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Abstract

Zero-shot fine-grained image classification
poses significant challenges for vision language
models (VLMs), primarily due to the subtle dis-
tinctions among closely related classes. This
paper introduces CascadeVLM, a cascading
framework that seamlessly integrates CLIP
with large vision language models (LVLMs),
harnessing the strengths of both models in ad-
dressing fine-grained image classification. Our
methodology involves two primary steps. Ini-
tially, CLIP is employed to identify potential
class candidates based on prediction confidence.
Then, LVLMs are adopted for zero/few-shot
prediction, focusing on these candidate classes.
Empirical evaluations on four fine-grained im-
age classification benchmarks demonstrate Cas-
cadeVLM’s superior performance compared to
individual models. For example, on the Stan-
fordCars dataset, Cascade VLM achieves an im-
pressive 85.6% zero-shot accuracy. Further ef-
ficiency analysis uncovers a trade-off between
inference speed and prediction accuracy, and
error analysis indicates that failed samples pri-
marily stem from LVLMs’ prediction errors,
even when provided with the correct candidate
class options.

1 Introduction

In the dynamic landscape of vision-language mod-
els (VLMs), models such as CLIP (Radford et al.,
2021) have demonstrated impressive capabilities
in broad image classification tasks (Zhou et al.,
2022). However, their efficacy diminishes in fine-
grained image classification, where the need to dis-
tinguish between highly similar subclasses poses
a formidable challenge (Ren et al., 2023). The
left of Figure 1 illustrates the perplexing classifi-
cation decisions made by the CLIP model when
presented with flower images exhibiting subtle vi-
sual nuances. A potential solution lies in turning
to large vision-language models (LVLMs) such as
GPT-4V (OpenAl, 2023), endowed with the abil-
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Figure 1: Illustration of model performance: CLIP’s
misclassification of watercress (left) and the inverse
relationship between LVLM accuracy and the number
of categories (right).

ity to harness vast world knowledge within their
extensive language model backbone (Petroni et al.,
2019; Dai et al., 2022) for the task. However, the
limited capacity for long-context modeling (Zhao
et al., 2023) poses challenges, particularly evident
when LVLMs grapple with a large candidate im-
age class set, as is often the case in fine-grained
tasks such as classifying a flower from 100 candi-
date categories. The right part of Figure 1, illus-
trates this struggle, as the performant open-sourced
LVLM, Qwen-VL (Bai et al., 2023), experiences
a dramatic accuracy decline when the candidate
categories increase from 5 to 102. These inherent
challenges within VLMs and LVLMs prompt a crit-
ical research question: Can we effectively harness
the strengths of both paradigms to address these
limitations?

In this paper, we propose a cascade framework
that integrates the complementary capabilities of
CLIP and LVLMs to perform fine-grained image
classification. The key idea is to leverage the CLIP
as a class filter for LVLMs to fulfill the LVLM
potentials, elaborated in the following two steps.
Step 1: The CLIP model performs zero-shot clas-
sification on the input image. Based on the output
class distribution, we narrow the candidate image



labels to a manageable subset based on the model’s
prediction confidence. Step 2: The LVLMs are
responsible for the final prediction within this nar-
rowed label set. It can be performed in a zero-shot
manner by asking the LVLMs to classify the image
into the class based on the potential classes. Be-
sides, the results can be further enhanced by lever-
aging the in-context learning (Dong et al., 2022) of
LVLMs. We randomly select one image from the
training set and construct a demonstration to better
inform LVLMs of each class’s visual characteris-
tics. The overall inference efficiency can be further
improved by adopting a heuristic mechanism to
evaluate the necessity of deploying LVLMs. In-
spired by the idea of dynamic early exiting (Xin
et al., 2020; Schwartz et al., 2020; Li et al., 2021b)
which allocate adaptive computation for samples
with different complexity, we use entropy thresh-
old functions as a heuristic mechanism to evaluate
the necessity of deploying LVLMs. Samples with
highly confident CLIP predictions can skip step 2
and the CLIP results are adopted as the final pre-
diction. This approach reduces the computational
cost by invoking LVLMs only in scenarios where
the CLIP predictions are confusing.

