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Abstract

Recently, agents based on Multimodal Large001
Language Models (MLLMs) have emerged as002
a promising area of research. However, ef-003
fective benchmarks for MLLM-based agents004
are absent. To this end, in this paper, we005
present PCA-Bench, an end-to-end embod-006
ied decision-making benchmark, comprising007
1) PCA-Eval, a novel automatic evaluation008
metric inspired by the perception-action loop009
in cognitive science, assessing the decision-010
making ability of MLLMs from the perspec-011
tives of Perception, Cognition, and Action. 2)012
Embodied-Instruction-Evolution (EIE), an au-013
tomatic framework for synthesizing instruction014
tuning examples in various multi-modal embod-015
ied environments, including autonomous driv-016
ing, domestic robotics, and open-world gaming.017
Our experiments on PCA-Bench demonstrate018
that visual perception and reasoning with world019
knowledge are two core abilities for an agent020
to make correct actions. Advanced MLLMs021
like GPT-4 Vision exhibit superior performance022
than their open-source counterpart. Addition-023
ally, our EIE method substantially enhances024
open-source MLLMs’ performance, at times025
even surpassing GPT-4 Vision in certain sub-026
scores. We believe PCA-Bench serves as an027
effective bridge between MLLMs and their ap-028
plication in embodied agents. The benchmark029
will be made open-source.030

1 Introduction031

Recently, we have witnessed a remarkable surge032

in the development of Large Language Model033

(LLM) based agents (Xi et al., 2023a), unlock-034

ing a plethora of downstream applications in in-035

teractive environments such as autonomous driv-036

ing (Hu et al., 2023; Wayve, 2023), domestic assis-037

tance (Huang et al., 2022b), and game playing (Fan038

et al., 2022; Wang et al., 2023a; Zhu et al., 2023b).039

Nevertheless, LLMs encounter a modality gap040

when tackling embodied tasks, since their training041

You are a driving assistant.  Based on current image, 
what should you do if you want to drive forward safely?
A. Slow down 
B. Keep driving 
C. Call the police 
Please first describe the image and related information, 
then think step by step, and finally give the anwser.

Visual Feature Extractor

Multimodal LLM

The image depicts a wintry scene with a road covered in snow. The sky 
is clear, and no other vehicles on the road. There's a road sign visible, 
with a symbol suggesting caution due to a slippery road surface.

The snow leads a landscape with sparse vegetation. Clear sky
indicating it's likely during the day with good visibility. The road itself 
is not cleared of snow, showing only tire tracks indicating that some 
vehicles have passed before. The road sign warns for icy or snowy 
conditions.
Given these factors, the most appropriate action to take if you want to 
drive forward safely would be:

A. Slow down

Visual
Embeddings

Language
Embeddings

......

Perception

Cognition

Action

Perceiving Input

Reasoning

Making Decision

Figure 1: Example of End-to-End embodied decision
making with multimodal Large Langauge Models in the
Perception-Cognition-Action Chain.

is exclusively based on textual data, in contrast to 042

the multimodal observations that arise from embod- 043

ied environments. A prevalent approach is trans- 044

forming these multimodal observations into text via 045

various APIs (Wu et al., 2023; Yang et al., 2023). 046

However, such a non-end-to-end process can be 047

complex and may lose information. Therefore, we 048

are interested in whether current state-of-the-art 049

MLLMs (Zhu et al., 2023a; Dai et al., 2023a; Liu 050

et al., 2023a; Li et al., 2023c; Zhao et al., 2023) are 051

capable of performing various embodied decision- 052

making tasks in an end-to-end manner. However, 053

at present, there are no established benchmarks 054

that connect academically influential domains in 055

embodied decision-making with MLLMs. 056

To address the challenges of the insufficient 057

benchmarking problem, we introduce PCA-Bench, 058

an end-to-end embodied decision-making bench- 059
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mark for MLLM-based agents. It consists of PCA-060

Eval, a novel automatic evaluation metric, and061

Embodied-Instruction-Evolution (EIE), an auto-062

matic framework for synthesizing instruction tun-063

ing examples in various multi-modal embodied en-064

vironments, including autonomous driving, domes-065

tic robotics, and open-world gaming.066

PCA-Eval is designed to evaluate the embod-067

ied decision-making capabilities of agents from068

three key perspectives: Perception, Cognition, and069

Action. This is inspired by the Perception-Action070

loop (Fuster, 2004) in Cognitive Science, a funda-071

mental concept that describes how organisms pro-072

cess sensory information (Perception) to interact073

with their environment through actions, offering a074

comprehensive framework for assessment. Figure 1075

shows how MLLMs are prompted to make deci-076

sions in the PCA chain. Adopting this approach077

offers two major advantages: (1) It enables a more078

comprehensive evaluation of the decision-making079

process, with each decision step being assessed in080

terms of perception, cognition, and action. (2) The081

evaluation can be conducted outside complex sim-082

ulation environments, simplifying the process of083

evaluating different agents.084

From a data-centric perspective, using LLM to085

synthesize training examples is an increasingly pop-086

ular method for enhancing the capabilities of LLM087

itself without the need for additional human input.088

We aim to expand this approach to enhance the089

embodied decision-making skills of MLLMs. Un-090

like conventional text-based instruction generation091

methods like Self-Instruct (Wang et al., 2023d),092

generating instructions for embodied environments093

poses distinct challenges. It demands not just the094

creation of textual instructions but also the gener-095

ation of corresponding accurate observations. To096

overcome this, we propose Embodied Instruction097

Evolution (EIE), which integrates external envi-098

ronments with LLMs, thereby extending the LLM’s099

data synthesizing ability to various embodied envi-100

ronments.101

We conducted extensive experiments and analy-102

sis on PCA-Bench. Our findings are summarized103

as:104

1. Visual perception and reasoning with world105

knowledge are two core abilities for an agent to106

make correct decisions. GPT4-Vision shows strong107

zero-shot cross-modal reasoning ability for embod-108

ied decision-making tasks, significantly surpassing109

open-source counterparts in all sub-scores.110

2. EIE could significantly enhance the perfor-111

Figure 2: Instances of PCA-Bench in 3 domains.

