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Abstract

Recently, agents based on Multimodal Large
Language Models (MLLMs) have emerged as
a promising area of research. However, ef-
fective benchmarks for MLLM-based agents
are absent. To this end, in this paper, we
present PCA-Bench, an end-to-end embod-
ied decision-making benchmark, comprising
1) PCA-Eval, a novel automatic evaluation
metric inspired by the perception-action loop
in cognitive science, assessing the decision-
making ability of MLLMs from the perspec-
tives of Perception, Cognition, and Action. 2)
Embodied-Instruction-Evolution (EIE), an au-
tomatic framework for synthesizing instruction
tuning examples in various multi-modal embod-
ied environments, including autonomous driv-
ing, domestic robotics, and open-world gaming.
Our experiments on PCA-Bench demonstrate
that visual perception and reasoning with world
knowledge are two core abilities for an agent
to make correct actions. Advanced MLLMs
like GPT-4 Vision exhibit superior performance
than their open-source counterpart. Addition-
ally, our EIE method substantially enhances
open-source MLLMs’ performance, at times
even surpassing GPT-4 Vision in certain sub-
scores. We believe PCA-Bench serves as an
effective bridge between MLLMs and their ap-
plication in embodied agents. The benchmark
will be made open-source.

1 Introduction

Recently, we have witnessed a remarkable surge
in the development of Large Language Model
(LLM) based agents (Xi et al., 2023a), unlock-
ing a plethora of downstream applications in in-
teractive environments such as autonomous driv-
ing (Hu et al., 2023; Wayve, 2023), domestic assis-
tance (Huang et al., 2022b), and game playing (Fan
et al., 2022; Wang et al., 2023a; Zhu et al., 2023b).

Nevertheless, LLMs encounter a modality gap
when tackling embodied tasks, since their training
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indicating it's likely during the day with good visibility. The road itself
is not cleared of snow, showing only tire tracks indicating that some
vehicles have passed before. The road sign warns for icy or snowy
conditions.

Given these factors, the most appropriate action to take if you want to ‘1’
drive forward safely would be:

< Cognition

Making Decision

A. Slow down -« Action

Figure 1: Example of End-to-End embodied decision
making with multimodal Large Langauge Models in the
Perception-Cognition-Action Chain.

is exclusively based on textual data, in contrast to
the multimodal observations that arise from embod-
ied environments. A prevalent approach is trans-
forming these multimodal observations into text via
various APIs (Wu et al., 2023; Yang et al., 2023).
However, such a non-end-to-end process can be
complex and may lose information. Therefore, we
are interested in whether current state-of-the-art
MLLMs (Zhu et al., 2023a; Dai et al., 2023a; Liu
et al., 2023a; Li et al., 2023c; Zhao et al., 2023) are
capable of performing various embodied decision-
making tasks in an end-to-end manner. However,
at present, there are no established benchmarks
that connect academically influential domains in
embodied decision-making with MLLMs.

To address the challenges of the insufficient
benchmarking problem, we introduce PCA-Bench,
an end-to-end embodied decision-making bench-



mark for MLLM-based agents. It consists of PCA-
Eval, a novel automatic evaluation metric, and
Embodied-Instruction-Evolution (EIE), an auto-
matic framework for synthesizing instruction tun-
ing examples in various multi-modal embodied en-
vironments, including autonomous driving, domes-
tic robotics, and open-world gaming.

PCA-Eval is designed to evaluate the embod-
ied decision-making capabilities of agents from
three key perspectives: Perception, Cognition, and
Action. This is inspired by the Perception-Action
loop (Fuster, 2004) in Cognitive Science, a funda-
mental concept that describes how organisms pro-
cess sensory information (Perception) to interact
with their environment through actions, offering a
comprehensive framework for assessment. Figure 1
shows how MLLMs are prompted to make deci-
sions in the PCA chain. Adopting this approach
offers two major advantages: (1) It enables a more
comprehensive evaluation of the decision-making
process, with each decision step being assessed in
terms of perception, cognition, and action. (2) The
evaluation can be conducted outside complex sim-
ulation environments, simplifying the process of
evaluating different agents.

From a data-centric perspective, using LLM to
synthesize training examples is an increasingly pop-
ular method for enhancing the capabilities of LLM
itself without the need for additional human input.
We aim to expand this approach to enhance the
embodied decision-making skills of MLLMs. Un-
like conventional text-based instruction generation
methods like Self-Instruct (Wang et al., 2023d),
generating instructions for embodied environments
poses distinct challenges. It demands not just the
creation of textual instructions but also the gener-
ation of corresponding accurate observations. To
overcome this, we propose Embodied Instruction
Evolution (EIE), which integrates external envi-
ronments with LLMs, thereby extending the LLM’s
data synthesizing ability to various embodied envi-
ronments.

We conducted extensive experiments and analy-
sis on PCA-Bench. Our findings are summarized
as:

1. Visual perception and reasoning with world
knowledge are two core abilities for an agent to
make correct decisions. GPT4-Vision shows strong
zero-shot cross-modal reasoning ability for embod-
ied decision-making tasks, significantly surpassing
open-source counterparts in all sub-scores.

2. EIE could significantly enhance the perfor-

Autonomous Driving
Image: Question: Based on current image, what is the best action to
take when you are driving on the highway?

Action candidates: ["Slow down", "Keep driving", "Stop the
car", "Change to other lane"]

Answer: Keep driving

Reason: There is no other car or obstacle on the highway so it is
safe to keep driving.

Key Concept: Clear Road

Domestic Robot
Image:
-

Question: Fill the bathtub with water.

Action candidates: ["Go to the bathroom", "Find the bathtub",
"Get in the tub", "Switch on the bathtub faucet"]

Answer: switch on the bathtub faucet

Reason: You are already in the bathroom and there is bathtub in
front of you. To fill the bathtub with water, you need to switch
on the faucet of the bathtub.

Key Concept: Bathroom, Bathtub

Open World Game

Image: Question: Craft a glass bottle.

