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Abstract

Zero-shot fine-grained image classification001
poses significant challenges for vision language002
models (VLMs), primarily due to the subtle dis-003
tinctions among closely related classes. This004
paper introduces CascadeVLM, a cascading005
framework that seamlessly integrates CLIP006
with large vision language models (LVLMs),007
harnessing the strengths of both models in ad-008
dressing fine-grained image classification. Our009
methodology involves two primary steps. Ini-010
tially, CLIP is employed to identify potential011
class candidates based on prediction confidence.012
Then, LVLMs are adopted for zero/few-shot013
prediction, focusing on these candidate classes.014
Empirical evaluations on four fine-grained im-015
age classification benchmarks demonstrate Cas-016
cadeVLM’s superior performance compared to017
individual models. For example, on the Stan-018
fordCars dataset, CascadeVLM achieves an im-019
pressive 85.6% zero-shot accuracy. Further ef-020
ficiency analysis uncovers a trade-off between021
inference speed and prediction accuracy, and022
error analysis indicates that failed samples pri-023
marily stem from LVLMs’ prediction errors,024
even when provided with the correct candidate025
class options.026

1 Introduction027

In the dynamic landscape of vision-language mod-028

els (VLMs), models such as CLIP (Radford et al.,029

2021) have demonstrated impressive capabilities030

in broad image classification tasks (Zhou et al.,031

2022). However, their efficacy diminishes in fine-032

grained image classification, where the need to dis-033

tinguish between highly similar subclasses poses034

a formidable challenge (Ren et al., 2023). The035

left of Figure 1 illustrates the perplexing classifi-036

cation decisions made by the CLIP model when037

presented with flower images exhibiting subtle vi-038

sual nuances. A potential solution lies in turning039

to large vision-language models (LVLMs) such as040

GPT-4V (OpenAI, 2023), endowed with the abil-041

Figure 1: Illustration of model performance: CLIP’s
misclassification of watercress (left) and the inverse
relationship between LVLM accuracy and the number
of categories (right).

ity to harness vast world knowledge within their 042

extensive language model backbone (Petroni et al., 043

2019; Dai et al., 2022) for the task. However, the 044

limited capacity for long-context modeling (Zhao 045

et al., 2023) poses challenges, particularly evident 046

when LVLMs grapple with a large candidate im- 047

age class set, as is often the case in fine-grained 048

tasks such as classifying a flower from 100 candi- 049

date categories. The right part of Figure 1, illus- 050

trates this struggle, as the performant open-sourced 051

LVLM, Qwen-VL (Bai et al., 2023), experiences 052

a dramatic accuracy decline when the candidate 053

categories increase from 5 to 102. These inherent 054

challenges within VLMs and LVLMs prompt a crit- 055

ical research question: Can we effectively harness 056

the strengths of both paradigms to address these 057

limitations? 058

In this paper, we propose a cascade framework 059

that integrates the complementary capabilities of 060

CLIP and LVLMs to perform fine-grained image 061

classification. The key idea is to leverage the CLIP 062

as a class filter for LVLMs to fulfill the LVLM 063

potentials, elaborated in the following two steps. 064

Step 1: The CLIP model performs zero-shot clas- 065

sification on the input image. Based on the output 066

class distribution, we narrow the candidate image 067
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labels to a manageable subset based on the model’s068