We evaluate the proposed Cascade VLM frame-
work on four fine-grained image classification
datasets, achieving superior results over individ-
ual models. Notably, in the StanfordCars dataset,
CascadeVLM achieved an 85.6% accuracy rate,
significantly surpassing the baselines of 76.2% for
CLIP (ViT-L/14). In few-shot scenarios, this per-
formance enhancement is consistently replicated
across datasets leveraging GPT-4V as the LVLM.
Our approach yields a 94.5% accuracy in the
Flower102 dataset and 88.5% in the StanfordCars
dataset, using CLIP (ViT-L/14) and GPT-4V with
a 1-shot demonstration for each class. Further anal-
ysis uncovers an inherent accuracy-computation
trade-off by varying the threshold. Additionally,
an in-depth error analysis exposes the bottlenecks
of CascadeVLM, primarily stemming from inaccu-
racies in candidate options provided by CLIP and
misclassifications by LVLM, even when the correct
label is present in the candidate set.

Our study makes a two-fold contribution: (1) We
present a cascade framework for fine-grained image
classification, effectively leveraging the strengths
of VLMs and LVLMs. (2) The proposed Cascade-
VLM framework achieves superior results across
diverse benchmarks, and our analysis provides in-
sights for future integration of VLMs and LVLMs.

2 Methodology

In this section, we delineate the methodology un-
derpinning our CascadeVLLM framework, which is
structured into two steps. (1) The first step involves
candidate selection facilitated by the CLIP model.
This phase focuses on narrowing down the potential
candidate categories for a given input image, lever-
aging the robust classification capabilities of CLIP.
(2) The second step encompasses the application
of zero-shot or few-shot prediction techniques us-
ing large vision-language models (LVLMs). In this
stage, candidates initially filtered by CLIP undergo
further analysis. For zero-shot prediction, LVLMs
directly engage in classification based on these pre-
selected candidates. In scenarios requiring few-
shot learning, additional images corresponding to
each filtered candidate are procured to augment the
semantic context, thereby enhancing the learning
process and predictive accuracy.

2.1 CLIP-based Candidate Selection

As a pivotal component of our Cascade VLM frame-
work, the CLIP model serves a crucial role in iden-
tifying probable class candidates. CLIP’s opera-
tional mechanism allows it to effectively discern
potential correct classes, making it an ideal choice
for the initial phase of candidate filtering from an
extensive array of class labels.

In our approach, the function fcpp(z,c;) de-
notes the score outputted by the CLIP model for a
specific category c; when given an image z. CLIP’s
core functionality lies in its ability to align image
and text representations within a unified embed-
ding space, thus facilitating the assessment of an
image’s compatibility with various textual descrip-
tors or category labels. Upon acquiring raw scores
from CLIP for each category in the label set C,
we employ a softmax function to transform these
scores into a probability distribution, as delineated

by:
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The resulting probabilities thus reflect the rela-
tive confidence of the CLIP model in associating
the given image with each category within the con-
text of the entire set C'. For a comprehensive explo-
ration of CLIP’s underlying mechanism, we refer
readers to the original CLIP paper (Radford et al.,
2021)
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Figure 2: CascadeVLM commences with CLIP for initial image analysis and probabilistic categorization, integrating
an entropy threshold, 7, to balance efficiency and accuracy, culminating in LVLM’s adaptive classification.

Based on the probability computation, denoted
as P(c; | z), specified in Equation (1), we extract
the top-k categories from C ensuring that they are
sorted in descending order of probability. This
selection and sorting process, crucial for the frame-
work’s efficacy, is denoted as a function sggpp)-
Not only does this step condense the pool of candi-
date classes, but it also addresses the sensitivity of
LVLMs to the sequence in which these categories
are presented. Our empirical results 3.2 affirm that
simple sorting based on probability significantly
bolsters the predictive precision of LVLMs. The
generalized representation of this procedure is as
follows:

C* ={d,chy ...} = swpk(Plei | 2),0),
2)
where C* encapsulates the optimally sorted can-
didates, with ¢/, ¢, through to ¢} representing the
elements in descending order of their computed

probabilities.

In conclusion, the integration of CLIP in our
CascadeVLM framework efficiently streamlines
the initial selection of class candidates, setting a
solid foundation for the subsequent detailed classi-
fication process. This step not only highlights the
synergy between advanced vision-language tech-
nologies but also prepares the ground for the next
phase of our methodology, where LVLMs leverage
this refined input for precise classification.

