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Abstract

Colloquially speaking, image generation models
based upon diffusion processes are frequently said
to exhibit “hallucinations,” samples that could
never occur in the training data. But where do
such hallucinations come from? In this paper, we
study a particular failure mode in diffusion mod-
els, which we term mode interpolation. Specif-
ically, we find that diffusion models smoothly
“interpolate” between nearby data modes in the
training set, to generate samples that are com-
pletely outside the support of the original train-
ing distribution; this phenomenon leads diffusion
models to generate artifacts that never existed in
real data (i.e., hallucinations). We systematically
study the reasons for, and the manifestation of this
phenomenon. Through experiments on 1D and
2D Gaussians, we show how a discontinuous loss
landscape in the diffusion model’s decoder leads
to a region where any smooth approximation will
cause such hallucinations. Through experiments
on artificial datasets with various shapes, we show
how hallucination leads to the generation of com-
binations of shapes that never existed. Finally,
we show that diffusion models in fact know when
they go out of support and hallucinate. This is
captured by the high variance in the trajectory of
the generated sample towards the final few back-
ward sampling process. Using a simple metric to
capture this variance, we can remove over 95%
of hallucinations at generation time while retain-
ing 96% of in-support samples. We conclude our
exploration by showing the implications of such
hallucination (and its removal) on the collapse
(and stabilization) of recursive training on syn-
thetic data with experiments on MNIST dataset.
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1. Introduction
The high quality and diversity of images generated by dif-
fusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020)
have made them the de facto standard generative models
across various tasks including video generation (Brooks
et al., 2024), image inpainting (Lugmayr et al., 2022), im-
age super-resolution (Gao et al., 2023), data augmentation
(Trabucco et al., 2023), and others. As a result of their
uptake, large volumes of synthetic data are rapidly prolif-
erating on the internet. The next generation of generative
models will likely be exposed to many machine-generated
instances during their training, making it crucial to under-
stand ways in which diffusion models fail to model the
true underlying data distribution. Like other generative
model families, much research has been done to under-
stand the failure modes of diffusion models as well. Past
works have identified, and attempted to explain and rem-
edy failures such as, training instabilities (Huang et al.,
2023), memorization (Carlini et al., 2023; Somepalli et al.,
2023) and inaccurate modeling of objects such as hands and
legs (Narasimhaswamy et al., 2024; Borji, 2023).

In this work, we formalize and study a particular failure
mode of diffusion models that we call hallucination — a
phenomenon where diffusion models generate samples that
lie completely out of the support of the training distribution
of the model. We observe hallucinations even in large gen-
erative models like StableDiffusion (Rombach et al., 2021)
in the form of hands with extra (or missing) fingers or limbs.
We begin our investigation with a surprising observation
that an unconditional diffusion model trained on a distribu-
tion of simple shapes, generates images with combinations
of shapes (or artifacts) that never existed in the original
training distribution (Figure 1). While a lot of research in
generative models has studied the phenomenon of ‘mode
collapse’ (Zhang et al., 2018) which leads to a loss in di-
versity in the sampled distribution, in our work we explain
hallucinations through the lens of a phenomenon we call
‘mode interpolation’, which has not been studied in past
work to the best of our knowledge.

To understand the cause of these hallucinations and their
relationship to mode interpolation, we construct simplified
1-d and 2-d mixture of Gaussian setups and train diffusion
models on them (§ 2). We observe that when the true data
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distribution occurs in disjoint modes, diffusion models are
unable to model a true approximation of the underlying
distribution. This is because there exist ‘step functions’ be-
tween different modes, but the score function learned by the
DDPM is a smooth approximation of the same, leading to
interpolation between the nearest modes, even when these
interpolated values are entirely absent from the training data.
Our investigation on the occurrence of mode interpolation
leads us to the observation that hallucinated samples usually
have very high variance towards the end of their trajectory
during the reverse diffusion process. Based on this obser-
vation, we use the trajectory variance during sampling as
a metric to detect hallucinations (§ 3), and show that diffu-
sion models usually ‘know’ when they hallucinate, allowing
detection with sensitivity and specificity > 0.92.

Finally, we study the implications of this phenomenon in
recursive generative model retraining where we train gener-
ative models on their own output (§ C). Recently, recursive
training and its downsides in model collapse have garnered
a lot of attention in both language and diffusion modeling
literature (Alemohammad et al., 2023; Bertrand et al., 2023;
Dohmatob et al., 2024; Briesch et al., 2023). We observe
that the proposed detection mechanism is able to mitigate
the model collapse during recursive training on 2D Grid of
Gaussians, Shapes and MNIST dataset.

