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ABSTRACT

While controllable generative models for images and videos have achieved re-
markable success, high-quality models for 3D scenes, particularly in unbounded
scenarios like autonomous driving, remain underdeveloped due to high data ac-
quisition costs. In this paper, we introduce MagicDrive3D, a novel pipeline for
controllable 3D street scene generation that supports multi-condition control, in-
cluding BEV maps, 3D objects, and text descriptions. Unlike previous methods
that reconstruct before training the generative models, MagicDrive3D first trains
a video generation model and then reconstructs from the generated data. This
innovative approach enables easily controllable generation and static scene acqui-
sition, resulting in high-quality scene reconstruction. To address the minor errors
in generated content, we propose deformable Gaussian splatting with monocu-
lar depth initialization and appearance modeling to manage exposure discrepan-
cies across viewpoints. Validated on the nuScenes dataset, MagicDrive3D gen-
erates diverse, high-quality 3D driving scenes that support any-view rendering
and enhance downstream tasks like BEV segmentation. Our results demonstrate
the framework’s superior performance, showcasing its transformative potential for
autonomous driving simulation and beyond.
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Figure 1: Rendered panorama of the street scene generated from MagicDrive3D. With conditional
controls from 3D bounding boxes of objects, BEV road map, and text descriptions (e.g., weather),
MagicDrive3D generates complex open-world 3D scenes represented by deformable Gaussians.

1 INTRODUCTION

With the advancement of generative models, particularly diffusion models (Goodfellow et al., 2014;
Ho et al., 2020; Song et al., 2020; Rombach et al., 2022), there has been increasing interest in gen-
erating 3D assets (Poole et al., 2022; Vahdat et al., 2022; Bautista et al., 2022). While a significant
amount of work has focused on object-centric generation (Poole et al., 2022; Tang et al., 2024), gen-
erating open-ended 3D scenes remains relatively unexplored. This gap is even more critical because

Project Page: https://magicdrive3d.github.io/.
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many downstream applications, such as Virtual Reality (VR) and autonomous driving simulation,
require controllable generation of 3D street scenes, which is an open challenge.

3D-aware view synthesis1 methods can be broadly categorized into two approaches: geometry-
free view synthesis and geometry-focused scene generation (Rombach et al., 2021). Geometry-
free methods directly generate 2D images (Chen et al., 2024) or videos (Gao et al., 2024; Wen
et al., 2023; Wang et al., 2023b) based on camera parameters, excelling in photo-realistic image
generation. However, they often lack sufficient geometric consistency, limiting their ability to extend
to viewpoints beyond the dataset (Gao et al., 2024; Wen et al., 2023; Wang et al., 2023b). On the
other hand, geometry-focused methods (e.g., GAUDI (Bautista et al., 2022) and NF-LDM (Kim
et al., 2023)) generate 3D representations (e.g., NeRF (Mildenhall et al., 2020) or voxel grids) from
latent inputs, supporting multi-view rendering. Despite their broader applicability, these methods
require expensive data collection, necessitating static scenes and consistent sensor properties like
exposure and white balance. Street view datasets, such as nuScenes (Caesar et al., 2020), often fail
to meet these requirements, making it extremely challenging to train geometry-focused 3D street
scene generation models using such datasets.

Recognizing the advancements in controllable generation by geometry-free view synthesis meth-
ods (Chen et al., 2024; Gao et al., 2024), it is potential to use them as data engines. Their con-
trollability and photo-realism could address the challenges faced by geometry-focused methods.
However, the limited 3D consistency in synthetic views from geometry-free methods, such as tem-
poral inconsistency among frames and deformation of objects, poses crucial issues for integrating
two kinds of methods into a unified framework.

To address these challenges, we propose MagicDrive3D, a novel framework that combines
geometry-free view synthesis and geometry-focused reconstruction for controllable 3D street scene
generation. As illustrated in Figure 2, our approach begins with training a multi-view video gener-
ation model to synthesize multiple views of a static scene. This model is configured using controls
from object boxes, road maps, text prompts, and camera poses. To enhance inter-frame 3D con-
sistency, we incorporate coordinate embeddings that represent the relative transformation between
LiDAR coordinates for accurate control of frame positions. Next, we improve the reconstruction
quality of generated views by enhancing 3D Gaussian splatting from the perspectives of prior knowl-
edge, modeling, and loss functions. Given the limited overlap between different camera views (Xie
et al., 2023), we adopt a monocular depth prior and propose a dedicated algorithm for alignment
in sparse-view settings. Additionally, we introduce deformable Gaussian splatting and appearance
embedding maps to handle local dynamics and exposure discrepancies, respectively.

Demonstrated by extensive experiments, our MagicDrive3D framework excels in generating highly
realistic street scenes that align with road maps, 3D bounding boxes, and text descriptions, as ex-
emplified in Figure 1. We show that the generated camera views can augment training for Bird’s
Eye View (BEV) segmentation tasks, providing comprehensive controls for scene generation and
enabling the creation of novel street scenes for autonomous driving simulation. Notably, Magic-
Drive3D is the first to achieve controllable 3D street scene generation using a common driving
dataset (e.g., the nuScenes dataset (Caesar et al., 2020)), without requiring repeated data collection
from static scenes.

