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Abstract

We study the scaling properties of latent di�usion models (LDMs) with an emphasis on their
sampling e�ciency. While improved network architecture and inference algorithms have
shown to e�ectively boost sampling e�ciency of di�usion models, the role of model size—a
critical determinant of sampling e�ciency—has not been thoroughly examined. Through
empirical analysis of established text-to-image di�usion models, we conduct an in-depth
investigation into how model size influences sampling e�ciency across varying sampling
steps. Our findings unveil a surprising trend: when operating under a given inference bud-
get, smaller models frequently outperform their larger equivalents in generating high-quality
results. Moreover, we extend our study to demonstrate the generalizability of the these find-
ings by applying various di�usion samplers, exploring diverse downstream tasks, evaluating
post-distilled models, as well as comparing performance relative to training compute. These
findings open up new pathways for the development of LDM scaling strategies which can be
employed to enhance generative capabilities within limited inference budgets.

1 Introduction

Latent di�usion models (LDMs) (Rombach et al., 2022), and di�usion models in general, trained on large-
scale, high-quality data (Lin et al., 2014; Schuhmann et al., 2022) have emerged as a powerful and robust
framework for generating impressive results in a variety of tasks, including image synthesis and editing (Rom-
bach et al., 2022; Podell et al., 2023; Delbracio & Milanfar, 2023; Ren et al., 2023; Qi et al., 2023), video
creation (Mei & Patel, 2023; Mei et al., 2023; Wu et al., 2023; Singer et al., 2022), audio production (Liu
et al., 2023a), and 3D synthesis (Lin et al., 2023; Liu et al., 2023b). Despite their versatility, the major
barrier against wide deployment in real-world applications (Du et al., 2023; Choi et al., 2023) comes from
their low sampling e�ciency. The essence of this challenge lies in the inherent reliance of LDMs on multi-
step sampling (Song et al., 2021b; Ho et al., 2020) to produce high-quality outputs, where the total cost
of sampling is the product of sampling steps and the cost of each step. Specifically, the go-to approach
involves using the 50-step DDIM sampling (Song et al., 2021a; Rombach et al., 2022), a process that, despite
ensuring output quality, still requires a relatively long latency for completion on modern mobile devices
with post-quantization. In contrast to single shot generative models (e.g., generative-adversarial networks
(GANs) (Goodfellow et al., 2020)) which bypass the need for iterative refinement (Goodfellow et al., 2020;
Karras et al., 2019), the operational latency of LDMs calls for a pressing need for e�ciency optimization to
further facilitate their practical applications.

Recent advancements in this field (Li et al., 2023; Zhao et al., 2023; Peebles & Xie, 2023; Kim et al., 2023b;a;
Choi et al., 2023) have primarily focused on developing faster network architectures with comparable model
size to reduce the inference time per step, along with innovations in improving sampling algorithms that
allow for using less sampling steps (Song et al., 2021a; Dockhorn et al., 2022; Karras et al., 2022; Lu et al.,
2022a; Liu et al., 2023c; Xu et al., 2023). Further progress has been made through di�usion-distillation
techniques (Luhman & Luhman, 2021; Salimans & Ho, 2022; Song et al., 2023; Sauer et al., 2023b; Gu
et al., 2023; Mei et al., 2024), which simplifies the process by learning multi-step sampling results in a single
forward pass, and then broadcasts this single-step prediction multiple times. These distillation techniques
leverage the redundant learning capability in LDMs, enabling the distilled models to assimilate additional
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distillation knowledge. Despite these e�orts being made to improve di�usion models, the sampling e�ciency
of smaller, less redundant models has not received adequate attention. A significant barrier to this area of
research is the scarcity of available modern accelerator clusters (Jouppi et al., 2023), as training high-quality
text-to-image (T2I) LDMs from scratch is both time-consuming and expensive—often requiring several weeks
and hundreds of thousands of dollars.