mance of open-source MLLMs such as Llava-1.5 112

and Qwen-VL-Chat (surpassing GPT-4V at some 113

scores), validating the effectiveness of the method. 114

3. GPT4-Vision could surpass Tool-Using LLM 115

agents in a PCA-Bench subset with diverse API 116

return annotations. We analyze each method’s 117

strengths and weaknesses and suggest future di- 118

rections, such as improving cross-modal Chain- 119

of-Thought reasoning ability and aligning agents’ 120

decisions with human values. 121

2 PCA-Bench 122

2.1 Problem Definition 123

Embodied Decision-making problems are com- 124

monly formalized with a partially observable 125

Markov decision process (POMDP). 126

M := ⟨S,A, T,R,Ω, O, γ⟩ (1) 127

For an End-to-End embodied decision making 128

model F , we care about given the multi-modal 129

observation o ∈ O, the goal description g, a subset 130

of candidates actions AC ⊆ A, whether the agent 131

could make correct action a ∈ AC and give proper 132

reasoning process r. 133

F(g, o, AC) = (a, r) (2) 134

As shown in Figure 2, each instance in the bench- 135

mark is a 6-element tuple: <image, question, ac- 136

tion candidates, answer, reason, key concept>. 137

The image is collected from various embodied envi- 138

ronments, like transportation scenes, housekeeper 139

environments, and Minecraft. Questions, action 140

candidates, and answers are derived from real tasks 141
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within the corresponding environment. The reason-142

ing explains why the answer is the best choice for143

the current image, while the key concept highlights144

the most question-related aspect in the image.145

Unlike traditional visual question-answering146

datasets that emphasize visual perception (e.g.,147

VQA (Goyal et al., 2017)) or visual reasoning (e.g.,148

NLVR (Suhr et al., 2017)),the most distinctive char-149

acteristic of PCA-Bench is its grounding in em-150

bodied actions. Compared to embodied simula-151

tion environments like ALFRED (Shridhar et al.,152

2020) and Minedojo (Fan et al., 2022), PCA-Bench153

proves to be more effective in evaluating various154

LLM-based agents. This is primarily due to the155

provision of high-level actions that can be readily156

implemented or programmed using the low-level157

actions in the corresponding domains. The high-158

level actions are more comprehensible for LLMs159

than the direct low-level actions like robotic move-160

ments in the simulation environments because (1)161

the high-level actions are in the form of natural lan-162

guages, making it easier for LLMs to understand163

the meaning and connect with world knowledge.164

(2) LLMs are not grounded with low-level actions165

during the pretraining or finetuning stage, making166

it hard for LLMs to understand the consequences167

of executing an action.168

To answer a question in PCA-Bench, the agent169

must possess the following abilities: (1) Perception:170

accurately identify the concept related to the ques-171

tion within the image; (2) Cognition: engage in172

reasoning based on image perception and worldly173

knowledge; (3) Action: comprehend the potential174

actions, selecting the one that best aligns with the175

outcome of the reasoning process. A deficiency in176

any of these abilities would possibly result in an177

incorrect answer, posing a significant challenge to178

the more complex capabilities of embodied agents.179

2.2 PCA-Eval180

For each instance, we prompt the agent to deliver181

an answer comprising a reasoning process r, and182

a final action a, represented as < r, a >. By com-183

paring the model prediction with the ground truth184

answer, we can obtain a fine-grained diagnosis of185

the decision making process as following:186

Perception Score (P-Score) measures the model’s187

accuracy in perceiving the observation. It is com-188

puted based on whether the agent’s reasoning pro-189

cess r includes the key concept of the instance. A190

score of 1 is assigned if at least one question-related191

key concept is described by the agent; otherwise,192

Topology Graph: Harvest beef using iron sword

Craft 2 Iron Ingot

Collect 2 Wood

Craft 1 Stick

Find a Cow

Kill a Cow

Craft an Iron Sword

Collect 2 Iron Ore

Figure 3: Illustration of task topology graph. Events in
green represent the leaf nodes of the graph.

it is 0. For the top example in Figure 2, the agent 193

should output “clear road” or “no car visible” or 194

other semantically equivalent concepts in its de- 195

scription of the image to get the perception score. 196

Cognition Score (C-Score) assesses the model’s 197

ability to reason, comprehend, and make informed 198

decisions based on the perceived input data and 199

world knowledge. The score is 1 if the reasoning 200

process is correct, otherwise the score is 0. For 201

the instance in Figure 2, the agent should link the 202

“clear road” to the action “keep driving” based on 203

transportation commonsense to get the score. 204

Action Score (A-Score) measures the model’s abil- 205

ity to generate appropriate and effective responses 206

or actions based on the perceived input data and 207

the cognitive understanding of the context. The 208

score is assigned a value of 1 if the agent selects 209

the correct action; otherwise, the score is set to 0. 210

2.3 Automatic Evaluation 211

Recent advancements have seen researchers har- 212

nessing powerful LLMs for the evaluation of out- 213

put of language models. Studies have revealed that 214

the outcomes from LLMs could exhibit remarkable 215

alignment with human judgments (Zheng et al., 216

2023; Wang et al., 2023c,b). In our investigation, 217

we employed GPT-4 to automatically evaluate per- 218

ception, cognition, and action scores based on the 219

model’s outputs. Our findings underscore a signif- 220

icant agreement between GPT-4 annotations and 221

human annotator results. This is substantiated by 222

Pearson correlation coefficients of 0.8, 0.9, and 223

0.95 for perception, cognition, and action evalua- 224

tions, respectively. For a detailed description of our 225

evaluation tool, we utilize the template as shown in 226

Table 3 to query GPT-4, aiming to evaluate its re- 227

sponses and assign scores for perception, cognition, 228

and action. 229
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Figure 4: Pipeline of the Embodied Instruction Evolution method.

