
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ORSO: ACCELERATING REWARD DESIGN VIA ONLINE
REWARD SELECTION AND POLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reward shaping is a critical component in reinforcement learning (RL), particu-
larly for complex tasks where sparse rewards can hinder learning. While shaping
rewards have been introduced to provide additional guidance, selecting effective
shaping functions remains challenging and computationally expensive. This pa-
per introduces Online Reward Selection and Policy Optimization (ORSO), a novel
approach that frames shaping reward selection as an online model selection prob-
lem. ORSO employs principled exploration strategies to automatically identify
promising shaping reward functions without human intervention, balancing explo-
ration and exploitation with provable regret guarantees. We demonstrate ORSO’s
effectiveness across various continuous control tasks using the Isaac Gym simu-
lator. Compared to traditional methods that fully evaluate each shaping reward
function, ORSO significantly improves sample efficiency, reduces computational
time, and consistently identifies high-quality reward functions that produce poli-
cies comparable to those generated by domain experts through hand-engineered
rewards with up to 16× less compute. Code is available at anonymized for
submission

1 INTRODUCTION

Reward functions are crucial in reinforcement learning (RL; Sutton & Barto (2018)) as they guide
the learning of successful policies. In many real-world scenarios, the ultimate objective involves
maximizing long-term rewards that are not immediately available, making optimization challenging.
To address this, practitioners often introduce shaping rewards (Margolis & Agrawal, 2022; Liu et al.,
2024; Mahmood et al., 2018; Ng et al., 1999) – to provide additional guidance during training.
Instead of directly maximizing the task rewards (R), it is therefore common for the RL algorithm to
maximize an easier-to-optimize shaped reward function F in the hope of obtaining high performance
as measured by task rewards, R. While shaping rewards contain helpful hints, maximizing them does
not necessarily solve the task. For instance, an agent tasked with finding an exit (i.e., longer-term
reward in the future) may be provided with shaping rewards to avoid obstacles. However, the task
success ultimately depends on reaching the exit, not just avoiding obstacles. If poorly designed,
the shaped rewards F can mislead the RL algorithm, causing the agent to focus on maximizing F
while neglecting R (Chen et al., 2022; Agrawal, 2021), leading to training failure or suboptimal
performance.

Designing effective shaping reward functions F that improve RL algorithm performance is chal-
lenging and time-consuming. It requires multiple iterations of training agents with different shaping
rewards, evaluating their performance on the task reward R, and refining F accordingly. This pro-
cess is inefficient due to the lengthy training runs and because the performance measured early in
training may be misleading, making it challenging to quickly iterate over different shaping rewards.

To address this challenge, we propose treating the design of the shaping reward function as an
exploration-exploitation problem and to solve it using provably efficient online decision-making al-
gorithms similar to those in multi-armed bandits (Auer et al., 2002; Auer, 2002) and model selection
(Agarwal et al., 2017; Pacchiano et al., 2020; Dann et al., 2024; Foster et al., 2019; Lee et al., 2021).
Each shaping reward function acts as an arm or model, with the agent’s task reward R when trained
with shaping reward F serving as the model’s utility. Our goal is to identify the best shaping reward
function within a fixed time budget.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

This approach presents unique challenges. Unlike standard multi-armed bandit settings with sta-
tionary reward distributions, the utility of a shaping reward function in our case is nonstationary. As
the agent explores new parts of the state space during training, the reward distribution changes. Ad-
ditionally, we must balance exploration and exploitation to efficiently allocate training time among
different shaping rewards without committing too early to high-performing options or wasting time
on low-performing ones.

We introduce Online Reward Selection and Policy Optimization (ORSO), an algorithm that effi-
ciently selects the best shaping reward function from a set of candidate shaping reward functions to
improve RL performance on the task reward. ORSO provides regret guarantees and adaptively allo-
cates training time to each shaping reward based on a model selection algorithm at each step. Our
empirical results across various continuous control tasks using the Isaac Gym simulator (Makoviy-
chuk et al., 2021) demonstrate that ORSO identifies the best auxiliary reward function much faster
(2× or more) than current methods. Moreover, ORSO consistently selects reward functions that
are comparable to, and sometimes surpass, those designed by domain experts with up to 16× less
compute.

