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ABSTRACT

We propose a semi-supervised diffusion solver for solving the Travelling Sales-
man Problem (TSP). Data-driven combinatorial optimization models recently at-
tract an amount of attention, since they have shown promising results in solving
various NP-hard problems without too much expert knowledge. However, most of
them rely on reinforcement learning (RL) and supervised learning (SL) which face
some intractable challenges: RL methods often encounter sparse reward problems
and SL methods pose a strict assumption that the optimal solution (label) is always
available. To address these challenges in arbitrarily large-scale TSP, this article
proposes a novel semi-supervised learning-based diffusion framework towards a
more general situation, i.e., we can freely produce instances as many as possible
but the acquisition of optimal solution is costly. This semi-supervised paradigm is
made viable by modeling the generative process upon a special transition matrix,
which facilitates the effective learning of the generative diffusion, compared with
learning the heatmap directly like other solvers do. Comprehensive experiments
validate our method across various scales TSP, showing that our method remark-
ably outperforms state-of-the-art data-driven solvers on large benchmark datasets
for Traveling Salesman Problems, and has an outstanding generalization ability.

1 INTRODUCTION

Combinatorial Optimization (CO) problem is a classical mathematical problem which aims to find
the optimal solution in a discrete space. It is still a challenge in computer science, since a large por-
tion of CO problems are NP-hard and cannot be solved in polynomial time with traditional solvers
which are very complicated and require significant expert knowledge Arora (1996). The traveling
salesman problem (TSP) is a well-known CO problem which has numerous real-life applications,
including transportation, robots routing, biology, circuit design and so on Vesselinova et al. (2020).
For TSP, given N cities and the Euclidean distances between each pair of cities, we try to find the
cheapest or shortest tour whose cost is minimized over the input graph in which the tour starts from
a beginning city and visits each node exactly once before finally returning to the beginning city.
During the past decades, most researchers pay a large attention to designing more efficient heuristic
solvers Arora (1996); Gonzalez (2007) to approximate optimal solutions.

Recently, with the development of deep learning, more and more data-driven approaches have been
proposed and shown promise in solving CO problems without too much manual intervention or
specific expert knowledge. Furthermore, it can learn underlying information from data, which is hard
to be discovered by traditional solvers. Existing data-driven CO solvers can be roughly classified
into three categories based on the training procedure: (i) supervised learning-based solvers, (ii)
reinforcement learning-based solvers, and (iii) unsupervised learning-based solvers.

Methods in the first category attempt to discover common patterns supervised by pre-computed
TSP solutions. These methods typically suffer from large expenditure in computation of the pre-
computed optimal or high-quality approximate TSP solutions. Apart from that, the performance
of supervised learning-based methods may decrease dramatically while tackling different size TSP
instances, especially for large-scale TSP. Methods in the second category rely on Markov decision
process (MDP) to grow partial solutions by adding one new node whose probability is fairly high in
each step or refine a feasible solution with neural network-guided local operations such as 2-opt Lin
& Kernighan (1973); Andrade et al. (2012) and node swap Chen & Tian (2019); Wu et al. (2021).
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However, these methods face the limitation of the ability of capture the multimodal nature of the
problems Khalil et al. (2017); Gu et al. (2017) and the challenge of scalability on large TSP instances,
since they suffer from the unavoidable sparse reward problem and sample efficiency issues. Methods
in the third category focus on various aspects to improve their performance without relying on
pre-computed data. Instead, they try to train their models with unlabeled data and compensate
by specific losses or operations Karalias & Loukas (2020); Sun et al. (2022); Wang et al. (2022);
Min et al. (2023); Sun et al. (2023). However, these methods also suffer from the instability and face
additional complexity compared with SL and RL based methods in training since there is no label
in this process.

To circumvent the above limitations, we propose a semi-supervised learning-based framework,
which alleviates the strong assumption of data setting and enjoys the merits of benefiting from la-
beled optimal solution and utilizing abundant unlabeled dataset. We instantiate the semi-supervised
framework in a generative diffusion model. The network architecture is built upon a specific transi-
tion matrix and a tailored graph neural network. Together with the dedicated design of the training
procedure of diffusion model in semi-supervised manner, our method shows significant improve-
ment compared with the state-of-the-art methods. Furthermore, extensive experiments well demon-
strate the effectiveness of each component in our design. We highlight the following contributions:

• We set up a semi-supervised TSP framework to make up for the shortcomings of TSP in
learning paradigm.

• We propose a diffusion model training strategy in semi-supervised manner.
• This method achieves state-of-the-art results and pushes the boundary of large-scale TSP.

2 RELATED WORK AND BACKGROUND

Our method is related to learning-based combinatorial optimization solver, semi-supervised learn-
ing, and the theory of diffusion model. The following paragraphs review relevant prior works.