prediction confidence. Step 2: The LVLMs are069

responsible for the final prediction within this nar-070

rowed label set. It can be performed in a zero-shot071

manner by asking the LVLMs to classify the image072

into the class based on the potential classes. Be-073

sides, the results can be further enhanced by lever-074

aging the in-context learning (Dong et al., 2022) of075

LVLMs. We randomly select one image from the076

training set and construct a demonstration to better077

inform LVLMs of each class’s visual characteris-078

tics. The overall inference efficiency can be further079

improved by adopting a heuristic mechanism to080

evaluate the necessity of deploying LVLMs. In-081

spired by the idea of dynamic early exiting (Xin082

et al., 2020; Schwartz et al., 2020; Li et al., 2021b)083

which allocate adaptive computation for samples084

with different complexity, we use entropy thresh-085

old functions as a heuristic mechanism to evaluate086

the necessity of deploying LVLMs. Samples with087

highly confident CLIP predictions can skip step 2088

and the CLIP results are adopted as the final pre-089

diction. This approach reduces the computational090

cost by invoking LVLMs only in scenarios where091

the CLIP predictions are confusing.092

We evaluate the proposed CascadeVLM frame-093

work on four fine-grained image classification094

datasets, achieving superior results over individ-095

ual models. Notably, in the StanfordCars dataset,096

CascadeVLM achieved an 85.6% accuracy rate,097

significantly surpassing the baselines of 76.2% for098

CLIP (ViT-L/14). In few-shot scenarios, this per-099

formance enhancement is consistently replicated100

across datasets leveraging GPT-4V as the LVLM.101

Our approach yields a 94.5% accuracy in the102

Flower102 dataset and 88.5% in the StanfordCars103

dataset, using CLIP (ViT-L/14) and GPT-4V with104

a 1-shot demonstration for each class. Further anal-105

ysis uncovers an inherent accuracy-computation106

trade-off by varying the threshold. Additionally,107

an in-depth error analysis exposes the bottlenecks108

of CascadeVLM, primarily stemming from inaccu-109

racies in candidate options provided by CLIP and110

misclassifications by LVLM, even when the correct111

label is present in the candidate set.112

Our study makes a two-fold contribution: (1) We113

present a cascade framework for fine-grained image114

classification, effectively leveraging the strengths115

of VLMs and LVLMs. (2) The proposed Cascade-116

VLM framework achieves superior results across117

diverse benchmarks, and our analysis provides in-118

sights for future integration of VLMs and LVLMs.119

2 Methodology 120

In this section, we delineate the methodology un- 121

derpinning our CascadeVLM framework, which is 122

structured into two steps. (1) The first step involves 123

candidate selection facilitated by the CLIP model. 124

This phase focuses on narrowing down the potential 125

candidate categories for a given input image, lever- 126

aging the robust classification capabilities of CLIP. 127

(2) The second step encompasses the application 128

of zero-shot or few-shot prediction techniques us- 129

ing large vision-language models (LVLMs). In this 130

stage, candidates initially filtered by CLIP undergo 131

further analysis. For zero-shot prediction, LVLMs 132

directly engage in classification based on these pre- 133

selected candidates. In scenarios requiring few- 134

shot learning, additional images corresponding to 135

each filtered candidate are procured to augment the 136

semantic context, thereby enhancing the learning 137

process and predictive accuracy. 138

2.1 CLIP-based Candidate Selection 139

As a pivotal component of our CascadeVLM frame- 140

work, the CLIP model serves a crucial role in iden- 141

tifying probable class candidates. CLIP’s opera- 142

tional mechanism allows it to effectively discern 143

potential correct classes, making it an ideal choice 144

for the initial phase of candidate filtering from an 145

extensive array of class labels. 146

In our approach, the function fCLIP(x, ci) de- 147

notes the score outputted by the CLIP model for a 148

specific category ci when given an image x. CLIP’s 149

core functionality lies in its ability to align image 150

and text representations within a unified embed- 151

ding space, thus facilitating the assessment of an 152

image’s compatibility with various textual descrip- 153

tors or category labels. Upon acquiring raw scores 154

from CLIP for each category in the label set C, 155

we employ a softmax function to transform these 156

scores into a probability distribution, as delineated 157

by: 158

P (ci | x) =
exp(fCLIP(x, ci))∑

cj∈C exp(fCLIP(x, cj))
, (1) 159

The resulting probabilities thus reflect the rela- 160

tive confidence of the CLIP model in associating 161

the given image with each category within the con- 162

text of the entire set C. For a comprehensive explo- 163

ration of CLIP’s underlying mechanism, we refer 164

readers to the original CLIP paper (Radford et al., 165

2021) 166
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Figure 2: CascadeVLM commences with CLIP for initial image analysis and probabilistic categorization, integrating
an entropy threshold, τ , to balance efficiency and accuracy, culminating in LVLM’s adaptive classification.