2 PRELIMINARIES

Reinforcement Learning (RL) In RL, the objective is to learn a policy for an agent (e.g., a robot)
that maximizes the expected cumulative reward during the interaction with the environment. The in-
teraction between the agent and the environment is formulated as a Markov decision process (MDP)
(Puterman, 2014),M = (S,A, P, r, γ, ρ0), where the S and A denote state and action spaces, re-
spectively, P : S × A → ∆S

1 is the state transition dynamics, r : S × A → ∆R denotes the
reward function, γ ∈ [0, 1) is the discount factor, and ρ0 ∈ ∆S is the initial state distribution.
At each timestep t ∈ N of interaction, the agent selects an action at ∼ π(· | st) based on its
policy π, receives a (possibly) stochastic reward rt ∼ r(st, at), and transitions to the next state
st+1 ∼ P (· | st, at) according to the transition dynamics. Here, r is the task reward, also referred
to as extrinsic reward (Chen et al., 2022). RL algorithms aim to find a policy π⋆ that maximizes the
discounted cumulative reward, i.e.,

π⋆ ∈ argmax
π

J (π) := E

[∞∑
t=0

γtrt

∣∣∣∣∣ s0 ∼ ρ0, at ∼ π(· | st),
rt ∼ r(st, at), st+1 ∼ P (· | st, at)

]
. (1)

3 METHOD: REWARD DESIGN AS SEQUENTIAL DECISION MAKING

As previously stated, the reward function r encodes the task objective but can be sparse, making it
difficult to directly optimize using RL methods. We formalize the reward design problem as follows.

Definition 3.1 (Reward Design). Let A be a reinforcement learning algorithm that takes an MDP
M = (S,A, P, r, γ, ρ0), a reward function f , and a number of interction steps with the environment
N as input and returns a policy πf = Af (M, N) that approximately maximizes reward f in M
after N interaction steps.

GivenM and A, the reward design problem aims to find a reward function f : S × A → ∆R, with
f ∈ R, the space of reward functions, such that the policy πf = Af (M, N) achieves an expected
return under the task reward r, such that J

(
πf
)
≈ maxr′∈R J (πr′) = J (π⋆).

While this could be achieved by running the algorithm A on every possible reward function r′ ∈ R,
this is computationally prohibitive. The reward space R can be extremely large, and attempting to
optimize over all possible rewards is impractical, especially when the available interaction budget is
constrained.

To make the problem tractable, we assume access to a finite set of candidate shaping reward func-
tions RK =

{
f1, . . . , fK

}
∼ G(R), where G is a distribution over the set of reward functions,

that contains at least one near-optimal reward function and a budget of iterations T . If the budget

1∆S denotes the set of probability distributions over S.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

πf2

πf1

T

π⋆
t

t

J (πt)
π⋆

(a) Preferred reward selection

πf1

π⋆
t

πf2

T t

J (πt)
π⋆

(b) Worse reward selection

Figure 1: Comparison of two reward selection strategies given a time budget T . The green dashed
line represents the task reward of the optimal policy, π⋆. The red and blue curves show the cumula-
tive maximum task rewards for policies trained withreward functions f1 and f2, respectively. The
yellow curve, π⋆

t , tracks the maximum of the red and blue curves. The shaded gray area depicts
cumulative regret in Equation (2) associated with each selection strategy. The preferred selection
strategy, (a), spends most iterations on f2, while the worse strategy, which initially focuses on f1,
leaves too little of the available budget T to fully exploit f2, resulting in lower performance and
higher regret.

does not allow training on each f i ∈ RK , we need to allocate resources to gather useful information
about the quality of each candidate, while simultaneously optimizing the most promising ones. This
introduces a fundamental exploration-exploitation tradeoff. On one hand, we must explore various
rewards to identify high performers; on the other, we need to exploit promising candidates to train
performant policies.