2.4 Benchmark Dataset Overview and230

Embodied Instruction Evolution231

The PCA-Bench benchmark now includes a train-232

ing set consisting of 7,510 examples and a test set233

comprising 813 examples. The entire training set is234

autonomously generated through the Embodied In-235

struction Evolution (EIE) method, entirely without236

human intervention. For the test set, 313 exam-237

ples are exclusively written by 3 human experts for238

each domain, while the remaining 500 examples239

are initially produced using the EIE method and240

subsequently undergo manual checking and filter-241

ing by human experts. We ensured that there are242

no shared environmental observations between the243

training and test sets. Moreover, every test case has244

been verified by at least three authors of this pa-245

per. The details of human annotation pipeline could246

be found in Appendix B. We introduce the three247

domains encompassed by our dataset as follows:248

Autonomous Driving. In the autonomous driv-249

ing domain, instances are derived from real-world250

transportation scenes, which requires the agent to251

have particular abilities such as traffic sign recogni-252

tion, obstacle detection, and decision-making at in-253

tersections. The dataset aims to evaluate an agent’s254

ability to perceive and interpret visual informa-255

tion while making safe and efficient driving deci-256

sions. The images are collected from TT100K (Zhu257

et al., 2016) dataset and annotators are instructed258

to propose an image-conditioned question that is259

grounded with real actions of vehicles.260

Domestic Robot. The domestic assistance do- 261

main features instances from the ALFRED (Shrid- 262

har et al., 2020; Kolve et al., 2017) environment, 263

which simulates a housekeeper robot performing 264

tasks within a household setting. These tasks may 265

include object manipulation, navigation, and inter- 266

action with various appliances. The environment 267

assesses an agent’s ability to understand and exe- 268

cute complex instructions while navigating and in- 269

teracting with a dynamic environment. Annotators 270

are asked to select one image from the randomly 271

generated scenes in the environment, propose a 272

question related to the items on the scene, and an- 273

notate the full information of the instance. 274

Open-World Game. In the open-world game do- 275

main, instances are sourced from the Minecraft en- 276

vironment, where agents are tasked with exploring, 277

crafting, and surviving in a procedurally generated 278

world. This dataset evaluates an agent’s ability to 279

reason and plan actions within a complex, open- 280

ended environment, which often requires long-term 281

strategizing and adaptability. Annotators receive 282

predefined tasks from MineDojo (Fan et al., 2022) 283

as a reference during the task generation phase. For 284

each task, we instruct the annotator to sketch a task 285

topology graph, exemplified in Figure 3. The task 286

should be completed in accordance with the topo- 287

logical order of the graph, where the event located 288

in the leaf nodes should be finished first. Each node 289

in the task topology graph can be viewed as a step 290

in the sequential decision. We list the in-domain 291

task distribution in Appendix A. 292

The annotation of PCA-Eval examples is a labor- 293

4



intensive task. As illustrated in Figure 4, we in-294

troduce Embodied Instruction Evolution (EIE), a295

method for automatically augmenting examples in296

the PCA-Eval format using Large Language Mod-297

els, such as ChatGPT. This process involves four298

key steps: 1) Setup of Programmable Interface:299

Establish a programmable interface with a corre-300

sponding template, ensuring that observations in301

the embodied environment can be generated based302

on specific parameters. 2) Generation of Seed303

Tasks: Create initial seed tasks for each environ-304

ment. These tasks are representative of the general305

challenges an agent might encounter. We provide306

ChatGPT with sample tasks and enable it to gen-307

erate additional seed tasks. 3) Task Specification308

and Template Filling: For each seed task, we in-309

struct ChatGPT to break down the task into multi-310

ple subtasks, following its event topology graph (as311

seen in Figure 3). This approach mimics the multi-312

step decision-making process. After determining313

the subtask names, we use the LLM to populate the314

environment parameter templates created in Step315

1 for each subtask. 4) Observation Generation316

and Filtering: Generate observations for the en-317

vironment and implement an automatic process to318

filter out invalid instances. For domains without319

programmable environments (autonomous driving),320

step 1 and step 4 are not needed, we collect real321

traffic images and utilize GPT4-Vision to generate322

seed task based on the image content.323

EIE leverages the capabilities of Large Language324

Models to reduce manual labor and improve the325

diversity and scalability of PCA-Bench examples.326

3 Experiments327

3.1 Tracks328

Zero Shot End-to-End. The test set of PCA-329

Bench serves as an effective tool for comparing330

the embodied decision-making and cross-modal331

reasoning capabilities of various Multimodal Lan-332

guage Learning Models (MLLMs). In this evalu-333

ation, the same images and prompts are provided334

to each model under test. Additionally, to address335

the challenge of perceiving certain non-visual in-336

formation from images, details such as “items in337

hand” and “items in inventory”, particularly rele-338

vant in domestic and gaming domains, are directly339

included in the question prompts.340

In our analysis, we benchmark the performance341

of the most recently open-sourced models, includ-342

ing LLaVA1.5 and Qwen-VL-Chat, as well as the343

API-only GPT4-V model. All models are evalu- 344

ated using their default inference configurations to 345

ensure a fair and standardized comparison. 346

Finetuning with EIE. In this track, we extend 347

the capabilities of open-source MLLMs by fine- 348

tuning them with the training set generated through 349

our Embodied Instruction Evolution (EIE) method. 350

After the fine-tuning process, these trained models 351

are subjected to the test set of PCA-Bench. We 352

finetune the LLaVA-7b/13b, MMICL and Qwen- 353

VL-Chat models on the training set for 5 epochs. 354

The training details are in Appendix E. 355