Based on the probability computation, denoted167

as P (ci | x), specified in Equation (1), we extract168

the top-k categories from C ensuring that they are169

sorted in descending order of probability. This170

selection and sorting process, crucial for the frame-171

work’s efficacy, is denoted as a function s(topk).172

Not only does this step condense the pool of candi-173

date classes, but it also addresses the sensitivity of174

LVLMs to the sequence in which these categories175

are presented. Our empirical results 3.2 affirm that176

simple sorting based on probability significantly177

bolsters the predictive precision of LVLMs. The178

generalized representation of this procedure is as179

follows:180

C∗ = {c′1, c′2, . . . , c′k} = stopk(P (ci | x), C),
(2)181

where C∗ encapsulates the optimally sorted can-182

didates, with c′1, c′2 through to c′k representing the183

elements in descending order of their computed184

probabilities.185

In conclusion, the integration of CLIP in our186

CascadeVLM framework efficiently streamlines187

the initial selection of class candidates, setting a188

solid foundation for the subsequent detailed classi-189

fication process. This step not only highlights the190

synergy between advanced vision-language tech-191

nologies but also prepares the ground for the next192

phase of our methodology, where LVLMs leverage193

this refined input for precise classification.194

2.2 LVLMs Prediction on Reduced Candidate 195

Set 196

In this subsection, we examine the utilization of 197

Large Vision-Language Models (LVLMs) for the 198

final classification within our CascadeVLM frame- 199

work. Capitalizing on a subset of candidates pre- 200

selected by CLIP, LVLMs overcome the challenge 201

of extensive context and improve prediction ac- 202

curacy through adaptable zero-shot and few-shot 203

learning strategies, tailored to the data-rich or data- 204

sparse environments. 205

Zero-Shot Prediction Zero-shot learning(Socher 206

et al., 2013) enables models to predict unseen 207

classes without specific training examples, leverag- 208

ing pre-existing knowledge from broader contexts 209

or related tasks. This method is particularly bene- 210

ficial in data-scarce scenarios, where it effectively 211

infers new categories despite limited training data. 212

In the context of our CascadeVLM framework, 213

zero-shot prediction is executed after identifying 214

the top-k candidate classes using CLIP. The LVLM 215

then selects one candidate c∗, as the final predic- 216

tion. Here, we generalize the process of LVLM 217

prediction as function f(LV LM), given the input 218

image x and the top-k candidate set C∗: 219

c∗ = fLVLM(x,C∗) (3) 220

This function capitalizes on the model’s inher- 221

ent understanding and the context provided by the 222

reduced candidate set. 223
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Thus, the zero-shot prediction phase in our Cas-224

cadeVLM framework highlights LVLMs’ profi-225

ciency in utilizing pre-trained knowledge for un-226

seen data while adeptly managing contextual com-227

plexities. Focusing on a select set of candidates,228

our method effectively addresses the intricacies229

of fine-grained classification, ensuring precise and230

dependable outcomes even without class-specific231

examples.232

Few-Shot Prediction In the Few-Shot Prediction233

phase of our CascadeVLM framework, we lever-234

age Large Vision-Language Models (LVLMs) in235

data-rich scenarios. This approach capitalizes on236

LVLMs’ ’in-context learning’(Brown et al., 2020)237

ability, where additional relevant samples signifi-238

cantly enhance performance, allowing LVLMs to239

deepen their understanding and improve predictive240

accuracy.241

In the integration of few-shot learning within our242

cascade framework, we meticulously undertake a243

two-step process for candidate categories set C∗:244

Step 1: Context Generation: In this initial phase,245

for each category c′i in C∗, we randomly select an246

example image xc′i from the training dataset, and247

manually design a prompt to contextualize the in-248

put image x for the LVLMs. Here, each candidate249

class c′i and its corresponding example image xc′i250

are integrated with the prompt template, effectively251

creating a contextual framework for the LVLMs.252

This assemblage of prompts and images forms the253

contextual basis, which we succinctly denote as E254

in the subsequent step of our methodology. For in-255

stance, within the context of the GPT4-V scenario,256

the contextual basis denoted as E is formulated as257

follows:258

<IMG: xc′1>
Question: What is the class of the
image? Answer: c′1
<IMG: xc′1>
Question: What is the class of the
image? Answer: c′1
...
<IMG: xc′1>
Question: What is the class of the
image? Answer: c′1