2.2 LVLMs Prediction on Reduced Candidate
Set

In this subsection, we examine the utilization of
Large Vision-Language Models (LVLMs) for the
final classification within our CascadeVLM frame-
work. Capitalizing on a subset of candidates pre-
selected by CLIP, LVLMs overcome the challenge
of extensive context and improve prediction ac-
curacy through adaptable zero-shot and few-shot
learning strategies, tailored to the data-rich or data-
sparse environments.

Zero-Shot Prediction Zero-shot learning(Socher
et al., 2013) enables models to predict unseen
classes without specific training examples, leverag-
ing pre-existing knowledge from broader contexts
or related tasks. This method is particularly bene-
ficial in data-scarce scenarios, where it effectively
infers new categories despite limited training data.

In the context of our CascadeVLM framework,
zero-shot prediction is executed after identifying
the top-k candidate classes using CLIP. The LVLM
then selects one candidate cx, as the final predic-
tion. Here, we generalize the process of LVLM
prediction as function f(ry1ar), given the input
image = and the top-k candidate set C™*:

c* = fuvem(z, C*) 3)

This function capitalizes on the model’s inher-
ent understanding and the context provided by the
reduced candidate set.



Thus, the zero-shot prediction phase in our Cas-
cadeVLM framework highlights LVLMs’ profi-
ciency in utilizing pre-trained knowledge for un-
seen data while adeptly managing contextual com-
plexities. Focusing on a select set of candidates,
our method effectively addresses the intricacies
of fine-grained classification, ensuring precise and
dependable outcomes even without class-specific
examples.

Few-Shot Prediction In the Few-Shot Prediction
phase of our CascadeVLM framework, we lever-
age Large Vision-Language Models (LVLMs) in
data-rich scenarios. This approach capitalizes on
LVLMSs’ ’in-context learning’ (Brown et al., 2020)
ability, where additional relevant samples signifi-
cantly enhance performance, allowing LVLMs to
deepen their understanding and improve predictive
accuracy.

In the integration of few-shot learning within our
cascade framework, we meticulously undertake a
two-step process for candidate categories set C™*:

Step 1: Context Generation: In this initial phase,
for each category ¢; in C*, we randomly select an
example image ., from the training dataset, and
manually design alprompt to contextualize the in-
put image x for the LVLMs. Here, each candidate
class ¢, and its corresponding example image
are integrated with the prompt template, effectivel}ll
creating a contextual framework for the LVLMs.
This assemblage of prompts and images forms the
contextual basis, which we succinctly denote as E
in the subsequent step of our methodology. For in-
stance, within the context of the GPT4-V scenario,
the contextual basis denoted as F is formulated as
follows:

<IMG: x>

Question: What is the class of the
image? Answer: ¢}

<IMG: >

Question: What is the class of the
image? Answer: ¢}

<IMG: x>
Question: What is the class of the
image? Answer: ¢}

Table 1: Few-shot Prompt

Step 2 - Prediction with Contextual Informa-

tion: In this step, the comprehensive context set
FE is seamlessly integrated with the input image
x and fed into the Large Vision-Language Model
(LVLM). This integration enables the LVLM to
utilize the rich contextual information embedded
in E to enhance and refine its predictive process
for the image z. Consequently, the final classifi-
cation outcome, denoted as c* , emerges from this
enriched inferential framework. The process can
be mathematically represented as:

" = fivim(z,C*, E) 4)

where fiyim represents the LVLM prediction
based on provided image x, the top-k candidate
set C* and the context set E.

Thus, we tailor our methodology to few-shot sce-
narios in data-rich environments. Our approach is
designed to leverage the abundance of data, provid-
ing a substantial scope for enhancing the accuracy
of LVLM’s predictions.

2.3 Speed-up via Adaptive Entropy

In our CascadeVLM framework, we introduce an
adaptive entropy-based approach aimed at enhanc-
ing inference speed, reducing the computational
load on LVLMs, and accelerating overall through-
put. The entropy H(x) of the probability distri-
bution, a measure of uncertainty or predictability
within the distribution, is calculated as follows:

H(z)=—-> P(ci|z)log P(c; [ z) (5)

c,eC

This computation serves as a critical decision
point in our methodology. If the calculated entropy
H (z) falls below a predefined threshold, it signi-
fies a high confidence level in the top-1 category as
determined by CLIP. In such cases, we expedite the
process by directly outputting this top-1 category,
thereby bypassing the need for further LVLM pro-
cessing. Conversely, if H () exceeds the threshold,
indicating a lower level of confidence and greater
uncertainty, we proceed to the subsequent steps
involving LVLMs for refined classification. This
adaptive mechanism effectively balances speed and
accuracy, streamlining the framework while ensur-
ing reliable classification outcomes.