In this paper, we empirically investigate the scaling properties of LDMs, with a particular focus on under-
standing how their scaling properties impact the sampling e�ciency across various model sizes. We trained
a suite of 12 text-to-image LDMs from scratch, ranging from 39 million to 5 billion parameters, under a
constrained budget. Example results are depicted in Fig. 1. All models were trained on TPUv5 using in-
ternal data sources with about 600 million aesthetically-filtered text-to-image pairs. Our study reveals that
there exist a scaling trend within LDMs, notably that smaller models may have the capability to surpass
larger models under an equivalent sampling budget. Furthermore, we investigate how the size of pre-trained
text-to-image LDMs a�ects their sampling e�ciency across diverse downstream tasks, such as real-world
super-resolution (Saharia et al., 2022; Sahak et al., 2023) and subject-driven text-to-image synthesis (i.e.,
Dreambooth) (Ruiz et al., 2023).

1.1 Summary

Our key findings for scaling latent di�usion models in text-to-image generation and various downstream
tasks are as follows:

Pretraining performance scales with training compute. We demonstrate a clear link between compute
resources and LDM performance by scaling models from 39 million to 5 billion parameters. This suggests
potential for further improvement with increased scaling. See Section 3.1 for details.

Downstream performance scales with pretraining. We demonstrate a strong correlation between
pretraining performance and success in downstream tasks. Smaller models, even with extra training, cannot
fully bridge the gap created by the pretraining quality of larger models. This is explored in detail in
Section 3.2.

Smaller models sample more e�cient. Smaller models initially outperform larger models in image
quality for a given sampling budget, but larger models surpass them in detail generation when computational
constraints are relaxed. This is further elaborated in Section 3.3.1 and Section 3.3.2.

Sampler does not change the scaling e�ciency. Smaller models consistently demonstrate superior
sampling e�ciency, regardless of the di�usion sampler used. This holds true for deterministic DDIM (Song
et al., 2021a), stochastic DDPM (Ho et al., 2020), and higher-order DPM-Solver++ (Lu et al., 2022b). For
more details, see Section 3.4.

Smaller models sample more e�cient on the downstream tasks with fewer steps. The advantage
of smaller models in terms of sampling e�ciency extends to the downstream tasks when using less than 20
sampling steps. This is further elaborated in Section 3.5.

Di�usion distillation does not change scaling trends. Even with di�usion distillation, smaller models
maintain competitive performance against larger distilled models when sampling budgets are constrained.
This suggests distillation does not fundamentally alter scaling trends. See Section 3.6 for in-depth analysis.

2 Related Work

Scaling laws. Recent Large Language Models (LLMs) including GPT (Brown et al., 2020), PaLM (Anil
et al., 2023), and LLaMa (Touvron et al., 2023) have dominated language generative modeling tasks. The
foundational works (Kaplan et al., 2020; Brown et al., 2020; Ho�mann et al., 2022) for investigating their
scaling behavior have shown the capability of predicting the performance from the model size. They also
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Params 39M 83M 145M 223M 318M 430M 558M 704M 866M 2B 5B

Filters (c) 64 96 128 160 192 224 256 288 320 512 768

GFLOPS 25.3 102.7 161.5 233.5 318.5 416.6 527.8 652.0 789.3 1887.5 4082.6

Norm. Cost 0.07 0.13 0.20 0.30 0.40 0.53 0.67 0.83 1.00 2.39 5.17

FID ¿ 25.30 24.30 24.18 23.76 22.83 22.35 22.15 21.82 21.55 20.98 20.14

CLIP ø 0.305 0.308 0.310 0.310 0.311 0.312 0.312 0.312 0.312 0.312 0.314

Table 1: We scale the baseline LDM (i.e., 866M Stable Di�usion v1.5) by changing the base number of channels
c that controls the rest of the U-Net architecture as [c, 2c, 4c, 4c] (See Fig. 2). GFLOPS are measured for an
input latent of shape 64 ◊ 64 ◊ 4 with FP32. We also show a normalized running cost with respect to the
baseline model. The text-to-image performance (FID and CLIP scores) for all scaled LDMs is evaluated on
the COCO-2014 validation set with 30k samples, using 50-step DDIM sampling and Classifier-free Guidance
(CFG) with a rate of 7.5. It is worth noting that all the model sizes, and the training and the inference costs
reported in this work only refer to the denoising UNet in the latent space, and do not include the 1.4B text
encoder and the 250M latent encoder and decoder.