Table 1: Few-shot Prompt

Step 2 - Prediction with Contextual Informa-259

tion: In this step, the comprehensive context set 260

E is seamlessly integrated with the input image 261

x and fed into the Large Vision-Language Model 262

(LVLM). This integration enables the LVLM to 263

utilize the rich contextual information embedded 264

in E to enhance and refine its predictive process 265

for the image x. Consequently, the final classifi- 266

cation outcome, denoted as c∗ , emerges from this 267

enriched inferential framework. The process can 268

be mathematically represented as: 269

c∗ = fLVLM(x,C∗, E) (4) 270

where fLVLM represents the LVLM prediction 271

based on provided image x, the top-k candidate 272

set C∗ and the context set E. 273

Thus, we tailor our methodology to few-shot sce- 274

narios in data-rich environments. Our approach is 275

designed to leverage the abundance of data, provid- 276

ing a substantial scope for enhancing the accuracy 277

of LVLM’s predictions. 278

2.3 Speed-up via Adaptive Entropy 279

In our CascadeVLM framework, we introduce an 280

adaptive entropy-based approach aimed at enhanc- 281

ing inference speed, reducing the computational 282

load on LVLMs, and accelerating overall through- 283

put. The entropy H(x) of the probability distri- 284

bution, a measure of uncertainty or predictability 285

within the distribution, is calculated as follows: 286

H(x) = −
∑
ci∈C

P (ci | x) logP (ci | x) (5) 287

This computation serves as a critical decision 288

point in our methodology. If the calculated entropy 289

H(x) falls below a predefined threshold, it signi- 290

fies a high confidence level in the top-1 category as 291

determined by CLIP. In such cases, we expedite the 292

process by directly outputting this top-1 category, 293

thereby bypassing the need for further LVLM pro- 294

cessing. Conversely, if H(x) exceeds the threshold, 295

indicating a lower level of confidence and greater 296

uncertainty, we proceed to the subsequent steps 297

involving LVLMs for refined classification. This 298

adaptive mechanism effectively balances speed and 299

accuracy, streamlining the framework while ensur- 300

ing reliable classification outcomes. 301

In summary, we first employ CLIP for initial can- 302

didate class selection, followed by LVLMs for pre- 303

cise zero-shot or few-shot classification, effectively 304

addressing the challenge of fine-grained image cat- 305

egorization. An adaptive entropy-based approach 306
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Dataset # of Class # of Test

Flowers102 102 818
StanfordCars 196 8041

FGVC Aircraft 100 3333
Birds525 525 2625

Table 2: Statistics of the evaluated fine-grained image
classification benchmarks.

further optimizes the process, enhancing inference307

speed and computational efficiency by judiciously308

determining when to bypass LVLM processing.309

3 Experiments310

In this section, we rigorously evaluate the per-311

formance of our CascadeVLM framework across312

diverse benchmarks. Initially, we detail the ex-313

perimental setup in Section 3.1, followed by an314

in-depth analysis of the framework’s efficacy in315

zero-shot learning scenarios in Section 3.2, and316

subsequently in few-shot learning contexts in Sec-317

tion 3.3.318

3.1 Experimental Settings319

Models For our CascadeVLM framework’s ex-320

perimental evaluation, we employed various CLIP321

models in combination with specific Large Vision-322

Language Models (LVLMs). The experiments uti-323

lized one of the CLIP variants—CLIP-VIT-B/32,324

CLIP-VIT-B/16, or CLIP-VIT-L/14—alongside ei-325

ther Qwen-VL-Chat (Bai et al., 2023) or GPT-4V326

as the LVLM. Qwen-VL-Chat was selected for its327

capabilities in detailed visual tasks, while GPT-328

4V (OpenAI, 2023) was chosen for its proficiency329

in integrating text and image data. This strategic330

pairing of models aims to explore their collective331

effectiveness in fine-grained image classification,332

offering insights into their collaborative strengths333

within the CascadeVLM context.334

Datasets In our evaluation of the CascadeVLM335

framework, we utilize a collection of datasets336

sourced from Kaggle, each offering unique char-337

acteristics and significance for fine-grained image338

classification, as summarized in Table 2. These339

datasets include Flowers102(Nilsback and Zisser-340

man, 2008), StanfordCars (Krause et al., 2013),341

FGVC Aircraft (Maji et al., 2013), and Birds525342

(Berg et al., 2014), collectively encompassing a343

wide range of categories, from botanical and or-344

nithological species to intricate mechanical designs.345

Each dataset presents its own set of challenges, 346

with a varying number of classes and test images, 347

ranging from 100 to 525 classes. This variety en- 348

sures a comprehensive assessment across different 349

domains, testing the framework’s capability to han- 350

dle fine-grained classifications effectively. 351

Baselines In our experimental analysis, baseline 352

performances are established using a range of CLIP 353

models and Qwen-VL to benchmark against the ca- 354

pabilities of our CascadeVLM framework. The 355

comprehensive performance metrics of these mod- 356

els are detailed in Table 3. In the case of GPT-4V, 357

constrained by API call limitations and budgetary 358

considerations, we conduct evaluations on a strate- 359

gically chosen subset of 200 random samples from 360

each dataset to maintain a balanced class represen- 361

tation. The results of this targeted assessment are 362

compiled in Table 4. 363

3.2 Zero-shot Learning Results 364

Table 3 delineates the zero-shot prediction results, 365

showcasing the superior performance of our Cas- 366

cadeVLM framework across various benchmarks. 367

Notably, in the StanfordCars dataset, CascadeVLM 368

achieved a remarkable accuracy of 85.57%, under- 369

scoring its effectiveness in integrating CLIP and 370

LVLMs for fine-grained image classification. A de- 371

tailed examination of the results reveals that while 372

the baseline performance of LVLMs alone is mod- 373

est, the accuracy is significantly enhanced merely 374

by sorting the classes based on their probability in 375

descending order. Furthermore, the implementa- 376

tion of top-k selection within our framework fur- 377

ther amplifies this improvement, thereby validating 378

the efficacy of our cascade approach in optimizing 379

fine-grained classification tasks. 380

3.3 Few-shot Learning Results 381

In our initial explorations, we assessed Qwen-VL’s 382

capacity for few-shot learning within fine-grained 383

image classification domains. However, it became 384

apparent that Qwen-VL struggled to optimally uti- 385

lize in-context demonstrations and instructions in 386

this setting. Consequently, we turned our focus to 387

GPT-4V, anticipating its better alignment with our 388

framework’s requirements. 389

Given the constraints of OpenAI’s API rate lim- 390

its and our budget considerations, our experiments 391

with GPT-4V were limited to a subset of 200 sam- 392

ples per dataset. These experiments, encompass- 393

ing full class categorization and a top-k (k = 5) 394
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Model Flower102 StanfordCars FGVC Aricraft Birds525 Avg.