We summarize our contributions as follows:

• We propose MagicDrive3D, the first framework to effectively integrate both geometry-free and
geometry-focused view synthesis for controllable 3D street scene generation. MagicDrive3D gen-
erates realistic 3D street scenes that support rendering from any camera view according to various
control signals.

• We introduce a relative pose embedding technique to generate videos with improved 3D consis-
tency. Additionally, we enhance the reconstruction quality with tailored techniques, including
deformable Gaussian splatting, to handle local dynamics and exposure discrepancies in the gener-
ated videos.

• Through extensive experiments, we demonstrate that MagicDrive3D generates high-quality street
scenes with multi-dimensional controllability. Our results also show that synthetic data improves
3D perception tasks, highlighting the practical benefits of our approach.

1In this paper, we focus on generative models where views/scenes are generated from latent variables.
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2 RELATED WORK

3D Scene Generation. Numerous 3D-aware generative models can synthesize images with ex-
plicit camera pose control (Zhao et al., 2024; Rombach et al., 2021) and potentially other scene
properties (Tang et al., 2023), but only a few scale for open-ended 3D scene generation. GSN (De-
Vries et al., 2021) and GAUDI (Bautista et al., 2022), representative of models generating indoor
scenes, utilize NeRF (Mildenhall et al., 2020) with latent code input for “floorplan” or tri-plane fea-
ture. Their reliance on datasets covering different camera poses is incompatible with typical driving
datasets where camera configuration remains constant. NF-LDM (Kim et al., 2023) develops a hier-
archical latent diffusion model for scene feature voxel grid generation. However, their representation
and complex modeling hinder fine detail generation.

Contrary to previous works focusing on scene generation using explicit geometry, often requir-
ing substantial data not suitable for typical street view datasets (e.g., nuScenes (Caesar et al.,
2020)) as discussed in Section 1, we propose merging geometry-free view synthesis with geometry-
focused scene representations for controllable street scene creation. Methodologically, Lucid-
Dreamer (Chung et al., 2023) is most similar to our approach, although it relies on a text-controlled
image generation model, which cannot qualify as a view synthesis model. In contrast, our video gen-
eration model is 3D-aware. Besides, we propose several improvements over 3DGS for better scene
generation quality. Besides, inpainting-based methods like LucidDreamer (Chung et al., 2023) and
WonderJourney (Yu et al., 2024) cannot complete our controllable street scene generation task. We
showcase the differences in Appendix C.

Street View Video Generation. Diffusion models (Song et al., 2020; Ho et al., 2020) have in-
fluenced a range of works on street view video generation, from single to multi-view videos (e.g.,
(Wang et al., 2023a; Gao et al., 2024; Wen et al., 2023; Wang et al., 2023b)). Despite cross-view
consistency being essential for multi-view video generation, their generalization ability on camera
poses is limited due to their data-centric nature (Gao et al., 2024). Furthermore, these models lack
exact control over frame transformation (i.e., precise car trajectory), which is crucial for scene re-
construction. Our work addresses this by enhancing control in video generation and proposing a
dedicated deformable Gaussian splatting for geometric assurance.

Street Scene Reconstruction. Scene reconstruction and novel view rendering for street views are
useful in applications like driving simulation, data generation, and augmented and virtual reality.
For street scenes, attributes like scene dynamic and discrepancies from multi-camera data collection
make typical large-scale reconstruction methods ineffective (e.g., Rematas et al. (2022); Martin-
Brualla et al. (2021); Lin et al. (2024)). Hence, real data-based reconstruction methods like Xie
et al. (2023); Yan et al. (2024) utilize LiDAR for depth prior, but their output only permits novel
view rendering from the same scene. Unlike these methods, our approach synthesizes novel scenes
under multiple levels of conditional controls.

3 PRELIMINARIES

Problem Formulation. In this paper, we focus on controllable street scene generation. Given
scene description St, our task is to generate street scenes (represented with 3D Gaussians G) that
correspond to the description from a set of latent z ∼ N (0, I), i.e. G = G(St, z). To describe a
street scene, we adopt the most commonly used conditions as per Gao et al. (2024); Wang et al.
(2023b); Wen et al. (2023). Specifically, a frame of driving scene St = {Mt,Bt,Lt} is described
by road map Mt ∈ {0, 1}w×h×c (a binary map representing a w × h meter road area in BEV with
c semantic classes), 3D bounding boxes Bt = {(ci, bi)}Ni=1 (each object is described by box bi =
{(xj , yj , zj)}8j=1 ∈ R8×3 and class ci ∈ C), and text Lt describing additional information about
the scene (e.g., weather and time of day). In this paper, we parameterize all geometric information
according to the LiDAR coordinate of the ego car.