Hallucination in Diffusion Models. Before formalizing
our notions and definitions in § B, let us first consolidate the
observation that has been loosely labeled as ‘hallucination’
until now. To illustrate this phenomenon, we design a syn-
thetic dataset called SIMPLE SHAPES, and train a diffusion
model to learn its distribution.

SIMPLE SHAPES Setup. Consider a dataset consisting of
black and white images that contain three shapes: triangle,
square, and pentagon. Each image in the dataset is 64x64
pixels in size and divided into three (implied) columns. The
first, second, and third columns contain a triangle, square,
and pentagon, respectively. Each column has a 0.5 probabil-
ity of containing the corresponding shape. A representation
of this setup is shown in Fig 1. It is important to note that in
this data generation pipeline, each shape is present at most
once in each image.

Observation. We train an unconditional Denoising Diffu-
sion Probabilistic Model (DDPM) (Ho et al., 2020) on this
toy dataset with T = 1000 timesteps. We observe that the
DDPM generates a small fraction of images that are never
observed in the training dataset, nor a part of the ‘support’ of
the data generation pipeline. Specifically, the model gener-
ates some images that contain two occurrences of the same
shape, as shown in Fig 1. Furthermore, when the model is
iteratively trained on its own sampled data, the fraction of
these occurrences increases significantly as the generation
process progresses.

Inspired by these observations and their implications, we
will perform experiments through the rest of this work to
formalize what we mean by hallucinations (§ B), why do
they occur (§ 2), how can we mitigate them (§ 3), and what
are their implications for real-world datasets (§ C).

2. Understanding Mode Interpolation and
Hallucination

In this section, we provide initial investigations into the
central phenomenon of hallucinations in diffusion models.
Formally, we consider a hallucination to be a generation
from the model that lies entirely outside the support of the
real data distribution (or, for distributions that theoretically
have full support, in a region with negligible probability).
That is, the ϵ-Hallucination set Hϵ(q)

Hϵ(q) = {x : q(x) ≤ ϵ}, (1)

where we typically take ϵ = 0 or take ϵ to be vanishingly
small (well beyond numerical precision). We similarly de-
fine the ϵ-support set Sϵ(q) to simply be the complement of
the ϵ-Hallucination set.

Mode interpolation occurs when a model generates sam-
ples that directly interpolate (in input space) between two
samples in the ϵ-support set, such that the interpolation lies
in the ϵ-Hallucination set. That, is for x, y ∈ Sϵ(q) the
model generates θx + (1 − θ)y ∈ Hϵ(q). The main argu-
ment of this paper, shown through examples and numerical
analysis of special cases, is that diffusion models frequently
exhibit mode interpolation between “nearby” modes in the
data distributions, and such interpolation leads to the gen-
eration of artifacts that did not exist in the original data
(hallucinations).

1D GAUSSIAN Setup. We have already seen how hal-
lucinations manifest in the SIMPLE SHAPES set-up (§ 1).
To investigate hallucinations via mode interpolation, we
begin with a synthetic toy dataset characterized by a mix-
ture of 1D Gaussians given by: p(x) = 1

3N (µ1, σ
2) +

1
3N (µ2, σ

2)+ 1
3N (µ3, σ

2). For our initial experiments, we
set µ1 = 1, µ2 = 2, µ3 = 3 and σ = 0.05. We sample
50k training points from this true distribution and train an
unconditional DDPM using these samples with T = 1000
timesteps for 10, 000 epochs. Additional experimental de-
tails are present in the App. E.

We observe that diffusion models can generate samples that
interpolate between the two nearest modes of the mixture
of Gaussians (Fig. 2). To clearly observe the distribution of
these interpolated samples, we generated 100 million sam-
ples from the diffusion models. The probability of sampling
from the interpolated regions (regions outside the support
of real data density, outlined in red) is non-zero, and decays
with the distance from the modes. This region has nearly 0
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Figure 1: Hallucinations in Diffusion Models: Original Dataset (Left) & Generated Dataset (Right). The original dataset
consists of 64x64 images divided into three columns, each containing a triangle, square, or pentagon with a 0.5 probability of
the shape being present. Each shape appears at most once per image. The generated dataset created using an unconditional
DDPM includes some samples (hallucinations) with multiple occurrences of the same shape, unseen in the original dataset.

probability mass of the true distribution, and no samples in
this region occurred in the data used to train the DDPM.

The rate of mode interpolation depends primarily on three
factors: (i) Number of training data points, (ii) variance of
(and distance between) the distributions, and (iii) the number
of sampling timesteps (T ). As the number of training sam-
ples increases, we observe that the proportion of interpolated
samples decreases. In this setup, the variance of p(x) not
only depends on σ but also the distance between the modes
i.e, |µ1−µ2| and |µ2−µ3|. We run another experiment with
µ1 = 1, µ2 = 2 and µ3 = 4. In this case, we observe that
the frequency of samples between µ2 and µ3 is much lower
than µ1 and µ2. The number of interpolated samples also
decreases as the distance from the modes increases. The
frequency of interpolated samples is also proportional to
timesteps T . Additional experiments with different numbers
of Gaussians are presented in Appendix G.