Qwen (full classes) 37.5 22.4 8.4 2.3 17.6

CLIP(ViT-B/32) 68.7 59.6 19.1 51.7 49.8
CLIP(ViT-B/32) Qwen Cascade (full classes) 72.7 74.3 22.7 20.3 47.5
CLIP(ViT-B/32) Qwen Cascade (top k) 74.2 79.2 27.1 56.7 59.3

CLIP(ViT-B/16) 73.0 64.4 24.5 52.5 53.6
CLIP(ViT-B/16) Qwen Cascade (full classes) 70.5 74.1 26.2 20.2 47.8
CLIP(ViT-B/16) Qwen Cascade (top k) 73.3 79.1 30.7 56.6 60.0

CLIP(ViT-L/14) 81.3 76.2 30.9 62.2 62.7
CLIP(ViT-L/14) Qwen Cascade (full classes) 75.8 78.9 30.1 21.0 51.5
CLIP(ViT-L/14) Qwen Cascade (top k) 78.2 85.6 37.0 63.0 66.0

Table 3: Zero-shot prediction results comparison with different CLIP models as the backbone. The k is selected
based on the validation set. Our CascadeVLM achieves the best overall performance on four benchmarks.

Model Flower102 StanfordCars FGVC Aricraft Birds525 Avg.

CLIP(ViT-L/14) 82.0 75.0 30.0 60.5 61.9
GPT4-V (full classes) 67.5 74.0 61.5 46.0 62.3
CLIP(ViT-L/14) + GPT4-V (k=full classes) 82.0 82.5 64.5 55.5 71.1
CLIP(ViT-L/14) + GPT4-V (k=5) 86.5 85.5 56.0 62.0 72.5
CLIP(ViT-L/14) + GPT4-V (k=5) + 1-shot 94.5 88.5 63.0 72.5 79.7

Table 4: Few-shot learning results with GPT-4V as the LVLM. GPT-4V can better utilize the in-context demon-
strations to achieve superior results for fine-grained classification. The result of CasecadeVLM is superior overall
datasets

approach, were instrumental in validating the Cas-395

cadeVLM approach. Here, the initial category fil-396

tering by CLIP, followed by GPT-4V’s targeted397

application, markedly improved classification ac-398

curacy. Consistent with our zero-shot findings in399

Section 3.2, we observed that even a basic reorder-400

ing of categories by their probabilities enhanced401

GPT-4V’s performance, with the application of a402

top-k selection further amplifying this effect.403

Furthermore, integrating few-shot learning into404

this cascade framework yielded even more pro-405

nounced improvements in predictive accuracy.406

For instance, with few-shot learning applied, the407

Flower102 dataset achieved an impressive 94.5%408

accuracy, while the StanfordCars dataset attained409

88.5%. These results not only reaffirm the effective-410

ness of our cascade framework but also highlight its411

adaptability and efficiency in leveraging few-shot412

learning for fine-grained classification tasks.413

4 Analysis414

In this section, we undertake a series of investiga-415

tive experiments to elucidate various facets of our416

CascadeVLM framework. Initially, we delve into417

the influence of the top-k variable on our model’s418

performance in Section 4.1. Subsequently, we419

examine the implications of the entropy threshold420

in Section 4.2, focusing on its role as a balanc-421

Figure 3: Performance changes with varied k with CLIP-
ViT-B/32.

ing factor between computational efficiency and 422

accuracy. Lastly, we will conduct a thorough error 423

analysis 4.3 and present case studies 4.4 to fur- 424

ther contextualize our findings and insights into the 425

framework’s operational dynamics. 426

4.1 Influence of candidate classes number k 427

The validation performance of our cascade frame- 428

work exhibits a dependency on the number of candi- 429

date classes, k, considered during the classification 430

process. One of a setting of our experiments, using 431
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Figure 4: Performance variation in the StanfordCars
dataset with varying entropy thresholds using CLIP-
ViT-L/14 for cascading, set at top-k=10. An increase in
entropy threshold results in decreased inference speed
and reduced accuracy.