Action candidates: ["Craft glass bottle", "Find wood", "Craft
crafting table"]

Answer: Find wood

Reason: To craft a glass bottle, you need 3 glass blocks. You
have enough glass to make the bottle, but you don't have a
crafting table to craft it. So you need to find wood to craft one.
Key Concept: Have glass, No crafting table

Figure 2: Instances of PCA-Bench in 3 domains.

mance of open-source MLLMSs such as Llava-1.5
and Qwen-VL-Chat (surpassing GPT-4V at some
scores), validating the effectiveness of the method.

3. GPT4-Vision could surpass Tool-Using LLM
agents in a PCA-Bench subset with diverse API
return annotations. We analyze each method’s
strengths and weaknesses and suggest future di-
rections, such as improving cross-modal Chain-
of-Thought reasoning ability and aligning agents’
decisions with human values.

2 PCA-Bench

2.1 Problem Definition

Embodied Decision-making problems are com-
monly formalized with a partially observable
Markov decision process (POMDP).

M= (5, AT, R,Q,0,7) ey

For an End-to-End embodied decision making
model F, we care about given the multi-modal
observation o € O, the goal description g, a subset
of candidates actions Ac C A, whether the agent
could make correct action a € A and give proper
reasoning process 7.

F(g,0,Ac) = (a,7) 2)

As shown in Figure 2, each instance in the bench-
mark is a 6-element tuple: <image, question, ac-
tion candidates, answer, reason, key concept>.
The image is collected from various embodied envi-
ronments, like transportation scenes, housekeeper
environments, and Minecraft. Questions, action
candidates, and answers are derived from real tasks



within the corresponding environment. The reason-
ing explains why the answer is the best choice for
the current image, while the key concept highlights
the most question-related aspect in the image.

Unlike traditional visual question-answering
datasets that emphasize visual perception (e.g.,
VQA (Goyal et al., 2017)) or visual reasoning (e.g.,
NLVR (Suhr et al., 2017)),the most distinctive char-
acteristic of PCA-Bench is its grounding in em-
bodied actions. Compared to embodied simula-
tion environments like ALFRED (Shridhar et al.,
2020) and Minedojo (Fan et al., 2022), PCA-Bench
proves to be more effective in evaluating various
LLM-based agents. This is primarily due to the
provision of high-level actions that can be readily
implemented or programmed using the low-level
actions in the corresponding domains. The high-
level actions are more comprehensible for LLMs
than the direct low-level actions like robotic move-
ments in the simulation environments because (1)
the high-level actions are in the form of natural lan-
guages, making it easier for LLMs to understand
the meaning and connect with world knowledge.
(2) LLMs are not grounded with low-level actions
during the pretraining or finetuning stage, making
it hard for LLMs to understand the consequences
of executing an action.

To answer a question in PCA-Bench, the agent
must possess the following abilities: (1) Perception:
accurately identify the concept related to the ques-
tion within the image; (2) Cognition: engage in
reasoning based on image perception and worldly
knowledge; (3) Action: comprehend the potential
actions, selecting the one that best aligns with the
outcome of the reasoning process. A deficiency in
any of these abilities would possibly result in an
incorrect answer, posing a significant challenge to
the more complex capabilities of embodied agents.

2.2 PCA-Eval

For each instance, we prompt the agent to deliver
an answer comprising a reasoning process r, and
a final action a, represented as < 7, a >. By com-
paring the model prediction with the ground truth
answer, we can obtain a fine-grained diagnosis of
the decision making process as following:

Perception Score (P-Score) measures the model’s
accuracy in perceiving the observation. It is com-
puted based on whether the agent’s reasoning pro-
cess 7 includes the key concept of the instance. A
score of 1 is assigned if at least one question-related
key concept is described by the agent; otherwise,

Topology Graph: Harvest beef using iron sword
‘ Collect 2 Iron Ore ‘J ‘ Collect 2 Wood q

‘ Craft 2 Iron Ingot = ‘ ‘ Craft 1 Stick / ‘

‘ Craft an Iron Sword}f‘ ‘ Finda Cow G ‘

Figure 3: Illustration of task topology graph. Events in
green represent the leaf nodes of the graph.

it is 0. For the top example in Figure 2, the agent
should output “clear road” or “no car visible” or
other semantically equivalent concepts in its de-
scription of the image to get the perception score.

Cognition Score (C-Score) assesses the model’s
ability to reason, comprehend, and make informed
decisions based on the perceived input data and
world knowledge. The score is 1 if the reasoning
process is correct, otherwise the score is 0. For
the instance in Figure 2, the agent should link the
“clear road” to the action “keep driving” based on
transportation commonsense to get the score.

Action Score (A-Score) measures the model’s abil-
ity to generate appropriate and effective responses
or actions based on the perceived input data and
the cognitive understanding of the context. The
score is assigned a value of 1 if the agent selects
the correct action; otherwise, the score is set to 0.

2.3 Automatic Evaluation

Recent advancements have seen researchers har-
nessing powerful LLMs for the evaluation of out-
put of language models. Studies have revealed that
the outcomes from LLMs could exhibit remarkable
alignment with human judgments (Zheng et al.,
2023; Wang et al., 2023c,b). In our investigation,
we employed GPT-4 to automatically evaluate per-
ception, cognition, and action scores based on the
model’s outputs. Our findings underscore a signif-
icant agreement between GPT-4 annotations and
human annotator results. This is substantiated by
Pearson correlation coefficients of 0.8, 0.9, and
0.95 for perception, cognition, and action evalua-
tions, respectively. For a detailed description of our
evaluation tool, we utilize the template as shown in
Table 3 to query GPT-4, aiming to evaluate its re-
sponses and assign scores for perception, cognition,
and action.



STEP1: Set programmable
interfaces for environment

Task_name:
nearby_mobs: Mobs_Name
inventory: {"Name": Number}
nearby_blocks: Blocks_name

el STEP2: Generate Seed Tasks emsp

Instruction:

You are an expert in Minecraft. Your
Job is to create some diverse tasks
for a robot to achieve.

STEP3: Generate environment
parameters by filling fempla1'es_’ observation and auto filtering

STEP4: Generate environment

Seed Task 1: -
Harvest_milk Success!