2.1 LEARNING-BASED TSP SOLVER

Supervised Learners. Vinyals et al. (2015) first introduced a supervised learning-based algorithm,
the Pointer Network, to predict a TSP solution. Nowak et al. (2017) proposed a supervised approach
which can predict a heatmap of the solution space by training a graph neural network (GNN), and
then utilizing beam search to convert the heatmap to a valid tour. Li et al. (2018) and Joshi et al.
(2019) followed this idea, instead of continuing to train a GNN, they trained a graph convolutional
network (GCN) to build a heatmap which included the possibility of each edge to be included in
the optimal solution of a TSP. Recently, Fu et al. (2021) introduced a supervised learning algorithm
in which a small-scale model is trained in supervised manner and then used repetitively to build
heatmaps for much larger size TSP instances via a series of techniques including graph sampling,
converting and heatmaps merging. Besides, Sun & Yang (2023) broadened the current scope of
neural solvers for CO problems by proposing a graph-based diffusion framework, in which the
training process relies on the stable supervised manner. These SL-Based methods are incredibly
costly to generate ground truth tour on large scale graphs, due to the fact that they require a large
number of pre-computed TSP solutions.

Reinforcement Learners. Bello et al. (2016) were the first to solve CO problems by combining
neural networks and reinforcement learning (RL). They implemented an actor-critic RL architecture,
in which the total length of a tour was considered as a reward, to improve the quality of the final
solution. Since then, numerous further researches have been done, including attention models Kool
et al. (2018); Deudon et al. (2018), more advantageous RL algorithms Khalil et al. (2017); Ma et al.
(2019); Kwon et al. (2020); Xin et al. (2021); Choo et al. (2022), better training policies Kim et al.
(2022); Bi et al. (2022), for a wider range of CO problems. Recently, Qiu et al. (2022) proposed
a differentiable solver which can parameterize the underlying distribution of feasible solutions and
then reduce the variance of gradients by RL-Based algorithm. Apart from these learners, another
typical category of RL-Based solvers is improvement heuristics learners. Unlike construction meth-
ods mentioned before, RL-Based improvement heuristics methods train neural networks to increase
the quality of the current solution until there is no computational budget. Most of these methods
rely on traditional local-search algorithms such as 2-opt Croes (1958) and the large neighborhood
search Shaw (1997), and have been demonstrated with outstanding results by many previous works.
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However, these RL-Based models encounter the sparse reward problem when dealing with large
scale graphs Joshi et al.; Kim et al. (2021); Kool et al. (2018), since the reward is only decided
after decoding a complete solution. This problem can cause poor generalization performance and
unstable training variance.

Other unsupervised Learners. Besides supervised learning-based and reinforcement learning-
based algorithms mentioned before, there are some other learners introduced to solve CO problems.
Karalias & Loukas (2020) inspired by Erdos’ probabilistic method and utilized a neural network to
parameterize a probability distribution over solution spaces. Sun et al. (2022) proposed an annealed
training framework for CO problems which transformed CO problems into unbiased energy-based
models and selected a special penalty to make the EBM as smooth as possible. Simultaneously,
Wang et al. (2022) followed a relaxation-puls-rounding approach and adopted neural networks to
parameterize the relaxed solutions instead of discrete solutions. Recently, Min et al. (2023) proposed
an unsupervised learning method which trained with only a small amount of unlabeled data and
compensated for it by employing a special loss function. Additionally, Sun et al. (2023) utilized
modern sampling strategies to leverage landscape information to provide general-purpose solvers.
However, all these unsupervised solvers face additional complexity compared with SL and RL based
methods in training since there is no label in this process. Nevertheless, these methods have no
advantage performance in small scale CO problems.

2.2 SEMI-SUPERVISED LEARNING

Semi-supervised learning Van Engelen & Hoos (2020) has proven to be a powerful paradigm for
learning from datasets with rare labels or boosting the performance by leveraging unlabeled data,
which has been applied broadly in many fields, including representation learning Lee et al. (2013),
perceptual applications Zoph et al. (2020); Liu et al. (2020), generative models Zoph et al. (2020),
and so on. In the context of TSP, unlabeled instances are generated via randomly sampling 2D
positions within a unit square, i.e., infinite number of unlabeled instances freely accessed. However,
the label (optimal tour) is expensive especially for large-scale TSPs. Accordingly, a semi-supervised
learning framework become ever more necessary, in which both the underlying characteristics of
data own are explored in an unsupervised fashion and optimal tours are used to provide strong
guidance via full supervision. However, to the best of our knowledge, the semi-supervised regime
has not been explored in the area of TSP, where we bride this gap in this article.

2.3 DIFFUSION MODELS

Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020) are latent variable generative mod-
els characterized by a forward and a reverse Markov process. The forward process q(x1:T |x0) =∏T

t=1 q(xt|xt−1) gradually corrupts the data x0 ∼ q(x0) into a sequence of increasingly noise
latent variables x1:T = x1,x2, . . . ,xT . The learned reverse Markov process pθ(x0:T ) gradually
denoise the latent variables towards the data distribution. Altogether, denoising diffusion probabilis-
tic models are latent variable models of the following form:

pθ(x0) =

∫
pθ(x0:T ) dx1:T , where pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt). (1)

In order to optimize the generative model pθ(x0) to fit the data distribution q(x0), we typically
optimize a variational upper bound on the negative log-likelihood:

E[− log pθ(x0)] ≤ Eq [− log pθ(x0:T ) + log q(x1:T |x0)] ,

= Eq

[
T∑

t=2

DKL [q(xt−1|xt,x0)||pθ(xt−1|xt)]− log pθ(x0|x1)

]
+ C, (2)

where C = Eq [DKL [q(xT |x0)||p(xT )]] is a constant.