One direct application of scene generation is any-view rendering. Specifically, given any camera
pose P = [K,R, t] (i.e., intrinsics, rotation, and translation), the model G(·) should render photo-
realistic views with 3D consistency, Ir = G(P), which is not applicable to previous street view
generation (e.g., Gao et al. (2024); Wang et al. (2023b); Wen et al. (2023)). Besides, we present
more applications in Section 5.
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“A driving scene <description>”
Prompt:

Controllable
Video GeneratorCam. Poses + Relative Pose
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Figure 2: Method Overview of MagicDrive3D. For controllable street scene generation, Magic-
Drive3D decomposes the task into two steps: ① conditional multi-view video generation, which
tackles the control signals and provides detailed prior of the scene; and ② scene reconstruction with
deformable Gaussian splatting, which guarantees view consistency for any-view rendering.

3D Gaussian Splatting. We briefly introduce 3DGS since our scene representation is based on
it. 3DGS (Kerbl et al., 2023) represents the geometry and appearance via a set of 3D Gaussians
G. Each 3D Gaussian is characterized by its position µµµp, anisotropic covariance ΣΣΣp, opacity αp,
and spherical harmonic coefficients for view-dependent colors cp. Given a sparse point cloud P
and several camera views {Ii} with poses {Pi}, a point-based volume rendering (Zwicker et al.,
2001) is applied to make Gaussians optimizable through gradient descend and interleaved point
densification. Specifically, the loss is as follows:

LGS = (1− λ)L1(Ir
i , Ii) + λLD-SSIM(Ir

i , Ii), (1)

where Ir is the rendered image, λ is a hyper-parameter, and LD-SSIM denotes the D-SSIM loss (Kerbl
et al., 2023).

4 METHODS

In this section, we introduce our controllable street scene generation pipeline. Due to the challenges
that exist in data collection, we integrate geometry-free view synthesis and geometry-focused re-
construction, and propose a generation-reconstruction pipeline, detailed in Section 4.1 and Figure 2.
Specifically, we introduce a controllable video generation model to connect control signals with
camera views (Section 4.2) and enhance the 3DGS from prior, modeling and loss perspectives (Sec-
tion 4.3) for better reconstruction with generated views.

4.1 3D STREET SCENE GENERATION

Direct modeling of controllable street scene generation faces two major challenges: scene dynamics
and discrepancy in data collection. Scene dynamics refer to the movements and deformation of
elements in the scene, while discrepancy in data collection refer to the discrepancy (e.g., exposure)
caused by data collection. These two challenges are even more severe due to the sparsity of cameras
for street views (e.g., typically only 6 surrounding perspective cameras). Therefore, reconstruction-
generation frameworks do not work well for street scene generation (Kim et al., 2023; Bautista et al.,
2022).

Figure 2 shows the overview of MagicDrive3D. Given scene descriptions S as input, MagicDrive3D
first extend the descriptions into sequence {St}, where t ∈ [0, T ] according to preset camera poses
{Pc,t}, and generate a sequence of successive multi-view images {Ic,t}, where c ∈ {1, . . . , N}
refers to N surrounding cameras, according to conditions {St,Pc,t} (detailed in Section 4.2). Then
we construct Gaussian representation of the scene with {Ic,t} and camera poses {Pc,t} as input.
This step contains an initializing procedure with a pre-trained monocular depth model and an op-
timizing process with deformable Gaussian splatting (detailed in Section 4.3). Consequently, the
generated street scene not only supports any-view rendering, but also accurately reflects different
control signals.

MagicDrive3D integrate geometry-free view synthesis and geometry-focused reconstruction, where
control signals are tackled by a multi-view video generator, while reconstruction step guarantee the
generalization ability for any-view rendering. Such a video generator has two advantages: first,
since multi-view video generation does not require generalization on novel views (Gao et al., 2024),
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it poses less data dependency for street scenes; second, through conditional training, the model is
capable of decomposition of control signals, and thus turns dynamic scenes into static scenes which
are more friendly for reconstruction. Besides, for the reconstruction step, strong prior from the
multi-view video reduces the burden for scene modeling with complex details.

4.2 RELATIVE POSE CONTROL FOR VIDEO GENERATION

Given scene descriptions and a sequence of camera poses {St,Pc,t}, our video generator is respon-
sible for multi-view video generation. Although many previous art for street view generation achieve
expressive visual effects, such as Gao et al. (2024); Wen et al. (2023); Wang et al. (2023b;a), their
formulations leave out a crucial requirement for 3D modeling. Specifically, the camera pose Pc,t is
typically relative to the LiDAR coordinate of each frame. Thus, there is no precise control signal
related to the ego trajectory, which significantly determine the geometric relationship between views
of different ts.

In our video generation model, we amend such precise control ability by adding the transformation
between each frame to the first frame, i.e., T0

t . To properly encode such information, we adopt
Fourier embedding with Multi-Layer Perception (MLP), and concatenate the embedding with the
original embedding of Pc,t, similar to Gao et al. (2024). As a result, our video generator provides
better 3D consistency across frames, most importantly, making the camera poses to each view avail-
able in the same coordinate, i.e., [R0

c,t, t
0
c,t] = T0

t [Rc,t, tc,t].