@ ChatGPT: | -

Fine-grained Tasks and Specifications:

Harvest_milk_with_nothing

Harvest_milk_with_cow_nearby
Harvest_milk_with_cow_and_bucket
Harvest_milk_with_bucket

»»»»»» Success

goal_prompt: goal VALID_MOBS:
Template ["cow’ "pig","sheep" "chicken”,"horse",
l’ "donkey","llama", ... ]
Get_wool_with_shares: VALID_ITEMS:
nearby_mobs: None [ “apple",
inventory: {"Shares": 1} "“cooked_fish",
nearby_blocks: None "gold_ore",
goal_prompt: "Get wool" "acacia_fence_gate", ... ]
Instance
Please list 50 descriptions for the
l' possible tasks.
. A
‘ Environment @ ChatGPT:
‘L - harvest_milk

1

2. harvest_wheat_for_bread

3. collect_wool_for_bed

4. build_a_shelter_with_a_wood

5. place_bookshelf_with_no_book

N. Collect_wool_with_wooden_swo
rd_and_sheep

Harvest_milk_with_4iron_ingot_and
_cow:
nearby_mobs: Cow

- -

[reserve]
inventory: {"iron_ingot": 4} L )

nearby_blocks: None
goal_prompt: "Harvest milk"

x ERROR!

Environment created failed!

Harvest_milk_with_cow_and_basin:

nearby_mobs: Cow Fail . " 5 :
inventory: {"basin": 1} No basin exist. (invalid
nearby_blocks: None items)
goal_prompt: "Harvest milk"

[abort]

Figure 4: Pipeline of the Embodied Instruction Evolution method.

2.4 Benchmark Dataset Overview and
Embodied Instruction Evolution

The PCA-Bench benchmark now includes a train-
ing set consisting of 7,510 examples and a test set
comprising 813 examples. The entire training set is
autonomously generated through the Embodied In-
struction Evolution (EIE) method, entirely without
human intervention. For the test set, 313 exam-
ples are exclusively written by 3 human experts for
each domain, while the remaining 500 examples
are initially produced using the EIE method and
subsequently undergo manual checking and filter-
ing by human experts. We ensured that there are
no shared environmental observations between the
training and test sets. Moreover, every test case has
been verified by at least three authors of this pa-
per. The details of human annotation pipeline could
be found in Appendix B. We introduce the three
domains encompassed by our dataset as follows:

Autonomous Driving. In the autonomous driv-
ing domain, instances are derived from real-world
transportation scenes, which requires the agent to
have particular abilities such as traffic sign recogni-
tion, obstacle detection, and decision-making at in-
tersections. The dataset aims to evaluate an agent’s
ability to perceive and interpret visual informa-
tion while making safe and efficient driving deci-
sions. The images are collected from TT100K (Zhu
et al., 2016) dataset and annotators are instructed
to propose an image-conditioned question that is
grounded with real actions of vehicles.

Domestic Robot. The domestic assistance do-
main features instances from the ALFRED (Shrid-
har et al., 2020; Kolve et al., 2017) environment,
which simulates a housekeeper robot performing
tasks within a household setting. These tasks may
include object manipulation, navigation, and inter-
action with various appliances. The environment
assesses an agent’s ability to understand and exe-
cute complex instructions while navigating and in-
teracting with a dynamic environment. Annotators
are asked to select one image from the randomly
generated scenes in the environment, propose a
question related to the items on the scene, and an-
notate the full information of the instance.

Open-World Game. In the open-world game do-
main, instances are sourced from the Minecraft en-
vironment, where agents are tasked with exploring,
crafting, and surviving in a procedurally generated
world. This dataset evaluates an agent’s ability to
reason and plan actions within a complex, open-
ended environment, which often requires long-term
strategizing and adaptability. Annotators receive
predefined tasks from MineDojo (Fan et al., 2022)
as a reference during the task generation phase. For
each task, we instruct the annotator to sketch a task
topology graph, exemplified in Figure 3. The task
should be completed in accordance with the topo-
logical order of the graph, where the event located
in the leaf nodes should be finished first. Each node
in the task topology graph can be viewed as a step
in the sequential decision. We list the in-domain
task distribution in Appendix A.

The annotation of PCA-Eval examples is a labor-



intensive task. As illustrated in Figure 4, we in-
troduce Embodied Instruction Evolution (EIE), a
method for automatically augmenting examples in
the PCA-Eval format using Large Language Mod-
els, such as ChatGPT. This process involves four
key steps: 1) Setup of Programmable Interface:
Establish a programmable interface with a corre-
sponding template, ensuring that observations in
the embodied environment can be generated based
on specific parameters. 2) Generation of Seed
Tasks: Create initial seed tasks for each environ-
ment. These tasks are representative of the general
challenges an agent might encounter. We provide
ChatGPT with sample tasks and enable it to gen-
erate additional seed tasks. 3) Task Specification
and Template Filling: For each seed task, we in-
struct ChatGPT to break down the task into multi-
ple subtasks, following its event topology graph (as
seen in Figure 3). This approach mimics the multi-
step decision-making process. After determining
the subtask names, we use the LLM to populate the
environment parameter templates created in Step
1 for each subtask. 4) Observation Generation
and Filtering: Generate observations for the en-
vironment and implement an automatic process to
filter out invalid instances. For domains without
programmable environments (autonomous driving),
step 1 and step 4 are not needed, we collect real
traffic images and utilize GPT4-Vision to generate
seed task based on the image content.

EIE leverages the capabilities of Large Language
Models to reduce manual labor and improve the
diversity and scalability of PCA-Bench examples.

3 Experiments

3.1 Tracks

Zero Shot End-to-End. The test set of PCA-
Bench serves as an effective tool for comparing
the embodied decision-making and cross-modal
reasoning capabilities of various Multimodal Lan-
guage Learning Models (MLLMs). In this evalu-
ation, the same images and prompts are provided
to each model under test. Additionally, to address
the challenge of perceiving certain non-visual in-
formation from images, details such as “items in
hand” and “items in inventory”, particularly rele-
vant in domestic and gaming domains, are directly
included in the question prompts.