Discrete Diffusion. Typical diffusion models Song et al. (2020); Nichol & Dhariwal (2021) oper-
ate in the continuous domain, such as the most widely applied image domain, while the tour domain
in TSP is discrete. Discrete diffusion models are recently proposed for generation of discrete image
bits or texts using multinomial and categorical noises Hoogeboom et al. (2021); Austin et al. (2021).
Sun & Yang (2023) achieve sound results in TSP by leveraging the diffusion model, and demonstrate
the better results achieved by discrete diffusion compared with a continuous one. To this end, we
build our semi-supervised diffusion solver upon discrete diffusion.

3



Under review as a conference paper at ICLR 2024

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Following a conventional notation Papadimitriou & Steiglitz (1998) in combinatorial optimization
(CO), we define Xs as the space of discrete feasible solutions for a CO instance s, and c : Xs → R
as the cost function for a feasible solution xs ∈ Xs. The objective is to find the optimal solution for
a given instance s: x∗

s = argminxs∈Xs
c(xs).

In the context of TSP, an instance s contains N nodes that are connected with E edges, Xs = {0, 1}E
denotes the set of all tours that visit each node exactly once and return to the starting node at the
end, and c calculates the cost for each tour by summing up the edge weights in the tour. A solution
tour xs ∈ {0, 1}E for instance s is exactly an indicator vector for selecting a subset from E edges.

Probabilistic Formulation for TSP. Probabilistic TSP solvers Bello et al. (2016); Sun & Yang
(2023) tackle this problem by defining a parameterized conditional distribution pθ(xs|s), such that
the expected cost

∑
xs∈Xs

c(xs) · pθ(xs|s) is minimized. Unsupervised- or reinforcement-based
solvers learn the generative models by exploring the underlying principle of heuristics learners,
neglecting the possibly available optimal solution; Supervised learning-based solvers pose a strict
assumption that the optimal solutions x∗ are always available, which is not always applicable due to
the prohibitive time consumption of generating optimal solution. Instead, in this article, we bridge
this gap and demonstrate a semi-supervised framework towards a more general situation, i.e., we
can freely produce instances as many as possible but the acquisition of optimal solution (label) x∗

is costly.

Let S = S• + S◦ be the TSP training instances, where S• and S◦ denote labeled and unlabeled set,
respectively. The learning objective L consists of two components: maximizing the likelihood of
optimal solutions for labeled samples and minimized transition matrix constraints for all samples:

L = Es∈S• [− log pθ(x
∗
s|s)] + Es∈S [Ψ(xs) · pθ(xs|s)], (3)

where Ψ(·) denotes unsupervised losses on the predict solution xs for all training instances. This
is made viable by modeling the generative process on a proxy transition matrix Min et al. (2023)
instead of the raw heatmap as the most previous methods do, which improves the performance of
decoding and eases the design of our unsupervised objectives. The conditional generative distribu-
tion pθ(xs|s) is parameterized by diffusion model, following Sun & Yang (2023). Our framework is
notably different from them in the supervision paradigm and the form of tour for generative process.
Next, we introduce our semi-supervised diffusion solver. We denote x0 as the x∗

s and x̃0 as the
predicted solution xs following the diffusion convention, and omit the conditional notations of s for
brevity.

3.2 SEMI-SUPERVISED DIFFUSION SOLVER

Generative Process on Transition Matrix. Generating a valid tour poses challenges for learning-
based methods. That is, the machine learning models, such as graph neural networks, are asked
for learning from discrete tours, which are typically represented by a probabilistic heatmap H ∈
RN×N , where Hi,j denotes the probability of the edge between node i and j belongs to the final
tour. However, the heatmap itself gives no guarantee that it corresponds to a valid tour, i.e., a tour
visits each node exactly once and returns to the starting node at the end, and thus it may impede the
effectiveness of learning the generative process.

In order to alleviate the above concern, we propose to model the generative process upon a proxy of
heatmap, named transition matrix that is firstly proposed in Min et al. (2023). A transition matrix
T ∈ RN×N directly defines the transition between nodes: T [i, j] indicates the probability of the jth
in a tour sequence is the ith node. As a result, two adjacent columns T [:, j] and T [:, j + 1] define
one transition (edge) in the solution tour. Given a transition matrix T , the corresponding heatmap
H can now be computed as:

H = TV T T, where V =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
. . . . . .

...
...

0 0 0
. . . 1 0

0 0 0 · · · 0 1
1 0 0 · · · 0 0


. (4)
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V ∈ RN×N is the Sylvester shift matrix Sylvester (1909) and can be interpreted as a cyclic permu-
tation operator that performs a circular shift. As a side benefit, after the conversion from T to H , the
Hamiltonian Cycle constraint of a tour is naturally satisfied, which eases the heatmap decoding. We
refer the readers to Min et al. (2023) for more details about the advantages of the transition matrix.