In summary, we first employ CLIP for initial can-
didate class selection, followed by LVLMs for pre-
cise zero-shot or few-shot classification, effectively
addressing the challenge of fine-grained image cat-
egorization. An adaptive entropy-based approach



Dataset # of Class  # of Test
Flowers102 102 818
StanfordCars 196 8041
FGVC Aircraft 100 3333
Birds525 525 2625

Table 2: Statistics of the evaluated fine-grained image
classification benchmarks.

further optimizes the process, enhancing inference
speed and computational efficiency by judiciously
determining when to bypass LVLM processing.

3 Experiments

In this section, we rigorously evaluate the per-
formance of our CascadeVLM framework across
diverse benchmarks. Initially, we detail the ex-
perimental setup in Section 3.1, followed by an
in-depth analysis of the framework’s efficacy in
zero-shot learning scenarios in Section 3.2, and
subsequently in few-shot learning contexts in Sec-
tion 3.3.

3.1 Experimental Settings

Models For our CascadeVLM framework’s ex-
perimental evaluation, we employed various CLIP
models in combination with specific Large Vision-
Language Models (LVLMs). The experiments uti-
lized one of the CLIP variants—CLIP-VIT-B/32,
CLIP-VIT-B/16, or CLIP-VIT-L/14—alongside ei-
ther Qwen-VL-Chat (Bai et al., 2023) or GPT-4V
as the LVLM. Qwen-VL-Chat was selected for its
capabilities in detailed visual tasks, while GPT-
4V (OpenAl, 2023) was chosen for its proficiency
in integrating text and image data. This strategic
pairing of models aims to explore their collective
effectiveness in fine-grained image classification,
offering insights into their collaborative strengths
within the CascadeVLM context.

Datasets In our evaluation of the CascadeVLM
framework, we utilize a collection of datasets
sourced from Kaggle, each offering unique char-
acteristics and significance for fine-grained image
classification, as summarized in Table 2. These
datasets include Flowers102(Nilsback and Zisser-
man, 2008), StanfordCars (Krause et al., 2013),
FGVC Aircraft (Maji et al., 2013), and Birds525
(Berg et al., 2014), collectively encompassing a
wide range of categories, from botanical and or-
nithological species to intricate mechanical designs.

Each dataset presents its own set of challenges,
with a varying number of classes and test images,
ranging from 100 to 525 classes. This variety en-
sures a comprehensive assessment across different
domains, testing the framework’s capability to han-
dle fine-grained classifications effectively.

Baselines In our experimental analysis, baseline
performances are established using a range of CLIP
models and Qwen-VL to benchmark against the ca-
pabilities of our CascadeVLM framework. The
comprehensive performance metrics of these mod-
els are detailed in Table 3. In the case of GPT-4V,
constrained by API call limitations and budgetary
considerations, we conduct evaluations on a strate-
gically chosen subset of 200 random samples from
each dataset to maintain a balanced class represen-
tation. The results of this targeted assessment are
compiled in Table 4.

3.2 Zero-shot Learning Results

Table 3 delineates the zero-shot prediction results,
showcasing the superior performance of our Cas-
cadeVLM framework across various benchmarks.
Notably, in the StanfordCars dataset, Cascade VLM
achieved a remarkable accuracy of 85.57%, under-
scoring its effectiveness in integrating CLIP and
LVLMs for fine-grained image classification. A de-
tailed examination of the results reveals that while
the baseline performance of LVLMs alone is mod-
est, the accuracy is significantly enhanced merely
by sorting the classes based on their probability in
descending order. Furthermore, the implementa-
tion of top-k selection within our framework fur-
ther amplifies this improvement, thereby validating
the efficacy of our cascade approach in optimizing
fine-grained classification tasks.

3.3 Few-shot Learning Results

In our initial explorations, we assessed Qwen-VL’s
capacity for few-shot learning within fine-grained
image classification domains. However, it became
apparent that Qwen-VL struggled to optimally uti-
lize in-context demonstrations and instructions in
this setting. Consequently, we turned our focus to
GPT-4V, anticipating its better alignment with our
framework’s requirements.

