ h̄

hk

)(√nS

N

log p

N
+ δk

)
,

and λ̃ = c1
√
log p/nT for some universal constants c0

and c1, we have

∥β̂
(0)

D-TransFusion − β(0)∥22 ≲
slog p

N
+

√
log p

nT
h̄, (15)

with probability at least 1− c2 exp (−c3 log p).

Theorem 4 ensures that the two-step D-TransFusion
method achieves a statistical rate of the same order
as the centralized two-step TransFusion method under
the previously discussed additional conditions. By em-
ploying similar reasoning as in Corollary 1 and Propo-
sition 1, we can further establish conditions under
which D-TransFusion is minimax optimal. These re-
sults demonstrate that D-TransFusion is an efficient
and robust solution when dealing with large-scale dis-
tributed datasets with covariate shifts.

Remark 5 (The efficacy of D-TransFusion). D-
TransFusion aims to address the scenario where the
source datasets are not co-located and cannot to be
merged. This differs from the traditional distributed
computing paradigm, where one splits the whole data
into parts and parallelizes the cost due to the large data
size. As for the implementation cost, since K debiased
lasso estimators are computed in step 1 and transmit-
ted in step 2, it requires per source node storing and
transmitting a p-dimensional vector. The computation
cost readily follows that of the debiased and standard
lasso, provided in Lee et al. (2017). Although concerns
may arise about the computation cost of the debiased
Lasso, it is noteworthy that under mild conditions, the
de-biased lasso estimator β̃

(k)
can be replaced by other

asymptotically unbiased estimator such as the SCAD
estimator (Fan and Li (2001)), which enables the D-
TransFusion to enjoy both comparable computational
complexity, but distributed to K parallel processors,
and statistical precision to its non-distributed counter-
part given a moderate task number K.
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4 Simulation

We evaluate the empirical performance of our proposed
methods, TransFusion and D-TransFusion, and com-
pare with existing methods including Trans-Lasso (Li
et al., 2022) and TransHDGLM (Li et al., 2023). For
two-step approaches, we report and compare the per-
formance of both steps to better understand scenar-
ios where the second step is necessary. As a base-
line, we include the estimation error obtained by the
LASSO regression on the target task, which we call
Lasso (baseline). Each simulation setting is replicated
with 100 independent trials, and we report the aver-
age performance. All methods are implemented based
on R package glmnet with standard configuration, and
parameters are chosen via 10-fold cross-validation.

We follow a similar experimental setup as in Li et al.
(2022) and Li et al. (2023) by considering a high-
dimensional linear regression problem with p = 500
and sparsity level s = 10. The target model is set
as β

(0)
j = 0.3 for 1 ≤ j ≤ s and β

(0)
j = 0 oth-

erwise. We generate nT = 150 independent target
samples (X(0),y(0)) by y(0) = X(0)β(0) + ϵ(0) with
X

(0)
i· ∼ N(0, I) and ϵ

(0)
i ∼ N(0, 1).

The source sample size is set to be nS = 200, and the
source task number K varies in the range {1, 3, 5, 7, 9}.
We set hk = 12 for 1 ≤ k ≤ K. To simulate model
and covariate shift we consider the following parame-
ter configurations for the source tasks.

Model Shift. To investigate the impact of task di-
versity, we simulate two types of model shifts.
(i) Diverse source tasks. For k = 1, . . . ,K − 1 we
set β(k) = β(0) + δ(k) with δ

(k)
j ∼ N(0, (hk/50)

2) for
1 ≤ j ≤ 50 and δ

(k)
j = 0 otherwise. The last source

model is generated with δ(K) = −
∑K−1

k=1 δ(k) so that
the task diversity measure εD = 0.
(ii) Non-diverse source tasks. Each k-th task-specific
signal is generated as δ

(k)
j ∼ N(0.1, (hk/50)

2) for
1 ≤ j ≤ 50 and δ

(k)
j = 0 otherwise.

Covariate Shift. To demonstrate the robustness of
TransFusion to covariate shifts, we consider two set-
tings with different covariate distributions. In each
setting, we generate nS independent samples for each
source task.
(a) Homogeneous design. Each X

(k)
i· ∼ N(0, I).

(b) Heterogeneous design. Each X
(k)
i· ∼ N(0,Σ(k))

with Σ(k) = (A(k))⊤(A(k)) + I. Here A(k) is a ran-
dom matrix with each entry equals 0.3 with probability
0.3 and equals 0 with probability 0.7.

We consider four experimental settings based on com-
binations of model design (i) and (ii) with covariate

Figure 1: Comparison of estimation errors under (i)
diverse and (ii) non-diverse source task settings with
(a) homogeneous design and (b) heterogeneous design.

Figure 2: Comparison of the estimation errors of D-
TransFusion and TransFusion methods under (i) di-
verse and (ii) non-diverse source task settings with (b)
heterogeneous design.

design (a) and (b) to generate the source samples.
Fig. 1 reports the ℓ2 estimation error of β(0) versus the
source task number K in these four settings. Fig. 2 re-
ports a focused comparison between the performance
of D-TransFusion and TransFusion in heterogeneous
design (b). More simulation results are reported in
the Appendix E. The following comments are in order.

• Robustness to covariate shift. Fig.1 (i-a) shows in
the diverse source tasks setting (i) when there is no co-
variate shift (a setting in favor of Trans-Lasso), Trans-
Fusion achieves comparable estimation error with the
state-of-the-art methods. However, when covariate
shift exists, a comparison of Fig.1 (i-b) with (i-a)
shows the estimator errors obtained by both Trans-
Lasso and TransHDGLM increase significantly, and are
even larger than Lasso (baseline) for small values of K.
On the contrary, the performance of TransFusion re-
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mains the same, showing its robustness to covariate
shift. When the source tasks are non-diverse, Fig.1
(ii-a) and (ii-b) reveal similar advantages achieved by
two-step TransFusion. Consequently, TransFusion of-
fers better reliability when the degree of covariate shift
and source task diversity are unknown a priori.

• Impact of source task diversity. In Theorem 1 we
have proved that when the source tasks are sufficiently
diverse, applying one-step TransFusion suffices to ob-
tain a small estimation error. Fig.1 (i-a) and (i-b)
corroborate this statement: under both homogeneous
and heterogeneous covariate designs, one- and two-
step TransFusion yields comparable estimation errors.
In the more challenging setting with non-diverse source
tasks, Fig.1 (ii-a) and (ii-b) indicate applying the sec-
ond de-bias step reduces the estimation error, which is
also consistent with the implications of Theorem 2.

• D-TransFusion matches the performance of TransFu-
sion. Fig. 2 demonstrates for small K, D-TransFusion
attains comparable or even smaller estimation error
than TransFusion, but uses only one-shot communi-
cation and has the ability to quickly adapt to down-
stream tasks. As K increases, the gap reduces, and
TransFusion gradually outperforms D-TransFusion.
This is because D-TransFusion has a more restrictive
growth condition on the source sample size nS with
K, a requirement common to divide-and-conquer type
methods. It also reveals the tradeoff between sample
efficiency and communication cost.

In addition to the simulation study using synthetic
data, the covariate-shift robustness of TransFusion
method is further validated on real-world application
through the MNIST handwritten digit classification
task. The results are provided in Appendix F.

5 Conclusion

In this paper, we introduce a novel solution to
tackle model shifts in high-dimensional transfer learn-
ing problems, ensuring robustness to covariate shifts
and efficiency in knowledge transfer across distributed
datasets. We provide a theoretical guarantee, show-
ing its capacity to fully utilize the source samples to
achieve an optimal estimation rate with one-shot com-
munication and under covariate shifts. Simulation re-
sults validate our theory and showcase the state-of-the-
art performance of the proposed method under various
settings.
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A Proof of Theorems

In this section, we provide proof of all the theorems. Throughout the section, we adopt the following notations
to analyze the solution of the problem (2):

y :=


y(1)

y(2)

...
y(K)

y(0)

 X :=


X(1) 0 · · · 0 X(1)

0 X(2) · · · 0 X(2)

...
...

...
...

...
0 0 · · · X(K) X(K)

0 0 · · · 0 X(0)

 θ∗ =


(θ∗)(1)

(θ∗)(2)

...
(θ∗)(K)

(θ∗)(0)

 :=


β(1) − β(0)

β(2) − β(0)

...
β(K) − β(0)

β(0)

 .

(16)

where recall that β(0) is the target model parameter and β(k)s are source model parameters.

Under this transformation, solving problem (2) is equivalent as solving

θ̂ = argmin
θ

{L(θ) + λ0R(θ)}, (17)

where we define L(θ) := 1
2N ∥y −Xθ∥22 and λ0R(θ) := λ0

∥∥∥θ(0)
∥∥∥
1
+ λ0

∑K
k=1 ak

∥∥∥θ(k)
∥∥∥
1
=
∑K

k=0 λ0ak

∥∥∥θ(k)
∥∥∥
1

for any θ ∈ R(K+1)p. Since there exists a one-to-one transformation between θ∗ and β, we can quantify the
estimation error β̂ − β by analyzing θ̂ − θ∗.