Instantiating the Diffusion Model. We define our TSP solver as a conditional diffusion model:
the forward process gradually corrupts the data x0 into noise, where the x0 is exactly the transition
matrix T generated from the optimal tour; the denoise process takes as a set of noisy variables xt

and predicts the clean data x̃0, conditioned on instance s, i.e., N nodes in 2D Cartesian space.

Although the typical continuous diffusion models Ho et al. (2020); Song et al. (2020) can be directly
applied to discrete data by lifting the discrete input into a continuous space, previous work Sun &
Yang (2023) has proven that the continuous diffusion lags behind a discrete one. Thus, we instantiate
our solver with discrete diffusion. In the discrete diffusion model, multinomial noise is used to
corrupt data and the forward process add noises by:

q(xt|xt−1) = Cat(xt;p = xt−1Qt), where Qt =

[
(1− βt) βt

βt (1− βt)

]
. (5)

Qt is the transition probability matrix at t-step (It should not be confused with the T that defines a
tour). xQ is vector-matrix product where x can to be understood as one-hot vectors ({0, 1}N×N×2),
converted from the original x ∈ {0, 1}N×N . We follow Sun & Yang (2023) and also want

∏T
t=1(1−

βt) ≈ 0 such that x ∼ Uniform(·). And we obtain the following t-step marginal and posterior at
time t− 1:

q(xt|x0) = Cat(xt;p = x0Qt), with Qt = Q1Q2 . . .Qt,

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)
= Cat

(
xt−1;p =

xtQ
T
t ⊙ x0Qt−1

x0Qtx
T
t

)
. (6)

During reverse process, a neural network is trained to predict the logits of a distribution pθ(x̃0|xt),
which is combined with q(xt−1|xt,x0) and a summation over one-hot representations of x0 to
obtain the following parameterization:

pθ(xt−1|xt) =
∑
x̃0

q(xt−1|xt, x̃0)pθ(x̃0|xt). (7)

Semi-supervised Objective. Our semi-supervised objective consists two components as shown
in Equation 3. (i) Maximizing the likelihood of optimal solutions is equivalent to minimize the
error of predicted noise ϵ Austin et al. (2021), in which the input x0 used for forward corruption is
just the optimal solution of instance s in S•. However, there is no optimal solution to feed to the
forward process, for the unlabeled instances s in S◦. (ii) We introduce a reverse-only paradigm for
learning a TSP diffusion model without optimal solution. Specifically, starting from a sampled noise
at timestep T , conditioned on the node positions of instance s, the predicted x̃0 is estimated as:

pθ(x̃0|xT ) ∝ pθ(x̃0|xτ )q(xτ |xT , x̃
′

0)pθ(x̃
′

0|xT ), (8)

where the intermediate timestep τ is sampled uniformly. Only the gradients during the second
reverse process, i.e., pθ(x̃0|xτ ), is enabled. We also experiment multiple intermediate steps, like
the denoise process during inference, and we surprisingly find that one intermediate step is enough
for the unsupervised constraint, which is verified in Section 4.3. Note that we omit the condition s

when we discuss the diffusion model. Subsequently, the predicted x̃0 (i.e., transition matrix T̃ ) is
constrained as following unsupervised form Min et al. (2023):

Ψ(x̃0) = λ1

N∑
i=1

(

N∑
j=1

T̃i,j − 1)2︸ ︷︷ ︸
Row-wise constraint

+λ2

N∑
i

H̃i,i︸ ︷︷ ︸
No self-loops

+λ3

N∑
i

N∑
j

Di,jH̃i,j︸ ︷︷ ︸
Minimize tour distance

, (9)

where T̃ is just the x̃0 with softmax applied in column-wise, H̃ is calculated using Equation 4,
D is the distance matrix between nodes, and λ balance these terms. We note the first term bring
one-hot constraint to the predicted transition matrix, which plays an important role in the success of
our semi-supervised framework, verified in the experiments (Section 4.3). The second term induces
self-loops regularization, and the third term induces weighted edge selection constraint.
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Graph Neural Network with Transition Matrix. We employ the graph neural network (GNN)
with edge gating mechanisms Joshi et al. (2019); Sun & Yang (2023) as the backbone network for
our conditional diffusion model. Sun & Yang (2023) using a heatmap-based graph neural network,
where the heatmap naturally defines edges for node feature aggregation. However, aggregating node
feature (message passing) based on the transition matrix T is non-trivial. To this end, we introduce
an effective strategy to approach it. Given the ith node, we first choose a column with largest
probability on the ith row-vector Tt[i, :], where Tt is the transition matrix at current t-timestep:
column j = argmaxj Tt[i, j]. The edge weight for aggregation of node i is the (j + 1) column
of edge features within each GNN layers. In other words, transition matrix Tt determines which
column to select, edge features within each GNN layers determines the actual aggregation weights.

Denoise Schedule for Fast Inference. It’s a common practice to speed up the inference of dif-
fusion model by reducing the steps. We use the cosine denoising schedule, following Sun & Yang
(2023). Specifically, the forward process is defined on a timestep subset {xτ1 ,xτ2 , . . . ,xτM }, where
M denotes the number of inference steps and τi = T −⌊sin(M−i

M · π2 ) ·T ⌋. Then the denoise process
during inference directly models q(xτi−1

|xτi ,x0).