investigated the factors that a�ect the scaling properties of language models, including training compute,
dataset size and quality, learning rate schedule, etc. Those experimental clues have e�ectively guided the later
language model development, which have led to the emergence of several parameter-e�cient LLMs (Ho�-
mann et al., 2022; Touvron et al., 2023; Zhou et al., 2023; Alabdulmohsin et al., 2024). However, scaling
generative text-to-image models are relatively unexplored, and existing e�orts have only investigated the
scaling properties on small datasets or small models, like scaling UNet (Nichol & Dhariwal, 2021) to 270
million parameters and DiT (Peebles & Xie, 2023) on ImageNet (14 million), or less-e�cient autoregressive
models (Chen et al., 2020). Di�erent from these attempts, our work investigates the scaling properties by
scaling down the e�cient and capable di�usion models, i.e. LDMs (Rombach et al., 2022), on internal data
sources that have about 600 million aesthetics-filtered text-to-image pairs for featuring the sampling e�-
ciency of scaled LDMs. We also scale LDMs on various scenarios such as finetuning LDMs on downstream
tasks (Wang et al., 2021; Ruiz et al., 2023) and distilling LDMs (Mei et al., 2024) for faster sampling to
demonstrate the generalizability of the scaled sampling-e�ciency.

E�cient di�usion models. Nichol et al. (Nichol & Dhariwal, 2021) show that the generative performance
of di�usion models improves as the model size increases. Based on this preliminary observation, the model
size of widely used LDMs, e.g., Stable Di�usion (Rombach et al., 2022), has been empirically increased to
billions of parameters (Ramesh et al., 2022; Podell et al., 2023). However, such a large model makes it
impossible to fit into the common inference budget of practical scenarios. Recent work on improving the
sampling e�ciency focus on improving network architectures (Li et al., 2023; Zhao et al., 2023; Peebles &
Xie, 2023; Kim et al., 2023b;a; Choi et al., 2023) or the sampling procedures (Song et al., 2021a; Dockhorn
et al., 2022; Karras et al., 2022; Lu et al., 2022a; Liu et al., 2023c; Xu et al., 2023). We explore sampling
e�ciency by training smaller, more compact LDMs. Our analysis involves scaling down the model size,
training from scratch, and comparing performance at equivalent inference cost.

E�cient non-di�usion generative models. Compared to di�usion models, other generative models
such as, Variational Autoencoders (VAEs) (Kingma & Welling, 2014; Rezende & Mohamed, 2015; Makhzani
et al., 2015; Vahdat & Kautz, 2020), Generative Adversarial Networks (GANs) (Goodfellow et al., 2020; Mao
et al., 2017; Karras et al., 2019; Reed et al., 2016; Miyato et al., 2018), and Masked Models (Devlin et al.,
2019; Ra�el et al., 2020; He et al., 2022; Chang et al., 2022; 2023), are more e�cient, as they rely less on an
iterative refinement process. Sauer et al. (Sauer et al., 2023a) recently scaled up StyleGAN (Karras et al.,
2019) into 1 billion parameters and demonstrated the single-step GANs’ e�ectiveness in modeling text-to-
image generation. Chang et al. (Chang et al., 2023) scaled up masked transformer models for text-to-image
generation. These non-di�usion generative models can generate high-quality images with less inference cost,
which require fewer sampling steps than di�usion models and autoregressive models, but they need more
parameters, i.e., 4 billion parameters.
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(a) 39M model (b) 83M model (c) 145M model

(d) 223M model (e) 318M model (f) 430M model

(g) 558M model (h) 704M model (i) 2B model

Figure 1: Text-to-image results from our scaled LDMs (39M - 2B), highlighting the improvement in visual
quality with increased model size (note: 39M model is the exception). All images generated using 50-step
DDIM sampling and CFG rate of 7.5. We use representative prompts from PartiPrompts Yu et al. (2022),
including “a professional photo of a sunset behind the grand canyon.”, “Dogs sitting around a poker table with
beer bottles and chips. Their hands are holding cards.”, ‘Portrait of anime girl in mechanic armor in night
Tokyo.”, “a teddy bear on a skateboard.”, “a pixel art corgi pizza.”, “Snow mountain and tree reflection in the
lake.”, “a propaganda poster depicting a cat dressed as french emperor napoleon holding a piece of cheese.”,
“a store front that has the word ‘LDMs’ written on it.”, and “ten red apples.”. Check our supplement for
additional visual comparisons.
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Figure 2: Our scaled latent di�usion models vary in the number of filters within the denoising U-Net. Other
modules remain consistent. Smooth channel scaling (64 to 768) within residual blocks yields models ranging
from 39M to 5B parameters. For downstream tasks requiring image input, we use an encoder to generate a
latent code; this code is then concatenated with the noise vector in the denoising U-Net.