4.3 ENHANCED GAUSSIAN SPLATTING FOR GENERATED CONTENT

Align with SfM PCD

Optimize with 
          GS loss

scale offset highlight

(a)

(b)

(c)

Figure 3: We optimize the monocular depths
(a) with 2 steps for better alignment: coarse
scale/offset estimation with SfM PCD (b)
and GS optimization (c).

As introduced in Section 3, 3DGS is a flexible ex-
plicit representation for scene reconstruction. Be-
sides, the fast training and rendering speed of 3DGS
make it highly suitable for reducing generation costs
in our scene creation pipeline. However, similar to
other 3D reconstruction methods, 3DGS necessitates
high cross-view 3D consistency at the pixel level,
which unavoidably magnifies the minute errors in
the generated data into conspicuous artifacts. There-
fore, we propose improvements for 3DGS from the
perspectives of prior, modeling, and loss, enabling
3DGS to tolerate minor errors in the generated cam-
era view, thereby becoming a potent tool for enhanc-
ing geometric consistency in rendering.

Prior: Consistent Depth Prior. As essential ge-
ometry information, depth is extensively utilized in
street scene reconstruction, such as the depth value
from LiDAR or other depth sensors used in Xie et al.
(2023); Yan et al. (2024). However, for synthesized
camera views, the depth is unavailable. Therefore,
we propose to use pre-trained monocular depth esti-
mator (Bhat et al., 2023) to infer depth information.

While monocular depth estimation is separate for
each camera view, proper scale sc,t and offset bc,t
parameters should be estimated to align them for a
single scene (Zhou et al., 2023), as in Figure 3(a).
To this end, we first apply the Point Cloud (PCD)
from Structure of Motion (SfM) (Schönberger et al., 2016; Schönberger & Frahm, 2016), shown in
Figure 3(b). However, such PCD is too sparse to accurately restore (sc,t, bc,t) for any views. To
bridge the final gap, secondly, we propose further optimizing the (sc,t, bc,t) using the GS loss, as in
Figure 3(c). Specifically, we replace the optimization for Guassian centers µµµi with (sc,t, bc,t). After
the optimization, we initialize µµµi with points from depth values. Since GS algorithm is sensitive to
accurate point initialization (Kerbl et al., 2023; Fan et al., 2024), our method provides useful prior
to reconstructing in this sparse view scenario.
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t frame of FL cam (canonical) t+1 frame of FL cam
Deformable GS apply

local offsets

Figure 4: Illustration of the local dynamic from two successive generated frames of Front-Left (FL)
camera. Even though our video generation model retains fine 3D consistency, minor discrepancies
are inevitable. Our DGS can effectively reconstruct the scene with awareness of such discrepancy.

Modeling: Deformable Gaussians for Local Dynamic. Despite the 3D geometric consistency
provided by our video generation model, there are inevitably pixel-level disparities in some object
details, as shown in Figure 4. The strict consistency assumption of 3DGS may amplify these minor
errors, resulting in floater artifacts. To mitigate the impact of these errors, we propose Deformable
Gaussian Splitting (DGS), which, based on 3DGS, reduces the requirement for temporal consistency
between frames, thereby ensuring the reconstruction effect of the generated viewpoint.

Specifically, as shown in Figure 4, we pick the center frame t = tC as the canonical space and
enforce all Gaussians in this space. Hence, we allocate a set of offsets to each Gaussian,µµµo

p(t) ∈ R3,
where t ∈ [1, . . . , T ] and µµµo

p(tC) ≡ 0. Note that, different camera views from the same t share the
same µµµo

p(t) for each Gaussian, and we apply regularization on them to keep the dynamic in local, as
shown in Equation 2:

Lrego = ∥µµµo(t)∥2. (2)
Consequently, µµµo

p(t) can manage the local dynamics driven by pixel-level disparities, while µµµ fo-
cuses on the global geometric correlations. It ensures the quality of scene reconstruction by leverag-
ing consistent parts across different viewpoints, simultaneously eliminating artifacts. Besides, with
the analytical gradient w.r.t. SE(3) pose of cameras (Matsuki et al., 2024), we also make the camera
pose optimizable in the final few steps of GS iterations, which helps to mitigate the local dynamic
from camera poses.

Algorithm 1 Enhanced Deformable GS
Input: camera views {Ii}, camera parameters {P0

i },
monocular depth {Di}, optimization steps for
depth sD , camera pose sC, and GS sGS

Output: DGS of the scene {µµµp,µµµ
o
p,ΣΣΣp, SHp}, and

optimized camera pose {P0
i }

1: PSfM = PCD from SfM
2: Optimize (sc,t, bc,t) with PSfM for each {c, t}
3: Random initialize AEs {ei}
4: for step in 1, . . . , sD do
5: Random pick one view Ii

6: L = LAEGS(Ii, Ir
i , ei)

7: Update (s, b), ei,ΣΣΣ, SH with ∇L
8: end for
9: Initialize µµµ with (s, b) and D

10: for step in sD, . . . , sGS do
11: Random pick one view Ii and get its t
12: L = LDGS(Ii, Ir

i , ei,µµµ
o(t))

13: Update µµµ,µµµo(t), ei,ΣΣΣ, SH with ∇L
14: if step > sC then
15: Update P0

i with ∇L
16: end if
17: end for

Loss: Aligning Exposure with Appearance
Modeling. Typical street view dataset is col-
lected with multiple cameras, which capture
views independently through auto-exposure
and auto-white-balance (Caesar et al., 2020).
Since the video generation is optimized to
match the original data distribution, the differ-
ences from different cameras also exist in the
generated data. The appearance differences are
well-known issues for in-the-wild reconstruc-
tion (Martin-Brualla et al., 2021). In this paper,
we propose a dedicated appearance modeling
technique for GS representation.