We first establish an essential property of sub-Gaussian design matrices, which serves as fundamental building
blocks for our subsequent analysis. The following lemma 1 shows that the least square objective function has a
restricted strongly convex (RSC) and restricted smooth (RSM) property. For a detailed discussion and proof of
this lemma, interested readers can refer to Lemma 13 of Loh and Wainwright (2011) and Lemma 6 of Agarwal
et al. (2010).
Lemma 1 (RSC and RSM property). Under Assumption 1, for any ∆ ∈ Rp, with probability at least 1 −
c1 exp(−c2nk),

1

nk

∥∥∥X(k)∆
∥∥∥2
2
= ∆⊤Σ̂

(k)
∆ ≥ αk∥∆∥22 − βk

log p

nk
∥∆∥21,

1

nk

∥∥∥X(k)∆
∥∥∥2
2
= ∆⊤Σ̂

(k)
∆ ≤ γk∥∆∥22 + τk

log p

nk
∥∆∥21,

where αk = 1
2Λmin(Σ

(k)) ≥ 1/c,γk = 2Λmax(Σ
(k)) ≤ c and βk, τk ≤ c, nS = nS for k = 1, . . . ,K and nT for

k = 0.

A.1 Proof of Theorem 1

Define ∆̂ := θ̂ − θ∗ as the estimation error of θ̂ and the corresponding k-th block ∆̂
(k)

:= θ̂
(k)

− (θ∗)(k). For
brevity, we will omit the superscript and write (θ∗)(k) as θ(k) for 0 ≤ k ≤ K when there is no ambiguity.

Further define ∆̂
w

:=
∑K

k=1
nS

N ∆̂
(k)

+ ∆̂
(0)

= ŵ −w as the estimation error of the parameter average w. Our
goal is to establish an upper bound for ∥∆̂

w
∥22.

The proof of Theorem 1 relies on three key technical lemmas. The proof of these lemmas is in Appendix B. The
first lemma establishes an upper bound for the first-order term of the Taylor series expansion of L(θ).

Lemma 2. Under Assumption 1 and 2, if nS ≳ log p, then by choosing λ0 = c0

√
log p
N and λk = akλ0 =

c0

√
nS

N
log p
N for some appropriate constant c0, we have for any ∆ =

((
∆(1)

)⊤
, . . . ,

(
∆(K)

)⊤
,
(
∆(0)

)⊤)⊤

∈

R(K+1)p,

|⟨∇L (θ∗) ,∆⟩| ≤
K∑

k=1

λk

2

∥∥∥∆(k)
∥∥∥
1
+

λ0

2

∥∥∥∆(0)
∥∥∥
1
.
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with probability larger than 1− c1 exp (−c2 log p).

Recall that we define λk = akλ0. The next lemma establishes a restricted set of directions in which ∆̂
w

= ŵ−w
lies.

Lemma 3. Under Assumption 1 and 2, and the conditions of Lemma 2, if further assume λk ≥ 8λ0
nS

N and
nS > nT , then the estimation error ∆̂

w
satisfies the inequality

K∑
k=1

λk

∥∥∥∆̂(k)
∥∥∥
1
+ 2λ0

∥∥∥∆̂(0)
∥∥∥
1
≤ 8λ0

∥∥∥∆̂w

S

∥∥∥
1
+ 8

K∑
k=1

λkhk,

with probability larger than 1− c1 exp(−c2 log p), where S is the support set of β(0).

The following lemma ensures a property analogous to restricted strong convexity for ∆̂
w

.

Lemma 4. Under Assumption 1 and 2 and the conditions of Lemma 3, the estimation error ∆̂
w

satisfies

∆̂
⊤
Σ̂∆̂ = L

(
θ∗ + ∆̂

)
− L (θ∗)−

〈
∇L (θ∗) , ∆̂

〉
≥ (1− un)αmin

∥∥∥∆̂w
∥∥∥2
2
− vn

K∑
k=1

λkhk (18)

with probability larger than 1− c1 exp(c2nT )− c3 exp(c4 log p), where Σ̂ := 1
NX⊤X,

un :=
256βmaxλ

2
0

αminλ2
k ∧ (λ2

0/(K + 1))

s log p

N
, vn :=

256βmax

λ2
k ∧ (λ2

0/(K + 1))

log p

N

(
K∑

k=1

λkhk

)
,

αmin := min
0≤k≤K

αk, βmax := max
0≤k≤K

βk,

with RSC constants (αk, βk) defined in Lemma 1.

We now turn to the proof of the theorem. In the following proof, we make use of the function F : R(K+1)p → R,
given by

F (∆) = L (θ∗ +∆)− L (θ∗) + λ0R (θ∗ +∆)− λ0R (θ∗) ,

where θ∗ is the transformed model parameter defined in (16), and ∆ =

((
∆(1)

)⊤
, . . . ,

(
∆(K)

)⊤
,
(
∆(0)

)⊤)⊤

∈

R(K+1)p.

By Lemma 2, triangle inequality, and the fact that
∥∥∥θ(0)

Sc

∥∥∥
1
= 0,

∥∥∥θ(k)
∥∥∥
1
≤ hk for 1 ≤ k ≤ K, we have

F (∆̂) =L
(
θ∗ + ∆̂

)
− L (θ∗) + λ0R

(
θ∗ + ∆̂

)
− λ0R (θ∗)

≥− ∥L (θ∗)∥∞ ∥∆̂∥1 + ∆̂
⊤
∇2L

(
θ∗ + γ∆̂

)
∆̂ (γ ∈ (0, 1))

+

K∑
k=1

λk

(∥∥∥θ(k) + ∆̂
(k)
∥∥∥
1
−
∥∥∥θ(k)

∥∥∥
1

)
+ λ0

∥∥∥θ(0) + ∆̂
(0)
∥∥∥
1
− λ0

∥∥∥θ(0)
∥∥∥
1

≥−
K∑

k=1

λk

2

∥∥∥∆̂(k)
∥∥∥
1
− λ0

2

∥∥∥∆̂(0)
∥∥∥
1
+ ∆̂

⊤
Σ̂∆̂

+

K∑
k=1

λk

(∥∥∥∆̂(k)
∥∥∥
1
− 2

∥∥∥θ(k)
∥∥∥
1

)
+ λ0

(∥∥∥θ(0)
S

∥∥∥
1
−
∥∥∥∆̂(0)

S

∥∥∥
2
+
∥∥∥∆̂(0)

Sc

∥∥∥
1
−
∥∥∥θ(0)

Sc

∥∥∥
1
−
∥∥∥θ(0)

S

∥∥∥
1
−
∥∥∥θ(0)

Sc

∥∥∥
1

)
≥∆̂

⊤
Σ̂∆̂+

λ0

2

(∥∥∥∆̂(0)

Sc

∥∥∥
1
− 3

∥∥∥∆̂(0)

S

∥∥∥
1

)
+

K∑
k=1

λk

2

∥∥∥∆̂(k)
∥∥∥
1
− 2

K∑
k=1

λkhk.

with probability larger than 1− c1 exp (−c2 log p).
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By the definition of ∆̂
w

, we have ∆̂
(0)

= ∆̂
w
−
∑K

k=1
nS

N ∆̂
(k)

. Therefore, applying triangle inequality yields

F (∆̂) ≥ ∆̂
⊤
Σ̂∆̂+

1

2
λ0

∥∥∥∆̂w

Sc

∥∥∥
1
− 1

2
λ0

K∑
k=1

nS

N

∥∥∥∆̂(k)

Sc

∥∥∥
1
− 3

2
λ0

∥∥∥∆̂w

S

∥∥∥
1
− 3

2
λ0

K∑
k=1

nS

N

∥∥∥∆̂(k)

S

∥∥∥
1

+

K∑
k=1

λk

2

∥∥∥∆̂(k)
∥∥∥
1
− 2

K∑
k=1

λkhk. (19)

Recall that we select λ0, . . . , λk such that λk

2 ≥ 3
2
nS

N λ0, so we have

K∑
k=1

λk

2

∥∥∥∆̂(k)
∥∥∥
1
− 3

2
λ0

K∑
k=1

nS

N

∥∥∥∆̂(k)

S

∥∥∥
1
− 1

2
λ0

K∑
k=1

nS

N

∥∥∥∆̂(k)

Sc

∥∥∥
1
≥ 0. (20)

Notice that θ̂ is the solution to the problem (17). We then have ∆̂ = θ̂− θ∗ = argmin
∆

F (∆). Since F (0) = 0, it

follows that F (∆̂) ≤ 0. This summing with (19) and (20) leads to

0 ≥ ∆̂
⊤
Σ̂∆̂− 3

2
λ0

∥∥∥∆̂w

S

∥∥∥
1
+

1

2
λ0

∥∥∥∆̂w

Sc

∥∥∥
1
− 2

K∑
k=1

λkhk (21)

= ∆̂
⊤
Σ̂∆̂− 3

2
λ0

∥∥∥∆̂w
∥∥∥
1
+ 2λ0

∥∥∥∆̂w

Sc

∥∥∥
1
− 2

K∑
k=1

λkhk. (22)

We now establish the upper bound for error measured in ℓ2 norm, ∥∆̂
w
∥2. An application of Lemma 4 on (21)

yields that with probability larger than 1− c1 exp(c2nT )− c3 exp(c4 log p),

0 ≥ (1− un)αmin

∥∥∥∆̂w
∥∥∥2
2
− 3

2
λ0

√
s
∥∥∥∆̂w

∥∥∥
2
− (2 + vn)

K∑
k=1

λkhk

where we use the fact that
∥∥∥∆̂w

Sc

∥∥∥
1
≥ 0. If un = o(1), we can show that for a sufficiently large nS ,

∥∥∥∆̂w
∥∥∥
2
≤

3
2λ0

√
s+

√
9
4λ

2
0s+ 4 (1− un) (2 + vn)αmin

∑K
k=1 λkhk

2 (1− un)αmin

≲

√
s log p

N
+

√√√√(1 + vn)

K∑
k=1

nS

N

√
log p

nS
hk (23)

by plugging in the choice of λ0 and λks, which is the desired result.