Cumulative Regret =⇒ Efficiency This tradeoff is captured by a regret-based objective, com-
monly used in sequential decision-making problems, which measures the suboptimality incurred by
the current policy with respect to the optimal one. Therefore, we cast the reward selection prob-
lem as an online model selection problem. Let ni

t denote the number of iterations reward function
f i has been used for training up to iteration t. Then the set of policies trained up to step t is
Π(t) = {πfij

ni
j
}tj=1, where πfij

ni
j

= Afij (M, ni
j), the policy trained with reward function f ij for ni

j

iterations. We define model selection regret as

MReg(T) :=

T∑
t=1

J (π⋆)− J (π⋆
t), (2)

where π⋆
t := argmaxπ∈Π(t) J (π). The choice of π⋆

t in the definition of MReg(T) reflects a practi-
cal preference. Practitioners are generally more interested in the best-performing solution available
at a given point, rather than the most recent update. For instance, in deploying a robotic running
policy, one would select the fastest policy observed thus far – assuming the objective is to run as fast
as possible.

The regret minimization framework is well-aligned with the goal of efficient reward design, as it
emphasizes the speed at which effective policies are learned. In Figure 1, we compare two strate-
gies: one that starts by training with the worse reward function, f1, until convergence, and another
that immediately focuses on the better reward function, f2. The shaded area represents the regret
incurred by each selection strategy (Equation (2)), which reflects the performance gap between the
learned policy and the optimal one over time. The worse strategy spends too much of the available
budget T on f1, leaving insufficient iterations for training on f2. As a result, the best policy trained
with the suboptimal strategy reaches a lower performance and the selection strategy incurs higher
regret. Conversely, starting with f2 minimizes regret and maximizes the performance. A further
discussion of the online model selection problem can be found in Appendix B.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 ORSO: ONLINE REWARD SELECTION AND POLICY OPTIMIZATION

In this section, we introduce ORSO (Online Reward Selection and Optimization), a novel approach to
efficiently and effectively design reward functions for reinforcement learning. Our method operates
in two phases: (1) reward generation and (2) online reward selection and policy optimization.

Reward Generation In the first phase of ORSO, we generate a set of candidate reward functions
RK for the online selection phase. Given an MDPM = (S,A, P, r, ρ0) and a stochastic generator
G, we sample a set of K reward function candidates,RK = {f1, . . . , fK | ∀i ∈ [K], f i : S×A →
∆R, f i ∼ G}, from G during the reward design phase. The generator G can be any distribution
over the reward function space R. For instance, if the set of possible reward functions is given by
a linear combination of two reward components c1, c2, which are functions of the current state and
action, such that r(s, a) = w1c1(s, a) + w2c2(s, a), then the generator G can be represented by the
means and variances of two normal distributions, one for each weight w1, w2.

Online Reward Selection and Policy Optimization Our algorithm for online reward selection
and policy optimization is described in Algorithm 1. On a high level, the algorithm proceeds as
follows. Given an MDPM = (S,A, P, r, ρ0), an RL algorithm A and a reward generator G, we
sample set of K reward functions RK ∼ G and initialize K distinct policies π1, . . . , πK . At step
t of the reward selection process, the algorithm selects a learner it ∈ [K] according to a selection
strategy. We then perform N iterations of training with algorithm A, updating the policy corre-
sponding to reward function it to obtain πit . Policy πit is simultaneously evaluated under the task
reward function r and the necessary variables for the model selection algorithm are then updated
(e.g., reward estimates, reward function visitation counts, and confidence intervals). The algorithm
returns the reward function f⋆

T and the corresponding policy π⋆
T that performs the best under the

task reward function r.

Algorithm 1 ORSO: Online Reward Selection and Policy Optimization

Require: MDPM = (S,A, P, r, ρ0), algorithm A, generator G
1: Sample K reward functionsRK =

{
f1, . . . , fK

}
∼ G

2: Initialize K policies
{
π1, . . . , πK

}
3: for t = 1, 2, . . . , T do
4: Select an model it ∈ [K] according to a selection strategy
5: Update πit ← Afit (M, N, πit)

6: Evaluate J (πit)← Eval(πit)
7: Update variables (e.g., reward estimates and confidence intervals)
8: end for
9: return π⋆

T , f
⋆
T = argmaxi∈[K] J (πi)

Choice of Selection Algorithm While ORSO is a general algorithm that can employ any selection
method to pick the reward function to train on, the performance depends on the choice of algorithm.