In our analysis, we benchmark the performance
of the most recently open-sourced models, includ-
ing LLaVAL1.5 and Qwen-VL-Chat, as well as the

API-only GPT4-V model. All models are evalu-
ated using their default inference configurations to
ensure a fair and standardized comparison.

Finetuning with EIE. In this track, we extend
the capabilities of open-source MLLMs by fine-
tuning them with the training set generated through
our Embodied Instruction Evolution (EIE) method.
After the fine-tuning process, these trained models
are subjected to the test set of PCA-Bench. We
finetune the LLaVA-7b/13b, MMICL and Qwen-
VL-Chat models on the training set for 5 epochs.
The training details are in Appendix E.

Zero Shot Modality Conversion. In this track,
we introduce and compare a new baseline, termed
HOLMES, which utilizes LLM without multi-
modal perception capabilities. Instead, HOLMES
relies on modality conversion APIs for embodied
decision-making processes. Within the HOLMES
framework, the LLM must continuously invoke
various APIs, retrieving and processing return in-
formation about the environment. The HOLMES
method is illustrated in Figure 9 from Appendix.

We evaluate two LLMs in this track: ChatGPT-
3.5-Turbo and GPT-4-0613, comparing their per-
formances against the advanced GPT-4-Vision. Im-
plementation details of the HOLMES framework
and the APIs are provided in Appendix C.

3.2 Evaluation and Metrics

We use our PCA-Eval evaluation tool proposed in
Section 2.3 to automatically assess the output of dif-
ferent models through three lenses: perception (P-
Score), cognition (C-Score), and action (A-Score).

3.3 Main Results

Zero Shot Results. The results of the zero-shot
end-to-end track is shown in Table 1. Among
all MLLMs, GPT4-V, outperforms existing open-
source models by achieving the highest scores of
0.86, 0.7, and 0.68 in the perception, cognition, and
action dimensions respectively. This performance
represents a 15% action score improvement over
its strongest open-source counterpart, LLaVA1.5-
13B. The impressive performance of GPT4-V is
primarily attributed to its exceptional ability to per-
ceive visual information across different domains
and the world knowledge in the language model,
particularly in the challenging game domain.

Impact of Finetuning with EIE. The results of
the fine-tuning track are illustrated in Figure 5. Our
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Model Szt p ¢ AP C A|P C A|P C A

MiniGPT4 (Zhu et al., 2023a)' 7B | 045 037 048|081 038 038|038 0.14 027|055 030 0.38
LLaVA1.5 (Liu et al., 2023a)’ 7B | 044 044 053]092 048 044 | 08 035 039]0.72 042 045
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MMICL (Zhao et al., 2023)f 13B | 031 049 047 081 03 033041 0.18 027|051 032 036
SPHINX-v1 (Lin et al., 2023)" 13B | 046 048 0.61 095 055 031071 035 043|071 046 045
LLaVA1.5 (Liu et al., 2023a)’ 13B | 049 0.56 0.61 | 095 0.62 046|074 045 0.51|0.73 0.54 0.53
GPT-4V (OpenAl, 2023)* UNK | 073 0.72 0.74 | 0.96 0.66 0.62 | 0.88 0.72 0.69 | 0.86 0.7 0.68

Table 1: Zero Shot results on the test set of PCA-Bench. Highest scores in each line are bold while second highest
scores are underlined. Models with T are fully open-source. Models with | only provide API to access. P, C, and A
represent Perception, Cognition, and Action Scores, respectively.
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Figure 5: Performance comparsion between models’ zero-shot results and models’ finetuned results with the data
generated by Embodied-Instruct-Evolution (EIE) method. EIE improves the performance on all domains for both
LLaVA1.5-7b and Qwen-VL-Chat models. Results of LLavA1.5-13B and MMICL are in Figure 14 from appendix.

EIE method has been found to significantly en-
hance the general decision-making abilities of vari-
ous models, encompassing perception, cognition,
and action. Notably, it has led to an average in-
crease of 0.24 and 0.19 in action scores for the
LLaVA1.5-7b and Qwen-VL-Chat models, respec-
tively. Results for LLaVA1.5-13b and MMICL are
illustrated in Figure 14, also showing improved per-
formance when trained with EIE. In some cases,
these sub-scores have matched or even surpassed
those of the GPT4-V model, thereby demonstrating
the effectiveness of the EIE method.

Comparison Between End-to-End and Modality
Conversion Method In the zero-shot modality
conversion track, we conduct an analysis and com-
parison of the outputs generated by the End2End
method with GPT4-V, as well as the HOLMES
method with GPT4 and ChatGPT-3.5. The results
are listed in Table 2.

The results show that the HOLMES system
based on GPT4 achieves 0.71 Action Score, which
is on par with GPT4-V’s performance (0.74). This
indicates that, overall, the HOLMES system is able
to accurately understand the task goal, split the

larger goal into multiple smaller steps, and cor-
rectly invoke the relevant APIs to accomplish each
step. Specifically, the HOLMES system based on
GPT4 can recognize the key concepts in a task, and
perceive the state and environment of these con-
cepts through the results returned by APIs. Con-
sequently, the system achieves an average Percep-
tion Score of 0.88, which even outperforms GPT4-
V’s 0.84. However, compared End2End methods,
HOLMES relies on multi-step reasoning for the
final decision, in which reasoning errors tend to
accumulate, and thus achieves a lower Cognition
Score in both Domestic and Game domains.

On the other hand we also find that the End2End
method effectively mitigates information loss dur-
ing the modality conversion process. As illustrated
in Figure 6, an image depicts a road with several
nearby cars. GPT4-V is capable of discerning that
the street is not crowded, thereby suggesting that
the driver can continue driving.