It remains to show the order of vn and prove that un = o(1) under the conditions of Theorem 1. By the
assumptions in Theorem 1 and the choice of λ0, . . . , λK , we have

un =
256βmaxλ

2
0

αminλ2
k ∧ (λ2

0/(K + 1))

s log p

N
≲

s log p

nS
= o(1),

and

vn =
256βmax

λ2
k ∧ (λ2

0/(K + 1))

log p

N

(
K∑

k=1

λkhk

)
≲

√
K2 log p

nS
h̄.

The proof is then finished.
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A.2 Proof of Theorem 2

Similar to the arguments in the proof of Theorem 1, we first define L̃(δ) = 1
2nT

∥∥y(0) −X(0)ŵ −X(0)δ
∥∥2
2

and
F̃ (∆) = L̃ (δ∗ +∆) − L̃ (δ∗) + λ̃ ∥δ∗ +∆∥1 − λ̃ ∥δ∗∥1, where δ∗ = β(0) −w is the contrast between the target

parameter and the averaged parameter. Denoting ∆̂
δ
= δ̂− δ∗. Recall that ∆̂

w
= ŵ−w, by Hölder inequality

and triangle inequality,〈
∇L̃ (δ∗) , ∆̂

δ
〉
=

1

nT

〈(
X(0)

)⊤ [
y(0) −X(0)β(0) −X(0)

(
ŵ + δ∗ − β(0)

)]
, ∆̂

δ
〉

=
1

nT

〈(
X(0)

)⊤ [
ϵ(0) −X(0)(ŵ −w)

]
, ∆̂

δ
〉

≤ 1

nT

∥∥∥∥(X(0)
)⊤

ϵ(0)
∥∥∥∥
∞

∥∆̂
δ
∥1 +

1

2

(
∆̂

δ
)⊤

Σ̂
(0)

∆̂
δ
+

1

2
(∆̂

w
)⊤Σ̂

(0)
∆̂

w
.

By Lemma 2, if nT ≳ log p, we can choose λ̃ = c
√

log p
nT

for some constant c so that 1
nT

∥∥∥(X(0)
)⊤

ϵ(0)
∥∥∥
∞

≤ λ̃
2

with probability larger than 1− c1 exp(c2 log p). Therefore, it holds that

L̃
(
∆̂

δ
+ δ∗

)
− L̃(∆̂

δ
) =

〈
∇L̃ (δ∗) , ∆̂

δ
〉
+
(
∆̂

δ
)⊤

Σ̂
(0)

∆̂
δ

≥ − λ̃

2
∥∆̂

δ
∥1 +

1

2

(
∆̂

δ
)⊤

Σ̂
(0)

∆̂
δ
− 1

2
(∆̂

w
)⊤Σ̂

(0)
∆̂

w

So by the optimality condition,

0 ≥ F̃ (∆̂
δ
)

≥ L̃
(
∆̂

δ
+ δ∗

)
− L̃(∆̂

δ
) + λ̃

∥∥∥∆̂δ
+ δ∗

∥∥∥
1
− λ̃ ∥δ∗∥1

≥ L̃
(
∆̂

δ
+ δ∗

)
− L̃(∆̂

δ
) + λ̃∥∆̂

δ
∥1 − 2λ̃ ∥δ∗∥1

≥ λ̃

2
∥∆̂

δ
∥1 +

1

2

(
∆̂

δ
)⊤

Σ̂
(0)

∆̂
δ
− 1

2
(∆̂

w
)⊤Σ̂

(0)
∆̂

w
− 2λ̃ ∥δ∗∥1 (24)

Since the result involves ∆̂
w

, we first establish the following auxiliary lemma:

Lemma 5. Under Assumption 1 and 2, nS ≳ log p, nS > nT , if we choose λ0 ≳
√

log p
N , λk = akλ0 ≳

√
nS

N

√
log p
N

such that

λk ≥ 8λ0
nS

N
, un =

256βmaxλ
2
0

αminλ2
k ∧ (λ2

0/(K + 1))

s log p

N
= o(1) and vn =

256βmax

λ2
k ∧ (λ2

0/(K + 1))

log p

N

(
K∑

k=1

λkhk

)
= O(1),

then we have

∥∆̂
w
∥2 ≲

√
sλ0 +

√√√√ K∑
k=1

λkhk

∥∆̂
w
∥1 ≲ sλ0 +

√
s

√√√√ K∑
k=1

λkhk +

∑K
k=1 λkhk

λ0

with probability larger than 1− c1 exp(c2nT )− c3 exp(c4 log p).

Notice that according to the theorem statement, the choice of λ0 and λks depends on the event A. It can be
verified that either selection fulfills the conditions outlined in Lemma 5. We now discuss by cases and apply
Lemma 5 to prove the result.
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Case 1: We start with the case when the event A holds. That is, we have

s log p/nS ≥ h̄
√

log p/nT (25)

Under this condition, we choose

λ0 = c1

√
log p

N
, and ak = 8

√
nS

N
.

Applying Lemma 5 yields

∥∆̂
w
∥2 ≲

√
s log p

N
+

√√
log p

nS
h̄ (26)

∥∆̂
w
∥1 ≲ s

√
log p

N
+

√√
log p

nS
sh̄+

√
N

nS
h̄ (27)

with probability larger than 1− c1 exp(c2nT )− c3 exp(c4 log p).

(i). If 1
2 (∆̂

w
)⊤Σ̂

(0)
∆̂

w
≥ 2λ̃ ∥δ∗∥1, according to (24), we have

0 ≥ λ̃

2
∥∆̂

δ
∥1 +

1

2

(
∆̂

δ
)⊤

Σ̂
(0)

∆̂
δ
− (∆̂

w
)⊤Σ̂

(0)
∆̂

w
. (28)

By Lemma 1 and the condition nT ≳ log p, we have (∆̂
w
)⊤Σ̂

(0)
∆̂

w
≤ γ0

∥∥∥∆̂w
∥∥∥2
2
+ τ0

log p
nT

∥∥∥∆̂w
∥∥∥2
1

for some
constants γ0 and τ0, this together with (28) indicates

λ̃

2
∥∆̂

δ
∥1 ≤ (∆̂

w
)⊤Σ̂

(0)
∆̂

w
≤ γ0

∥∥∥∆̂w
∥∥∥2
2
+ τ0

log p

nT

∥∥∥∆̂w
∥∥∥2
1

≲
s log p

N
+ (1 +

s log p

nT
)

√
log p

nS
h̄+

(s log p)2

nTN
+

N

nS
h̄2 log p

nT
. (29)

where the last inequality is based on the results in (26) and (27). In Theorem 2 we assume s log p
nT

= O(1) and
h̄
√

log p/nT = o(1). According to (25), we have (N/nS)h̄
√
log p/nT ≤ (K + 1)s log p/nS = O(1). Applying

these results to (29) yields λ̃
2 ∥∆̂

δ
∥1 = op(1).

On the other hand, if we apply Lemma 1 to (28), we then have

0 ≥
(
1− β0

λ̃

log p

nT
∥∆̂

δ
∥1
)

λ̃

2
∥∆̂

δ
∥1 +

1

2
α0∥∆̂

δ
∥22 − γ0

∥∥∥∆̂w
∥∥∥2
2
− τ0

log p

nT

∥∥∥∆̂w
∥∥∥2
1
.

Notice that we choose λ̃ = c
√

log p
nT

for some universal constant c. Therefore, we may choose c >
√
2β0 so we

have β0 log p/nT < λ̃2/2. This together with (29) and the fact that λ̃
2 ∥∆̂

δ
∥1 = op(1) leads to

1

2
α0∥∆̂

δ
∥22 ≤ γ0

∥∥∥∆̂w
∥∥∥2
2
+ τ0

log p

nT

∥∥∥∆̂w
∥∥∥2
1
.

Based on similar arguments to those in (29), we have

∥∆̂
δ
∥2 ≲

√
s log p

N
+

√√
log p

nS
h̄+

√
N

nS

√
log p

nT
h̄.

with probability larger than 1− c1 exp(c2nT )− c3 exp(c4 log p).