2.1. 2D GAUSSIAN Grid

The reduction in density of mode interpolation as two modes
with µ = [2, 3] are moved apart calls for closer inspection
into when and how diffusion models choose to interpolate
between nearby modes. To investigate this, we make a
toy dataset with a mixture of 25 Gaussians arranged in a
two-dimensional square grid. A total of 100,000 samples
are present in the training set. Similar to the 1D case, we
observe interpolated samples between the two nearest modes
of the Gaussian. Again, these samples have close to zero
probability if sampled from the original distribution (Fig 8).

We note that mode interpolation only happens between the

nearest neighbors. To demonstrate this occurrence, we also
train a DDPM on the rotated version of the dataset where the
modes are arranged in the shape of a diamond (Figure 8.c,d).
The mode interpolation can be more clearly observed in this
setting. Interestingly, there appears to be no interpolation
between modes along the x-axis, indicating that only the
nearest modes are being interpolated. We believe this em-
pirical observation of mode interpolation being confined to
nearby modes will spark further investigation.

What causes mode interpolation?. To understand the
reason behind the observed mode interpolation, we ana-
lyze the score function learned by the model. The model
learns to predict ϵθ which is related to the score function as
sθ(xt, t) = −−ϵθ(xt,t)√

1−ᾱt
. We know the true score function

for the given mixture of Gaussians, and we can estimate the
learned score function using the model’s output. In Figure 4,
we plot the ground truth score (left) and the learned score
(right) across various timesteps. We observe that the neural
network learns a smooth approximation of the true score
function, particularly around the regions between disjoint
modes of the distribution from timesteps t = 0 to t = 20.
Notice that the true score function has sharp jumps that
separate two modes, however, the neural network can not
learn such sharp functions and smoothly approximates a
tempered version of the same. We also plot the estimated
x̂0 and observe a smooth approximation of the step function
instead of the exact step function. There is a region of un-
certainty in the region between the two modes which leads
to mode interpolation i.e sampling in the regions between
the two modes. As another sanity check, we used the true
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Figure 2: Mode Interpolation in 1D GAUSSIAN. The red curve indicates the PDF of the true data distribution q(x), which
is a mixture of 3 Gaussians (notice that the y-axis is in log-scale). In blue, we show a density histogram of the samples
generated by a DDPM trained on varying number of samples from the true data distribution. For each histogram, we sampled
100 million examples from the diffusion model to observe the interpolated distribution. (a,b) show how the density of
samples generated in the interpolated region reduces with an increase in the number of samples from the real distribution
(used for training the DDPM). (c,d) show the impact of moving one of the modes (originally at µ = 3) to µ = 4. The density
of samples in the region between distant (but neighboring) modes is significantly lesser than that between nearby modes.

score function in the reverse diffusion process for sampling
(instead of the learned network). In this case, we did not see
any instance of mode interpolation. This explains why the
diffusion model generates samples between two modes of a
Gaussian when it was never in the training distribution.

3. Diffusion Models know when they
Hallucinate

Our previous sections established that hallucinations in dif-
fusion models arise during sampling. More specifically, in-
termediate samples land in regions between different modes
where the score function has high uncertainty. Since neu-
ral networks find it hard to learn discrete ‘jumps’ between
different modes (or a perfect step function), they end up in-
terpolating between different modes of the distribution. This
understanding suggests that the trajectory of the samples
that generate hallucinations must have high variance due to
the highly steep score function in the region of uncertainty.
We will build upon this intuition to identify hallucinations
in diffusion models.

Variance in the trajectory of prediction. We revisit the
hallucinated samples in the 1D GAUSSIAN setup, and ex-
amine the trajectory of the predicted value of x̂0 during the
reverse diffusion process. Figure 14 depicts the variance
of trajectories leading to hallucinations (red shades) and
those generating samples within the original data distribu-
tion (blue shades). For trajectories in shades of blue (non-
hallucinations), the variance remains low beyond t = 20.
This indicates there is a minimal change in the predicted x̂0

during the final stages of reverse diffusion, signifying con-
vergence. Conversely, the red trajectories (hallucinations)
exhibit instability in the value of x̂0 in the same region
suggesting a high overall variance in these trajectories.