Zero Shot Modality Conversion. In this track, 356

we introduce and compare a new baseline, termed 357

HOLMES, which utilizes LLM without multi- 358

modal perception capabilities. Instead, HOLMES 359

relies on modality conversion APIs for embodied 360

decision-making processes. Within the HOLMES 361

framework, the LLM must continuously invoke 362

various APIs, retrieving and processing return in- 363

formation about the environment. The HOLMES 364

method is illustrated in Figure 9 from Appendix. 365

We evaluate two LLMs in this track: ChatGPT- 366

3.5-Turbo and GPT-4-0613, comparing their per- 367

formances against the advanced GPT-4-Vision. Im- 368

plementation details of the HOLMES framework 369

and the APIs are provided in Appendix C. 370

3.2 Evaluation and Metrics 371

We use our PCA-Eval evaluation tool proposed in 372

Section 2.3 to automatically assess the output of dif- 373

ferent models through three lenses: perception (P- 374

Score), cognition (C-Score), and action (A-Score). 375

3.3 Main Results 376

Zero Shot Results. The results of the zero-shot 377

end-to-end track is shown in Table 1. Among 378

all MLLMs, GPT4-V, outperforms existing open- 379

source models by achieving the highest scores of 380

0.86, 0.7, and 0.68 in the perception, cognition, and 381

action dimensions respectively. This performance 382

represents a 15% action score improvement over 383

its strongest open-source counterpart, LLaVA1.5- 384

13B. The impressive performance of GPT4-V is 385

primarily attributed to its exceptional ability to per- 386

ceive visual information across different domains 387

and the world knowledge in the language model, 388

particularly in the challenging game domain. 389

Impact of Finetuning with EIE. The results of 390

the fine-tuning track are illustrated in Figure 5. Our 391

5



Model Size
Traffic Domestic Game Average

P C A P C A P C A P C A

MiniGPT4 (Zhu et al., 2023a)† 7B 0.45 0.37 0.48 0.81 0.38 0.38 0.38 0.14 0.27 0.55 0.30 0.38
LLaVA1.5 (Liu et al., 2023a)† 7B 0.44 0.44 0.53 0.92 0.48 0.44 0.8 0.35 0.39 0.72 0.42 0.45
Qwen-VL-Chat (Bai et al., 2023)† 7B 0.53 0.36 0.62 0.77 0.41 0.44 0.39 0.18 0.25 0.56 0.33 0.44
MiniGPT4 (Zhu et al., 2023a)† 13B 0.41 0.37 0.5 0.85 0.35 0.33 0.41 0.22 0.33 0.56 0.31 0.39
InstructBLIP (Dai et al., 2023b)† 13B 0.36 0.41 0.42 0.90 0.44 0.39 0.33 0.25 0.24 0.53 0.37 0.35
MMICL (Zhao et al., 2023)† 13B 0.31 0.49 0.47 0.81 0.3 0.33 0.41 0.18 0.27 0.51 0.32 0.36
SPHINX-v1 (Lin et al., 2023)† 13B 0.46 0.48 0.61 0.95 0.55 0.31 0.71 0.35 0.43 0.71 0.46 0.45
LLaVA1.5 (Liu et al., 2023a)† 13B 0.49 0.56 0.61 0.95 0.62 0.46 0.74 0.45 0.51 0.73 0.54 0.53
GPT-4V (OpenAI, 2023)‡ UNK 0.73 0.72 0.74 0.96 0.66 0.62 0.88 0.72 0.69 0.86 0.7 0.68

Table 1: Zero Shot results on the test set of PCA-Bench. Highest scores in each line are bold while second highest
scores are underlined. Models with † are fully open-source. Models with ‡ only provide API to access. P, C, and A
represent Perception, Cognition, and Action Scores, respectively.

Figure 5: Performance comparsion between models’ zero-shot results and models’ finetuned results with the data
generated by Embodied-Instruct-Evolution (EIE) method. EIE improves the performance on all domains for both
LLaVA1.5-7b and Qwen-VL-Chat models. Results of LLavA1.5-13B and MMICL are in Figure 14 from appendix.

EIE method has been found to significantly en-392

hance the general decision-making abilities of vari-393

ous models, encompassing perception, cognition,394

and action. Notably, it has led to an average in-395

crease of 0.24 and 0.19 in action scores for the396

LLaVA1.5-7b and Qwen-VL-Chat models, respec-397

tively. Results for LLaVA1.5-13b and MMICL are398

illustrated in Figure 14, also showing improved per-399

formance when trained with EIE. In some cases,400

these sub-scores have matched or even surpassed401

those of the GPT4-V model, thereby demonstrating402

the effectiveness of the EIE method.403

Comparison Between End-to-End and Modality404

Conversion Method In the zero-shot modality405

conversion track, we conduct an analysis and com-406

parison of the outputs generated by the End2End407

method with GPT4-V, as well as the HOLMES408

method with GPT4 and ChatGPT-3.5. The results409

are listed in Table 2.410

The results show that the HOLMES system411

based on GPT4 achieves 0.71 Action Score, which412

is on par with GPT4-V’s performance (0.74). This413

indicates that, overall, the HOLMES system is able414

to accurately understand the task goal, split the415

larger goal into multiple smaller steps, and cor- 416

rectly invoke the relevant APIs to accomplish each 417

step. Specifically, the HOLMES system based on 418

GPT4 can recognize the key concepts in a task, and 419

perceive the state and environment of these con- 420

cepts through the results returned by APIs. Con- 421

sequently, the system achieves an average Percep- 422

tion Score of 0.88, which even outperforms GPT4- 423

V’s 0.84. However, compared End2End methods, 424

HOLMES relies on multi-step reasoning for the 425

final decision, in which reasoning errors tend to 426

accumulate, and thus achieves a lower Cognition 427

Score in both Domestic and Game domains. 428

On the other hand we also find that the End2End 429

method effectively mitigates information loss dur- 430

ing the modality conversion process. As illustrated 431

in Figure 6, an image depicts a road with several 432

nearby cars. GPT4-V is capable of discerning that 433

the street is not crowded, thereby suggesting that 434

the driver can continue driving. 435

Conversely, GPT4, while aware of the number 436

of cars, lacks information about their spatial rela- 437

tion, leading it to recommend slowing down. This 438

suggests that the End2End method is superior in 439

perceiving certain visual features that are not cap- 440
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What is the best action to take when you are driving? 
Actions: A. Slow down B. Keep driving C. Stop the 
car D. Change to other lane

Autonomous Driving

GPT4-V

The traffic appears to be moving smoothly without 
any apparent obstructions. The traffic signals are not 
visible in the image, so there's no indication that you 
need to slow down or stop.
The best action to take when driving in the scenario 
pictured is: B. Keep driving

GPT4

Based on the object detection results, there are 14 
cars in the image. It's better to be cautious as the road 
might be congested with cars. The best action to take 
is: A. Slow down.