(ii). If 1
2 (∆̂

w
)⊤Σ̂

(0)
∆̂

w
≤ 2λ̃ ∥δ∗∥1, we have

0 ≥ λ̃

2
∥∆̂

δ
∥1 +

1

2

(
∆̂

δ
)⊤

Σ̂
(0)

∆̂
δ
− 4λ̃ ∥δ∗∥1
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which implies that ∥∆̂
δ
∥1 ≤ 8∥δ∗∥1 ≤ 8h̄.

By applying Lemma 1 again, we have

0 ≥ λ̃

2
∥∆̂

δ
∥1 +

1

2
α0∥∆̂

δ
∥22 −

1

2
β0

log p

nT
∥∆̂

δ
∥21 − 4λ̃ ∥δ∗∥1

≥ 1

2
α0∥∆̂

δ
∥22 − 32β0

log p

nT
∥δ∗∥21 − 4λ̃ ∥δ∗∥1 .

with probability larger than 1− c1 exp(c2nT ).

So in this case, we have

∥∆̂
δ
∥2 ≤

√
64β0

α0

log p

nT
h̄2 + 8

λ̃

α0
h̄ ≲

√
log p

nT
h̄+

√√
log p

nT
h̄

and
∥∆̂

δ
∥2 ≤ ∥∆̂

δ
∥1 ≤ 8h̄

Under the assumption that h̄
√

log p
nT

= o(1), we have ∥∆̂
δ
∥2 ≲

√√
log p
nT

h̄ ∧ h̄.

Therefore, by combining the results from the two cases discussed above, we have

∥∥∥ŵ + δ̂ − β(0)
∥∥∥
2
≤
∥∥∥∆̂δ

∥∥∥
2
+
∥∥∥∆̂w

∥∥∥
2
≲

√
s log p

N
+

√√
log p

nS
h̄+

√
K + 1

√
log p

nT
h̄+

√√
log p

nT
h̄ ∧ h̄

with probability larger than 1− c1 exp(c2nT )− c3 exp(c4 log p).

Since A holds, together with the condition K2s log p/nS = O(1), we have

√
K + 1

√
log p

nT
h̄ ≤

√
K + 1

s log p

nS
≤

√
(K + 1)2s log p

nS

√
s log p

N
≲

√
s log p

N

which implies

∥∥∥ŵ + δ̂ − β(0)
∥∥∥
2
≤
∥∥∥∆̂δ

∥∥∥
2
+
∥∥∥∆̂w

∥∥∥
2
≲

√
s log p

N
+

√√
log p

nS
h̄+

√√
log p

nT
h̄ ∧ h̄.

Case 2: Next we discuss the case when the event Ac holds, i.e.,

s log p/nS ≤ h̄
√
log p/nT

In this case, we choose

λ0 = c0

√
log p

nS
, and ak =

8nS

N

Applying Lemma 5 again, we have

∥∆̂
w
∥2 ≲

√
s log p

nS
+

√√
log p

nS
h̄ (30)

∥∆̂
w
∥1 ≲ s

√
log p

nS
+

√√
log p

nS
sh̄+ h̄ (31)

with probability larger than 1− c1 exp(c2nT )− c3 exp(c4 log p).

Plugging the new bound (31) and (30) into the arguments in Case 1 leads to

∥∥∥ŵ + δ̂ − β(0)
∥∥∥
2
≲

√
s log p

nS
+

√√
log p

nS
h̄+

√
log p

nT
h̄+

√√
log p

nT
h̄ ∧ h̄.
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Recall that in Theorem 2 we assume
√
log p/nT h̄ = o(1) and log p/nT = O(1). Therefore, in the above bound,

the third term has a smaller order comparing to the fourth term. Hence, we have

∥∥∥ŵ + δ̂ − β(0)
∥∥∥
2
≲

√
s log p

nS
+

√√
log p

nS
h̄+

√√
log p

nT
h̄ ∧ h̄.

As we assume Ac holds in this case, we have s log p/nS ≤ h̄
√
log p/nT , which further implies

∥∥∥ŵ + δ̂ − β(0)
∥∥∥
2
≲

√√
log p

nT
h̄.

Combining the results from the two cases discussed above, we have

∥∥∥ŵ + δ̂ − β(0)
∥∥∥
2
≲

√
s log p

N
+

√√
log p

nT
h̄.

with probability larger than 1− c1 exp(c2nT )− c3 exp(c4 log p). The proof is then completed.

A.3 Proof of Theorem 3

We first show a lemma discussing the bias and variance components in (59), whose proof is based on the results in
Javanmard and Montanari (2014) but taking into account that β(k) is not exactly s-sparse (due to the contrast
term δ(k)).

Lemma 6. Under Assumption 1 and 2 and s log p
nS

= o(1), if we construct {β̂
(k)

LASSO}k=1,...,K through (57) and

{Θ̂
(k)

}k=1,...,K using (58), with parameters λ̃k = µk = c0

√
log p
nS

for some universal constant c0, then we have
that for k = 1, . . . ,K,

1

nS

∥∥∥∥Θ̂(k)
(
X(k)

)⊤
ϵ(k)

∥∥∥∥
∞

≲

√
log p

nS
(32)

and ∥∥∥b(k)∥∥∥
∞

:=
∥∥∥(Θ̂(k)

Σ̂
(k)

− I
)(

β̂
(k)

LASSO − β(k)
)∥∥∥

∞
≲

s log p

nS
+ hk

√
log p

nS
, (33)

with probability larger than 1− c1 exp(−c2 log p).

Now we proceed to the proof of the theorem. We first show that by reparametrization, problem (57) is essentially
a special case of problem (2). Then we apply techniques similar to those used in Theorem 1 to prove the results.

Following the arguments in (35), we may reformulate problem (57) into a generalized LASSO problem:

θ̃ = argmin
θ

{
L̃(θ) + λ0R(θ)

}
:= argmin

θ

{
1

2N

∥∥∥ỹ − X̃θ
∥∥∥2
2
+ λ0R(θ)

}
(34)

where

ỹ =



√
nSβ̃

(1)

√
nSβ̃

(2)

...
√
nSβ̃

(K)

y(0)


, X̃ =



√
nSIp 0 · · · 0

√
nSIp

0
√
nSIp · · · 0

√
nSIp

...
...

...
...

...
0 0 · · · √

nSIp
√
nSIp

0 0 · · · 0 X(0)

 . (35)
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Similarly, we can define the random noise ϵ̃ = ỹ − X̃θ∗. The k-th block of ϵ̃ is given by
√
nS

(
Θ̂

(k) (
X(k)

)⊤
ϵ(k)/nS + b(k)

)
for k = 1, . . . ,K, whereas the last block is ϵ(0), the observation noise for

the target model.

Following the aforementioned reformulation, we can employ an approach similar to that used in Lemma 2 to
establish the result about

〈
∇L̃ (θ) ,∆

〉
. Define δk = s log p

N + nS

N

√
log p
nS

hk and δ0 = Ks log p
N +

√
log p
nS

h̄, the result
is stated as follows:

Lemma 7. Under assumptions 1 and 2, if nS ≳ log p, λk = ck

(√
nS

N
log p
N + δk

)
and λ0 = c0

(√
log p
N + δ0

)
for some appropriate constants c0, . . . , cK , then we have for any ∆ =

((
∆(1)

)⊤
, . . . ,

(
∆(K)

)⊤
,
(
∆(0)

)⊤)⊤

∈

R(K+1)p,

∣∣∣〈∇L̃ (θ) ,∆
〉∣∣∣ ≤ K∑

k=1

λk

2

∥∥∥∆(k)
∥∥∥
1
+

λ0

2

∥∥∥∆(0)
∥∥∥
1
.

with probability larger than 1− c1 exp (−c2 log p).

Notice that the only difference between Lemma 7 and Lemma 2 is the choice of {λk}k=0≤k≤K . With this new
choice of parameters, we can verify that if further nS ≫ Ks log p, nS ≳ K2 log p, and hk ≍ h̄ for any 1 ≤ k ≤ K,
the conditions of Lemma 5 hold. Therefore, we can apply Lemma 5 and obtain

∥ŵC −w∥2 ≲
√
sλ0 +

√√√√ K∑
k=1

λkhk ≲
√
s

(√
log p

N
+ δ0

)
+

√√√√ K∑
k=1

(
nS

N

√
log p

nS
+ δk

)
hk. (36)

with probability larger than 1−c1 exp(c2nT )−c3 exp(c4 log p). This together with the fact that ∥w−β(0)∥22 ≤ ϵ2D
implies the bound (13).

Furthermore, if we assume hk ≍ h̄ = O(1), then we have

sδ20 =
K2s3 log2 p

N2
+

s log p

nS
h̄2 ≲

s log p

N
+

√
log p

nS
h̄ (37)

and

K∑
k=1

δkhk =
s log p

nS
h̄+

√
log p

nS

K∑
k=1

nS

N
h2
k ≲

√
log p

nS
h̄ (38)

based on the condition that nS ≫ Ks2 log p. Therefore, we have the bound (14).