Figure 3: In text-to-image generation using 50-step DDIM sampling and CFG rate of 7.5, we observe
consistent trends across various model sizes in how quality metrics (FID and CLIP scores) relate to training
compute (i.e., the total GFLOPS spend on training). Under moderate training resources, training compute
is the most relevant factor dominating quality.

3 Scaling LDMs

We developed a family of powerful Latent Di�usion Models (LDMs) built upon the widely-used 866M Stable
Di�usion v1.5 standard (Rombach et al., 2022)1. The denoising UNet of our models o�ers a flexible range
of sizes, with parameters spanning from 39M to 5B. We incrementally increase the number of filters in the
residual blocks while maintaining other architecture elements the same, enabling a predictably controlled
scaling. Table 1 shows the architectural di�erences among our scaled models. We also provide the relative
cost of each model against the baseline model. Fig. 2 shows the architectural di�erences during scaling.
Models were trained using the web-scale aesthetically filtered text-to-image dataset, i.e., WebLI (Chen
et al., 2022). All the models are trained for 500K steps, batch size 2048, and learning rate 1e-4. This allows
for all the models to have reached a point where we observe diminishing returns. Fig. 1 demonstrates the
consistent generation capabilities across our scaled models. We used the common practice of 50 sampling
steps with the DDIM sampler, 7.5 classifier-free guidance rate, for text-to-image generation. The visual
quality of the results exhibits a clear improvement as model size increases.

In order to evaluate the performance of the scaled models, we test the text-to-image performance of scaled
models on the validation set of COCO 2014 (Lin et al., 2014) with 30k samples. For downstream performance,

1
We adopted SD v1.5 since it is among the most popular di�usion models https://huggingface.co/models?sort=likes.
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Figure 4: In 4◊ real image super-resolution using 50-step DDIM sampling, FID and LPIPS scores reveal
an interesting divergence. Model size drives FID score improvement, while training compute most impacts
LPIPS score. Despite this, visual assessment (Fig. 5) confirms the importance of model size for superior
detail recovery (similarly as observed in the text-to-image pretraining).

specifically real-world super-resolution, we test the performance of scaled models on the validation of DIV2K
with 3k randomly cropped patches, which are degraded with the RealESRGAN degradation (Wang et al.,
2021).

3.1 Training compute scales text-to-image performance

We find that our scaled LDMs, across various model sizes, exhibit similar trends in generative performance
relative to training compute cost, especially after training stabilizes, which typically occurs after 200K
iterations. These trends demonstrate a smooth scaling in learning capability between di�erent model sizes.
To elaborate, Fig. 3 illustrates a series of training runs with models varying in size from 39 million to 5
billion parameters, where the training compute cost is quantified as the product of relative cost shown in
Table 1 and training iterations. Model performance is evaluated by using the same sampling steps and
sampling parameters. In scenarios with moderate training compute (i.e., < 1G, see Fig. 3), the generative
performance of T2I models scales well with additional compute resources.

3.2 Pretraining scales downstream performance

Using scaled models based on their pretraining on text-to-image data, we finetune these models on the down-
stream tasks of real-world super-resolution (Saharia et al., 2022; Sahak et al., 2023) and DreamBooth (Ruiz
et al., 2023). The performance of these pretrained models is shown in Table. 1. In the left panel of Fig. 4,
we present the generative performance FID versus training compute on the super-resolution (SR) task. It
can be seen that the performance of SR models is more dependent on the model size than training compute.
Our results demonstrate a clear limitation of smaller models: they cannot reach the same performance levels
as larger models, regardless of training compute.

While the distortion metric LPIPS shows some inconsistencies compared to the generative metric FID
(Fig. 4), Fig. 5 clearly demonstrates that larger models excel in recovering fine-grained details compared
to smaller models.