Conversely, GPT4, while aware of the number
of cars, lacks information about their spatial rela-
tion, leading it to recommend slowing down. This
suggests that the End2End method is superior in
perceiving certain visual features that are not cap-



(" Autonomous Driving

@ What is the best action to take when you are driving?
@ Actions: A. Slow down B. Keep driving C. Stop the
car D. Change to other lane

w | The traffic appears to be moving smoothly without
any apparent obstructions. The traffic signals are not
Gpr4y Visible in the image, so there's no indication that you
need to slow down or stop.
The best action to take when driving in the scenario
pictured is: B. Keep driving

" Based on the object detection results, there are 14
cars in the image. It's better to be cautious as the road
might be congested with cars. The best action to take
is: A. Slow down.

GPT4

Figure 6: A Comparison between GPT4-V and GPT4-
HOLMES

Finetuning without Chain-of-Thought
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Figure 7: Action scores changes when training without
reasoning process for different models. The benefit of
CoT finetuning is not consistent among models.

tured by the APIs. Conversely, some specialized
APIs, such as traffic sign detection, outperform
GPT4-V in tasks like traffic sign detection, as they
are specifically trained for this task. This could en-
able the HOLMES method to gather more accurate
information than the End2End model.

4 Discussion
4.1 Does Chain-of-Thought Finetuning
Improve Cross-modal Reasoning?

Unlike vanilla finetuning, which solely focuses on
delivering direct answers, Chain-of-Thought Fine-
tuning necessitates the model to first articulate its

reasoning before presenting the answer. This ap-
proach has been demonstrated to be a highly effec-
tive instruction tuning paradigm for LLMs (Chung
et al., 2022; Kim et al., 2023). We have incorpo-
rated this methodology in our previous finetuning
experiments.

To further evaluate its impact, we conducted an
ablation study where the reasoning process was
omitted from the target output during the train-
ing of MLLMs. We then assessed the variations
in action scores on the test set. As depicted in
Figure 7, to our surprise, the figures suggest that
Chain-of-Thought finetuning exerts a relatively mi-
nor influence when compared to conventional label
finetuning. We have noticed that similar phenom-
ena has been identified by Zhang et al. (2023) that
standard CoT finetuning does not work for MLLMs
in their explorations.

We think there are two potential explanations: 1)
Task Variation: Contrary to mathematics datasets
like GSMSK, the current task doesn’t require multi-
step complex reasoning to arrive at the final answer.
2) Modality Discrepancy: The CoT capability, in-
herent in LLMs, is only moderately adjusted for
visual input for current open-source MLLMs. This
adaptation process could potentially impair the rea-
soning ability. We defer to future research how to
effectively harness the CoT capabilities of LLMs
to enhance embodied decision-making processes.

4.2 Alignment between Agent Decisions and
Human Values

We have observed instances where the decisions
made by the agent contradict human values. For in-
stance, consider the scenario depicted in Figure 10.
The image illustrates a crosswalk devoid of pedes-
trians. The appropriate response in this situation
would be to slow down, as caution is paramount
when approaching a crosswalk, regardless of the
presence or absence of pedestrians. However, upon
processing the information that the crosswalk is
unoccupied, ChatGPT suggests that maintaining
the current speed is the optimal action, arguing that
the absence of pedestrians eliminates the need to
slow down. The rationale provided by ChatGPT is
logical, yet it does not align with human values.

5 Related Work

Embodied Decision Making. Research on em-
bodied decision-making is an emerging trend for
artificial intelligent agents to interact with their sur-



Traffic Domestic Game Average
Method | Model | ', "¢ A | P ¢ A | P C A|P C A
End-to-End | GPT-4V | 0.75 0.73 0.78 | 0.81 0.69 0.67 | 095 0.79 0.77 | 0.84 0.74 0.74
HOLMES ChatGPT | 0.75 0.68 0.66 | 0.88 0.52 0.50 | 0.78 0.40 036 | 0.80 0.53 0.51
GPT4 |0.87 082 0.82|085 061 056|091 077 0.74|0.88 0.73 0.71

Table 2: Comparison between End-to-End (MLLM) and HOLMES (LLM+API) methods on a subset of PCA-Bench

with API annotation.

roundings and accomplish numerous tasks. This
necessitates proficiency in vision perception, world
knowledge, and commonsense reasoning, areas
where a large language model can provide some
level of expertise. We group prior work on em-
bodied decision-making with LLM into two main
trends. The first trend is to transform multimodal
information, including object and scenery identi-
fication, the current states of Al agents, and the
feedback from the environments, to texts. Text-
based LLMs can then reason over the textual clues
to determine the next action towards completing a
designated task (Huang et al., 2022a; Li et al., 2022;
Huang et al., 2022b; Chen et al., 2023). This line of
research divides the entire decision-making process
into two phases: (1) information seeking, usually
involving MLLMs to verbalize the current status of
Al agents in the vision-based environment with nat-
ural language; (2) reasoning and planning with text-
based LLMs to decide what the Al agent should do
in the next step with textual clues. The other line of
research uses multimodal LLMs directly for end-
to-end decision making, such as PALM-E (Driess
et al., 2023b). The end-to-end decision making
poses greater challenges to multimodal LLMs as
it requires the combination of different function-
alities including perception, cognition, and action,
whereas decision making without explicit multi-
ple steps mitigates the error propagation between
information seeking and reasoning.

LLM-Powered Agents. LLMs pre-trained on
large-scale multimodal (including text, image,
video, etc.) corpus demonstrate impressive emer-
gent abilities and immense popularity (Brown et al.,
2020; Wei et al., 2022), and have seen tremendous
success across various domains covering various
NLP and CV tasks (Radford et al., 2019; Chowd-
hery et al., 2022; Touvron et al., 2023; Alayrac
et al., 2022; Zhu et al., 2023a; Li et al., 2023b).
Consequently, using LLMs to empower the Al
agents (Xi et al., 2023b; Liu et al., 2023b; Park

et al., 2023; Wang et al., 2023e) becomes more
and more promising. Specifically, we can employ
LLMs to enhance the decision making ability of
the agents (Nakano et al., 2022; Yao et al., 2022; Li
et al., 2023d; Song et al., 2023; Li et al., 2023a), ex-
panding their perception and action space through
strategies like tool utilization (Schick et al., 2023;
Qin et al., 2023; Lu et al., 2023). Although LLM-
based agents demonstrate reasoning and planning
abilities through techniques like Chain of Thought
or problem decomposition (Wei et al., 2023; Yao
et al., 2023; Kojima et al., 2022), they inherently
lack visual perception, and are limited to the dis-
crete textual content. Therefore, integrating multi-
modal information can offer agents a broader con-
text and a more precise understanding (Driess et al.,
2023a), enhancing their environmental perception.
However, no evaluation protocol or benchmark is
currently available to evaluate decision making
within the multimodal context.