We hypothesize that the disparity between
different views can be represented by affine
transformations Ai(·) for i-th camera view.
An Appearance Embedding (AE) map ei ∈
Rwe×he×ce is allocated for each view, and a
Convolutional Neural Network (CNN) is uti-
lized to approximate this transformation matrix
wA ∈ Rw×h×3 (Appendix D contains more de-
tails). The final computation of the pixel-wise
ℓ1 loss is conducted using the transformed image. Therefore, our final loss for DGS is as follows:

LDGS = LAEGS + λregoLrego = (1− λ)L1(Ai(Ir
i ), Ii) + λLD-SSIM(Ir

i , Ii) + λregoLrego , (3)

where λrego is the hyper-parameter for offset regularization.

Optimization Flow. We demonstrate the overall optimization flow of the proposed DGS in Algo-
rithm 1. Line 2 is the first optimization of monocular depths. Lines 4-8 refer to the second opti-
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NeuralField-LDM (w/ in-house dataset)

Ours (w/ nuScens dataset)

Original 3DGS (w/ nuScens dataset)

Figure 5: Qualitative comparison with NF-LDM (figure from Kim et al. (2023)) and original 3DGS
(on the same generated video). Panoramas for GS are transformed and stitched from perspective
cameras with 90◦ FOV. Views in the last row are rendered with camera rigs different from the
nuScenes dataset.

mization of the monocular depths. Lines 10-16 are the main loop for DGS reconstruction, where we
consider temporal offsets on Gaussians, camera pose optimization for local dynamics, and AEs for
appearance discrepancies among views.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. We test our MagicDrive3D using the nuScenes dataset (Caesar et al., 2020), which is
commonly used for generating and reconstructing street views (Gao et al., 2024; Wen et al., 2023;
Wang et al., 2023b; Xie et al., 2023). The official configuration is followed, using 700 street-view
video clips of approximately 20s each for training and another 150 clips for validation. For semantics
in control signals, we follow Gao et al. (2024), using 10 object classes and 8 road classes.

Table 1: Two settings for reconstruction quality evaluation.
Testing views are in green while training views are in red.

name #test #train camera poses

360◦ 6 90

vary-t 12 84

Metrics and Settings. Magic-
Drive3D is primarily evaluated us-
ing the Fréchet Inception Distance
(FID) by rendering novel views un-
seen in the dataset and comparing
their FID with real images. In addi-
tion, the method’s video generation
ability is evaluated using Fréchet
Video Distance (FVD), and its reconstruction performance is assessed using L1, PSNR,
SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018). For reconstruction evaluation, two
testing scenarios are employed: 360◦, where all six views from t = 9 are reserved for testing the re-
construction in the canonical space; and vary-t, where one view is randomly sampled from different
t to assess long-range reconstruction ability through t in the canonical space (as shown in Table 1).

Implementation. For video generation, we train our generator based on the pre-trained street view
image generation model from Gao et al. (2024). By adding the proposed relative pose control, we
train 4 epochs (77040 steps) on the nuScenes training set with a learning rate of 8e−5. We follow
the settings for 7-frame videos described in Gao et al. (2024), using 224 × 400 for each view but
extending to T = 16 frames. Consequently, for reconstruction, we select t = 8 as the canonical
space. Except we change the first 500 steps to optimize (sc,t, bc,t) for each view and λrego = 1.0,
other settings are the same as 3DGS. More details can be found in Appendix A.

7
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Keep only 50% cars

Generation according to conditions from the validation set

Turn to a rainy day🌧

Keep only 25% cars and turn to night

BEV map

All 3D boxes

50% cars

25% cars

Figure 6: Qualitative evaluation for controllability (we show the view from back-left to front-right
area). By changing different control signals, MagicDrive3D can edit the scene from different levels.

5.2 MAIN RESULTS

Table 2: Generation quality evaluation. All validation
scenes from the nuScenes dataset are adopted. We use
all generated views for reconstruction. Novel views
adopt camera poses different from the nuScenes.

Methods FVD FID (seen) FID (novel)

Gao et al. (2024) 177.26 20.92 N/A
Ours (video gen.) 164.72 20.67 N/A

3DGS N/A 45.07 145.72
Ours (scene gen.) N/A 23.99 34.45

Generation Quality. As shown in Ta-
ble 2, the evaluation of generation quality
involves two aspects. Firstly, the quality of
video generation is assessed using extended
16-frame MagicDrive (Gao et al., 2024) as
a baseline. Despite minor improvement in
single-frame quality based on FID, Magic-
Drive3D substantially enhances video qual-
ity (as evidenced by FVD), demonstrating
the efficacy of the proposed relative cam-
era pose embedding in enhancing temporal
consistency. Secondly, the image quality of renderings from the generated scene is evaluated using
FID. We also include qualitative comparisons in Figure 5. Compared to 3DGS, our enhanced DGS
significantly enhances visual quality in reconstructing contents, particularly in unseen novel views.
More qualitative comparison can be found in Appendix C.