The key takeaway from Fig. 4 is that large super-resolution models achieve superior results even after short
finetuning periods compared to smaller models. This suggests that pretraining performance (dominated by
the pretraining model sizes) has a greater influence on the super-resolution FID scores than the duration of
finetuning (i.e., training compute for finetuning).

Furthermore, we compare the visual results of the DreamBooth finetuning on the di�erent models in Fig. 6.
We observe a similar trend between visual quality and model size. Please see our supplement for more
discussions on the other quality metrics.
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83M 145M 223M 318M 430M

LR 558M 704M 866M 2B HR

83M 145M 223M 318M 430M

LR 558M 704M 866M 2B HR

Figure 5: In 4◊ super-resolution using 50-step DDIM sampling, visual quality directly improves with in-
creased model size. As these scaled models vary in pretraining performance, the results clearly demonstrate
that pretraining boosts super-resolution capabilities in both quantitative (Fig 4) and qualitative ways. Ad-
ditional results are given in supplementary material.

3.3 Scaling sampling-e�ciency

3.3.1 Analyzing the e�ect of CFG rate.

Text-to-image generative models require nuanced evaluation beyond single metrics. Sampling parameters
are vital for customization, with the Classifier-Free Guidance (CFG) rate (Ho & Salimans, 2022) directly
influencing the balance between visual fidelity and semantic alignment with text prompt. Rombach et
al. (Rombach et al., 2022) experimentally demonstrate that di�erent CFG rates result in di�erent CLIP and
FID scores.

In this study, we find that CFG rate as a sampling parameter yields inconsistent results across di�erent
model sizes. Hence, it is interesting to quantitatively determine the optimal CFG rate for each model size
and sampling steps using either FID or CLIP score. We demonstrate this by sampling the scaled models using
di�erent CFG rates, i.e., (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and comparing their quantitative and qualitative
results. In Fig. 7, we present visual results of two models under varying CFG rates, highlighting the impact
on the visual quality. We observed that changes in CFG rates impact visual quality more significantly than
prompt semantic accuracy and therefore opted to use the FID score for quantitative determination of the
optimal CFG rate. performance. Fig. 8 shows how di�erent classifier-free guidance rates a�ect the FID
scores in text-to-image generation (see figure caption for more details).

3.3.2 Scaling e�ciency trends.

Using the optimal CFG rates established for each model at various number of sampling steps, we analyze
the optimal performance to understand the sampling e�ciency of di�erent LDM sizes. Specifically, in Fig. 9,
we present a comparison between di�erent models and their optimal performance given the sampling cost
(normalized cost ◊ sampling steps). By tracing the points of optimal performance across various sampling
cost—represented by the dashed vertical line—we observe a consistent trend: smaller models frequently
outperform larger models across a range of sampling cost in terms of FID scores. Furthermore, to visually
substantiate better-quality results generated by smaller models against larger ones, Fig. 10 compares the
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83M 145M 223M 318M

Inputs 430M 558M 866M 2B

83M 145M 223M 318M

Inputs 430M 558M 866M 2B

Figure 6: Visualization of the Dreambooth results (using 50-step DDIM sampling and CFG rate of 7.5)
shows two distinct tiers based on model size. Smaller models (83M-223M) perform similarly, as do larger ones
(318M-2B), with a clear quality advantage for the larger group. Additional results are given in supplementary
material.

(a) 50-step sampling results of the 145M model

(b) 50-step sampling results of the 866M model

Figure 7: Visualization of text-to-image results with 50-step DDIM sampling and di�erent CFG rates (from
left to right in each row: (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)). The prompt used is “A raccoon wearing formal
clothes, wearing a top hat and holding a cane. Oil painting in the style of Rembrandt.”. We observe that
changes in CFG rates impact visual quality more significantly than the prompt semantic accuracy. We use
the FID score for quantitative determination of optimal sampling performance (Fig. 8) because it directly
measures visual quality, unlike the CLIP score, which focuses on semantic similarity.

results of di�erent scaled models, which highlights that the performance of smaller models can indeed match
their larger counterparts under similar sampling cost conditions. Please see our supplement for more visual
comparisons.
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Figure 8: The impact of the CFG rate on text-to-image generation depends on the model size and sampling
steps. As demonstrated in the left and center panels, the optimal CFG rate changes as the sampling steps
increased. To determine the optimal performance (according to the FID score) of each model and each
sampling steps, we systematically sample the model at various CFG rates and identify the best one. As
a reference of the optimal performance, the right panel shows the CFG rate corresponding to the optimal
performance of each model for a given number of sampling steps.