3.3 DECODING STRATEGIES

During inference, we convert the predicted transition matrix T̃ to the heatmap H̃ and try to generate
the final tour solution by heatmap decoding. Therefore, in this work, we employ three decoding
strategies following previous work Sun & Yang (2023); Qiu et al. (2022): (i) Greedy decoding, in
which all the possible edges are sorted in decreasing order by a specific evaluation criterion, and
then are inserted into the partial solution if there is no conflict. Normally, this strategy can be used
with 2-opt Lin & Kernighan (1973) to achieve better results. (ii) Sampling, a strategy from Kool
et al. (2018), in which we sample multiple solutions parallelly and select the one with the best
performance. (iii) Monte Carlo Tree Search (MCTS) followed Fu et al. (2021), where we generate
a number of actions with k-opt Croes (1958) to find much higher-quality solutions. MCTS consists
of four steps: initialization, simulation, selection, and back-propagation, and these steps are iterated
until no improving actions can be found in the sampling pool.

By default, we use the greedy decoding + 2-opt scheme as the default decoding scheme, follow-
ing Graikos et al. (2022); Sun & Yang (2023). Also note that apart from the decoding strategies
we used, there are also other kinds of decoding approaches, such as the best-first local search used
in the Min et al. (2023) which can explore the search space by mining the most promising node
continuously.

4 EXPERIMENTS

We choose various scale 2D-Euclidean TSP instances to test our model, and sample nodes from
a uniform distribution over the unit square randomly to generate the instances. We consider TSP-
100 and TSP-500 as the main benchmark to validate the configurations choices. Additionally, we
assess our solver on larger scale TSP instances with 100, 500, 1000, and 10000 nodes to illustrate
its performance as well as scalability against other start-of-the-art solvers.

4.1 EXPERIMENTAL SETUPS

Datasets. The training dataset is divided into two parts: (i) Labeled set S•. In order to label
these instances (i.e., find the optimal solution for supervised training), we use the Concorde exact
solver for small-scale TSPs (TSP-50/100), and the LKH-3 heuristic solver Helsgaun (2017) for
large-scale TSPs (TSP-500/1000/10000). (ii) Unlabeled set S◦. Since the TSP instances are trivially
synthesized, we can freely produce unlabeled instances as many as possible. However, how to
balance the size of S• and S◦ is remaining to be solved, which we will fully investigate in ablation
studies (Section 4.3).

By default, for all TSP scales, we use the same number of labeled instances as Sun & Yang (2023),
and twice numbers for unlabeled instances, i.e., the ratio between S• and S◦ is 1 : 2. We also
demonstrate the setting where the total number of instances equals with Sun & Yang (2023), to
demonstrate the superiority of the model itself. For fair evaluation, we use the same test instances
as Kool et al. (2018); Joshi et al. (2019); Sun & Yang (2023) for TSP-50/100 and Fu et al. (2021)
for TSP-500/1000/10000.
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Evaluation Metrics. In order to compare performance of different models effectively, we con-
sider three metrics which are the same as the metrics in Sun & Yang (2023): average tour length
(LENGTH), average relative performance drop (DROP) and total run time (TIME). LENGTH is de-
fined as the average length of the predicted tour for each instance in the test set; DROP is the average
of the relative decrease in performance in terms of the solution length compared with a baseline
solver; TIME is considered as the total clock time required to generate solutions for all test instances
in seconds(s), minutes(m), or hours(h).

Model Settings. (i) GNN. A graph neural network with edge gating mechanisms is adopted as the
backbone network, where message passing is achieved along the edges defined upon the transition
matrix T , as described in Section 3.2. It has 12-layers with a width of 256. We refer reader to Joshi
et al. (2019) for more GNN details. (ii) Diffusion. We train diffusion model with T = 1000 and
simple linear noise schedule with β1 = 10−4, βT = 0.02; We inference diffusion model with
M = 50, i.e., only steps 1, 2, 5, 8, 13, 18, . . . , 938, 969, 1000 are used.

Baselines We choose several strong baselines for comparison, including traditional TSP methods
and learning-based methods: (i) Traditional TSP methods include Concorde Applegate (2006) and
Gurobi Optimization (2018), which are exact TSP solvers, 2-opt Croes (1958) and LKH-3 Hels-
gaun (2017), which are heuristic solver. Farthest Insertion is also included as a simple base-
line for computing the performance drop. (ii) Learning-based methods include AM Kool et al.
(2018), GCN Joshi et al. (2019), Transformer Bresson & Laurent (2021), POMO Kwon et al.
(2020), POMO+EAS Hottung et al. (2021), Att-GCN Fu et al. (2021), Sym-NCO Kim et al. (2022),
DPDP Ma et al. (2021), Image Diffusion Graikos et al. (2022), MDAM Xin et al. (2021), DIMES Qiu
et al. (2022), DIFUSCO Sun & Yang (2023), and UTSP Min et al. (2023).