6 Conclusion

In this paper, we introduce PCA-Bench, a multi-
modal benchmark designed to assess the embodied
decision-making capabilities of Multimodal Large
Language Models (MLLMs). This benchmark fea-
tures PCA-EVAL, a novel fine-grained automatic
evaluation tool that diagnoses decision-making pro-
cesses from three critical perspectives: perception,
cognition, and action. To enhance the decision
making ability from data perspective, we propose
Embodied Instruction Evolution method to auto-
matically synthesize instruction tuning examples
in various multi-modal embodied environments,
which has been proved effective in our main exper-
iments. We believe that powerful MLLMs pave a
new and promising way toward decision making in
embodied environments and we hope PCA-Bench
could be serve as a good benchmark in bridging
MLLMs and embodied artificial intelligence.



7 Limitation

The current scope of PCA-Bench is confined to
merely three domains in static environments. One
of our future work aims to broaden this scope to
encompass more domains and dynamic embodied
environments where MLLMs could keep getting
feedback. We do not apply different reasoning en-
hancement method like Reflection in the decision
making process of MLLMs. We just use the sim-
plest prompting method and leave the exploration
of better cross-modal Chain-of-Thought method
for future studies.
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A Examples of PCA-Bench

A.1 Data Distribution

Car Detection

Traffic Sign Detection
Autonomous Driving

Kitchen
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Living Room

Craft Items

Corridor

Find Objects

Figure 8: Domain and required ability distribution of
PCA-Bench.

The PCA-Bench’s data distribution across var-
ious domains is outlined in Figure 8. For the Au-
tonomous Driving domain, instances are grouped
by their respective task types. In the Domestic
Robot domain, instances are grouped by their loca-
tions. In the Open-World Game domain, instances
are grouped by the tasks they aim to accomplish.

B Human Annotation Pipelines

The annotation process consists of two stages: (1)
Dataset Annotation, and (2) Dataset Refinement.
During the initial stage, three annotators are as-
signed to each domain, adhering strictly to the re-
spective annotation guidelines. They first pinpoint
the source images from each domain that are in-
formative and meaningful so that they can write

questions for each image. All annotators are from °

the author list of this paper. The annotators have
the responsibility to ensure every question has only
one correct answer and accurate rationales. In the
subsequent stage, annotators are instructed to scru-

tinize the output actions and rationales presented by >

ChatGPT and check the annotations. This process

aims to address the challenge of multiple correct ;

answers, as ChatGPT can furnish comprehensive

explanations for its actions. These explanations

assist annotators in assessing the acceptability of
ChatGPT’s response, particularly when it deviates

&)

15
16
17
18
19

from the established ground truth answer. This en-

ables annotators to refine annotations to ensure the
presence of a single correct answer.
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B.1 PCA-EVAL Examples

We list three examples of each domain from PCA-
EVAL, as shown in Figure 11, 12, and 13.

C Zero Shot Modality Conversion:
HOLMES

To optimize the evaluation process of HOLMES
method, we pre-execute all relevant APIs for each
instance within a selected subset of 300 instances
from the PCA-Bench test set, recording the results
for individual instances. This method enables im-
mediate access to specific API results, eliminating
the need to rerun the model for each evaluation
instance.

Traffic Domain. Below is the API description
for the traffic domain.

# API Description for Traffic Domain:
def detect_traffic_sign():
Detects traffic signs in the image.
:return: list of detected traffic
signs and coordinates, e.g. ['stop
', 'max speed limit']

nonn

pass

def object_detection():

Detects objects in the image.
:return: dict of detected objects
and number of the objects, e.g. {'
car':10, 'person':1}

nonon

pass

def ocr():

Performs OCR on the image.
:return: list of detected text,
['Changjiang road', 'Right lane
closure']

nonon

e.g.

pass

image_caption():

Generates a caption for the image.
:return: caption, e.g. 'A red car
driving down the street'

INTRT)

pass

def weather_detection():

wn
Detect current weather.
:return: weather, e.g.
clear'

nonon

'rainy' or

pass

* detect_traffic_sign(): The detection of road
traffic signs model utilize YOLO (Redmon and



@ What is the best action to take when you are
driving on the highway?

Actions: A. Slow down B. Keep driving C. Stop
the car D. Change to other lane

I will first call the detect_traffic_sign() API to
check if there are any traffic signs in the
image that could inform the best action.

Domestic Robot

Open-World Game

@ You are a domestic robot that helps me do
| ,usework. Your goal is to heat a cup of milk. What
is the best action to take next?
Actions: A. Find a microwave. B. Put a cup of milk
into the microwave. C. Find milk. D. Pick up a cup
of milk.

I will first call the object_detection_alfred() API to
check for any relevant objects in the current view.

@ You are a powerful game assistant in Minecraft.
- vy goal is to Harvest wool. Based on current
condition, what is the best action to do next?
Actions: A. Find sheep B. Shear sheep C. Craft
shears D. Find iron ore E. Craft iron ingot

In order to answer the question, I would first need to
v check if I already have shears in the inventory. So I

QA

Since there are no traffic signs detected, I will now
call the object_detection() API to check for any
objects in the image that could inform the best action.

detect_traffic_sign() = None

'Lettuce', 'StoveBurner',

'DishSponge',
"Ladle', 'Floor',

object_detection() = None 'Ceiling', 'Bread', 'Mug']

Since there are no objects detected, I will now call
the caption() API to get a general description of the
image, which might help in determining the best
action.

caption() = The image features a long, empty
highway.