Reconstruction Quality. Our enhanced DGS, as a reconstruction method, is further evaluated by
comparing renderings with ground truth (GT) images. Here, the generated views from the video
generator are treated as GT. We employ two settings per Table 1, with results displayed in Table 3.
As per all metrics, our enhanced DGS not only improves reconstruction quality for training views
but also drastically enhances quality for testing views, compared to 3DGS. We include comparison
with 4DGS (Wu et al., 2024) in Appendix B.

Controllability. MagicDrive3D accepts 3D bounding boxes, BEV map, and text as control sig-
nals, each of which possesses the capacity to independently manipulate the scene. To show such
controllability, we edit a scene from the nuScenes validation set, as presented in Figure 6. Clearly,
MagicDrive3D can effectively alter the generation of the scene to align with various control signals
while maintaining 3D geometric consistency.

5.3 ABLATION STUDY

Ablation on Enhanced Gaussian Splatting. As detailed in Section 4.3, three enhancements -
prior, modeling, and loss - have been made to 3DGS. To evaluate their efficacy, each was ablated

8
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Table 3: Reconstruction quality evaluation. We random sample 100 scenes from the nuScenes
validation set for evaluation. “cc” refers to color correction from Barron et al. (2022). Although
3DGS does not consider appearance differences, we apply “cc” to it for fair comparisons.

Settings Methods L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓

train view

vary-t
3DGS 0.0189 30.1191 0.9261 0.1259
3DGS + cc 0.0186 30.2498 0.9253 0.1258
Ours 0.0167 32.6001 0.9544 0.0673

360◦
3DGS 0.0202 29.4943 0.9187 0.1365
3DGS + cc 0.0199 29.6327 0.9178 0.1366
Ours 0.0174 32.2104 0.9530 0.0693

test view

vary-t
3DGS 0.0890 17.9879 0.4378 0.4648
3DGS + cc 0.0799 19.1387 0.4814 0.4697
Ours 0.0738 19.7063 0.5145 0.4115

360◦
3DGS 0.0910 17.8322 0.4318 0.4756
3DGS + cc 0.0804 19.0773 0.4777 0.4796
Ours 0.0622 21.0351 0.5754 0.3207

Table 4: Ablation study on enhanced DGS. We adopt the same settings as in Table 3, where 100
scenes from the nuScenes validation set are adopted.

setting method L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓

vary-t

3DGS 0.0799 19.1387 0.4814 0.4697
w/o AE 0.0822 18.8467 0.4758 0.4452
w/o depth scale opt. 0.0815 18.8885 0.4767 0.4366
w/o depth opt. 0.1046 17.2776 0.4399 0.5545
w/o xyz offset + cam 0.0798 19.1657 0.4919 0.4580
Ours 0.0738 19.7063 0.5145 0.4115

360◦

3DGS 0.0804 19.0773 0.4777 0.4796
w/o AE 0.0722 19.7742 0.5114 0.3791
w/o depth scale opt. 0.0736 19.6501 0.5086 0.3736
w/o depth opt. 0.0995 17.6707 0.4487 0.5150
w/o xyz offset + cam 0.0798 19.1682 0.4888 0.4663
Ours 0.0622 21.0351 0.5754 0.3207

from the final algorithm, the results of which are shown in Table 4. Notations “w/o depth scale
opt.” and “w/o depth opt.” represent the absence of GS loss optimization for (sc,t, bc,t) and use of
direct output from the monocular depth model, respectively. Each component’s removal lowered the
method’s performance, while incorrect depth sometimes performs worse than the 3DGS baseline.
Removal of AE in “vary-t” led to inferior PSNR but improved LPIPS, which is reasonable because
AE mitigates the pixel-wise color constraint during reconstruction.

Ablation on Offset Choice for Deformable GS. In addition to the overall module ablation, we
observe that for Deformable GS, beyond the Gaussians’ center coordinates, their attributes (includ-
ing anisotropic covariance, opacity, and harmonic coefficients) can also be utilized to address local
inconsistencies. To verify the effects of different choices, we randomly select 10 scenes from the
nuScenes validation set for experimentation. As shown in Table 5, the results obtained by adding
offsets to the center coordinates (xyz) are the best. This aligns with our observation that local incon-
sistencies in the generated views occur primarily in the shape of objects, and thus, xyz displacements
can most effectively resolve these inconsistencies.