A.4 Proof of Theorem 4

We use a similar line of arguments as the proof of Theorem 2. Recall that we choose

λk = c0(8 ∨
h̄

hk
)

(√
nS

N

log p

N
+ δk

)
, δk =

s log p

N
+

nS

N

√
log p

nS
hk, (39)

λ0 = c0

(√
log p

N
1A +

√
log p

nS
1Ac + δ0

)
, δ0 =

Ks log p

N
+

K∑
k=1

nS

N

√
log p

nS
hk. (40)
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We can verify that if nS ≫ Ks log p, nS ≳ K2 log p and hk ≍ h̄ for any 1 ≤ k ≤ K, this choice of parameters
satisfies the conditions in Lemma 5. Therefore we can apply Lemma 5 and obtain

∥∆̂
w
∥2 ≲

√
sλ0 +

√√√√ K∑
k=1

λkhk ≲

√
s log p

N
1A +

√
s log p

nS
1Ac +

√√
log p

nS
h̄+

√
sδ0 +

√√√√ K∑
k=1

δkhk (41)

∥∆̂
w
∥1 ≲ sλ0 +

√
s

√√√√ K∑
k=1

λkhk +

∑K
k=1 λk

λ0
h̄

≲

√
s2 log p

N
1A +

√
s2 log p

nS
1Ac +

√√
log p

nS
sh̄+ sδ0 +

√√√√ K∑
k=1

sδkhk +
√
Kh̄1A + h̄1Ac (42)

by plugging in the choice of λ0 and λks and using the fact that
∑K

k=1 δk = δ0.

To prove the theorem, it suffices to show that in the bounds (41) and (42), the terms involving δ0 and δk are of
orders that align with some other terms, then we can follow exactly the same proof in Theorem 2 to prove the
result. To show this, we can use the results in (37) and (38), which gives us

√
sδ0 +

√√√√ K∑
k=1

δkhk ≲

√
s log p

N
+

√√
log p

nS
h̄. (43)

With this, the proof is completed.

B Proof of Technical Lemmas

B.1 Proof of Lemma 2

By definition, −∇L (θ) = 1
NX⊤ (y −Xθ) =

(
1
N

(
X(1)

)⊤
ϵ(1), . . . , 1

N

(
X(K)

)⊤
ϵ(K), 1

N

∑K
k=0

(
X(k)

)⊤
ϵ(k)

)⊤
.

Therefore, by Hölder’s inequality, we have

|⟨∇L (θ) ,∆⟩| =
K∑

k=1

∣∣∣∣〈 1

N

(
X(k)

)⊤
ϵ(k),∆(k)

〉∣∣∣∣+
∣∣∣∣∣
〈

1

N

K∑
k=0

(
X(k)

)⊤
ϵ(k),∆(0)

〉∣∣∣∣∣
≤

K∑
k=1

∥∥∥∥ 1

N

(
X(k)

)⊤
ϵ(k)

∥∥∥∥
∞

∥∥∥∆(k)
∥∥∥
1
+

∥∥∥∥∥ 1

N

K∑
k=0

(
X(k)

)⊤
ϵ(k)

∥∥∥∥∥
∞

∥∥∥∆(0)
∥∥∥
1
.

Recall that we define nk = nS for 1 ≤ k ≤ K and nk = nT for k = 0. Define

A(k) =

{
max
1≤j≤p

{
1

nk

nk∑
i=1

(
x
(k)
ij

)2}
≤ 2 max

1≤j≤p
E
(
x
(k)
ij

)2}
,

and

A =

{
max
1≤j≤p

{
1

N

K∑
k=0

nk∑
i=1

(
x
(k)
ij

)2}
≤ 2 max

1≤k≤K,1≤j≤p
E
(
x
(k)
ij

)2}
.

Since X(k) is sub-Gaussian with uniformly bounded second moment and nS ≳ log p, we have P
(
A(k)

)
≤

c1 exp(−c2nS) for 1 ≤ k ≤ K and P
(
A
)
≤ c1 exp(−c2N) for some universal constants c1 and c2.

In addition, as ϵ(k) ∼ N
(
0, σ2

kI
)

for some finite σk, by Proposition 5.10 in Vershynin (2010), we can establish
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that with some universal constant c3, for 1 ≤ k ≤ K,

P

(
max
1≤j≤p

∣∣∣∣∣ 1nS

nS∑
i=1

ϵ
(k)
i x

(k)
ij

∣∣∣∣∣ ≥ t

)
≤ P

(
max
1≤j≤p

∣∣∣∣∣ 1nS

nS∑
i=1

ϵ
(k)
i x

(k)
ij

∣∣∣∣∣ ≥ t

∣∣∣∣∣ A(k)

)
+ P (A(k))

≤ p · e · exp

− c3nSt
2

4σ2
k max1≤j≤p E

(
x
(k)
ij

)2
+ c1 exp (−c2nS).

Since by Assumption 1, there exist a constant c such that max1≤k≤K Λmax(Σ
(k)) ≤ c, so max1≤j≤p E

(
x
(k)
ij

)2
is

uniformly bounded above. Therefore for 1 ≤ k ≤ K, by choosing t =
√

c4 log p/nS for some constant c4, with
probability larger than 1− c1 exp (−c2 log p), we have∥∥∥∥ 1

N

(
X(k)

)⊤
ϵ(k)

∥∥∥∥
∞

≲
nS

N

√
log p

nS
=

√
nS

N

√
log p

N
.

Similarly, we have

P

(
max
1≤j≤p

∣∣∣∣∣ 1N
K∑

k=0

nk∑
i=1

ϵ
(k)
i x

(k)
ij

∣∣∣∣∣ ≥ t

)
≤ P

(
max
1≤j≤p

∣∣∣∣∣ 1N
K∑

k=0

nk∑
i=1

ϵ
(k)
i x

(k)
ij

∣∣∣∣∣ ≥ t

∣∣∣∣∣ A
)

+ P (A)

≤ p · e · exp

− c4Nt2

4max0≤k≤K,1≤j≤p σ2
kE
(
x
(k)
ij

)2
+ c1 exp (−c2N)

So we have with probability larger than 1− c1 exp (−c2 log p),∥∥∥∥∥
K∑

k=0

1

N

(
X(k)

)⊤
ϵ(k)

∥∥∥∥∥
∞

≲

√
log p

N

Therefore, by choosing λk = akλk = c0
√

nS

N

√
log p
N and λ0 = c0

√
log p
N for some sufficiently large constant c0, we

have the desired result.

B.2 Proof of Lemma 3

Define S is the support set of θ(0) = β(0), and Sc as its complement. Then we have ∥θ∗
S∥0 = s and ∥θ∗

Sc∥1 ≤∑K
k=1 hk ≤ (K + 1)h̄ as nS ≥ nT .

We define F : R(K+1)p → R as

F (∆) = L (θ∗ +∆)− L (θ∗) + λ0R (θ∗ +∆)− λ0R (θ∗) ,

and θ̂ as the solution to the problem (17). We then have ∆̂ = θ̂−θ∗ = argmin
∆

F (∆) and F (0) = 0. Consequently,

it follows that F (∆̂) ≤ 0.

Since L is a convex function, by Lemma 2, we can choose λk = c0
√

nS

N

√
log p
N and λ0 = c0

√
log p
N so that

L
(
θ∗ + ∆̂

)
− L (θ∗) ≥

〈
∇L (θ∗) , ∆̂

〉
≥ −

K∑
k=1

λk

2

∥∥∥∆̂(k)
∥∥∥
1
− λ0

2

∥∥∥∆̂(0)
∥∥∥
1

(44)

with probability larger than 1− c1 exp(c2 log p).

Since the ℓ1-norm function is decomposable and ∥θ(0)
Sc ∥1 = 0, by triangle inequality we have
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λ0R (θ∗ +∆)− λ0R (θ∗) =

K∑
k=1

λk

(∥∥∥θ(k) + ∆̂
(k)
∥∥∥
1
−
∥∥∥θ(k)

∥∥∥
1

)
+ λ0

(∥∥∥θ(0) + ∆̂
(0)
∥∥∥
1
−
∥∥∥θ(0)

∥∥∥
1

)
≥

K∑
k=1

λk

(∥∥∥∆̂(k)
∥∥∥
1
− 2

∥∥∥θ(k)
∥∥∥
1

)
+ λ0

(∥∥∥∆̂(0)

Sc

∥∥∥
1
−
∥∥∥∆̂(0)

S

∥∥∥
1
− 2

∥∥∥θ(0)
Sc

∥∥∥
1

)
≥

K∑
k=1

λk

∥∥∥∆̂(k)
∥∥∥
1
− 2

K∑
k=1

λkhk + λ0

(∥∥∥∆̂(0)

Sc

∥∥∥
1
−
∥∥∥∆̂(0)

S

∥∥∥
1

)
. (45)

Combining (44) and (45) yields

0 ≥ F (∆̂) ≥
K∑

k=1

λk

2

∥∥∥∆̂(k)
∥∥∥
1
− 2

K∑
k=1

λkhk +
λ0

2

(∥∥∥∆̂(0)

Sc

∥∥∥
1
− 3

∥∥∥∆̂(0)

S

∥∥∥
1

)
(46)

which leads to the following inequality:

K∑
k=0

λk

∥∥∥∆̂(k)
∥∥∥
1
+ λ0

∥∥∥∆̂(0)
∥∥∥
1
≤ 4λ0

∥∥∥∆̂(0)

S

∥∥∥
1
+ 4

K∑
k=1

λkhk.