These include classical benchmarks and the state-of-the-art proposed recently. Some of these meth-
ods are designed targeting at specific scale or not have well scalability in large-scale problem, hence
we divided the comparison into small- (50/100) and large-scale (500/1000/10000) TSP and choose
the competitors if they do well at current scale.

4.2 MAIN RESULTS

We compare our method to all other state-of-the-art methods as far as we know. Main results are
reported on Table 1 and Table 2 across various scales.

Table 1 compares ours with other approaches on the small-scale TSP-50 and TSP-100. We adopt 50
(diffusion steps) × 1 (samples) policy and 10 (diffusion steps) × 16 (samples), denoted as Greedy
and 16×Sampling. With 16×Sampling, both the DIFUSCO Sun & Yang (2023) and ours achieve
almost perfect prediction, zero DROP compared with the exact solution. However, in the case of
one-sampling, DIFUSCO demonstrates significant DROP, while that of ours far less than theirs. We
consider that this phenomenon comes from a better modeling for the underlying data distribution,
owing to our semi-supervised framework that can benefit from unlabeled data.

Table 2 compares ours with other approaches on the large-scale TSP-500, TSP-1000, and TSP-
10000. Since most previous probabilistic solvers, except DIMES Qiu et al. (2022) and DIFUSCO,
becomes untrainable on these scales, the results of these methods are reported with models trained on
TSP-100. Following Sun & Yang (2023), we also report the results with various decoding strategies,
including greedy, sampling, and MCTS, as mentioned in Section 3.3. The results show that our
method remarkably outperforms state-of-the-art solvers on these large scale problems, suggesting
a well scalability of our methods. Moreover, for the TSP-10000 that only approximate solutions
are available, the DIFUSCO with fully supervised may learn a suboptimal distribution. In contrast,
ours semi-supervised paradigm offers an opportunity for achieving better results than the LKH-3
heuristic solvers. We defer this validation in the future when the exactly results can be accessible in
such scale.

4.3 ABLATION STUDIES

In this subsection, we study the important design choices in our framework, including (i) the ratio
between the size of labeled subset S• and unlabeled subset S◦, (ii) the number of intermediate
steps for computing unsupervised losses, (iii) importance of unsupervised terms, and (iv) trade-off
between denoising inference steps and samples. We conduct ablation experiments on TSP-100 and
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Table 1: Results on small-scale TSP. ∗ denotes the baseline for computing the DROP . † denotes
that we only sample once in diffusion model. Some of results are taken from Fu et al. (2021); Qiu
et al. (2022); Sun & Yang (2023).

TSP-50 TSP-100

ALGORITHM TYPE LENGTH ↓ DROP(%) ↓ LENGTH ↓ DROP(%) ↓

CONCORDE EXACT 5.69∗ 0.00 7.76∗ 0.00
2-OPT HEURISTICS 5.86 2.95 8.03 3.54

AM GREEDY 5.80 1.76 8.12 4.53
GCN GREEDY 5.87 3.10 8.41 8.38
TRANSFORMER GREEDY 5.71 0.31 7.88 1.42
POMO GREEDY 5.73 0.64 7.84 1.07
SYM-NCO GREEDY - - 7.84 0.94
DPDP 1k-IMPROVEMENTS 5.70 0.14 7.89 1.62
IMAGE DIFFUSION GREEDY† 5.76 1.23 7.92 2.11
DIFUSCO GREEDY† 5.70 0.10 7.78 0.24
OURS GREEDY† 5.69 0.04 7.77 0.13
AM 1k×SAMPLING 5.73 0.52 7.94 2.26
GCN 2k×SAMPLING 5.70 0.01 7.87 1.39
TRANSFORMER 2k×SAMPLING 5.69 0.00 7.76 0.39
POMO 8×AUGMENT 5.69 0.03 7.77 0.14
SYM-NCO 100×SAMPLING - - 7.79 0.39
MDAM 50×SAMPLING 5.70 0.03 7.79 0.38
DPDP 100k-IMPROVEMENTS 5.70 0.00 7.77 0.00
DIFUSCO 16×SAMPLING 5.69 0.00 7.76 0.00
OURS 16×SAMPLING 5.69 0.00 7.76 0.00

Table 2: Results on large-scale TSP. ∗ denotes the baseline for computing the DROP . † denotes
that we only sample once in diffusion model. RL, SL, SSL, AS, G, S, BS, and MCTS denotes
Reinforcement Learning, Supervised Learning, Semi-Supervised Learning, Active Search, Greedy
decoding, Sampling decoding, Beam-search, and Monte Carlo Tree Search, respectively. Some of
results are taken from Fu et al. (2021); Qiu et al. (2022); Sun & Yang (2023).