5.4 APPLICATION

Training Support for Perception Tasks. We demonstrate an application wherein street scene gen-
eration serves as a data engine for perception tasks, leveraging the advantage of any-view rendering
to improve viewpoint robustness (Klinghoffer et al., 2023). We employ CVT (Zhou & Krähenbühl,
2022) and the BEV segmentation task following the evaluation protocols of Zhou & Krähenbühl

9
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Table 5: Ablating comparison with offsets on anisotropic covariance (Cov.), opacity, and harmonic
coefficients (Features) properties in GS. We randomly sample 10 scenes from the nuScenes valida-
tion set for experiments and apply color correction (cc) to all the renderings.

Methods L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓
3DGS 0.0733 19.7514 0.5210 0.4496

Features offset 0.0624 20.9882 0.5940 0.3463
Cov. offset 0.0632 20.8133 0.5854 0.3626
Opacity offset 0.0656 20.5332 0.5733 0.3845

Ours (xyz offset) 0.0546 21.9428 0.6288 0.2759

Table 6: MagicDrive3D improves the viewpoint robustness (Klinghoffer et al., 2023) of CVT (Zhou
& Krähenbühl, 2022). All results are mIoU for BEV segmentation. Colors highlight the differences
with baseline. The best results are in bold.

Setting Method no rig depth+0.5m pitch-5◦ yaw+5◦ yaw-5◦

vehicle
only real data 17.14 16.63 15.50 16.99 15.94
w/ render view (no rig) 20.67 +3.53 20.13 +3.50 17.03 +1.53 19.40 +2.41 19.30 +3.36

w/ random aug. of 4 rigs 21.05 +3.91 20.46 +3.83 19.75 +4.25 19.81 +2.82 19.83 +3.89

road
only real data 54.94 54.56 53.82 54.20 53.67
w/ render view (no rig) 60.31 +5.37 59.93 +5.37 58.46 +4.64 59.16 +4.96 59.32 +5.65

w/ random aug. of 4 rigs 60.59 +5.65 60.38 +5.82 59.95 +6.13 60.21 +6.01 60.29 +6.62

(2022); Gao et al. (2024). By incorporating 4 different rigs on the FRONT camera and adding
rendered views for training, the negative impact from viewpoint changes is alleviated (Table 6),
exemplifying the utility of street scene generation in training perception tasks.

Render Object-level Dynamic. MagicDrive3D generates 3DGS representations of scenes, thereby
enabling applications for scene editing. Our approach employs metric scale modeling, ensuring that
the editing of scenes corresponds accurately to real-world physical distances. As demonstrated in
Figure 7, we segmented the generated GS and relocated the object on the right. The resulting scene
GS supports rendering effectively.

(a) Original view. (b) Move forward 0.1m. (c) Move forward 1m. (d) Move forward 1.6m.

Figure 7: Application on rendering object-level dynamic. After scene generation, we can segment
and move the vehicle (the one on the right) in 3D to render a dynamic object.

6 CONCLUSION AND DISCUSSION

This paper introduces MagicDrive3D, a unique 3D street scene generation framework that inte-
grates geometry-free view synthesis and geometry-focused 3D representations. MagicDrive3D sig-
nificantly reduces data requirements, enabling training on typical autonomous driving datasets, such
as nuScenes. Within the generation-reconstruction pipeline, MagicDrive3D employs a video gen-
eration model to enhance inter-frame consistency, while the enhanced deformable GS improves
reconstruction quality from generated views. Comprehensive experiments demonstrate that Magic-
Drive3D can produce high-quality 3D street scenes with multi-level controls. Additionally, we show
that scene generation can serve as a data engine for perception tasks such as BEV segmentation.

Limitation and Future Work. As a data-centric method, MagicDrive3D sometimes struggles to
generate complex objects like pedestrians, whose appearances are intricate. Additionally, areas with
much texture detail (e.g., road fences) or small spatial features (e.g., light poles) are occasionally
poorly generated due to limitations in the reconstruction method. Future work may focus on ad-
dressing these challenges and further improving the quality and robustness of generated 3D scenes.
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APPENDIX

A MORE IMPLEMENTATION DETAILS

For the monocular depth model, we use ZoeDepth (Bhat et al., 2023). Although it is trained for
metric depth estimation, due to domain differences, raw estimation is not usable, as shown in Sec-
tion 5.3 and Figure 3. Methodologically, MagicDrive3D does not rely on a specific depth estimation
model. Better estimations can further improve our scene generation quality.

Since GS only supports perspective rendering, to stitch the view for panorama, we use code from per-
spective to equirectangular transformation provided by https://github.com/timy90022/
Perspective-and-Equirectangular.

All our experiments are conducted with NVIDIA V100 32GB GPUs. The generation of a single
scene takes about 2 minutes for video generation and about 30 minutes for deformable GS recon-
struction. For reference, 3DGS reconstruction typically takes about 23 minutes for scenes of similar
scales. Therefore, the proposed enhancement is efficient. As for rendering, there is no additional
computation for our method compared with 3DGS.