Figure 9: Comparison of text-to-image performance of models with varying sizes. The left figure shows
the relationship between sampling cost (normalized cost ◊ sampling steps) and sampling steps for dif-
ferent model sizes. The right figure plots the optimal text-to-image FID score among CFG rates of
(1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) as a function of the sampling cost for the same models. Key Observa-
tion: Smaller models achieve better FID scores than larger models for a fixed sampling cost. For instance, at
a cost of 3, the 83M model achieves the best FID compared to the larger models. This suggests that smaller
models can be more e�cient in achieving good results with lower costs.

3.4 Scaling sampling-e�ciency in di�erent samplers

To assess the generalizability of observed scaling trends in sampling e�ciency, we compared scaled LDM
performance using di�erent di�usion samplers. In addition to the default DDIM sampler, we employed
two representative alternatives: the stochastic DDPM sampler (Ho et al., 2020) and the high-order DPM-
Solver++ (Lu et al., 2022b).

Experiments illustrated in Fig. 11 reveal that the DDPM sampler typically produces lower-quality results
than DDIM with fewer sampling steps, while the DPM-Solver++ sampler generally outperforms DDIM in
image quality (see the figure caption for details). Importantly, we observe consistent sampling-e�ciency
trends with the DDPM and DPM-Solver++ sampler as seen with the default DDIM: smaller models tend
to achieve better performance than larger models under the same sampling cost. Since the DPM-Solver++
sampler is not designed for use beyond 20 steps, we focused our testing within this range. This finding
demonstrates that the scaling properties of LDMs remain consistent regardless of the di�usion sampler used.
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83M 145M 223M 318M

430M 558M 704M 866M

(a) Prompt: “A corgi’s head depicted as a nebula.”. Sampling Cost ¥ 6.

83M 145M 223M 318M

430M 558M 704M 866M

(b) Prompt: “A pineapple surfing on a wave.”. Sampling Cost ¥ 12.

Figure 10: Text-to-image results of the scaled LDMs under approximately the same inference cost (normalized
cost ◊ sampling steps). Smaller models can produce comparable or even better visual results than larger
models under similar sampling cost.

3.5 Scaling downstream sampling-e�ciency

Here, we investigate the scaling sampling-e�ciency of LDMs on downstream tasks, specifically focusing on
the super-resolution task. Unlike our earlier discussions on optimal sampling performance, there is limited
literature demonstrating the positive impacts of SR performance without using classifier-free guidance. Thus,
our approach directly uses the SR sampling result without applying classifier-free guidance. Inspired from
Fig. 4, where the scaled downstream LDMs have significant performance di�erence in 50-step sampling,
we investigate sampling e�ciency from two di�erent aspects, i.e., fewer sampling steps [4, 20] and more
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Figure 11: Left: Text-to-image performance FID as a function of the sampling cost (normalized cost ◊
sampling steps) for the DDPM sampler (solid curves) and the DDIM sampler (dashed curves). Right: Text-
to-image performance FID as a function of the sampling cost for the second-order DPM-Solver++ sampler
(solid curves) and the DDIM sampler (dashed curves). Suggested by the trends shown in Fig. 9, we only
show the sampling steps Æ 50 as using more steps does not improve the performance.

Figure 12: Super-resolution performance vs. sampling cost for di�erent model sizes. Left: FID scores of
super-resolution models under limited sampling steps (less than or equal to 20). Smaller models tend to
achieve lower (better) FID scores within this range. Right: FID scores of super-resolution models under
a larger number of sampling steps (greater than 20). Performance di�erences between models become less
pronounced as sampling steps increase.

sampling steps (20, 250]. As shown in the left part of Fig. 12, the scaling sampling-e�ciency still holds in
the SR tasks when the number of sampling steps is less than or equal to 20 steps. Beyond this threshold,
however, larger models demonstrate greater sampling-e�ciency than smaller models, as illustrated in the
right part of Fig. 12. This observation suggests the consistent sampling e�ciency of scaled models on fewer
sampling steps from text-to-image generation to super-resolution tasks.