CLIP ViT-B/32 and Qwen as components in the432

framework, represented graphically in Figures 3,433

demonstrate that as k is varied, the classification434

accuracy shifts. Interestingly, the optimal k value435

appears to be dataset-specific, suggesting that the436

intrinsic properties of each dataset may favor a437

different range of candidate classes. For instance,438

while the Flower102 and Birds525 dataset shows439

a gradual improvement as k decreases, indicating440

that a narrower focus enhances accuracy, the Stan-441

fordCars and Fgvc Aircraft dataset peaks at k = 10442

before seeing a decline, implying a sweet spot in443

the balance between too few and too many options,444

and a further reduction in candidate classes does445

not confer additional benefits. This nuanced behav-446

ior underscores the importance of tailoring the cas-447

cade framework’s parameters to the specific dataset448

at hand to achieve optimal performance.449

4.2 Efficiency of threshold450

This subsection critically evaluates the efficacy of451

implementing an entropy threshold within the Cas-452

cadeVLM framework. Functioning as a heuristic453

determinant, this threshold crucially dictates the454

juncture at which processing shifts from CLIP’s ini-455

tial evaluation to the computationally demanding456

LVLM analysis. This strategic integration plays a457

pivotal role in augmenting inference speed, adeptly458

balancing expeditious processing with the need for459

in-depth LVLM processing. Our experiments, con-460

ducted in a 1GPU (V100) environment, are illus-461

trated in Figure 4. Results indicate a direct correla-462

tion between an increase in entropy threshold and463

heightened inference speed, albeit at the cost of464

reduced accuracy.465

Figure 5: Error analysis of the Birds525 dataset with
an entropy threshold of 1.25 and top-k=10. The analy-
sis reveals that despite CLIP including correct options,
LVLM frequently misclassifies.

4.3 Error Analysis 466

An in-depth error analysis was conducted on the 467

Birds525 dataset using the cascade framework, 468

which incorporates CLIP (ViT-L/14) for initial clas- 469

sification and Qwen as the LVLM for refined cat- 470

egorization with k = 10, as shown in Figure 5. 471

When entropy is lower than the threshold, pre- 472

diction is only processed by CLIP, in this case, 473

148 misclassifications were noted (CLIP WRONG). 474

Otherwise, after the CLIP narrows down the op- 475

tions of classes, the LVLM Qwen would do the 476

final classification. In this case, LVLM resulted 477

in 812 misclassifications (LVLM Wrong), which 478

further breaks down into two categories: 212 in- 479

stances where the correct option was not present in 480

the top-10 candidates given by CLIP(LVLM Wrong 481

not in Options), and 600 instances where the cor- 482

rect option was present, but the LVLM failed to 483

identify it (LVLM Wrong in Options). 484

4.4 Case Study 485

Our case study analysis presents an examination of 486

three distinct scenarios encountered during exper- 487

imentation with CLIP-ViT-L/14 and Qwen as the 488

LVLM in a k = 5 setting. 489

Case 1 illustrates a scenario where CLIP’s top-1 490

prediction is incorrect; however, the ground truth is 491

present within its top-5 predictions. Leveraging the 492

LVLM’s discernment, the accurate class—green- 493

winged dove—is selected, validating the efficacy 494

of our framework in rectifying initial misclassifica- 495

tions. 496

Case 2 depicts a situation where, despite CLIP’s 497

inclusion of the correct answer—striped owl—in 498
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Figure 6: Three case studies demonstrating the cascade
process from CLIP predictions to LVLM refinement for
bird species classification.