Metric for detecting hallucination. Based on the above
observation about high variance in predicted values of x0 in
the reverse diffusion process, we use the same observation as
a metric to distinguish hallucinated and non-hallucinated (in-
support) samples. Mathematically, the metric can be defined
as follows: Hal(x) = 1

T

∑T
i=0(x̂0

(t)− x̂0
(t))2 where x̂0

(t)

represents the predicted values of the final image at different
time steps (t), and x̂0

(t) is the mean of these predictions
over the same time steps. We now utilize this metric to
analyze the histogram values of each sample from the three
experimental setups studied thus far.

SIMPLE SHAPES. In the SIMPLE SHAPES setup, a sam-
ple is labeled as hallucinated if more than one shape of the
same type occurs in the generated image. We generate 7500
images using a DDPM and study the separation between
hallucinated and non-hallucinated images. We find that the
reverse diffusion process of T = 1000 steps is rather long.
Generally, the image stabilizes around T = 700 (as shown
in Appendix 17). Therefore, we use the time range between
T = 850 and T = 700 in the reverse diffusion process to
compute the variance of the predicted sample value. Using
this process, we can filter out 95% of the hallucinated sam-
ples while retaining 95% of the in-support samples. The
histogram for the values is presented in Figure 5.

1D GAUSSIAN. In the 1D-Gaussian setup, we label any
examples as a hallucination if they have negligible proba-
bility (for instance values greater than 6σ from the mean
under normal) under the real data distribution (refer to Fig-
ure 2). We measure the variance of the last 15 steps of
the x̂0 during the reverse diffusion process, and plot the
histogram of values of the same in Figure 5. We can fil-
ter out 95% hallucinated samples while retaining 98% of
in-support samples.
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Figure 3: Mode Interpolation in 2D GAUSSIAN. The dataset consists of a mixture of 25 Gaussians arranged in a square
grid, with a training set containing 100,000 samples. (a,b) The blue points represent samples generated by a DDPM, with
visible density between the nearest modes of the original Gaussian mixture (in orange). These interpolated samples have
near-zero probability in the original distribution. (c,d) We trained a DDPM on a rotated version of the dataset where the
modes form a diamond shape. In this configuration, we see no interpolation along the x-axis, illustrating that diffusion
models interpolate between nearest modes.

Figure 4: Explaining Mode Interpolation via Learned
Score Function. The left panel shows the ground truth score
function for a mixture of Gaussians across various timesteps,
while the right panel illustrates the score function learned by
the neural network. While the true score function exhibits
sharp jumps that separate distinct modes (particularly in
the initial time steps), the neural network approximates a
smoother version.

We investigate the recursive generative model training setup
in App C and the 2D Gaussians in App. D.

4. Discussion
We performed an in-depth study to formulate and under-
stand hallucination in diffusion models, focusing on the
phenomenon of mode interpolation. We saw how diffusion
models learn smoothed approximations of disjoint score
functions, leading to mode interpolation. Our analysis led
to an effective metric for identifying hallucinated samples.
We also explored the implications of hallucination in the
context of recursive generative model training. Past works
(Samuel et al., 2024) have shown that rare concepts/classes
in large diffusion models like StableDiffusion (Rombach
et al., 2021) are poorly modeled. This is evident from the
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Figure 5: Histogram of Hallucination Metric. We depict
the hallucination metric values for (a) 1D GAUSSIAN, (b)
SIMPLE SHAPES setups. The histograms show that trajec-
tory variance can capture a separation between hallucinated
(orange) and non-hallucinated (blue) samples.

distortion of hands commonly observed in samples gen-
erated by these models. The occurrence of 6-8 fingers is
potentially analogous to the occurrence of 2 squares in the
toy experiment, an exciting follow-up for future research.
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A. Related Work
Diffusion Models. Diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2020) are a class
of generative models characterized by a forward process
and a reverse process. In the forward process, noise is
incrementally added to an image over time steps, ultimately
converting the data into noise. The reverse process learns
to denoise the image using a neural network essentially
learning to convert noise to data. Diffusion models have
various interpretations. Score-based generative modeling
(Song and Ermon, 2019; Song et al., 2021b) and DDPMs
(Ho et al., 2020) are closely related, with (Song et al., 2020)
proposing a unified framework using stochastic differential
equations (SDEs) that generalizes both Score Matching with
Langevin Dynamics (SMLD) (Song et al., 2020) and DDPM.
In this framework, the forward process is a SDE with a
continuous-time generalization instead of discrete timesteps
and the reverse process is also an SDE that can be solved
using a numerical solver. Another perspective is to view
diffusion models as hierarchical Variational Autoencoders
(VAEs) (Luo, 2022). Recent research (Khrulkov et al., 2022)
suggests that diffusion models learn the optimal transport
map between Gaussian distribution and data distribution. In
this paper, we discover a surprising phenomenon in diffusion
which we coin mode interpolation.