Recalling that we define ∆̂
w

=
∑K

k=1
nS

N ∆̂
(k)

+ ∆̂
(0)

, it follows that

K∑
k=1

λk

∥∥∥∆̂(k)
∥∥∥
1
+ λ0

∥∥∥∆̂(0)
∥∥∥
1
≤ 4λ0

∥∥∥∆̂(0)

S

∥∥∥
1
+ 4

K∑
k=1

λkhk

≤ 4λ0

∥∥∥∆̂w

S

∥∥∥
1
+ 4

K∑
k=1

λ0
nS

N

∥∥∥∆̂(k)

S

∥∥∥
1
+ 4

K∑
k=1

λkhk (47)

Since by the choice of parameters, we have λk

2 ≥ 4λ0
nS

N , so reorganizing (47) yields

K∑
k=1

λk

∥∥∥∆̂(k)
∥∥∥
1
+ 2λ0

∥∥∥∆̂(0)
∥∥∥
1
≤ 8λ0

∥∥∥∆̂w

S

∥∥∥
1
+ 8

K∑
k=1

λkhk (48)

which is as desired.
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B.3 Proof of Lemma 4

Applying Lemma 1 and Jensen’s inequality, along with some algebra, we have

L
(
θ∗ + ∆̂

)
− L (θ∗)−

〈
∇L (θ∗) , ∆̂

〉
= ∆̂

⊤
∇2L

(
θ∗ + γ∆̂

)
∆̂ (γ ∈ (0, 1))

=

K∑
k=1

nS

N

(
∆̂

(k)
)⊤

Σ̂
(k)

∆̂
(k)

+ 2

K∑
k=1

nS

N

(
∆̂

(k)
)⊤

Σ̂
(k)

∆̂
(0)

+
(
∆̂

(0)
)⊤( K∑

k=1

nS

N
Σ̂

(k)
+

nT

N
Σ̂

(0)

)
∆̂

(0)

=

K∑
k=1

nS

N

(
∆̂

(k)
+ ∆̂

(0)
)⊤

Σ̂
(k)
(
∆̂

(k)
+ ∆̂

(0)
)
+

nT

N

(
∆̂

(0)
)⊤

Σ̂
(0)

∆̂
(0)

≥
K∑

k=1

nSαk

N

∥∥∥∆̂(k)
+ ∆̂

(0)
∥∥∥2
2
+

nTα0

N

∥∥∥∆̂(0)
∥∥∥2
2
−R

(
∆̂
)

≥ αmin

∥∥∥∥∥
K∑

k=1

nS

N
∆̂

(k)
+ ∆̂

(0)

∥∥∥∥∥
2

2

−R
(
∆̂
)

= αmin

∥∥∥∆̂w
∥∥∥2
2
−R

(
∆̂
)

(49)

with probability larger than 1− c1 exp(−c2nT ), where we define αmin := min0≤k≤K αk and

R
(
∆̂
)
:=

K∑
k=1

nSβk

N

log p

nS

∥∥∥∆̂(k)
+ ∆̂

(0)
∥∥∥2
1
+

nTβ0

N

log p

nT

∥∥∥∆̂(0)
∥∥∥2
1
.

Notice that by triangle inequality,

R
(
∆̂
)
=

K∑
k=1

βk log p

N

∥∥∥∆̂(k)
+ ∆̂

(0)
∥∥∥2
1
+

β0 log p

N

∥∥∥∆̂(0)
∥∥∥2
1

≤
K∑

k=1

2βk log p

N

∥∥∥∆̂(k)
∥∥∥2
1
+

K∑
k=0

2βk log p

N

∥∥∥∆̂(0)
∥∥∥2
1

According to the restricted set of directions outlined in (48), it holds that

K∑
k=1

λk

∥∥∥∆̂(k)
∥∥∥
1
+ λ0

∥∥∥∆̂(0)
∥∥∥
1
≤

K∑
k=1

λk

∥∥∥∆̂(k)
∥∥∥
1
+ 2λ0

∥∥∥∆̂(0)
∥∥∥
1
≤ 8λ0

∥∥∥∆̂w

S

∥∥∥
1
+ 8

K∑
k=1

λkhk.

with probability larger than 1− c1 exp(−c2 log p).
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So if we define βmax = max0≤k≤K βk, by triangle inequality and the fact that |S| = s, we then have

R
(
∆̂
)
≤ 2βmax log p

N

(
K∑

k=1

λ2
k

λ2
k

∥∥∥∆̂(k)
∥∥∥2
1
+ (K + 1)

λ2
0

λ2
0

∥∥∥∆̂(0)
∥∥∥2
1

)

≤ 2βmax

λ2
k ∧ (λ2

0/(K + 1))

log p

N

(
K∑

k=1

λ2
k

∥∥∥∆̂(k)
∥∥∥2
1
+ λ2

0

∥∥∥∆̂(0)
∥∥∥2
1

)

≤ 2βmax

λ2
k ∧ (λ2

0/(K + 1))

log p

N

(
K∑

k=1

λk

∥∥∥∆̂(k)
∥∥∥
1
+ λ0

∥∥∥∆̂(0)
∥∥∥
1

)2

≤ 2βmax

λ2
k ∧ (λ2

0/(K + 1))

log p

N

(
8λ0

∥∥∥∆̂w

S

∥∥∥
1
+ 8

K∑
k=1

λkhk

)2

≤ 2βmax

λ2
k ∧ (λ2

0/(K + 1))

log p

N

128λ2
0

∥∥∥∆̂w

S

∥∥∥2
1
+ 128

(
K∑

k=1

λkhk

)2


≤ 2βmax

λ2
k ∧ (λ2

0/(K + 1))

log p

N

128sλ2
0

∥∥∥∆̂w
∥∥∥2
2
+ 128

(
K∑

k=1

λkhk

)2


Recall that we introduce the shorthand un =
256βmaxλ

2
0

αminλ2
k∧(λ2

0/(K+1))
s log p
N , and vn = 256βmax

λ2
k∧(λ2

0/(K+1))
log p
N

(∑K
k=1 λkhk

)
,

combining the above argument with (49) leads to

L
(
θ∗ + ∆̂

)
− L (θ∗)−

〈
∇L (θ∗) , ∆̂

〉
≥ (1− un)αmin

∥∥∥∆̂w
∥∥∥2
2
− vn

K∑
k=1

λkhk (50)

with probability larger than 1− c1 exp(−c2nT )− c3 exp(−c4 log p), which finishes the proof.

B.4 Proof of Lemma 5

The result in ℓ2-norm follows directly from the proof of Theorem 1. Here we investigate the upper bound for the
estimation error in ℓ1-norm, i.e., ∥∆̂

w
∥1. We categorize the problem into two cases based on the relationship

between 1
4λ0

∥∥∥∆̂w
∥∥∥
1

and 2
∑K

k=1 λkhk, and discuss by cases.

Starting with the first scenario where 1
4λ0

∥∥∥∆̂w
∥∥∥
1
> 2

∑K
k=1 λkhk, in such case (22) implies

0 ≥ ∆̂
⊤
Σ̂∆̂− 7

4
λ0

∥∥∥∆̂w
∥∥∥
1
+ 2λ0

∥∥∥∆̂w

Sc

∥∥∥
1
≥ −7

4
λ0

∥∥∥∆̂w
∥∥∥
1
+ 2λ0

∥∥∥∆̂w

Sc

∥∥∥
1
,

which implies 1
4∥∆̂

w

Sc∥1 ≤ 7
4∥∆̂

w

S ∥1, and ∥∆̂
w
∥1 ≤ 8∥∆̂

w

S ∥1 ≤ 8
√
s∥∆̂

w

S ∥2 ≤ 8
√
s∥∆̂

w
∥2. Therefore, in this

case, we obtain

∥∆̂
w
∥1 ≲ sλ0 +

√
s

√√√√ K∑
k=1

λkhk

with probability larger than 1− c1 exp(c2nT )− c3 exp(c4 log p).

We now transit to the second scenario when 1
4λ0

∥∥∥∆̂w
∥∥∥
1
≤ 2

∑K
k=1 λkhk. In this instance, we directly obtain

∥∆̂
w
∥1 ≤

8
∑K

k=1 λkhk

λ0

Taking into account both the discussed scenarios, we can conclude that

∥∆̂
w
∥1 ≲ sλ0 +

√
s

√√√√ K∑
k=1

λkhk +

∑K
k=1 λkhk

λ0
(51)
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with probability larger than 1− c1 exp(c2nT )− c3 exp(c4 log p), which is as desired.