Given the constraints of OpenAI’s API rate lim-
its and our budget considerations, our experiments
with GPT-4V were limited to a subset of 200 sam-
ples per dataset. These experiments, encompass-
ing full class categorization and a top-k (k = 5)



Model | Flower102 ~ StanfordCars FGVC Aricraft ~ Birds525 | Avg.
Qwen (full classes) | 37.5 22.4 8.4 23 | 176
CLIP(ViT-B/32) 68.7 59.6 19.1 51.7 49.8
CLIP(ViT-B/32) Qwen Cascade (full classes) 72.7 74.3 22.7 20.3 47.5
CLIP(ViT-B/32) Qwen Cascade (top k) 74.2 79.2 27.1 56.7 59.3
CLIP(ViT-B/16) 73.0 64.4 24.5 52.5 53.6
CLIP(ViT-B/16) Qwen Cascade (full classes) 70.5 74.1 26.2 20.2 47.8
CLIP(ViT-B/16) Qwen Cascade (top k) 73.3 79.1 30.7 56.6 60.0
CLIP(ViT-L/14) 81.3 76.2 30.9 62.2 62.7
CLIP(ViT-L/14) Qwen Cascade (full classes) 75.8 78.9 30.1 21.0 51.5
CLIP(ViT-L/14) Qwen Cascade (top k) 78.2 85.6 37.0 63.0 66.0

Table 3: Zero-shot prediction results comparison with different CLIP models as the backbone. The k is selected
based on the validation set. Our CascadeVLM achieves the best overall performance on four benchmarks.

Model | Flower102  StanfordCars FGVC Aricraft ~ Birds525 | Aveg.
CLIP(ViT-L/14) 82.0 75.0 30.0 60.5 61.9
GPT4-V (full classes) 67.5 74.0 61.5 46.0 62.3
CLIP(ViT-L/14) + GPT4-V (k=full classes) 82.0 82.5 64.5 55.5 71.1
CLIP(ViT-L/14) + GPT4-V (k=5) 86.5 85.5 56.0 620 | 725
CLIP(ViT-L/14) + GPT4-V (k=5) + 1-shot 94.5 88.5 63.0 72.5 79.7

Table 4: Few-shot learning results with GPT-4V as the LVLM. GPT-4V can better utilize the in-context demon-
strations to achieve superior results for fine-grained classification. The result of CasecadeVLM is superior overall

datasets

approach, were instrumental in validating the Cas-
cadeVLM approach. Here, the initial category fil-
tering by CLIP, followed by GPT-4V’s targeted
application, markedly improved classification ac-
curacy. Consistent with our zero-shot findings in
Section 3.2, we observed that even a basic reorder-
ing of categories by their probabilities enhanced
GPT-4V’s performance, with the application of a
top-k selection further amplifying this effect.
Furthermore, integrating few-shot learning into
this cascade framework yielded even more pro-
nounced improvements in predictive accuracy.
For instance, with few-shot learning applied, the
Flower102 dataset achieved an impressive 94.5%
accuracy, while the StanfordCars dataset attained
88.5%. These results not only reaffirm the effective-
ness of our cascade framework but also highlight its
adaptability and efficiency in leveraging few-shot
learning for fine-grained classification tasks.

4 Analysis

In this section, we undertake a series of investiga-
tive experiments to elucidate various facets of our
CascadeVLM framework. Initially, we delve into
the influence of the top-k variable on our model’s
performance in Section 4.1. Subsequently, we
examine the implications of the entropy threshold
in Section 4.2, focusing on its role as a balanc-
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Figure 3: Performance changes with varied k& with CLIP-
ViT-B/32.

ing factor between computational efficiency and
accuracy. Lastly, we will conduct a thorough error
analysis 4.3 and present case studies 4.4 to fur-
ther contextualize our findings and insights into the
framework’s operational dynamics.

4.1 Influence of candidate classes number k&

The validation performance of our cascade frame-
work exhibits a dependency on the number of candi-
date classes, k, considered during the classification
process. One of a setting of our experiments, using
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Figure 4: Performance variation in the StanfordCars
dataset with varying entropy thresholds using CLIP-
ViT-L/14 for cascading, set at top-k=10. An increase in
entropy threshold results in decreased inference speed
and reduced accuracy.