……

Figure 6: A Comparison between GPT4-V and GPT4-
HOLMES

Figure 7: Action scores changes when training without
reasoning process for different models. The benefit of
CoT finetuning is not consistent among models.

tured by the APIs. Conversely, some specialized441

APIs, such as traffic sign detection, outperform442

GPT4-V in tasks like traffic sign detection, as they443

are specifically trained for this task. This could en-444

able the HOLMES method to gather more accurate445

information than the End2End model.446

4 Discussion447

4.1 Does Chain-of-Thought Finetuning448

Improve Cross-modal Reasoning?449

Unlike vanilla finetuning, which solely focuses on450

delivering direct answers, Chain-of-Thought Fine-451

tuning necessitates the model to first articulate its452

reasoning before presenting the answer. This ap- 453

proach has been demonstrated to be a highly effec- 454

tive instruction tuning paradigm for LLMs (Chung 455

et al., 2022; Kim et al., 2023). We have incorpo- 456

rated this methodology in our previous finetuning 457

experiments. 458

To further evaluate its impact, we conducted an 459

ablation study where the reasoning process was 460

omitted from the target output during the train- 461

ing of MLLMs. We then assessed the variations 462

in action scores on the test set. As depicted in 463

Figure 7, to our surprise, the figures suggest that 464

Chain-of-Thought finetuning exerts a relatively mi- 465

nor influence when compared to conventional label 466

finetuning. We have noticed that similar phenom- 467

ena has been identified by Zhang et al. (2023) that 468

standard CoT finetuning does not work for MLLMs 469

in their explorations. 470

We think there are two potential explanations: 1) 471

Task Variation: Contrary to mathematics datasets 472

like GSM8K, the current task doesn’t require multi- 473

step complex reasoning to arrive at the final answer. 474

2) Modality Discrepancy: The CoT capability, in- 475

herent in LLMs, is only moderately adjusted for 476

visual input for current open-source MLLMs. This 477

adaptation process could potentially impair the rea- 478

soning ability. We defer to future research how to 479

effectively harness the CoT capabilities of LLMs 480

to enhance embodied decision-making processes. 481

4.2 Alignment between Agent Decisions and 482

Human Values 483

We have observed instances where the decisions 484

made by the agent contradict human values. For in- 485

stance, consider the scenario depicted in Figure 10. 486

The image illustrates a crosswalk devoid of pedes- 487

trians. The appropriate response in this situation 488

would be to slow down, as caution is paramount 489

when approaching a crosswalk, regardless of the 490

presence or absence of pedestrians. However, upon 491

processing the information that the crosswalk is 492

unoccupied, ChatGPT suggests that maintaining 493

the current speed is the optimal action, arguing that 494

the absence of pedestrians eliminates the need to 495

slow down. The rationale provided by ChatGPT is 496

logical, yet it does not align with human values. 497

5 Related Work 498

Embodied Decision Making. Research on em- 499

bodied decision-making is an emerging trend for 500

artificial intelligent agents to interact with their sur- 501
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Method Model
Traffic Domestic Game Average

P C A P C A P C A P C A

End-to-End GPT-4V 0.75 0.73 0.78 0.81 0.69 0.67 0.95 0.79 0.77 0.84 0.74 0.74

HOLMES
ChatGPT 0.75 0.68 0.66 0.88 0.52 0.50 0.78 0.40 0.36 0.80 0.53 0.51

GPT4 0.87 0.82 0.82 0.85 0.61 0.56 0.91 0.77 0.74 0.88 0.73 0.71

Table 2: Comparison between End-to-End (MLLM) and HOLMES (LLM+API) methods on a subset of PCA-Bench
with API annotation.