Based on the provided caption, it seems that the
highway is not congested. Therefore, the best
action to take when driving on the highway in
this situation would be: B. Keep driving

object_detection_alfred() =
'SaltShaker',
'Spatula’, 'Pot', 'StoveKnob', 'StoveBasel', 'Cabinet',
'Microwave',
'SoapBottle',

m_| Now that I have detected a microwave and a mug in
. the current view, I will call list_inventory_alfred() to
check if I already have milk in my inventory.

list_items_in_inventory_alfred() = [“cup of milk”] @

Since I already have a cup of milk in my inventory,
the best action to take next is:
B. Put a cup of milk into the microwave.

would call list_inventory_information().

['StoveTopDoorl', @

‘CounterTop',

list_inventory_information() = [("shears", 1)] @

'Pan’,
'Dishwasher',

'"PepperShaker’,

'Sink', . . )

Since the inventory contains shears, then the next
action would be dependent on the presence of sheep.
I would then call ‘list_nearby_mobs()" to check if
there are sheep nearby

list_nearby_mobs() = None @

Given that the inventory does have shears but no
nearby sheep are detected, the best action to do next
would be: A. Find Sheep

[ B Image & User

LLM Q) Mode/API Hub |

Figure 9: Three examples of HOLMES solving questions from different domains of PCA-Bench.

Farhadi, 2018) which trained on the Tsinghua-
Tencent 100K dataset (Zhu et al., 2016). TT100K
comprises 100,000 images encompassing 30,000
instances of traffic signs. The end-to-end YOLO
enables simultaneous detection and classification
of traffic signs.

* object_detection(): Objects demanding atten-
tion during vehicle operation primarily encompass
cars, pedestrians, and bicycles. A surfeit of vehi-
cles can lead to traffic congestion, while the pres-
ence of pedestrians or bicycles ahead necessitates
cars to decelerate and proceed cautiously. Hence,
the object_detection() API predominantly identi-
fies three key object categories: cars, pedestrians,
and bicycles. We utilize PMOP (Ren et al., 2023),
a model trained on vision-language models through
the prompt pre-training method, which enables the
detection and counting of the three mentioned ob-
jectives by modifying specific class names.

* ocr(): We employ PaddleOCR! to extract tex-
tual information from images, providing crucial
road data for real-time navigation.

* image_caption(): To initially streamline the
road information within the image, we employ the
BLIP2-flan-t5-x1 to generate an initial caption for
the picture. This caption, derived from basic im-

lhttps://github.com/PaddlePaddle/PaddleOCR/
tree/release/2.7

1

2

3

age data, is then utilized as input for the model to
facilitate decision-making.

e weather_detection(): Weather detection lever-
ages a pre-trained ResNet50 model?, derived from
a dataset of more than 70,000 weather records. This
model extracts weather information from provided
images to inform decision-making.

Domestic Robot Domain. Below is the API de-
scription for the Domestic Robot domain.

#API Description for Domestic Robot
Domain
object\_detection():

nnn

def

4 Detects objects in current view,
which you don't need do find.

5 :return: list of detected objects, e
.g. ['chair', 'table']

. won

7 pass

8

9 def list_items_in_hands():

10 e

11 Lists items in your hand, which you
don't need to pick up

12 :return: list of items in hand, e.g.

['coffee cup', 'milk"']
13 o
14 pass

14

Game Domain. Below is the API description for
the Game domain (Minedojo).

2https://github.com/mengxianglong123/
weather-recognition


https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.7
https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.7
https://github.com/mengxianglong123/weather-recognition
https://github.com/mengxianglong123/weather-recognition

I #API Description for Game Domain

2
3
4
5

def

def

list_nearby_mobs_in_minecraft():
Lists nearby mobs in Minecraft.
:return: list of nearby mobs, e.g.
['creeper', 'pig']

pass

list_inventory_information():
Lists inventory information of the
player in Minecraft.

:return: list of inventory
information with number, e.g. [('
diamond', 64), ('iron', 32)]

nnn

pass

Note that within the Domestic Robot Domain
and Game Domain, APIs can be directly accessed
within the virtual environment, allowing for the per-
ception of the surrounding objects and the current
picture context.

(" Autonomous Driving

-

v detection, the image depicts an empty crosswalk with

ChatGPT Keep driving, as it's not necessary to slow down.

@ What is the best action to take when you are driving?
@ Actions: A. Slow down B. Keep driving C. Stop the
car D. Change to other lane

object detection() = {‘car’:0,”human’:0, ‘bicycle’:0} @

caption() = An empty crosswalk. @

T Based on the provided caption and the result of object

no humans or cars. Therefore, the best action is B:

Figure 10: An case showing the value mis-alignment
between of agent and human’s decision.

D Automatic Evaluation

We utilize the template as shown in Table 3.

E Training Details

Table 4 shows the specific parameters used for fine-
tuning in different models. The PCA results on
the three domains of PCA bench before and after
fine-tuning different models are shown in Figure
14.
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Quetsion :
Based on current image, what is the best
action to take when you are driving on road?

Action candidates :

(A) Drive close to the right side
(B) Drive close to the left side (C) Call 911

Answer :
(B) Drive close to the left side
Reason:

Based on the image, The right side of the road
is closed, so you should drive close to the left.

Key Concepi:
right lane closure

Quetsion :

Based on current image, What should you do
if you want to drive forward safely?

Action candidates :

(A) Slow down (B) Keep driving (C) Call the
police

Answer :

(A) Slow down

Reason:

The current heavy snowfall is causing
slippery roads. So you should slow down.

Key Concept:

| Snowy weather

Quetsion:
You are at 20km/h now. What should you do
if you want to overtake the car in front of you?,

Action candidates :

(A) Speed up to 50km/h (B) You can't
overtake now (C) Turn Left

Answer:

(B) You can't overtake now

Reason:

You did not exceed the speed limit. But road
is congested. So you can't overtake now.

Key Concept:

congested road

Figure 11: Three examples of PCA-EVAL in the autonomous driving domain.