3.6 Scaling sampling-e�ciency in distilled LDMs.

We have featured the scaling sampling-e�ciency of latent di�usion models, which demonstrates that smaller
model sizes exhibit higher sampling e�ciency. A notable caveat, however, is that smaller models typically
imply reduced modeling capability. This poses a challenge for recent di�usion distillation methods (Luhman
& Luhman, 2021; Salimans & Ho, 2022; Song et al., 2023; Sauer et al., 2023b; Gu et al., 2023; Mei et al.,
2024; Luo et al., 2023; Lin et al., 2024) that heavily depend on modeling capability. One might expect a
contradictory conclusion and believe the distilled large models sample faster than distilled small models.
In order to demonstrate the sampling e�ciency of scaled models after distillation, we distill our previously
scaled models with conditional consistency distillation (Song et al., 2023; Mei et al., 2024) on text-to-image
data and compare those distilled models on their optimal performance.
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Figure 13: Distillation improves text-to-image performance and scalability. Left: Distilled Latent Di�usion
Models (LDMs) consistently exhibit lower (better) FID scores compared to their undistilled counterparts
across varying model sizes. The consistent acceleration factor (approx. 5◊) indicates that the benefits of
distillation scale well with model size. Right: Distilled models using only 4 sampling steps achieve FID scores
comparable to undistilled models using significantly more steps. Interestingly, at a sampling cost of 7, the
distilled 866M model performs similarly to the smaller, undistilled 83M model, suggesting improved e�ciency.

To elaborate, we test all distilled models with the same 4-step sampling, which is shown to be able to
achieve the best sampling performance; we then compare each distilled model with the undistilled one on the
normalized sampling cost. We follow the same practice discussed in Section 3.3.1 for selecting the optimal
CFG rate and compare them under the same relative inference cost. The results shown in the left part
of Fig. 13 demonstrate that distillation significantly improves the generative performance for all models in
4-step sampling, with FID improvements across the board. By comparing these distilled models with the
undistilled models in the right part of Fig. 13, we demonstrate that distilled models outperform undistilled
models at the same sampling cost. However, at the specific sampling cost, i.e., sampling cost ¥ 8, the smaller
undistilled 83M model still achieves similar performance to the larger distilled 866M model. The observation
further supports our proposed scaling sampling-e�ciency after di�usion distillation.

4 Conclusion

In this paper, we investigated scaling properties of Latent Di�usion Models (LDMs), specifically through
scaling model size from 39 million to 5 billion parameters. We trained these scaled models from scratch
on a web-scale text-to-image dataset and then finetuned the pretrained models for downstream tasks. Our
findings unveil that, under identical sampling costs, smaller models frequently outperform larger models,
suggesting a promising direction for accelerating LDMs in terms of model size. We further show that the
sampling e�ciency is consistent in multiple axes. For example, it is invariant to various di�usion samplers
(stochastic and deterministic), and also holds true for distilled models. We believe this analysis of scaling
sampling e�ciency would be instrumental in guiding future developments of LDMs, specifically for balancing
model size against performance and e�ciency in a broad spectrum of practical applications.

Limitations and future work. This work utilizes visual quality inspection alongside established metrics
like FID and CLIP scores. We opted to avoid human evaluations due to the immense number of di�erent
combinations needed for the more than 1000 variants considered in this study. However, it is important
to acknowledge the potential discrepancy between visual quality and quantitative metrics, which is actively
discussed in recent works (Zhang et al., 2021; Jayasumana et al., 2024; Cho et al., 2023).

Claims regarding the scalability of latent di�usion models are made specifically for the particular model family
studied in this work (Rombach et al., 2022). Extending this analysis to other model families, particularly
those incorporating transformer-based backbones such as DiT (Peebles & Xie, 2023; Mei et al., 2023), SiT (Ma
et al., 2024), MM-DiT (Esser et al., 2024), and DiS (Fei et al., 2024), and cascaded di�usion models such
as Imagen3 (Baldridge et al., 2024) and Stable Cascade (Pernias et al., 2023), would be a valuable direction
for future research.
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