Recursive Generative Model Training. Recent works
(Alemohammad et al., 2023; Shumailov et al., 2023;
Martínez et al., 2023a;b; Bertrand et al., 2023) demonstrated
that iteratively training the generative models on their own
output (i.e recursive training) leads to model collapse. The
model collapse can happen in two ways: either all sam-
ples collapse to a single mode (low diversity) or the model
generates very low fidelity, unrealistic images (low sample
quality). This has been shown in the visual domain with
StyleGAN2 and diffusion models (Bertrand et al., 2023; Ale-
mohammad et al., 2023), as well as in the text domain with
Large Language Models (LLMs) (Shumailov et al., 2023;
Briesch et al., 2023; Dohmatob et al., 2024). The current
solution to mitigate this collapse is to include a fraction of
real data in the training loop at all the generations (Bertrand
et al., 2023; Alemohammad et al., 2023). Theoretical results
have also proved that super-quadratic number of synthetic
samples are necessary to prevent model collapse (Fu et al.,
2024) in the absence of support from real data. A concurrent
work (Gerstgrasser et al., 2024) studied the setup of data
accumulation in recursive training where data from previ-
ous iterations of generative models together with real data
are accumulated over time. The authors conclude that data
accumulation (including real data) can avoid model collapse
in various settings including language modeling and image
data.

Past works have only studied the collapse of the generative

model to the mode of the existing distribution. Through
some controlled experiments, we study the interaction be-
tween different modes (a mode can be a class) or novel
modes being developed in the generative models. This pro-
vides novel insights into the reasons behind the collapse of
generative models during recursive training.

Failure Modes of Diffusion Models. One of the common
failure modes of diffusion models is the generation of im-
ages where the hands and legs appear distorted or deformed
which is commonly observed in Stable Diffusion (Rom-
bach et al., 2021) and Sora (Brooks et al., 2024). Diffusion
models also fail to learn rare concepts (Samuel et al., 2024)
which have less than 10k samples in the training set. Various
other failure modes including ignoring spatial relationships
or confusing attributes have been discussed in (Liu et al.,
2023; Borji, 2023).

Hallucination in Language Models. Hallucination in
LLMs (Zhang et al., 2023; Ye et al., 2023) is a huge bar-
rier to the deployment of LLMs in safety-critical systems.
The LLMs may provide a factually incorrect output or in-
correctly follow the instructions or be logically wrong. A
simple example is that LLMs can generate new facts when
asked to summarize a block of text (input-conflicting hallu-
cination) (Zhang et al., 2023). Current hallucination mitiga-
tion techniques in LLMs include factual data enhancement
(Gunasekar et al., 2023), retrieval augmentation (Ram et al.,
2023) among other methods. Given the widespread adoption
of image generation models, we argue that hallucination in
diffusion models must also be studied carefully to identify
its causes and mitigate it.

B. Definitions and Preliminaries
Let q(x) be the real data distribution. We define a forward
process where Gaussian noise is iteratively added at each
timestep for a total of T timesteps. Let x0 ∼ q(x), and xt

be the perturbed (noisy) sample after adding t timesteps of
noise. The noise schedule is defined by βt ∈ (0, 1), which
represents the variance of Gaussian (added noise) at time t.
For large enough T , xT ∼ N (0, I)

q(xt|xt−1) = N (
√

1− βtxt−1, βtI); (2)

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (3)

In the forward diffusion process, we can directly sample
xt at any time step using the closed form q(xt|x0) =
N (xt;

√
ᾱtx0, (1 − ᾱt)I) where αt = 1 − βt and ᾱt =∏t

j=1 αj .

The reverse diffusion process aims to learn the process of
denoising i.e, learning pθ(xt−1|xt) using a model (such as

8
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a neural network) with θ as the learnable parameters.

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt); (4)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (5)

The mean can be derived as µθ(xt, t) =
1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
where ϵθ(xt, t) is the

predict noise at timestep t using the neural network. The
original DDPM is trained to predict the noise ϵt instead of
xt and the variance Σθ(xt, t) is fixed and time-dependent.
Since then, improved methods have learned the variance
(Nichol and Dhariwal, 2021). We define predicted x0 as
x̂0 = 1√

ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
Connections to Score Based Generative Models. The
score function s(x) of a distribution p(x) is the gradient
of the log probability density function i.e, ∇x log p(x).
The main premise of score-based generative modeling is
to learn the score function of the data distribution given
the samples from the same distribution. Once this score
function is learned, annealed Langevin dynamics can be
used to sample from the distribution using the formula
xt+1 ← xt + η∇x log p(x) +

√
2ηzt, where η is the step

size and zt is sampled from standard normal. The score
function can be obtained from the diffusion model using the
equation sθ(xt, t) = − ϵθ(xt,t)√

1−ᾱt
(Weng, 2021).