its top-5 predictions, the LVLM fails to identify it499

correctly. This instance highlights potential areas500

for refinement within the LVLM’s decision-making501

process.502

Case 3 demonstrates a complete misalignment503

where both CLIP and LVLM fail to recognize the504

correct class within the top-5 predictions, leading505

to a compounded error in the final outcome.506

These cases underscore the nuanced complexi-507

ties of fine-grained image classification and reaf-508

firm the necessity for integrated approaches like509

CascadeVLM to capitalize on the strengths of510

both CLIP and LVLMs. They also provide valu-511

able insights into the decision-making dynamics of512

the models, offering pathways for future enhance-513

ments.514

5 Related Work515

Our work closely relates to recent studies build-516

ing vision language models and fine-grained image517

classification.518

Vision Language Models Building vision lan-519

guage models (VLMs) for understanding the multi-520

modal world has been an active research area.521

Pilot studies leverage pre-training concepts from522

NLP (Devlin et al., 2019), learning shared repre-523

sentations across modalities from mixed visual and524

language inputs (Li et al., 2019; Tan and Bansal,525

2019; Su et al., 2020; Chen et al., 2019; Li et al.,526

2020). Among these, Radford et al. (2021) in-527

troduced CLIP, a contrastive language-image pre-528

training framework that employs language as su-529

pervision, demonstrating potential for multi-modal530

tasks and inspiring subsequent variants for im-531

provement (Jia et al., 2021; Li et al., 2022b; Yao532

et al., 2022; Li et al., 2021a, 2022a). The evolution 533

of large language models like ChatGPT (OpenAI, 534

2022) has motivated the development of large vi- 535

sion language models (LVLMs), combining power- 536

ful vision encoders like CLIP with large language 537

models such as LLaMa (Touvron et al., 2023) and 538

Vicuna (Chiang et al., 2023). Achieved through 539

large-scale modality alignment training on image- 540

text pairs (Alayrac et al., 2022; Awadalla et al., 541

2023) and supervised fine-tuning on multi-modal 542

instruction tuning datasets (Liu et al., 2023; Li 543

et al., 2023), resulting LVLMs like GPT-4V (Ope- 544

nAI, 2023) and Qwen-VL (Bai et al., 2023) exhibit 545

promising perceptual and cognitive abilities (Yang 546

et al., 2023) for engaging user queries. This pa- 547

per identifies limitations in CLIP and LVLMs for 548

fine-grained image recognition and proposes the 549

CascadeVLM framework to effectively enhance 550

prediction accuracy by harnessing the advantages 551

of both models. 552

Fine-grained Image Classification . Fine- 553

grained image recognition, involving categoriza- 554

tion into subordinate classes within a broader cate- 555

gory, such as cars (Krause et al., 2013) and air- 556

craft models (Maji et al., 2013), demands fine- 557

grained feature learning. Previous work explores 558

diverse strategies, including local-global interac- 559

tion modules with attention mechanisms (Fu et al., 560

2017; Zheng et al., 2017), end-to-end feature en- 561

coding with specialized training objectives (Dubey 562

et al., 2018; Chang et al., 2020), and the incor- 563

poration of external knowledge bases or auxiliary 564

datasets (Chen et al., 2018; Xu et al., 2018). These 565

approaches offer potential enhancements similar 566

to our CLIP model, which we identify as a future 567

exploration for improved performance. 568

6 Conclusion 569

In this paper, we propose CascadeVLM, harness- 570

ing the advantages of CLIP and LVLMs for fine- 571

grained image classification. By utilizing CLIP for 572

selecting the potential candidate class, LVLM can 573

make more accurate predictions for image classes 574

with subtle differences. Experimental results on 575

four benchmarks demonstrate the effectiveness of 576

our proposed framework. Further extension to the 577

few-shot setups showcases the great potential of 578

the cascading framework to leverage the in-context 579

learning ability of LVLMs. 580

8



Limitations581

The efficacy of our CascadeVLM framework582

hinges critically on the symbiotic interplay be-583

tween the CLIP model and LVLMs. A key lim-584

itation emerges when CLIP’s top-K accuracy is585

insufficient, failing to encompass correct options586

in LVLM’s narrowed candidate set, thereby limit-587

ing the scope for enhanced accuracy. Moreover, if588

CLIP outperforms the LVLM in fine-grained classi-589

fication, incorporating an LVLM with relatively590

inferior capabilities may inadvertently diminish591

overall accuracy. These dynamics underscore the592

imperative for meticulous selection and alignment593

of models, ensuring each component’s strengths594

are effectively leveraged within the cascade archi-595

tecture.596
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Appendix849

A Prompt Tuning of Qwen850

A.1 Zero-shot Prompt Tunning of Qwen851

In our experiments, we experimented with vari-852

ous prompt designs to optimize the performance853

of Qwen in selecting the top-k categories. Two 854

representative prompt styles were identified, each 855

with distinct characteristics and performance impli- 856

cations. 857

The first prompt style, while intuitive, occasion- 858