roundings and accomplish numerous tasks. This502

necessitates proficiency in vision perception, world503

knowledge, and commonsense reasoning, areas504

where a large language model can provide some505

level of expertise. We group prior work on em-506

bodied decision-making with LLM into two main507

trends. The first trend is to transform multimodal508

information, including object and scenery identi-509

fication, the current states of AI agents, and the510

feedback from the environments, to texts. Text-511

based LLMs can then reason over the textual clues512

to determine the next action towards completing a513

designated task (Huang et al., 2022a; Li et al., 2022;514

Huang et al., 2022b; Chen et al., 2023). This line of515

research divides the entire decision-making process516

into two phases: (1) information seeking, usually517

involving MLLMs to verbalize the current status of518

AI agents in the vision-based environment with nat-519

ural language; (2) reasoning and planning with text-520

based LLMs to decide what the AI agent should do521

in the next step with textual clues. The other line of522

research uses multimodal LLMs directly for end-523

to-end decision making, such as PALM-E (Driess524

et al., 2023b). The end-to-end decision making525

poses greater challenges to multimodal LLMs as526

it requires the combination of different function-527

alities including perception, cognition, and action,528

whereas decision making without explicit multi-529

ple steps mitigates the error propagation between530

information seeking and reasoning.531

LLM-Powered Agents. LLMs pre-trained on532

large-scale multimodal (including text, image,533

video, etc.) corpus demonstrate impressive emer-534

gent abilities and immense popularity (Brown et al.,535

2020; Wei et al., 2022), and have seen tremendous536

success across various domains covering various537

NLP and CV tasks (Radford et al., 2019; Chowd-538

hery et al., 2022; Touvron et al., 2023; Alayrac539

et al., 2022; Zhu et al., 2023a; Li et al., 2023b).540

Consequently, using LLMs to empower the AI541

agents (Xi et al., 2023b; Liu et al., 2023b; Park542

et al., 2023; Wang et al., 2023e) becomes more 543

and more promising. Specifically, we can employ 544

LLMs to enhance the decision making ability of 545

the agents (Nakano et al., 2022; Yao et al., 2022; Li 546

et al., 2023d; Song et al., 2023; Li et al., 2023a), ex- 547

panding their perception and action space through 548

strategies like tool utilization (Schick et al., 2023; 549

Qin et al., 2023; Lu et al., 2023). Although LLM- 550

based agents demonstrate reasoning and planning 551

abilities through techniques like Chain of Thought 552

or problem decomposition (Wei et al., 2023; Yao 553

et al., 2023; Kojima et al., 2022), they inherently 554

lack visual perception, and are limited to the dis- 555

crete textual content. Therefore, integrating multi- 556

modal information can offer agents a broader con- 557

text and a more precise understanding (Driess et al., 558

2023a), enhancing their environmental perception. 559

However, no evaluation protocol or benchmark is 560

currently available to evaluate decision making 561

within the multimodal context. 562

6 Conclusion 563

In this paper, we introduce PCA-Bench, a multi- 564

modal benchmark designed to assess the embodied 565

decision-making capabilities of Multimodal Large 566

Language Models (MLLMs). This benchmark fea- 567

tures PCA-EVAL, a novel fine-grained automatic 568

evaluation tool that diagnoses decision-making pro- 569

cesses from three critical perspectives: perception, 570

cognition, and action. To enhance the decision 571

making ability from data perspective, we propose 572

Embodied Instruction Evolution method to auto- 573

matically synthesize instruction tuning examples 574

in various multi-modal embodied environments, 575

which has been proved effective in our main exper- 576

iments. We believe that powerful MLLMs pave a 577

new and promising way toward decision making in 578

embodied environments and we hope PCA-Bench 579

could be serve as a good benchmark in bridging 580

MLLMs and embodied artificial intelligence. 581
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7 Limitation582

The current scope of PCA-Bench is confined to583

merely three domains in static environments. One584

of our future work aims to broaden this scope to585

encompass more domains and dynamic embodied586

environments where MLLMs could keep getting587

feedback. We do not apply different reasoning en-588

hancement method like Reflection in the decision589

making process of MLLMs. We just use the sim-590

plest prompting method and leave the exploration591

of better cross-modal Chain-of-Thought method592

for future studies.593
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A Examples of PCA-Bench914

A.1 Data Distribution915

Figure 8: Domain and required ability distribution of
PCA-Bench.

The PCA-Bench’s data distribution across var-916

ious domains is outlined in Figure 8. For the Au-917

tonomous Driving domain, instances are grouped918

by their respective task types. In the Domestic919

Robot domain, instances are grouped by their loca-920

tions. In the Open-World Game domain, instances921

are grouped by the tasks they aim to accomplish.922

B Human Annotation Pipelines923

The annotation process consists of two stages: (1)924

Dataset Annotation, and (2) Dataset Refinement.925

During the initial stage, three annotators are as-926

signed to each domain, adhering strictly to the re-927

spective annotation guidelines. They first pinpoint928

the source images from each domain that are in-929

formative and meaningful so that they can write930

questions for each image. All annotators are from931

the author list of this paper. The annotators have932

the responsibility to ensure every question has only933

one correct answer and accurate rationales. In the934

subsequent stage, annotators are instructed to scru-935

tinize the output actions and rationales presented by936

ChatGPT and check the annotations. This process937

aims to address the challenge of multiple correct938

answers, as ChatGPT can furnish comprehensive939

explanations for its actions. These explanations940

assist annotators in assessing the acceptability of941

ChatGPT’s response, particularly when it deviates942

from the established ground truth answer. This en-943

ables annotators to refine annotations to ensure the944

presence of a single correct answer.945

B.1 PCA-EVAL Examples 946

We list three examples of each domain from PCA- 947

EVAL, as shown in Figure 11, 12, and 13. 948

C Zero Shot Modality Conversion: 949

HOLMES 950

To optimize the evaluation process of HOLMES 951

method, we pre-execute all relevant APIs for each 952

instance within a selected subset of 300 instances 953

from the PCA-Bench test set, recording the results 954

for individual instances. This method enables im- 955

mediate access to specific API results, eliminating 956

the need to rerun the model for each evaluation 957

instance. 958

Traffic Domain. Below is the API description 959

for the traffic domain. 960

1 # API Description for Traffic Domain: 961
2 def detect_traffic_sign (): 962
3 """ 963
4 Detects traffic signs in the image. 964
5 :return: list of detected traffic 965

signs and coordinates , e.g. ['stop 966
','max speed limit '] 967

6 """ 968
7 pass 969
8 970
9 def object_detection (): 971

10 """ 972
11 Detects objects in the image. 973
12 :return: dict of detected objects 974

and number of the objects , e.g. {' 975
car ':10, 'person ':1} 976

13 """ 977
14 pass 978
15 979
16 def ocr(): 980
17 """ 981
18 Performs OCR on the image. 982
19 :return: list of detected text , e.g. 983

['Changjiang road ', 'Right lane 984
closure '] 985

20 """ 986
21 pass 987
22 988
23 def image_caption (): 989
24 """ 990
25 Generates a caption for the image. 991
26 :return: caption , e.g. 'A red car 992

driving down the street ' 993
27 """ 994
28 pass 995
29 996
30 def weather_detection (): 997
31 """ 998
32 Detect current weather. 999
33 :return: weather , e.g. 'rainy ' or ' 1000

clear ' 1001
34 """ 1002
35 pass 1003

• detect_traffic_sign(): The detection of road 1004

traffic signs model utilize YOLO (Redmon and 1005
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What is the best action to take when you are 
driving on the highway? 
Actions: A. Slow down B. Keep driving C. Stop 
the car D. Change to other lane

I will first call the detect_traffic_sign() API to 
check if there are any traffic signs in the 
image that could inform the best action.

detect_traffic_sign() = None

Since there are no traffic signs detected, I will now 
call the object_detection() API to check for any 
objects in the image that could inform the best action.

object_detection() = None

Since there are no objects detected, I will now call 
the caption() API to get a general description of the 
image, which might help in determining the best 
action.

caption() = The image features a long, empty 
highway.

Based on the provided caption, it seems that the 
highway is not congested. Therefore, the best 
action to take when driving on the highway in 
this situation would be: B. Keep driving

Autonomous Driving

You are a powerful game assistant in Minecraft. 
Your goal is to Harvest wool. Based on current 
condition, what is the best action to do next? 
Actions:  A. Find sheep B. Shear sheep C. Craft 
shears D. Find iron ore E. Craft iron ingot

In order to answer the question, I would first need to 
check if I already have shears in the inventory. So I 
would call list_inventory_information().

list_inventory_information() = [("shears", 1)]

Given that the inventory does have shears but no 
nearby sheep are detected, the best action to do next 
would be: A. Find Sheep

Open-World Game

Since the inventory contains shears, then the next 
action would be dependent on the presence of sheep. 
I would then call `list_nearby_mobs()` to check if 
there are sheep nearby 

list_nearby_mobs() = None

You are a domestic robot that helps me do 
housework. Your goal is to heat a cup of milk. What 
is the best action to take next? 
Actions: A. Find a microwave. B. Put a cup of milk 
into the microwave. C. Find milk. D. Pick up a cup 
of milk.