B.5 Proof of Lemma 6

We start with the first term, 1
nS

Θ̂
(k) (

X(k)
)⊤

ϵ(k). Let
(
a
(k)
j

)⊤
:= e⊤j Θ̂

(k) (
X(k)

)⊤
. Similar to the proof of

Lemma 2, by Vershynin (2010), Proposition 5.10 and a union bound,

P

(
max
1≤j≤p

∣∣∣∣ 1nS

(
a
(k)
j

)⊤
ϵ(k)

∣∣∣∣ > t

∣∣∣∣ {a(k)
j

}
1≤j≤p

)
≤ p exp

− cn2
St

2

σ2
k max1≤j≤p

∥∥∥a(k)
j

∥∥∥2
2


for some universal constant c > 0. Therefore, to prove (32), it suffices to bound

cΩ :=
1

nS
max
1≤j≤p

∥∥∥a(k)
j

∥∥∥2
2
= max

1≤j≤p

(
Θ̂

(k)
Σ̂

(k)
(
Θ̂

(k)
)⊤)

j,j

.

In order to accomplish this, we employ Lemma 23 from Lee et al. (2017), which is formulated as follows.

Lemma 8. Under the conditions of Lemma 6,

P

(
max
1≤j≤p

(
Σ(k)

)−1

j
Σ̂

(k)
(
Σ(k)

)−1

j
> 2 max

1≤j≤p

(
Σ(k)

)−1

j,j

)
≤ 2pe−c1nS

for some universal constant c1 > 0.

Since Θ(k) is the solution of problem (58), combining the optimally condition with Lemma 8 implies

max
1≤j≤p

(
Θ̂

(k)
Σ̂

(k)
(
Θ̂

(k)
)⊤)

j,j

≤ max
1≤j≤p

(
Σ(k)

)−1

j
Σ̂

(k)
(
Σ(k)

)−1

j
≤ 2 max

1≤j≤p

(
Σ(k)

)−1

j,j

with probability at least 1− 2pe−c1nS . By assumption 1,
(
Σ(k)

)−1

j,j
is bounded above. Therefore (32) holds.

Next, we aim at the second term, b(k). Applying Hölder’s inequality to each component we obtain

∥∥∥b(k)∥∥∥
∞

=
∥∥∥(Θ̂(k)

Σ̂
(k)

− I
)(

β̂
(k)

LASSO − β(k)
)∥∥∥

∞

⩽ max
1≤j≤p

∥∥∥Θ̂(k)

j Σ̂
(k)

− e⊤j

∥∥∥
∞

∥∥∥β̂(k)

LASSO − β(k)
∥∥∥
1

where recall that Θ̂
(k)

j denotes the jth row of Θ̂
(k)

. By the optimality condition of (2) and the choice of µk, we
have

max
1≤j≤p

∥∥∥Θ̂(k)

j Σ̂
(k)

− e⊤j

∥∥∥
∞

≲

√
log p

nS
.

In addition, recall that
∥∥∥β(0)

∥∥∥
0
= s and

∥∥∥β(0) − β(k)
∥∥∥
1
≤ hk, so we can show the following Lemma:

Lemma 9. Under the condition of Lemma 6, we have∥∥∥β̂(k)

LASSO − β(k)
∥∥∥
1
⩽ s

√
log p

nS
+ hk

with probability at least 1− c1p
−c2 .

The proof of Lemma 9 comes from a direct application of Lemma 1 in Li et al. (2022). Integrating the above

arguments leads to
∥∥∥b(k)∥∥∥

∞
≲P

s log p
nS

+ hk

√
log p
nS

with probability larger than 1− c1 exp(c2 log p). This finishes
the proof.
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B.6 Proof of Lemma 7

Following the proof of Lemma 2, by applying Hölder’s inequality, we obtain

|⟨∇L (θ) ,∆⟩| =
K∑

k=1

∣∣∣∣〈√
nS

N
ϵ̃(k),∆(k)

〉∣∣∣∣+
∣∣∣∣∣
〈

K∑
k=1

√
nS

N
ϵ̃(k) +

1

N

(
X(0)

)⊤
ϵ(0),∆(0)

〉∣∣∣∣∣
≤

K∑
k=1

∥∥∥∥√nS

N
ϵ̃(k)

∥∥∥∥
∞

∥∥∥∆(k)
∥∥∥
1
+

∥∥∥∥∥
K∑

k=1

√
nS

N
ϵ̃(k) +

1

N

(
X(0)

)⊤
ϵ(0)

∥∥∥∥∥
∞

∥∥∥∆(0)
∥∥∥
1

≤
K∑

k=1

∥∥∥∥ 1

N
Θ̂

(k)
(
X(k)

)⊤
ϵ(k) +

nS

N
b(k)

∥∥∥∥
∞

∥∥∥∆(k)
∥∥∥
1

+

∥∥∥∥∥ 1

N

(
K∑

k=1

Θ̂
(k)
(
X(k)

)⊤
ϵ(k) +

(
X(0)

)⊤
ϵ(0)

)
+

K∑
k=1

nS

N
b(k)

∥∥∥∥∥
∞

∥∥∥∆(0)
∥∥∥
1

We start with the first term on the right-hand side of the inequality. In Lemma 6 we have shown that with
probability larger than 1− c1 exp(−c2 log p),

1

nS

∥∥∥∥Θ̂(k)
(
X(k)

)⊤
ϵ(k)

∥∥∥∥
∞

≲

√
log p

nS
and

∥∥∥b(k)∥∥∥
∞

≲
s log p

nS
+ hk

√
log p

nS
. (52)

Thus in order to guarantee

λk ≥
∥∥∥∥ 1

N
Θ̂

(k)
(
X(k)

)⊤
ϵ(k) +

nS

N
b(k)

∥∥∥∥
∞

,

it suffices to choose λk = ck

(√
nS

N
log p
N + s log p

N + nS

N

√
log p
nS

hk

)
for some sufficiently large constant ck.

Next, we shift our focus to the second term. Similar to the arguments in Proposition 6, we denote
(
a
(k)
j

)⊤
:=

e⊤j Θ̂
(k) (

X(k)
)⊤

for k = 1, . . . ,K and
(
a
(0)
j

)⊤
:= e⊤j

(
X(0)

)⊤
. By Vershynin (2010), Proposition 5.10 and a

union bound,

P

(
max
1≤j≤p

∣∣∣∣∣ 1N
K∑

k=0

(
a
(k)
j

)⊤
ϵ(k)

∣∣∣∣∣ > t

∣∣∣∣∣ {a(k)
j

}
1≤j≤p,0≤k≤K

)
≤ p exp

− cN2t2

max1≤j≤p,0≤k≤K σ2
k

∥∥∥a(k)
j

∥∥∥2
2


According to Proposition 6 and Assumption 1, max0≤k≤K,1≤j≤p

∥∥∥a(k)
j

∥∥∥2
2

is bounded above with probability larger
than 1− c1 exp(−c2 log p). This result together with (52) indicates that∥∥∥∥∥ 1

N

(
K∑

k=1

Θ̂
(k)
(
X(k)

)⊤
ϵ(k) +

(
X(0)

)⊤
ϵ(0)

)
+

K∑
k=1

nS

N
b(k)

∥∥∥∥∥
∞

≲

√
log p

N
+

Ks log p

N
+

K∑
k=1

nS

N

√
log p

nS
hk

so it suffices to choose λ0 = c0

(√
log p
N + Ks log p

N +
∑K

k=1
nS

N

√
log p
nS

hk

)
for some constant c0. This finishes the

proof.

C Impact of Covariate Shift on CΣ

Recall constant CΣ defined as

CΣ := 1 + max
j≤p

max
k

∥∥∥∥∥∥∥e⊤j
(
Σ(k) −Σ(0)

) ∑
1≤k≤K

1

K
Σ(k)

−1
∥∥∥∥∥∥∥
1

.
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Clearly, CΣ depends on the difference between the source and target covariance matrices. In the following, we
provide an example where CΣ diverges with p.

Let K = 1, i.e., there is only one source dataset, and the target data covariance matrix Σ(0) = I. The source
data covariance Σ(k) is constructed as Σ(k) = αA+ (1− α)I, where A is an arrowhead matrix with all nonzero
elements equal to one. Next, we provide the choice of α such that the eigenvalues of Σ(k) are bounded, thus
satisfying Assumption 1. To this end, we first provide an expression of the eigenvalues of A. Applying Cauchy’s
interlace theorem, we have Λmin(A) ≤ 1, Λmax(A) ≥ 1, and all of the rest eigenvalues equal to one. Further using
the fact that Tr(A) = p and det(A) = −(p− 2) we conclude Λmin(A) = 1−

√
p− 1 and Λmax(A) = 1+

√
p− 1.

Based on the eigenvalues we set α = c/
√
p− 1 with constant c ∈ (0, 1), which gives Λmin(Σ

(k)) = 1 − c and
Λmax(Σ

(k)) = 1 + c.