For instance, using a simple selection method like ε-greedy introduces an element of exploration by
occasionally selecting a random reward function (with probability ε), but it risks overcommitting to
a seemingly promising reward function early on. This can lead to suboptimal performance if the
chosen reward function causes the task performance to plateau in the long run. However, greedier
methods, such as ε-greedy, can achieve lower regret if they commit to the actual optimal reward
function early in the process. These methods are particularly effective when early performance
signals are strong indicators of long-term success.

However, if initial performance is not a reliable predictor of future outcomes, these greedy ap-
proaches may struggle, as they risk prematurely locking onto suboptimal rewards. In contrast,
more exploratory algorithms like the exponential-weight algorithm for exploration and exploita-
tion (Exp3) (Auer et al., 2002) maintain a broader search, potentially discovering better rewards in
the long run, especially in environments where early signals are less informative. We empirically
validate different choices of selection algorithms in Section 5.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 THEORETICAL GUARANTEES

In this section, we provide regret guarantees for ORSO with the Doubling Data-Driven Regret Bal-
ancing (D3RB) algorithm by Dann et al. (2024). A discussion of the intuition behind the D3RB
algorithm and the full pseudo-code for ORSO with D3RB is provided in Appendix C. We note that
the regret definition used in the online model selection literature is an upper bound for the model
selection regret defined in Section 3. We provide a further discussion of this relationship in Ap-
pendix B.

We first introduce some useful definitions for our analysis.
Definition 4.1 (Definition 2.1 from Dann et al. (2024)). The regret scale of learner i after being

played t times is
∑t

ℓ=1 reg(πi
(ℓ))√

t
where reg(πi

(ℓ)) = J (π
⋆)− J (πi

(ℓ)) in the reward design problem.

For a positive constant dmin > 0, the regret coefficient of learner i after being played for t rounds is
di(t) = max{dmin,

∑t
ℓ=1 reg(π

i
(ℓ))/
√
t}. That is, di(t) ≥ dmin is the smallest number such that the

incurred regret is bounded as
∑t

ℓ=1 reg(π
i
(ℓ)) ≤ di(t)

√
t.

Dann et al. (2024) use
√
t as this is the most commonly targeted regret rate in stochastic settings.

The main idea underlying our regret guarantees is that the internal state of all suboptimal reward
functions is only updated up to a point where the regret equals that of the best policy so far.

We assume there exists a learner that monotonically dominates every other learner.
Assumption 4.2. There is a learner i⋆ such that at all time steps, its expected sum of rewards
dominates any other learner, i.e., ui⋆

(t) ≥ ui
(t), for all i ∈ [K], t ∈ N and such that its average

expected rewards are increasing, i.e.,
ui⋆
(t)

t ≤
ui⋆
(t+1)

t+1 , ∀t ∈ N. This is equivalent to saying that
di⋆(t) ≥ di⋆(t+1), for all t ∈ N.

Assumption 4.2 guarantees that the cumulative expected reward of the optimal learner i⋆ is always at
least as large as the cumulative expected reward of any other learner and that its average performance
increases monotonically.

Following the notation of Dann et al. (2024), we refer to the event that the confidence intervals for
the reward estimator are valid as E .
Definition 4.3 (Definition 8.1 from Dann et al. (2024)). We define the event E as the event in which
for all rounds t ∈ N and learners i ∈ [K] the following inequalities hold

−c
√
ni
t ln

K lnni
t

δ
≤ ûi

t − ui
t ≤ c

√
ni
t ln

K lnni
t

δ
(3)

for the algorithm parameter δ ∈ (0, 1) and a universal constant c > 0.

Then we can refine Lemma 9.3 from Dann et al. (2024) in the case where Assumption 4.2 holds.
Lemma 4.4. Under event E and Assumption 4.2, with probability 1− δ, the regret of all learners i
is bounded in all rounds T as

ni
T∑

t=1

reg(πi
(t)) ≤ 6di⋆T

√
ni⋆
T + 1 + 5c

√
(ni⋆

T + 1) ln
K lnT

δ
, (4)

where di⋆T = di⋆
(ni⋆

T)
.