CLIP ViT-B/32 and Qwen as components in the
framework, represented graphically in Figures 3,
demonstrate that as k is varied, the classification
accuracy shifts. Interestingly, the optimal & value
appears to be dataset-specific, suggesting that the
intrinsic properties of each dataset may favor a
different range of candidate classes. For instance,
while the Flower102 and Birds525 dataset shows
a gradual improvement as k decreases, indicating
that a narrower focus enhances accuracy, the Stan-
fordCars and Fgvc Aircraft dataset peaks at kK = 10
before seeing a decline, implying a sweet spot in
the balance between too few and too many options,
and a further reduction in candidate classes does
not confer additional benefits. This nuanced behav-
ior underscores the importance of tailoring the cas-
cade framework’s parameters to the specific dataset
at hand to achieve optimal performance.

4.2 Efficiency of threshold

This subsection critically evaluates the efficacy of
implementing an entropy threshold within the Cas-
cadeVLM framework. Functioning as a heuristic
determinant, this threshold crucially dictates the
juncture at which processing shifts from CLIP’s ini-
tial evaluation to the computationally demanding
LVLM analysis. This strategic integration plays a
pivotal role in augmenting inference speed, adeptly
balancing expeditious processing with the need for
in-depth LVLM processing. Our experiments, con-
ducted in a 1GPU (V100) environment, are illus-
trated in Figure 4. Results indicate a direct correla-
tion between an increase in entropy threshold and
heightened inference speed, albeit at the cost of
reduced accuracy.
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37 1o, CLIPRight
. 0

CLIP Wrong 2:0%
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(not in Options)
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Figure 5: Error analysis of the Birds525 dataset with
an entropy threshold of 1.25 and top-k=10. The analy-
sis reveals that despite CLIP including correct options,
LVLM frequently misclassifies.

4.3 Error Analysis

An in-depth error analysis was conducted on the
Birds525 dataset using the cascade framework,
which incorporates CLIP (ViT-L/14) for initial clas-
sification and Qwen as the LVLM for refined cat-
egorization with £ = 10, as shown in Figure 5.
When entropy is lower than the threshold, pre-
diction is only processed by CLIP, in this case,
148 misclassifications were noted (CLIP WRONG).
Otherwise, after the CLIP narrows down the op-
tions of classes, the LVLM Qwen would do the
final classification. In this case, LVLM resulted
in 812 misclassifications (LVLM Wrong), which
further breaks down into two categories: 212 in-
stances where the correct option was not present in
the top-10 candidates given by CLIP(LVLM Wrong
not in Options), and 600 instances where the cor-
rect option was present, but the LVLM failed to
identify it (LVLM Wrong in Options).

4.4 Case Study

Our case study analysis presents an examination of
three distinct scenarios encountered during exper-
imentation with CLIP-ViT-L/14 and Qwen as the
LVLM in a k = 5 setting.

Case 1 illustrates a scenario where CLIP’s top-1
prediction is incorrect; however, the ground truth is
present within its top-5 predictions. Leveraging the
LVLM’s discernment, the accurate class—green-
winged dove—is selected, validating the efficacy
of our framework in rectifying initial misclassifica-
tions.

Case 2 depicts a situation where, despite CLIP’s
inclusion of the correct answer—striped owl—in



CASE 1 CASE 2 CASE 3
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cLIp | frill back pigeon X striped owl v chucao tapaculo X
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Figure 6: Three case studies demonstrating the cascade
process from CLIP predictions to LVLM refinement for
bird species classification.

its top-5 predictions, the LVLM fails to identify it
correctly. This instance highlights potential areas
for refinement within the LVLM’s decision-making
process.

Case 3 demonstrates a complete misalignment
where both CLIP and LVLM fail to recognize the
correct class within the top-5 predictions, leading
to a compounded error in the final outcome.

These cases underscore the nuanced complexi-
ties of fine-grained image classification and reaf-
firm the necessity for integrated approaches like
CascadeVLM to capitalize on the strengths of
both CLIP and LVLMs. They also provide valu-
able insights into the decision-making dynamics of
the models, offering pathways for future enhance-
ments.

5 Related Work

Our work closely relates to recent studies build-
ing vision language models and fine-grained image
classification.