Quetsion:

You are in a room, the goal is to water the
plant. What is the best action to take next?
Action candidates :

(A) Find a sprinkler (B) Pick up the sprinkler
(C) Use sprinkler water the plant

Answer :

(C) Use sprinkler water the plant

Reason:

There is a house plant in front of us. We have
a sprinkler in hands. Therefore, our next step
is to water the plant using the sprinkler.

Key Concepi:

plant, sprinkler

image:

Quetsion :

You are in a room, the goal is to wash the cup.
What is the best action to take next?

Action candidates :

(A) Find the cup (B) Find the dish sponge
(C) Find a sink (D) Open the faucet
Answer :

(A) Find the cup

Reason:

There is no cup in front of us. Therefore, our
next step is to find a sink.

Key Concept:

cup, dish sponge, sink

image:

Quetsion :

You are in a room, the goal is to cook rice.
What is the best action to take next?

Action candidates :

(A) Go to the kitchen (B) Pick up rice

(C) Pick up pot (D) Boil water

Answer :

(A) Go to the kitchen

Reason:

We can infer from the objects around us that
we are in the living room so our next step is to
go to the kitchen

Key Concept:

rice, kitchen, living room

Figure 12: Three examples of PCA-EVAL in the domestic robot domain.

image:

Quetsion:

To harvest beef using an iron sword, based on
the image, which is your next action?

Action candidates :

(A) find cow (B) kill cow (C) craft iron sword
(D) find iron ore (E) craft iron ingot

Answer:

(C) craft iron sword

Reason:

You need a cow and kill it with an iron sword for
beef. You're near a cow, but lack an iron sword.
So, craft one using two iron ingots and a stick.
You have two iron ingots, and two sticks so you
can craft an iron sword.

Key Concept:

Cow nearby, No iron sword, 2 sticks,2 iron ingots

image:

=]
Quetsion :

To place a crafting table in front of you, based on
the image, which is your next action?

Action candidates :

(A) find planks (B) craft crafting table (C) place
crafting table

Answer:

(A) find planks

Reason:

To place a crafting table in front of you, your
inventory must have a crafting table. To get a
crafting table in your inventory, you need to
make one. You need 4 planks to make a crafting
table. Since you have 3, find one more first.
Key Concepi:

No crafting table, 3 planks

image:

Quetsion :
To harvest milk, which is your next action?

Action candidates :

(A) find cow (B) milk cow (C) craft bucket (D)
find iron ore (E) craft iron ingot

Answer :
(B) milk cow
Reason:

To get milk, you need to find a cow, and milk it
with a bucket. There is a cow nearby, and you
have a bucket, so you can milk the cow.

Key Concept:

Cow nearby, Have bucket

Figure 13: Three examples of PCA-EVAL in the open-world game domain.
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[Question]: {question}

[Action Choices]: {actions}

[Agent Answer]: {model_output}

[Correct Action]: {true_action}

[Key Concepts]: {key_concept}

[Reference Reasoning Process]: {reason}

[System]

We would like you to access the agent’s performance in the multimodal reasoning task about
domain. In this task, the agent is given an image, a [Question], and several candidate [Action
Choices], and is asked to give an [Agent Answer] for the [Question]. The [Agent Answer]
encapsulates the agent’s perception of the image’s [Key Concepts], the agent’s cognition reasoning
process and the final selected action.

We request you to give three types of scores for the agent’s [Agent Answer] in comparison to the
given [Key Concepts], [Reference Reasoning Process] and [Correct Action]:

1. action score: If the selected action in the [Agent Answer] matches that of the [Correct Action],
the action score is 1; otherwise, it is 0.

2. perception score: This score evaluates the model’s capability to perceive and interpret observa-
tions. It is contingent on whether the [Agent Answer] includes any of the [Key Concepts] of the
instance. If it accurately describes any one of the [Key Concepts], the score is 1; otherwise, it is 0.
3. cognition score: This score gauges the model’s ability to reason, comprehend, and make
informed decisions based on perceived input data and world knowledge. If the reasoning process
in the [Agent Answer] aligns with the [Reference Reasoning Process], the score is 1; otherwise, it
is 0.

Please note that there are only scores of 0 and 1.

You should carefully compare the [Agent Answer] with the [Correct Action], [Key Concepts] and
[Reference Reasoning Process] to give your assessment.

You need first to give your assessment evidence and then the scores.

Your output MUST contain 6 lines with the following format:

action assessment evidence: (assessment evidence here)

action score: (score here)

perception assessment evidence: (assessment evidence here)

perception score: (score here)

cognition assessment evidence: (assessment evidence here)

cognition score: (score here)

Table 3: The template of querying GPT-4.

Autonomous Driving Open-World Game

Domestic Robot
10 1.0 —o9s09s 96

067

0.49
.41}

=

PCA Scores

[ LLaVA15-13b
B [LaVALS5-13b w/ EIE

[0 LLaVA1S5-13b

B LLaVAILS-13b w/ EIE
02 EZZ1 MMICL 02 02 ZZ1 MMICL
W MMICL w/ EIE W MMICL w/ EIE W MMICL w/ EIE
W GPT4-Vision W GPT4-Vision W GPT4-Vision
0 P — " 0.0 P — i 0.0 P — "
Perception Cognition Action Perception Cognition Action Perception Cognition Action

Figure 14: Performance comparsion between models’ zero-shot results and models’ finetuned results with the data
generated by Embodied-Instruct-Evolution (EIE) method. EIE improves the performance on all domains for both
LLaVA1.5-13b and MMICL models.
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Model Parameter Value
Learning Rate 2e-4
Use Lora Finetuning? Yes
Lora Rank 8
Lora Alpha 32
Qwen-VL-Chat/LLaVA1.5-7/13b Global Batchsize 20
Weight Decay 0
Train Epochs 5
Lr Scheduler Type  Cosine
Warmup Ratio 0.03
Learning Rate Se-4
Use Lora Finetuning? No
Global Batchsize 20
MMICL Weight Decay Se-4
Train Epochs 5
Lr Scheduler Type Linear
Warmup Ratio 0.2

Table 4: Training details for different models with EIE.
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