We provide the proof for Lemma 4.4 in Appendix D. Lemma 4.4 implies that when Assumption 4.2
holds, the regrets are perfectly balanced. This is in stark contrast with the regret guarantees of
Dann et al. (2024) that prove the D3RB algorithm’s overall regret to scale as

(
d̄i⋆T
)2√

T where
d̄i⋆t = maxℓ≤t d

i⋆
ℓ . Instead, our results above depend not on the monotonic regret coefficients d̄i⋆t

but on the true regret coefficients di⋆t . Even if learner i⋆ has a slow start (and therefore a large d̄i⋆T),
as long as monotonicity holds and the i⋆-th learner recovers in the later stages of learning, our results
show that D3RB will achieve a regret guarantee comparable with running learner i⋆ in isolation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 PRACTICAL IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we present a practical implementation2 of ORSO and its experimental results on
several continuous control tasks. We study the ability of ORSO to design effective reward functions
with varying budget constraints. We also study how different sample sizes, K, of the set of reward
functionsRK influence the performance of ORSO and compare different selection algorithms.

This section is structured as follows. First, we present the experimental setup, including the environ-
ments and baselines, and the practical consideration of the reward generator G and the algorithms
used in the online reward selection phase. Then, we present the main results and ablate our design
choices. Further experimental results can be found in Appendix H

5.1 EXPERIMENTAL SETUP

Environments and RL Algorithm We evaluate ORSO on a set of continuous control tasks us-
ing the Isaac Gym simulator (Makoviychuk et al., 2021). Specifically, we consider the following
tasks: CARTPOLE and BALLBALANCE, which are relatively simple; two locomotion tasks, ANT
and HUMNAOID, which have dense but unshaped task rewards – for instance, the agent is rewarded
for running fast, but the reward function lacks terms to encourage upright posture or smooth move-
ment; and two complex manipulation tasks, ALLEGROHAND and SHADOWHAND, which feature
sparse task reward functions.

Our policies are trained using the proximal policy optimization (PPO) algorithm (Schulman et al.,
2017), with our implementation built on CleanRL (Huang et al., 2022). We chose PPO because the
Makoviychuk et al. (2021) provide hyperparameters, which we use, that enable it to perform well
on these tasks when using the human-engineered reward functions.

5.1.1 BASELINES

In our experiments, we consider three baselines. We analyze the performance of policies trained
using each reward function detailed below. We evaluate the reward function selection efficiency of
ORSO compared to more naive selection strategies.

No Design (Task Reward with No Shaping) We train the agent with the task reward function r for
each MDP. These reward functions can be sparse (for manipulation) or unshaped (for locomotion).
We use the same reward definitions as prior work (Ma et al., 2024), which we report in Appendix E.

Human We consider the human-engineered reward functions for each task provided by (Makoviy-
chuk et al., 2021). We note that these are constructed such that training PPO with the given hyperpa-
rameters yields a performant policy with respect to the task reward function. The function definitions
are reported in Appendix E.

Naive Selection We employ EUREKA (Ma et al., 2024) as a baseline for the naive selection ap-
proach. EUREKA uses a large language model to generate Python code for the reward functions of
several continuous control tasks. EUREKA uses an evolutionary scheme to evaluate and improve its
reward functions. During each iteration, EUREKA samples a set of reward functions from an LLM,
trains a policy on each reward function, and uses the best-performing reward function as a context
for the LLM to perform the evolutionary step. However, this selection strategy can be seen as naive,
as it uniformly explores each reward function for a fixed number of iterations, regardless of its actual
performance on the task.