Vision Language Models Building vision lan-
guage models (VLMs) for understanding the multi-
modal world has been an active research area.
Pilot studies leverage pre-training concepts from
NLP (Devlin et al., 2019), learning shared repre-
sentations across modalities from mixed visual and
language inputs (Li et al., 2019; Tan and Bansal,
2019; Su et al., 2020; Chen et al., 2019; Li et al.,
2020). Among these, Radford et al. (2021) in-
troduced CLIP, a contrastive language-image pre-
training framework that employs language as su-
pervision, demonstrating potential for multi-modal
tasks and inspiring subsequent variants for im-
provement (Jia et al., 2021; Li et al., 2022b; Yao

et al., 2022; Li et al., 2021a, 2022a). The evolution
of large language models like ChatGPT (OpenAl,
2022) has motivated the development of large vi-
sion language models (LVLMs), combining power-
ful vision encoders like CLIP with large language
models such as LLaMa (Touvron et al., 2023) and
Vicuna (Chiang et al., 2023). Achieved through
large-scale modality alignment training on image-
text pairs (Alayrac et al., 2022; Awadalla et al.,
2023) and supervised fine-tuning on multi-modal
instruction tuning datasets (Liu et al., 2023; Li
et al., 2023), resulting LVLMs like GPT-4V (Ope-
nAl, 2023) and Qwen-VL (Bai et al., 2023) exhibit
promising perceptual and cognitive abilities (Yang
et al., 2023) for engaging user queries. This pa-
per identifies limitations in CLIP and LVLMs for
fine-grained image recognition and proposes the
CascadeVLM framework to effectively enhance
prediction accuracy by harnessing the advantages
of both models.

Fine-grained Image Classification Fine-
grained image recognition, involving categoriza-
tion into subordinate classes within a broader cate-
gory, such as cars (Krause et al., 2013) and air-
craft models (Maji et al., 2013), demands fine-
grained feature learning. Previous work explores
diverse strategies, including local-global interac-
tion modules with attention mechanisms (Fu et al.,
2017; Zheng et al., 2017), end-to-end feature en-
coding with specialized training objectives (Dubey
et al., 2018; Chang et al., 2020), and the incor-
poration of external knowledge bases or auxiliary
datasets (Chen et al., 2018; Xu et al., 2018). These
approaches offer potential enhancements similar
to our CLIP model, which we identify as a future
exploration for improved performance.

6 Conclusion

In this paper, we propose CascadeVLM, harness-
ing the advantages of CLIP and LVLMs for fine-
grained image classification. By utilizing CLIP for
selecting the potential candidate class, LVLM can
make more accurate predictions for image classes
with subtle differences. Experimental results on
four benchmarks demonstrate the effectiveness of
our proposed framework. Further extension to the
few-shot setups showcases the great potential of
the cascading framework to leverage the in-context
learning ability of LVLMs.



Limitations

The efficacy of our CascadeVLM framework
hinges critically on the symbiotic interplay be-
tween the CLIP model and LVLMs. A key lim-
itation emerges when CLIP’s top-K accuracy is
insufficient, failing to encompass correct options
in LVLM’s narrowed candidate set, thereby limit-
ing the scope for enhanced accuracy. Moreover, if
CLIP outperforms the LVLM in fine-grained classi-
fication, incorporating an LVLM with relatively
inferior capabilities may inadvertently diminish
overall accuracy. These dynamics underscore the
imperative for meticulous selection and alignment
of models, ensuring each component’s strengths
are effectively leveraged within the cascade archi-
tecture.
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Appendix
A Prompt Tuning of Qwen

A.1 Zero-shot Prompt Tunning of Qwen

In our experiments, we experimented with vari-
ous prompt designs to optimize the performance
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of Qwen in selecting the top-k categories. Two
representative prompt styles were identified, each
with distinct characteristics and performance impli-
cations.

The first prompt style, while intuitive, occasion-
ally led to non-compliant responses where Qwen
would select a flower name not listed in the given
options, or use an alias instead of the specified
name. This approach yielded suboptimal results.

Subsequently, we adapted our prompts to align
more closely with the training data of Qwen, where
the use of the keyword "options" was prevalent.
This adaptation significantly improved compliance
and accuracy in the model’s responses. Thus for
the overall experiment, we use ’PROMPT?2’. And
for GPT-4V, we applied a similar prompt style but
followed the API requirement.

PROMPT 1:

Picture 1: <img>....jpg</img>
Please examine the flower image
and identify the most
suitable flower name
corresponding to the image
content from the list of
flower names below.
Remember select only one
flower name from the list,
and response with the
flower name ONLY. Available
flower names: [...]