TSP-500 TSP-1000 TSP-10000

ALGORITHM TYPE LENGTH ↓ DROP ↓ TIME ↓ LENGTH ↓ DROP ↓ TIME ↓ LENGTH ↓ DROP ↓ TIME ↓

CONCORDE EXACT 16.55∗ - 37.66 m 23.12∗ - 6.65 h N/A N/A N/A
GUROBI EXACT 16.55 0.00% 45.63 h N/A N/A N/A N/A N/A N/A
LKH-3 (DEFAULT) HEURISTICS 16.55 0.00% 46.28 m 23.12 0.00% 2.57 h 71.77∗ - 8.8 h
LKH-3 (LESS TRAILS) HEURISTICS 16.55 0.00% 3.03 m 23.12 0.00% 7.73 m 71.79 - 51.27 m
FARTHEST INSERTION HEURISTICS 18.30 10.57% 0 s 25.72 11.25% 0 s 80.59 12.29% 6 s

AM RL+G 20.02 20.99% 1.51 m 31.15 34.75% 3.18 m 141.68 97.39% 5.99 m
GCN SL+G 29.72 79.61% 6.67 m 48.62 110.29% 28.52 m N/A N/A N/A
POMO+EAS-EMB RL+AS+G 19.24 16.25% 12.80 h N/A N/A N/A N/A N/A N/A
POMO+EAS-TAB RL+AS+G 24.54 48.22% 11.61 h 49.56 114.36% 63.45 h N/A N/A N/A
DIMES RL+G 18.93 14.38% 0.97 m 26.58 14.97% 2.08 m 86.44 20.44% 4.65 m
DIMES RL+AS+G 17.81 7.61% 2.10 h 24.91 7.74% 4.49 h 80.45 12.09% 3.07 h
DIFUSCO SL+G†+2-OPT 16.80 1.49% 3.65 m 23.56 1.90% 12.06 m 73.99 3.10% 35.38 m
OURS SSL+G†+2-OPT 16.72 1.02% 3.83 m 23.46 1.47% 12.33 m 73.48 2.38% 35.82 m

EAN RL+S+2-OPT 23.75 43.57% 57.76 m 47.73 106.46% 5.39 h N/A N/A N/A
AM RL+BS 19.53 18.03% 21.99 m 29.90 29.23% 1.64 h 129.40 80.28% 1.81 h
GCN SL+BS 30.37 83.55% 38.02 m 51.26 121.73% 51.67 m N/A N/A N/A
DIMES RL+S 18.84 13.84% 1.06 m 26.36 14.01% 2.38 m 85.75 19.48% 4.80 m
DIMES RL+AS+S 17.80 7.55% 2.11 h 24.89 7.70% 4.53 h 80.42 12.05% 3.12h
DIFUSCO SL+S+2-OPT 16.65 0.57% 11.46 m 23.45 1.43% 48.09 m 73.89 2.95% 6.72 h
OURS SSL+S+2-OPT 16.59 0.24% 11.63 m 23.37 1.08% 49.20 m 73.42 2.30% 6.73 h

ATT-GCN SL+MCTS 16.97 2.54% 2.20 m 23.86 3.22% 4.10 m 73.93 4.39% 21.49 m
DIMES RL+MCTS 16.87 1.93% 2.92 m 23.73 2.64% 6.87 m 74.63 3.98% 29.83 m
DIMES RL+AS+MCTS 16.84 1.76% 2.15 h 23.69 2.46% 4.62 h 74.06 3.19% 3.57 h
DIFUSCO SL+MCTS 16.63 0.46% 10.13 h 23.39 1.17% 24.47 m 73.62 2.58% 47.36 m
OURS SSL+MCTS 16.57 0.12% 10.44 m 23.28 0.69% 25.18 m 73.33 2.17% 48.66 m

TSP-500, with greedy decoding and sampling+2-OPT decoding respectively. We report the average
tour length, illustrated in Table 3, 4, 5, and Figure 1.

i. Ratio Between S• and S◦. Table 3 shows the results on various ratio between S• and S◦.
As the size of unlabeled set increases, the performance is getting better obviously. Due to the
limit computation resource, we validate the ratio up to 1 : 10. For fair comparison with previous
supervised methods, we only use 1 : 2 in previous main results section. We also compare our method
to DIFUSCO with the same total numbers of instances, where we only use half numbers of labels,
shown in the row start with 0.5, 0.5. We see that our method performs even better at large-scale
TSP-500 problem.
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Table 3: The impact of the ra-
tio between S• and S◦.

Ratios TSP-100 TSP-500

1 : 0 5.70 16.63
1 : 0.5 5.70 16.61
1 : 1 5.69 16.61
1 : 2 5.69 16.59
1 : 5 5.69 16.57
1 : 10 5.69 16.55

0.5, 0.5 5.72 16.64
DIFUSCO 5.70 16.65

Table 4: Ablation studies
on the diffusion intermedi-
ate steps when computing
unsupervised losses.

Steps TSP-100 TSP-500

N/A 5.70 16.63
1 5.69 16.59
2 5.69 16.58
4 5.69 16.59
8 5.69 16.57

Table 5: Ablation studies on the impor-
tance of different unsupervision loss
terms defined in Equation 9.