I will first call the object_detection_alfred() API to 
check for any relevant objects in the current view.

object_detection_alfred() = ['StoveTopDoor1',
'Lettuce', 'StoveBurner', 'SaltShaker', 'CounterTop',
'Spatula', 'Pot', 'StoveKnob', 'StoveBase1', 'Cabinet',
'DishSponge', 'Microwave', 'Pan', 'PepperShaker',
'Ladle', 'Floor', 'SoapBottle', 'Dishwasher', 'Sink',
'Ceiling', 'Bread', 'Mug']

Since I already have a cup of milk in my inventory, 
the best action to take next is:
B. Put a cup of milk into the microwave.

Domestic Robot

Now that I have detected a microwave and a mug in 
the current view, I will call list_inventory_alfred() to 
check if I already have milk in my inventory.

list_items_in_inventory_alfred() = [“cup of milk”]

Image User LLM Model/API Hub

Figure 9: Three examples of HOLMES solving questions from different domains of PCA-Bench.

Farhadi, 2018) which trained on the Tsinghua-1006

Tencent 100K dataset (Zhu et al., 2016). TT100K1007

comprises 100,000 images encompassing 30,0001008

instances of traffic signs. The end-to-end YOLO1009

enables simultaneous detection and classification1010

of traffic signs.1011

• object_detection(): Objects demanding atten-1012

tion during vehicle operation primarily encompass1013

cars, pedestrians, and bicycles. A surfeit of vehi-1014

cles can lead to traffic congestion, while the pres-1015

ence of pedestrians or bicycles ahead necessitates1016

cars to decelerate and proceed cautiously. Hence,1017

the object_detection() API predominantly identi-1018

fies three key object categories: cars, pedestrians,1019

and bicycles. We utilize PMOP (Ren et al., 2023),1020

a model trained on vision-language models through1021

the prompt pre-training method, which enables the1022

detection and counting of the three mentioned ob-1023

jectives by modifying specific class names.1024

• ocr(): We employ PaddleOCR1 to extract tex-1025

tual information from images, providing crucial1026

road data for real-time navigation.1027

• image_caption(): To initially streamline the1028

road information within the image, we employ the1029

BLIP2-flan-t5-xl to generate an initial caption for1030

the picture. This caption, derived from basic im-1031

1https://github.com/PaddlePaddle/PaddleOCR/
tree/release/2.7

age data, is then utilized as input for the model to 1032

facilitate decision-making. 1033

• weather_detection(): Weather detection lever- 1034

ages a pre-trained ResNet50 model2, derived from 1035

a dataset of more than 70,000 weather records. This 1036

model extracts weather information from provided 1037

images to inform decision-making. 1038

Domestic Robot Domain. Below is the API de- 1039

scription for the Domestic Robot domain. 1040

1 #API Description for Domestic Robot 1041
Domain 1042

2 def object\_detection (): 1043
3 """ 1044
4 Detects objects in current view , 1045

which you don't need do find. 1046
5 :return: list of detected objects , e 1047

.g. ['chair ','table '] 1048
6 """ 1049
7 pass 1050
8 1051
9 def list_items_in_hands (): 1052

10 """ 1053
11 Lists items in your hand , which you 1054

don't need to pick up 1055
12 :return: list of items in hand , e.g. 1056

['coffee cup ','milk '] 1057
13 """ 1058
14 pass 1059

Game Domain. Below is the API description for 1060

the Game domain (Minedojo). 1061

2https://github.com/mengxianglong123/
weather-recognition
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1 #API Description for Game Domain1062
2 def list_nearby_mobs_in_minecraft ():1063
3 """1064
4 Lists nearby mobs in Minecraft.1065
5 :return: list of nearby mobs , e.g.1066

['creeper ', 'pig ']1067
6 """1068
7 pass1069
81070
9 def list_inventory_information ():1071

10 """1072
11 Lists inventory information of the1073

player in Minecraft.1074
12 :return: list of inventory1075

information with number , e.g. [('1076
diamond ', 64), ('iron ', 32)]1077

13 """1078
14 pass1079

Note that within the Domestic Robot Domain1080

and Game Domain, APIs can be directly accessed1081

within the virtual environment, allowing for the per-1082

ception of the surrounding objects and the current1083

picture context.1084

What is the best action to take when you are driving? 
Actions: A. Slow down B. Keep driving C. Stop the 
car D. Change to other lane

Autonomous Driving

ChatGPT

Based on the provided caption and the result of object 
detection, the image depicts an empty crosswalk with 
no humans or cars. Therefore, the best action is B: 
Keep driving, as it's not necessary to slow down.

object_detection() = {‘car’:0,’human’:0, ‘bicycle’:0}

caption() = An empty crosswalk.

……

Figure 10: An case showing the value mis-alignment
between of agent and human’s decision.

D Automatic Evaluation 1085

We utilize the template as shown in Table 3. 1086

E Training Details 1087

Table 4 shows the specific parameters used for fine- 1088

tuning in different models. The PCA results on 1089

the three domains of PCA bench before and after 1090

fine-tuning different models are shown in Figure 1091

14. 1092
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Based on current image, what is the best 
action to take when you are driving on road?

(B) Drive close to the left side

(A) Drive close to the right side
(B) Drive close to the left side (C) Call 911

Based on the image, The right side of the road 
is closed, so you should drive close to the left.

right lane closure

image：

Quetsion：
Based on current image, What should you do 
if you want to drive forward safely?
Action candidates：

Answer：
(A) Slow down

(A) Slow down (B) Keep driving (C) Call the 
police

Reason：

Key Concept：

The current heavy snowfall is causing 
slippery roads. So you should slow down.