L A

PROMPT 2:

Picture 1: <img>...jpg</img>
Question: What is the flower name
? Remember select only one
flower name from the
options and response with
the flower name only.
Options: [...]

RN

A.2 Few-Shot Prompt Tunning of Qwen

In the domain of few-shot learning, we conducted
experiments with Qwen-VL and observed chal-
lenges in its ability to effectively utilize in-context
demonstrations and follow instructions. Our ex-
perimentation involved different prompt structures
in the context of the CLIP-ViT B/32 model with a
top-k = 10 setting on the Flower102 dataset.

The initial two prompts led to moderate success,
achieving an accuracy of approximately 50%. How-
ever, the implementation of the final prompt design


https://api.semanticscholar.org/CorpusID:4566688
https://api.semanticscholar.org/CorpusID:4566688
https://api.semanticscholar.org/CorpusID:4566688
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https://api.semanticscholar.org/CorpusID:6882979
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demonstrated a notable improvement, yielding an
accuracy close to 68%. This highlights the impact
of prompt design on the model’s ability to leverage
few-shot learning effectively.

To corroborate the versatility of our Cascade-
VLM framework, we conducted few-shot learn-
ing experiments with GPT-4V. These trials demon-
strated the framework’s adaptability across differ-
ent LVLMs, reinforcing its effectiveness in diverse
data-rich scenarios.

PROMPT 1:

<img>...jpg</img> Question: What

— 1is the flower name? Options

— : [...] Answer:
...Jjpg</img> Question: What
— is the flower name? Options
— : [...] Answer:
...jpg</img> Question: What
< 1is the flower name? Options
— : [...] Answer:

...Jjpg</img> Question: What
< 1is the flower name? Answer:
c_>

PROMPT 2:

Picture 1: <img>...jpg</img>
— Question: What is the
— flower name? Options: [...]
— Answer:

Picture 2: <img>...jpg</img>
— Question: What is the
— flower name? Options: [...]
— Answer:

Picture 3: <img>...jpg</img>
— Question: What is the
— flower name? Options: [...]
— Answer:

Picture 4: <img>...jpg</img>
— Question: What is the
— flower name? Options: [...]
— Answer:

PROMPT 3:

Picture 1: <img>...jpg</img>
— Question: What is the
— flower name? Answer:

Picture 2: <img>...jpg</img>
< Question: What is the
— flower name? Answer:

100

—=— Flowerl02
—=— StanfordCars

801 —=— Fgvc Aircraft
Birdss25 :Ei:

(=)
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Figure 7: Performance changes with varied k& with CLIP-
ViT-B/16.

Picture 3: <img>...jpg</img>
< Question: What is the
— flower name? Answer:

Picture 4: <img>...jpg</img>
<~ Question: What is the
— flower name? Options: [...]
— Answer:

PROMPT 4:

Picture 1: <img>...jpg</img>
— Answer:

Picture 2: <img>...jpg</img>
— Answer:

Picture 3: <img>...jpg</img>
— Answer:

Picture 4: <img>...jpg</img>
<~ Question: What is the
— flower name? Options: [...]
— Answer:

B Influence of candidate classes number &

In complementing the analysis presented in Sec-
tion 4.1, Figure 7 elucidates the impact of vary-
ing the number of candidate classes, k, within the
CLIP-ViT-B/16 configuration. In this scenario, the
StanfordCars and FGVC Aircraft datasets exhibit
peak performance at a top-10 setting, whereas the
Flower102 and Birds525 datasets demonstrate op-
timal results at a top-3 setting. Conversely, Fig-
ure 8 reveals distinctive trends, particularly in the
StanfordCars dataset, which maintains its maxi-
mal accuracy at a top-10 setting, and the Birds525
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Figure 8: Performance changes with varied k with CLIP-
ViT-L/14.

dataset, which continues to show peak performance
at top-3. Notably, for the FGVC Aircraft dataset,
an optimal shift to top-5 is observed, possibly at-
tributed to the baseline performance enhancement
of CLIP with the ViT-L/14 model. Furthermore,
in the Flower102 dataset, the intrinsic fine-grained
image classification ability of the CLIP-ViT-L/14
supersedes that of the Qwen LVLM in this spe-
cific dataset, leading to superior accuracy when
deployed as a standalone model.
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