ally led to non-compliant responses where Qwen 859

would select a flower name not listed in the given 860

options, or use an alias instead of the specified 861

name. This approach yielded suboptimal results. 862

Subsequently, we adapted our prompts to align 863

more closely with the training data of Qwen, where 864

the use of the keyword "options" was prevalent. 865

This adaptation significantly improved compliance 866

and accuracy in the model’s responses. Thus for 867

the overall experiment, we use ’PROMPT2’. And 868

for GPT-4V, we applied a similar prompt style but 869

followed the API requirement. 870

PROMPT 1: 871

Picture 1: <img >....jpg </img > 872

Please examine the flower image 873

↪→ and identify the most 874

↪→ suitable flower name 875

↪→ corresponding to the image 876

↪→ content from the list of 877

↪→ flower names below. 878

↪→ Remember select only one 879

↪→ flower name from the list , 880

↪→ and response with the 881

↪→ flower name ONLY. Available 882

↪→ flower names: [...] 883

PROMPT 2: 884

Picture 1: <img >...jpg </img > 885

Question: What is the flower name 886

↪→ ? Remember select only one 887

↪→ flower name from the 888

↪→ options and response with 889

↪→ the flower name only. 890

↪→ Options: [...] 891

A.2 Few-Shot Prompt Tunning of Qwen 892

In the domain of few-shot learning, we conducted 893

experiments with Qwen-VL and observed chal- 894

lenges in its ability to effectively utilize in-context 895

demonstrations and follow instructions. Our ex- 896

perimentation involved different prompt structures 897

in the context of the CLIP-ViT B/32 model with a 898

top-k = 10 setting on the Flower102 dataset. 899

The initial two prompts led to moderate success, 900

achieving an accuracy of approximately 50%. How- 901

ever, the implementation of the final prompt design 902
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demonstrated a notable improvement, yielding an903

accuracy close to 68%. This highlights the impact904

of prompt design on the model’s ability to leverage905

few-shot learning effectively.906

To corroborate the versatility of our Cascade-907

VLM framework, we conducted few-shot learn-908

ing experiments with GPT-4V. These trials demon-909

strated the framework’s adaptability across differ-910

ent LVLMs, reinforcing its effectiveness in diverse911

data-rich scenarios.912

PROMPT 1:913

<img >...jpg </img > Question: What914

↪→ is the flower name? Options915

↪→ : [...] Answer: ...916

<img >...jpg </img > Question: What917

↪→ is the flower name? Options918

↪→ : [...] Answer: ...919

<img >...jpg </img > Question: What920

↪→ is the flower name? Options921

↪→ : [...] Answer: ...922

...923

<img >...jpg </img > Question: What924

↪→ is the flower name? Answer:925

↪→ ...926

PROMPT 2:927

Picture 1: <img >...jpg </img >928

↪→ Question: What is the929

↪→ flower name? Options: [...]930

↪→ Answer: ...931

Picture 2: <img >...jpg </img >932

↪→ Question: What is the933

↪→ flower name? Options: [...]934

↪→ Answer: ...935

Picture 3: <img >...jpg </img >936

↪→ Question: What is the937

↪→ flower name? Options: [...]938

↪→ Answer: ...939

...940

Picture 4: <img >...jpg </img >941

↪→ Question: What is the942

↪→ flower name? Options: [...]943

↪→ Answer:944

PROMPT 3:945

Picture 1: <img >...jpg </img >946

↪→ Question: What is the947

↪→ flower name? Answer: ...948

Picture 2: <img >...jpg </img >949

↪→ Question: What is the950

↪→ flower name? Answer: ...951

Figure 7: Performance changes with varied k with CLIP-
ViT-B/16.

Picture 3: <img >...jpg </img > 952

↪→ Question: What is the 953

↪→ flower name? Answer: ... 954

... 955

Picture 4: <img >...jpg </img > 956

↪→ Question: What is the 957

↪→ flower name? Options: [...] 958

↪→ Answer: 959

PROMPT 4: 960

Picture 1: <img >...jpg </img > 961

↪→ Answer: ... 962

Picture 2: <img >...jpg </img > 963

↪→ Answer: ... 964

Picture 3: <img >...jpg </img > 965

↪→ Answer: ... 966

... 967

Picture 4: <img >...jpg </img > 968

↪→ Question: What is the 969

↪→ flower name? Options: [...] 970

↪→ Answer: 971

B Influence of candidate classes number k 972

In complementing the analysis presented in Sec- 973

tion 4.1, Figure 7 elucidates the impact of vary- 974

ing the number of candidate classes, k, within the 975

CLIP-ViT-B/16 configuration. In this scenario, the 976

StanfordCars and FGVC Aircraft datasets exhibit 977

peak performance at a top-10 setting, whereas the 978

Flower102 and Birds525 datasets demonstrate op- 979

timal results at a top-3 setting. Conversely, Fig- 980

ure 8 reveals distinctive trends, particularly in the 981

StanfordCars dataset, which maintains its maxi- 982

mal accuracy at a top-10 setting, and the Birds525 983

12



Figure 8: Performance changes with varied k with CLIP-
ViT-L/14.

dataset, which continues to show peak performance984

at top-3. Notably, for the FGVC Aircraft dataset,985

an optimal shift to top-5 is observed, possibly at-986

tributed to the baseline performance enhancement987

of CLIP with the ViT-L/14 model. Furthermore,988

in the Flower102 dataset, the intrinsic fine-grained989

image classification ability of the CLIP-ViT-L/14990

supersedes that of the Qwen LVLM in this spe-991

cific dataset, leading to superior accuracy when992

deployed as a standalone model.993
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