We then compute CΣ under the above setting. Using the formula for the inverse of arrowhead matrices provided
in Salkuyeh and Beik (2018), we obtain

(
Σ(k) −Σ(0)

) ∑
1≤k≤K

1

K
Σ(k)

−1

=


1− β−1 αβ−1 · · ·αβ−1

αβ−1

−α2β−1...
αβ−1


p×p

, (53)

where β := 1− (p− 1)α2. Substituting α = c/
√
p− 1 reveals CΣ = O(

√
p).

D Implementation of TransFusion

In this section, we show that how the first step of TransFusion method can be implemented using the Proximal
Gradient Descent (PGD) algorithm via a change of variables. The second de-bias step (5) is a standard LASSO
problem and there is a rich literature on efficient numerical solutions, see Li et al. (2018) and the references
therein.

For the first co-traning step, notice that under the one-to-one variable transformation θ := ((β(1)−β(0))⊤, (β(2)−
β(0))⊤, . . . , (β(K) − β(0))⊤,β(0)), solving problem (2) is equivalent to solving

θ̂ ∈ argmin
θ

{
1

2N
∥y −Xθ∥22 + λ0

K∑
k=0

ak

∥∥∥θ(k)
∥∥∥
1

}
, (54)

where a0 = 1 and y and X are defined in (16), recalled below for convenience:

y :=


y(1)

y(2)

...
y(K)

y(0)

 X :=


X(1) 0 · · · 0 X(1)

0 X(2) · · · 0 X(2)

...
...

...
...

...
0 0 · · · X(K) X(K)

0 0 · · · 0 X(0)

 .

Problem (54) is a weighted LASSO problem (Zou, 2006), and thus the proximal gradient descent algorithm can
be directly applied. Given initialization θ0 ∈ R(K+1)p and proximal parameter γ > 0, the PGD iteration reads:

θt+1 = argmin
θ∈R(K+1)p

〈
1

N
X⊤(Xθt − y),θ − θt

〉
+

1

2γ
∥θ − θt∥2 + λ0

K∑
k=0

ak

∥∥∥θ(k)
∥∥∥
1
. (55)

Notably, although calculating the gradient 1
NX⊤(Xθt−y) appears to involve multiplying a (K+1)p× (K+1)p

matrix by a (K + 1)p-dimensional vector, using the sparse structure of X it is easy to see it can be obtained via
computing quantities X(k)⊤X(k)β

(k)
t and X(k)⊤y(k) for k = 0, . . . ,K. Therefore per iteration it only involves

the multiplication of a p× p matrix by a p-dimensional vector, and can be computed efficiently in parallel. The
proximal mapping (55) can also be computed in closed form via soft-thresholding.



TransFusion: Covariate-Shift Robust Transfer Learning for High-Dimensional Regression

Figure 3: Comparison of estimation errors under (i) diverse and (ii) non-diverse source task settings with (a)
homogeneous design and (b) heterogeneous design with a large choice of K.

Figure 4: Comparison of estimation errors under (i) diverse source task settings with (a) homogeneous design
and (b) heterogeneous design with different choice of nS and a fixed K = 10.
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E Additional Simulation Results

Fig. 3 shows the results with the number of source tasks K ∈ {1, 5, 9, 13, 17}. The results are in general
analogous to those in section 4. One interesting observation is that in the diverse source task setting (i), as
the source task number K increases and the source task sample size nS remains a constant, Fig. 3 (i-a) and
(i-b) show diminishing improvement of TransFusion estimation error. This is because as our theoretical results

suggest, in such settings, TransFusion achieves an estimation error of order O( s log p
nT+KnS

+ (1 + vn)h̄
√

log p
nT

) with

vn = K2 log p
nS

h̄. If we fix the source sample size nS , increasing K only decreases the first term, and the overall
sum will be dominated by the second term. The term vn contributes to the U-shape error curve in the figures.
This is the cost of using only local data to estimate the task-specific signal δ(k) in order to achieve robustness
to covariate shifts.

Meanwhile, the theory implies that TransFusion would have a consistent error improvement if we proportionally
increase the source sample size, nS , with K. This is verified in Fig. 4, where, in the same diverse source task
setting, a fixed K with a growing nS results in a faster error reduction for TransFusion compared to other
methods, especially in the existence of covariate shifts (Fig. 4 (i-b)).

F Case Study: Handwritten-digit Classification

We consider the problem of handwritten-digit classification based on the MNIST-C (Mu and Gilmer, 2019)
dataset. MNIST-C is a comprehensive suite of different corruptions applied to the MNIST dataset, for bench-
marking out-of-distribution robustness in computer vision. This setup allows us to evaluate the covariate-shift
robustness of the proposed TransFusion algorithm.

We choose images corrupted by “brightness”, “fog” and “motion blur” as the source datasets (K = 3), drawing
nS source samples from each with nS ∈ {500, 1000, 1500, 2000}. Then we set the original MNIST dataset as the
target dataset, from which we collect nT = 100 target samples. We use flattened pixel features of the images as
features, amounting to 28× 28 = 784 features per image (p = 784). We transform the classification problem into
10 binary classification problems—one for each digit against all others, then evaluate the classification accuracy
on 2000 test images from the target dataset.

For this multi-source binary classification task, we employ the TransFusion algorithm and compare its per-
formance with the TransLasso algorithm and Lasso (baseline) algorithm, all based on the logistic regression.
Note that although in this paper we mainly focus on the linear regression setting, our theory and methodology
can be easily generalized to the logistic regression setting (Friedman et al., 2010; Negahban et al., 2012). The
implementation follows a similar manner as discussed in Appendix D.

One of the key challenges in this classification problem is managing the covariate shifts between different tasks.
This was evident from the correlation heat maps of flattened pixel features in Figure 5. Compared to the target
sample, each source sample exhibits a distinct covariate correlation structure. Such covariate shifts should be
carefully handled for effective knowledge transfer.

Figure 5: The correlation heatmaps of flattened pixel features for handwritten digit images affected by different
types of corruptions. From left to right, the images are subjected to brightness corruption, fog corruption, motion
blur corruption, and the original images without corruption (identity corruption).
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Figure 6: Test accuracy of different methods for the binary digit classification problem averaged over 10 problems,
plotted against varying source sample sizes nS .

Figure 6 shows the average test accuracy across the 10 binary classification problems versus the source sample size
nS . From the figure, we can see that TransFusion consistently outperforms other benchmarks. When the source
sample size is relatively small, the Trans-Lasso method even performs worse than the baseline Lasso method,
suggesting that it fails to utilize the transferable knowledge under the covariate shift. In contrast, TransFusion
method still outperforms the baseline, indicating its robustness against the covariate shift.

G Choice of β̃
(k)

In this section, we specify how to choose β̃
(k)

. An intuitive option is the LASSO estimator computed based on
source sample (X(k),y(k)):

β̂
(k)

LASSO ∈ argmin
β∈R(k+1)p

{
1

2nS

∥∥∥y(k) −X(k)β
∥∥∥2
2
+ λ̃k∥β∥1

}
. (56)

However, since the LASSO estimator is biased, computing ŵC by aggregating the local β̂
(k)

C s can only reduce
the variance and has almost no effects on the bias (Mcdonald et al., 2009). To overcome such a drawback, we
propose to first “correct” the bias at the local level before transmitting it to the target node for transfer learning.
This is achieved by debiasing β̂

(k)

LASSO using the method proposed in (Javanmard and Montanari, 2014):

β̃
(k)

= β̂
(k)

LASSO +
1

nS
Θ̂

(k)
(
X(k)

)⊤ (
y(k) −X(k)β̂

(k)

LASSO

)
. (57)

Here, Θ̂
(k)

serves as an approximation of
(
Σ(k)

)−1
, whose j-th row is defined as the solution of the following

optimization problem

minimize
θj∈Rp

θ⊤
j Σ̂

(k)
θj

subject to
∥∥∥Σ̂(k)

θj − ej

∥∥∥
∞

≤ µk,
(58)

with parameter µk > 0 properly chosen. The source code for solving the problem can be found at https:
//web.stanford.edu/~montanar/sslasso/code.html.

To understand the choice of β̃, we may rewrite (57) by subtracting β(k) from both sides to obtain

β̃
(k)

− β(k) =
1

nS
Θ̂

(k)
(
X(k)

)⊤
ϵ(k) −

(
Θ̂

(k)
Σ̂

(k)
− I

)(
β̂
(k)

LASSO − β(k)
)
. (59)

The first term on the right-hand side of the equation is associated with the variance of β̃
(k)

. Through (58), we
effectively minimize this variance. The second term, b(k), on the other hand, contributes to the bias. By selecting

https://web.stanford.edu/~montanar/sslasso/code.html
https://web.stanford.edu/~montanar/sslasso/code.html
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an appropriate constraint parameter µk on ∥Σ̂
(k)

θj−ej∥∞ in (58), we can control the bias term to be comparable
or even smaller than the variance term, thereby mitigate the impact of bias on the later aggregation step. Hence,
this choice of β̃ guarantees that the D-TransFusion could achieve much less communication overhead, while at
the same time achieving the minimum performance loss compared to centralized TransFusion.
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