C. Implications on Recursive Model Training
The internet is increasingly populated by more and more
synthetic data (data synthesized from generative models).
It is likely that future generative models will be exposed
to large volumes of machine-generated data during their
training (Martínez et al., 2023a;b). Recursive training on
synthetic data leads to mode collapse (Alemohammad et al.,
2023; Dohmatob et al., 2024) and exacerbates data biases.
In this section, we study the impact of hallucinations within
the context of recursive generative model training. We adopt
the standard synthetic-only setup similar to (Alemohammad
et al., 2023) where we only use synthetic data from the
current generative model in training the next generation of
generative models. The first generation of generative model
is trained on real data and samples from this generative
model is used to train the second generation (and so on).

Most past work (Bertrand et al., 2023) studied model col-
lapse to a single mode. This work emphasizes that interac-
tion between modes and mode interpolation plays a massive
role when training generative models on their output.

2D GAUSSIAN. When we recursively train a DDPM on
its own generated data using a square grid of 2D Gaussians
(with T = 500), the hallucinated samples significantly in-
fluence the learning of the next generation’s distribution

(see Figure 6). The frequency of the interpolated samples
increases as we further train on the learned distribution that
consists of interpolated samples. Figure 6d shows samples
from Generation 20, where it is evident that the modes have
almost collapsed into a single mode, differing greatly from
the original data distribution.

SIMPLE SHAPES. We define a hallucinated sample as one
that contains at least two shapes of the same type (which is
never seen in the training distribution). We observe the pres-
ence of around 5% hallucinated samples when trained on
the real data. We note that the ratio of hallucinated samples
increases exponentially as the we iteratively train the diffu-
sion model on its own data. This is expected as the diffusion
model progressively learns from a distribution increasingly
dominated by hallucinated images, compounding the effect
in subsequent generations.

MNIST. We also run the recursive model training on the
MNIST dataset (LeCun et al., 1998). At every generation,
we generate 65k images and sample 60k images using the
filtering mechanism. For each generation, we train a class
conditional DDPM with Classifier-Free Guidance (Ho and
Salimans, 2022) with T = 500 for 50 epochs. To evaluate
the quality of the generated images, we compute the FID
(Heusel et al., 2017) using a LeNet (LeCun et al., 1998)
trained on MNIST instead of Inception backbone as MNIST
is not a natural image dataset. In Figure 7, we clearly see
that the proposed metric based on the variance of the tra-
jectory outperforms the random filtering method across all
generations (lower FID is better). We also plot the Precision
and Recall (Shmelkov et al., 2018) curves (in the Appendix
Figure 17) where we observe that our filtering mechanism
selects high quality samples without much loss in diversity.

Mitigating the curse of recursion with pre-emptive de-
tection of hallucinations. Based on the metric developed
in § 3, we analyze the efficacy of the proposed metric in
filtering out the hallucinated samples for the next generation
of training. After training each generation of the generative
model, we sample k images more than size of the training
data and then filter out hallucinated samples based on the
metric. Figure 7 shows the results on 2D Grid of Gaussians,
SIMPLE SHAPES and MNIST dataset. We also compare
with random filtering where we randomly sample points for
the next generation. The variance-based filtering method
easily outperforms the random sampling method in all the
generations. We see the effectiveness of the proposed metric
in minimizing the rate of hallucinations across generations
and thus model collapse to a certain extent. This holds true
for all the three datasets we have studied in this work.
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Figure 6: Recursive Training on 2D GAUSSIAN. We investigate the impact of recursively training a DDPM on its own
generated data using a square grid of 2D Gaussians with T = 500 diffusion steps. In each generation, we sample 100k
examples, and train the subsequent generation on these data points. As the training progresses through multiple generations,
the hallucinated (interpolated) samples significantly influence the learning of the next generation’s distribution.
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Figure 7: Mitigating Hallucinations with Pre-emptive Detection. We filter out hallucinated samples using the metric
from § 3 before training on samples from the previous generation of the diffusion model. In the case of (a) 2D GAUSSIAN,
(b) SIMPLE SHAPES, where we have clear definitions of hallucination (mode interpolation, and new shape combinations)
we see the effectiveness of our variance-based filtering method in minimizing hallucinations across generations compared
to random filtering. In the case of (c) MNIST dataset, we measure the FID of subsequent generations and notice that
pre-emptive filtering of hallucinated samples makes the recursive model collapse slower.

D. 2D GAUSSIAN

D.1. 2D GAUSSIAN Grid

The reduction in density of mode interpolation as two modes
with µ = [2, 3] are moved apart calls for closer inspection
into when and how diffusion models choose to interpolate
between nearby modes. To investigate this, we make a toy
dataset with a mixture of 25 Gaussians arranged in a two-
dimensional square grid. A total of 100,000 samples are
present in the training set. Similar to the 1D case, we ob-
serve interpolated samples between the two nearest modes
of the Gaussian. Again, these samples have close to zero
probability if sampled from the original distribution (Fig-
ure 8).