5.1.2 IMPLEMENTATION

Reward Generation Similarly to recent works on reward design, which demonstrate that LLMs
can generate effective reward functions for training agents (Park et al., 2024; Ma et al., 2024; Xie
et al., 2024), we follow this paradigm by using GPT-4 (Achiam et al., 2023) to avoid manually de-
signing reward function components. The language model is prompted to generate reward function

2The code for ORSO is available at anonymized for submission

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

code in Python based on some minimal environment code describing the observation space and use-
ful class variables. We employ prompts similar to those used by Ma et al. (2024). Since the exact
prompts are not the primary focus of our work, we do not detail them here; instead, we refer readers
to our codebase for further details on the prompt construction.

While the LLM produces seemingly good code, this does not guarantee that the sampled code is
bug-free and runnable. In ORSO, we employ a simple rejection sampling technique to construct sets
of only valid reward functions with high probability. We also note that the initial set of generated re-
ward functions in ORSO might not contain an effective reward function.3 To address this limitation,
we introduce a mechanism for improving the reward function set through iterative resampling and
in-context evolution of new setsRK . We provide more details on the rejection sampling mechanism
and the iterative refinement process Appendix F.

Online Reward Selection Algorithms We evaluate multiple reward selection algorithms from
the multi-armed bandit and online model selection literature: explore-then-commit (ETC), ε-greedy
(EG), upper confidence bound (UCB) (Auer, 2002), exponential-weight algorithm for exploration
and exploitation (EXP3) (Auer et al., 2002), and doubling data-driven regret balancing (D3RB)
(Dann et al., 2024). We provide the pseudocode and the hyperparameters used for each selection
algorithm in Appendix G. For every environment, we set the number of iterations N in Algorithm 1
used to train the policy before we select a different reward function to N = n iters/100, where
n iters is the number of iterations used to train the baselines, i.e., we perform at least 100 itera-
tions of online reward selection before the iterative resampling.

5.2 RESULTS

In this section, we present the experimental results of ORSO. We evaluate ORSO’s ability to effi-
ciently select reward functions with varying budget constraints and reward function set size K. We
consider budgets B ∈ {5, 10, 15} × n iters and sample sizes K ∈ {4, 8, 16}.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized # Iterations

0.0

0.5

1.0

%
 o

f H
um

an
 R

ew
ar

d

2 × faster

Cart
po

le

Bala
nc

e Ant

Hum
an

oid

Alle
gro

Sha
do

w
0.0

0.5

1.0

1.5

Ta
sk

 R
ew

ar
d

5 10 15
Budget

0.50

0.75

1.00

1.25

Ta
sk

 R
ew

ar
d

No Design Human Naive ORSO (D3RB)

Figure 2: Left: ORSO achieves human-level performance in approximately half the time compared
to the naive strategy. The curves represent the average percentage of human-designed reward func-
tions across multiple tasks and iteration budget constraints. Middle: Normalized task rewards av-
eraged over various iteration budgets and seeds. ORSO consistently matches or surpasses human-
designed reward functions. The normalized task reward is averaged over different iteration budgets
and seeds. Right: Normalized task rewards across different iteration budgets. ORSO effectively
scales with increased iterations, with values averaged over multiple tasks and seeds. Shaded areas
and vertical bars in the plots indicate 95% confidence intervals.

ORSO is Twice as Fast as the Naive Selection Strategy In Figure 2 (left), we plot the number
of iterations required to reach different percentages of the performance achieved by policies trained
with human-engineered reward functions. The y-axis represents the percentage of human perfor-
mance, while the x-axis shows progress in the selection algorithm, normalized so that a value of
1.0 corresponds to B × n iters for each task. Results are aggregated across 6 tasks, 3 different
budgets, and 3 reward function sets, with 3 seeds per configuration, totaling 162 runs.

3An effective reward function is one that leads to high performance with respect to the task reward r when
used for training.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We observe that ORSO with D3RB achieves human-level performance more than twice as fast as
the naive selection strategy. The naive selection strategy on average does not manage to select an
effective reward function within the limited budget. Detailed per-task and per-budget results are
reported in Appendix H.

ORSO Surpasses Human-Designed Reward Functions Not only does ORSO reach human-level
performance quickly, but it also has the potential to surpass it. Figure 2 (middle) illustrates the aver-
age performance of ORSO compared to human-designed reward functions, the task reward function,
and the naive selection strategy across different tasks. We observe that ORSO consistently matches
or exceeds human-designed rewards, particularly in more complex environments. Again, the results
are averaged over multiple seeds and configurations. The full breakdown is reported in Appendix H.