Snowy weather

image：

Quetsion：

Action candidates：

Answer：

Reason：

Key Concept：

image：

Quetsion：
You are at 20km/h now. What should you do 
if you want to overtake the car in front of you?
Action candidates：

Answer：
(B) You can't overtake now

(A) Speed up to 50km/h (B) You can't 
overtake now (C) Turn Left

Reason：

Key Concept：

You did not exceed the speed limit. But road 
is congested. So you can't overtake now.

congested road

Figure 11: Three examples of PCA-EVAL in the autonomous driving domain.

You are in a room, the goal is to water the 
plant. What is the best action to take next?

(C) Use sprinkler water the plant

(A) Find a sprinkler (B) Pick up the sprinkler 
(C) Use sprinkler water the plant

There is a house plant in front of us. We have 
a sprinkler in hands. Therefore, our next step 
is to water the plant using the sprinkler.

plant, sprinkler

image：

Quetsion：
You are in a room, the goal is to wash the cup. 
What is the best action to take next?
Action candidates：

Answer：
(A) Find the cup

(A) Find the cup (B) Find the dish sponge 
(C) Find a sink (D) Open the faucet

Reason：

Key Concept：

There is no cup in front of us. Therefore, our 
next step is to find a sink. 

cup, dish sponge, sink

image：

Quetsion：

Action candidates：

Answer：

Reason：

Key Concept：

image：

Quetsion：
You are in a room, the goal is to cook rice. 
What is the best action to take next? 
Action candidates：

Answer：
(A) Go to the kitchen

(A) Go to the kitchen (B) Pick up rice 
(C) Pick up pot (D) Boil water

Reason：

Key Concept：

We can infer from the objects around us that 
we are in the living room so our next step is to 
go to the kitchen

rice, kitchen, living room

Figure 12: Three examples of PCA-EVAL in the domestic robot domain.

(C) craft iron sword 

(A) find cow (B) kill cow (C) craft iron sword 
(D) find iron ore (E) craft iron ingot

You need a cow and kill it with an iron sword for 
beef. You're near a cow, but lack an iron sword. 
So, craft one using two iron ingots and a stick. 
You have two iron ingots, and two sticks so you 
can craft an iron sword.

Cow nearby, No iron sword, 2 sticks,2 iron ingots

image：

Quetsion：

Action candidates：

Answer：

Reason：

Key Concept：

To harvest beef using an iron sword, based on 
the image, which is your next action? 

(A) find planks 

(A) find planks (B) craft crafting table (C) place 
crafting table

To place a crafting table in front of you, your 
inventory must have a crafting table. To get a 
crafting table in your inventory, you need to 
make one. You need 4 planks to make a crafting 
table. Since you have 3, find one more first.

No crafting table, 3 planks

image：

Quetsion：

Action candidates：

Answer：

Reason：

Key Concept：

To place a crafting table in front of you, based on 
the image, which is your next action? 

(B) milk cow

(A) find cow (B) milk cow (C) craft bucket (D) 
find iron ore (E) craft iron ingot

To get milk, you need to find a cow, and milk it 
with a bucket. There is a cow nearby, and you 
have a bucket, so you can milk the cow.

Cow nearby, Have bucket

image：

Quetsion：

Action candidates：

Answer：

Reason：

Key Concept：

To harvest milk, which is your next action? 

Figure 13: Three examples of PCA-EVAL in the open-world game domain.
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[Question]: {question}
[Action Choices]: {actions}
[Agent Answer]: {model_output}
[Correct Action]: {true_action}
[Key Concepts]: {key_concept}
[Reference Reasoning Process]: {reason}
[System]
We would like you to access the agent’s performance in the multimodal reasoning task about
domain. In this task, the agent is given an image, a [Question], and several candidate [Action
Choices], and is asked to give an [Agent Answer] for the [Question]. The [Agent Answer]
encapsulates the agent’s perception of the image’s [Key Concepts], the agent’s cognition reasoning
process and the final selected action.
We request you to give three types of scores for the agent’s [Agent Answer] in comparison to the
given [Key Concepts], [Reference Reasoning Process] and [Correct Action]:
1. action score: If the selected action in the [Agent Answer] matches that of the [Correct Action],
the action score is 1; otherwise, it is 0.
2. perception score: This score evaluates the model’s capability to perceive and interpret observa-
tions. It is contingent on whether the [Agent Answer] includes any of the [Key Concepts] of the
instance. If it accurately describes any one of the [Key Concepts], the score is 1; otherwise, it is 0.
3. cognition score: This score gauges the model’s ability to reason, comprehend, and make
informed decisions based on perceived input data and world knowledge. If the reasoning process
in the [Agent Answer] aligns with the [Reference Reasoning Process], the score is 1; otherwise, it
is 0.
Please note that there are only scores of 0 and 1.
You should carefully compare the [Agent Answer] with the [Correct Action], [Key Concepts] and
[Reference Reasoning Process] to give your assessment.
You need first to give your assessment evidence and then the scores.
Your output MUST contain 6 lines with the following format:
action assessment evidence: (assessment evidence here)
action score: (score here)
perception assessment evidence: (assessment evidence here)
perception score: (score here)
cognition assessment evidence: (assessment evidence here)
cognition score: (score here)

Table 3: The template of querying GPT-4.

Figure 14: Performance comparsion between models’ zero-shot results and models’ finetuned results with the data
generated by Embodied-Instruct-Evolution (EIE) method. EIE improves the performance on all domains for both
LLaVA1.5-13b and MMICL models.
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Model Parameter Value

Learning Rate 2e-4
Use Lora Finetuning? Yes

Lora Rank 8
Lora Alpha 32

Qwen-VL-Chat/LLaVA1.5-7/13b Global Batchsize 20
Weight Decay 0
Train Epochs 5

Lr Scheduler Type Cosine
Warmup Ratio 0.03

Learning Rate 5e-4
Use Lora Finetuning? No

Global Batchsize 20
MMICL Weight Decay 5e-4

Train Epochs 5
Lr Scheduler Type Linear

Warmup Ratio 0.2

Table 4: Training details for different models with EIE.
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