B MORE RECONSTRUCTION BASELINE

Focusing on dynamic scenes, 4DGS (Wu et al., 2024) introduces comprehensive improvements over
3DGS and achieves notable results. Therefore, we replace deformable GS with 4DGS. As shown in
Table 7, by incorporating non-rigid dynamics, 4DGS already performs better than 3DGS. However,
in our task, 4DGS underperforms compared to our deformable GS. Based on the results in Table 5,
we hypothesize that our reconstruction algorithm only needs to address local dynamics caused by
content inconsistency. Allocating excessive dynamics at the representational level may hinder model
convergence, thus 4DGS does not yield better results on our scenarios.

Table 7: Comparison with 4DGS (Wu et al., 2024). We randomly sample 10 scenes from the
nuScenes validation set for experiments and apply color correction (cc) to all the renderings.

Methods L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓
3DGS 0.0733 19.7514 0.5210 0.4496
4DGS 0.0601 21.1195 0.5892 0.4475

Ours 0.0546 21.9428 0.6288 0.2759

C COMPARISON WITH SIMPLE BASELINES

As shown in Figure 8, we further compare MagicDrive3D with two baselines, i.e., Lucid-
Dreamer (Chung et al., 2023) and WonderJourney (Yu et al., 2024). The former method has been
proposed recently and takes text description as the only condition. Thus, it is hard to generate photo-
realistic street scenes. When providing multi-view video frames from nuScenes with known camera
poses, their pipeline fails to reconstruct. We suppose the reason is limited overlaps and errors from
depth estimation. As suggested by the released code, we changed the image generation model to
lllyasviel/control v11p sd15 inpaint for inpainting by providing a nuScenes image,
i.e., Figure 8a. However, due to the lack of controllability, the results from LucidDream (e.g., Fig-
ure 8b) are unsatisfactory. On the other hand, due to the lack of control over objects within the scene,
WonderJourney struggles to generate coherent scenes. Inpainting-based methods like the two above
exhibit a pronounced sense of patches and face significant challenges in achieving 360◦ coverage.

Figure 8d further shows directly stitching real data. It is also bad due to the limited overlaps between
views. On the contrary, the scene generated from MagicDrive3D can render continuous panorama,
as shown in Figure 8e, which is also controllable through multiple conditions.
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(a) Conditional image
to LucidDreamer
(Chung et al., 2023)

(b) Scene generated by LucidDreamer (Chung et al., 2023), with text “A driv-
ing scene in the city from the front camera of the vehicle. A bus on the right
side. There is a bridge overhead. There is a railing in the center of the left
road. Some vehicles ahead”

(c) Scene generated by WonderJourney (Yu et al., 2024). We set the focal length to be the same as the con-
ditional image. WonderJourney cannot control road semantics (many objects are physically implausible) and
fails in loop closure for 360◦ scene generation. Conditions are the same as Figure 8b.

(d) Stitched panorama with real camera views from nuScenes dataset. Due to the limited overlaps, there are
many empty (black) areas.

(e) Panorama from MagicDrive3D. The scene is generated with the same object boxes and BEV map as Fig-
ure 8d, but turned to “rainy day”.

Figure 8: Comparison with two baselines (LucidDreamer (Chung et al., 2023) and WonderJour-
ney (Yu et al., 2024)) and direct stitching real images.

Note that, panorama generation is only one of the applications of our generated scenes. We show
them just for convenient qualitative comparison within the paper. Since our scene generation con-
tains geometric information, they can be rendered from any camera view, as shown in Figure 5.

D IMPLEMENTATION DETAIL OF APPEARANCE EMBEDDING

We show in Figure 9 the detailed architecture of the CNN used in our appearance modeling. The
AE map is 32× smaller than the input image to reduce the computational cost. Hence, we first
downsample the input image by 32×. Then, we use 3 × 3 convolution for feature extraction and
pixel shuffle for upsampling. Each convolution layer is activated by ReLU.

E BROADER IMPACTS

The implementation of MagicDrive3D in controllable 3D street scene generation could potentially
revolutionize the autonomous driving industry. By creating detailed 3D scenarios, self-driving ve-
hicles can be trained more effectively and efficiently for real-world applications, thereby leading
to improved safety and accuracy. Moreover, it could potentially provide realistic simulations for
human-operated vehicle testing and training, thus contributing to reducing the occurrence of acci-
dents on the roads while enhancing driver expertise. In the broader scope, MagicDrive3D could
be of considerable value to the virtual reality industry and video gaming industry, enabling these
sectors to generate more lifelike 3D scenes and intricate gaming experiences.
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Figure 9: The CNN architecture of appearance modeling, as introduced in Section 4.3.

On the downside, the development and application of such advanced technology could lead to certain
unwanted scenarios. For instance, the increased automation in industries, driven by the potential of
this technology, could lead to job losses for drivers and other related professionals as their roles
become automated. A societal transition will be needed to avoid negative impacts on employment
levels and the fairness of wealth distribution.

F MORE QUALITATIVE RESULTS

We show more generated street scenes from MagicDrive3D in Figure 10 and Figure 11.
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Figure 10: Generated street scenes from MagicDrive3D. We adopt control signals from nuScenes
validation set. We crop the center part for better visualization.

Figure 11: Generated street scenes from MagicDrive3D. We adopt control signals from nuScenes
validation set. The black regions are not fully covered, constrained by the camera’s FOV.
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