We note that mode interpolation only happens between the
nearest neighbors. To demonstrate this occurrence, we also

train a DDPM on the rotated version of the dataset where the
modes are arranged in the shape of a diamond (Figure 8.c,d).
The mode interpolation can be more clearly observed in this
setting. Interestingly, there appears to be no interpolation
between modes along the x-axis, indicating that only the
nearest modes are being interpolated. We believe this em-
pirical observation of mode interpolation being confined to
nearby modes will spark further investigation.

D.2. Detection

2D GAUSSIAN. Finally, we conclude our investigation on
synthetic datasets with experiments on the 2D GAUSSIAN
dataset. Similar to the 1D GAUSSIAN setup, we once again
measure the prediction variance of the last 20 steps of the
reverse diffusion process. We compute the variance per
dimension and then take the mean across dimensions to .
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Figure 8: Mode Interpolation in 2D GAUSSIAN. The dataset consists of a mixture of 25 Gaussians arranged in a square
grid, with a training set containing 100,000 samples. (a,b) The blue points represent samples generated by a DDPM, with
visible density between the nearest modes of the original Gaussian mixture (in orange). These interpolated samples have
near-zero probability in the original distribution. (c,d) We trained a DDPM on a rotated version of the dataset where the
modes form a diamond shape. In this configuration, we see no interpolation along the x-axis, illustrating that diffusion
models interpolate between nearest modes.

With this metric, we can filter out 96% of the hallucinated
samples while retaining 95% of the in-support samples.

E. Additional Experimental Details
E.1. Gaussian experiments

We run all our experiments for 10, 000 epochs with batch
size of 10, 000. A linear noise schedule is used with starting
noise β0 = 0.001 and the final noise β1 = 0.2. We use
T = 1000 by default in our experiments (unless specified
otherwise). The neural network (NN) is trained to predict
the noise (similar to the original DDPM (Ho et al., 2020)
implementation) and we use a Mean Squared Error loss to
train the model. The input and output of the NN have the
same shape (in this case, 1 for 1D Gaussian and 2 for the 2D
Gaussian). The NN architecture starts with an initial fully
connected layer, followed by three blocks and then output
fully connected layer. Each block includes normalization,
a LeakyReLU activation, and two fully connected layers.
Finally, the output is normalized and transformed back to
the input dimension with a fully connected layer. Adam
(Kingma and Ba, 2014) with learning rate of 0.001 is used
as the optimizer. We build our codebase on top of 1 for the
synthetic toy experiments.

Metric: We use t = 0 to t = 15 (last 15 steps in the reverse
diffusion process) to compute the variance of the trajectory
in the case of Gaussian 1D and t = 0 to t = 8 in the case of
2D Gaussian Grid.

1https://github.com/tqch/ddpm-torch

E.2. Shapes

The generated images are grayscale images of size 64 ×
64. A total of 5000 images is generated for training the
diffusion model. We use a U-Net (Ronneberger et al., 2015)
architecture to model the reverse diffusion process. We
use a cosine noise scheduler similar to ADM (Nichol and
Dhariwal, 2021). We derive our implementation based on
2 for training the DDPM. We train an unconditonal DDPM
on the dataset with T = 1000 while training and 250 steps
during sampling to reduce computation cost (Song et al.,
2021a).

E.3. MNIST

MNIST (LeCun et al., 1998) consists of 60,000 grayscale
images of size (28, 28). We use classifier-free guidance
(Ho and Salimans, 2022) to train a conditional DDPM on
MNIST with T = 500. For each generation, we train for
a total of 50 epochs with a batch size of 512 shared across
4 GPUs. Adam (Kingma and Ba, 2014) optimizer with
learning rate of 1e-4 is used to train the network. We use a U-
Net (Ronneberger et al., 2015) with 256 feature dimension
to model the reverse diffusion process. For the variance
filtering mechanism in Section C, we use 10 timesteps
between t = 100 to t = 150 to compute the variance of the
trajectory. In the case of MNIST, we do post-hoc filtering
just using the samples. This means that we add t timesteps
of noise, then compute x̂0 and then use this to compute
variance.

Our implementations of the DDPM model is based on Py-
Torch (Paszke et al., 2019).

2https://github.com/VSehwag/minimal-diffusion
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Figure 9: Histogram of Hallucination Metric. We depict the hallucination metric values for (a) 1D GAUSSIAN, (b) 2D
GAUSSIAN, and (c) SIMPLE SHAPES setups. The histograms show that trajectory variance can capture a separation between
hallucinated (orange) and non-hallucinated (blue) samples.