Row Loop Dist TSP-100 TSP-500

✓ 5.69 16.60
✓ ✓ 5.69 16.60

✓ 5.70 16.63
✓ ✓ 5.71 16.62

✓ ✓ ✓ 5.69 16.59

ii. Intermediate Steps. Table 4 shows the impact of various intermediate steps when computing
unsupervision losses in Equation 9. N/A indicates no unsupervision losses are applied. For both
other experiments, the gradient is enabled only when the last denoising process. We surprisingly
find the unsupervision paradigm with only one intermediate step achieves sound results, for which
we set step = 1 in our default configuration.

iii. Importance of Unsupervised Terms. Table 5 demonstrates the ablation studies on the impor-
tance of different unsupervised terms in Equation 9. We note that the performance on the small-scale
TSP-100 is almost saturated, the influences on average length may not obvious. However, the im-
provement brought by these loss terms is remarkable on TSP-500.
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Figure 1: Ablation studies on the tradeoff between diffusion inference steps and samples. Left and
Middle: The performance drop on the TSP-100 and TSP-500. Right: The runtime ratio which we
calculate on the average of all instances in TSP-100 and TSP-500.

iv. Diffusion Steps and Samples. It’s good practice to accelerate diffusion inference by reducing
the denoising steps. And there is also an effective way to get better results by sampling multiple
times and choose the best one. To this end, for the time sensitive TSP, it’s importance to balance
the diffusion steps and samples. We dive into this tradeoff and report the results in Figure 1. The
diffusion steps we interested are 1, 2, 5, 10, 20, 50.

5 CONCLUSIONS

In this article, we propose a novel semi-supervised diffusion solver for TSP towards a more general
situations for large scale problem, where we can freely access to plenty of instances but few of them
are labeled with optimal solutions. This semi-supervised paradigm is more flexible to the dataset
settings, while the previous fully supervised or unsupervised methods pose strong assumptions to
the settings. Built upon a special transition matrix and a tailored graph neural network, our method
significantly improves the performance compared with the most recently state-of-the-art methods.
Extensive ablation studies well demonstrate the reasonability of each component in our design.
In the future, we will go further and extend the semi-supervised paradigm to other combinatorial
optimization problems.
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André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. arXiv preprint arXiv:2106.05126, 2021.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

CK Joshi, Q Cappart, LM Rousseau, T Laurent, and X Bresson. Learning tsp requires rethinking
generalization. arxiv 2020. arXiv preprint arXiv:2006.07054.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:
6659–6672, 2020.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing problems.
Advances in Neural Information Processing Systems, 34:10418–10430, 2021.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
binatorial optimization. Advances in Neural Information Processing Systems, 35:1936–1949,
2022.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In Workshop on challenges in representation learning, ICML, volume 3,
pp. 896. Atlanta, 2013.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. Advances in neural information processing systems, 31, 2018.

Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-salesman prob-
lem. Operations research, 21(2):498–516, 1973.

Quande Liu, Lequan Yu, Luyang Luo, Qi Dou, and Pheng Ann Heng. Semi-supervised medical
image classification with relation-driven self-ensembling model. IEEE transactions on medical
imaging, 39(11):3429–3440, 2020.

Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial opti-
mization by graph pointer networks and hierarchical reinforcement learning. arXiv preprint
arXiv:1911.04936, 2019.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. Ad-
vances in Neural Information Processing Systems, 34:11096–11107, 2021.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. arXiv preprint arXiv:2303.10538, 2023.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. A note on learning algorithms for
quadratic assignment with graph neural networks. stat, 1050:22, 2017.

Gurobi Optimization. Gurobi optimizer reference manual, 2018.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and com-
plexity. Courier Corporation, 1998.

11



Under review as a conference paper at ICLR 2024

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combina-
torial optimization problems. Advances in Neural Information Processing Systems, 35:25531–
25546, 2022.

Paul Shaw. A new local search algorithm providing high quality solutions to vehicle routing prob-
lems. APES Group, Dept of Computer Science, University of Strathclyde, Glasgow, Scotland,
UK, 46, 1997.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Haoran Sun, Etash K Guha, and Hanjun Dai. Annealed training for combinatorial optimization on
graphs. arXiv preprint arXiv:2207.11542, 2022.

Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, and Hanjun Dai. Revisiting
sampling for combinatorial optimization. 2023.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. arXiv preprint arXiv:2302.08224, 2023.

James Joseph Sylvester. The Collected Mathematical Papers of James Joseph Sylvester..., volume 3.
University Press, 1909.

Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning. Machine learning,
109(2):373–440, 2020.

Natalia Vesselinova, Rebecca Steinert, Daniel F Perez-Ramirez, and Magnus Boman. Learning
combinatorial optimization on graphs: A survey with applications to networking. IEEE Access,
8:120388–120416, 2020.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for com-
binatorial optimization with principled objective relaxation. Advances in Neural Information
Processing Systems, 35:31444–31458, 2022.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE transactions on neural networks and learning systems,
33(9):5057–5069, 2021.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042–12049, 2021.

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin Dogus Cubuk, and Quoc Le.
Rethinking pre-training and self-training. Advances in neural information processing systems, 33:
3833–3845, 2020.

12


	Introduction
	Related Work and Background
	Learning-based TSP Solver
	Semi-supervised Learning
	Diffusion Models

	Methodology
	Problem Definition
	Semi-supervised Diffusion Solver
	Decoding Strategies

	Experiments
	Experimental Setups
	Main Results
	Ablation Studies

	Conclusions