Compute: We run all our experiments of Nvidia RTX 2080
Ti and Nvidia A6000 GPUs. The training and sampling
for the Gaussian experiments takes less than 3 hours on
single 2080Ti GPU. Sampling 100 million datapoints takes
around 3-4 hours. Running DDPM on the shapes dataset
takes around 6-7 hours with 4 2080Ti GPUs. The recursive
generative training on MNIST takes about 16 hours with 4
A6000 GPUs for 5 generations.

Code: We provide code to run all experiments in the sup-
plementary material.

F. Limitations and Broader Impact
Most of our evidence for mode interpolation comes from
the 1D/2D synthetic toy setups. We do not clearly demon-
strate what mode interpolation and hallucination look like
in real-world natural images. This is a challenging problem
because natural images have a high-dimensional, complex
distribution.

Hallucinations in LLMs have been studied extensively
(Zhang et al., 2023; Ye et al., 2023) given the widespread use
of these systems in various contexts. This work investigates
hallucinations in diffusion models. In current generative
models, these hallucinations could be used to more easily
identify machine-generated images. Developing a metric to
identify these hallucinations and remove them could make
the detection of generated images much harder. However,
we argue that understanding hallucinations in diffusion mod-
els is crucial as it can help shed light on their failure modes
and thereby enable better control in practical applications.

G. Additional Experiments and Figures
The frequency of mode interpolation is inversely propor-
tional to the number of training samples. We train the un-
conditional diffusion model with 25k, 50k, 100k and 500k
samples from the true distribution.

1. Figure 10 shows the histogram of samples generated by
the diffusion model (with 10 million samples) when the
model is trained on the distribution with µ1 = 1, µ2 =
2, µ3 = 3.

2. Figure 11 shows the histogram of samples generated by
the diffusion model (with 10 million samples) when the
model is trained on the distribution with µ1 = 1, µ2 =
2, µ3 = 4.

3. We also experiment with mixture of 2 Gaussians in
Figure 12 and 4 Gaussians in Figure 13.

4. Figure 15 shows the FID, precision and recall curves
for MNIST across generations.

5. Figure 16 shows additional examples of hallucinated
images generated by the diffusion model.

6. Figure 17 shows the x̂0 across various timesteps for a
hallucinated image. The number on top of the image
indicates the timestep.

7. Figure 18 shows the x̂0 across various timesteps for a
image in-support of the distribution. The number on
top of the image indicates the timestep.
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Figure 10: Mixture of 3 Gaussians with µ = [1, 2, 3]. We vary the number of training samples and observe that mode
interpolation decreases with increase in the size of training data
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Figure 11: Mixture of 3 Gaussians with µ = [1, 2, 4]. We vary the number of training samples and observe that mode
interpolation decreases with increase in the size of training data.
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Figure 12: Mixture of 2 1D Gaussians with varying number of training samples. (a) and (b) have the same number of
training samples but with two different seeds. Similarly for (c) and (d).
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Figure 13: Mixture of 4 1D Gaussians (µ = [1, 2, 4, 5]) with varying number of training samples. (a) and (b) have the same
number of training samples but with two different seeds. We clearly see more samples in the region between modes µ1 = 1
and µ2 = 2 compared to µ2 = 2 and µ3 = 4.
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Figure 14: Variance of x̂0 Trajectories. The trajectory of the predicted x̂0 for hallucinated (shades of red), and non-
hallucinated samples (shades of blue). We see that non-hallucinated samples stabilize in their prediction in the last 20
time steps for both 1D GAUSSIAN and 2D GAUSSIAN setups, whereas the hallucinated samples have high variance in the
predicted x̂0 across time steps.

1 2 3 4 5
Generation of Recursive Training

10

20

30

FI
D

(c) MNIST
Trajectory Variance Filtering
Random Filtering

1 2 3 4 5
Generation of Recursive Training

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Pr
ec

isi
on

MNIST
Trajectory Variance Filtering
Random Filtering

1 2 3 4 5
Generation of Recursive Training

0.89

0.90

0.91

0.92

0.93

0.94

Re
ca

ll

MNIST
Trajectory Variance Filtering
Random Filtering

Figure 15: Recursive Generative Training on MNIST with Variance and Random Filtering. We observe that the proposed
filtering mechanism can discard low quality samples while maintaining sufficient diversity.
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Figure 16: Example of Generated Hallucinated Images
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Figure 17: x̂0 for Hallucinated Sample. Here, we observe that the predicted x0 has a lot of variance around t = 700 to
t = 850. This clearly motivates our proposed metric.
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Figure 18: x̂0 for In-Support Sample. Here, we observe that the predicted x0 is more consistent around t = 700 to t = 850.
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