ORSO Scales with Budget Figure 2 (right) demonstrates how ORSO’s performance scales with
increasing budgets. While both ORSO and naive selection benefit from larger budgets, ORSO is
consistently superior and surpasses human-designed rewards when B ≥ 10.

ORSO Can Reach Human Performance with Fewer GPUs One advantage of the naive selection
strategy is that it can be easily parallelized on many GPUs. In Figure 3 we show the estimated time
required to achieve the same performance level as policies trained with human-designed reward
functions, based on the number of GPUs. Notably, ORSO performs at a comparable speed to the
naive selection strategy even when the latter leverages up to 16 GPUs in parallel, achieving similar
performance within the same timeframe. It should be noted that the plotted time is an approximation
based on the time needed to complete one iteration of PPO for each task. We report the results
for all computational budgets in the Appendix H. We also note that one could in principle run
ORSO on multiple GPUs in parallel and combie the final results, which would likely lead to further
improvements in the efficiency of reward selection.

1 2 4 8 16
Number of GPUs

0

1

2

3

4

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Ant (B = 15)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

2

4

6

8

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Humanoid (B = 15)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

10

20

30

40

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Allegro Hand (B = 15)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

10

20

30

40

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Shadow Hand (B = 15)

Naive
ORSO (D3RB)

Figure 3: Median time to human-level performance as a function of number of parallel GPUs.
Policies trained with ORSO can achieve the same performance as policies trained with the human-
engineered reward functions with up to 16× fewer GPUs.

5.3 ABLATION STUDY

Choice of Selection Algorithm In Figure 4, we compare different selection algorithms for ORSO.
We find that D3RB performs best on average, consistently outperforming other algorithms, followed
closely by Exp3. These algorithms allow ORSO to balance exploration and exploitation effectively,
leading to superior performance compared to more greedy approaches like UCB, ETC, and EG.
Interestingly, even simpler strategies like EG and ETC substantially outperform the naive strategy,
which highlights the importance of properly balancing exploration and exploitation for efficient
reward selection. By framing reward design as an exploration-exploitation problem, we demonstrate
that even basic strategies offer considerable gains over static, inefficient methods.

Regret of Different Selection Algorithms To further quantify ORSO’s performance, we analyze
its regret with respect to human-engineered reward functions.4 This formulation is motivated by two
key considerations. First, we lack access to the true optimal policy π⋆. Second, the PPO hyperpa-
rameters used in our experiments were specifically tuned for the human-engineered reward function,
making the policy trained with it a reasonable proxy for the optimal policy. Regret provides a useful

4The normalized cumulative regret with respect to the human-engineered reward functions is defined as
1
T

∑T
t=1

Human−J (π⋆
t)

Human .

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Normalized # Iterations

0.00

0.25

0.50

0.75

1.00

%
 o

f H
um

an
 R

ew
ar

d

D3RB EXP3 UCB ETC EG Naive
0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d

No Design
Human

Naive
EG

ETC
UCB

EXP3
D3RB

Figure 4: Comparison of different rewards selection algorithms for ORSO. Left: Number of itera-
tions necessary for human-level performance. Right: Average normalized task reward for different
selection algorithms. We provide a more granular breakdown in Appendix H.

metric for understanding how much performance is lost due to suboptimal reward selection over
time. Lower regret indicates that ORSO quickly identifies high-quality reward functions, reducing
the number of iterations wasted on poorly performing ones. Figure 5 shows the normalized cu-
mulative regret for different selection algorithms. Notably, ORSO’s regret can become negative,
indicating that it finds reward functions that outperform the human baseline.

0 1 2 3 4 5
Budget

0.0

0.1

0.2

0.3

0.4

C
um

ul
at

iv
e

R
eg

re
t

B = 5

0 2 4 6 8 10
Budget

0.0

0.1

0.2

0.3

B = 10

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Budget

0.0

0.1

0.2

0.3

B = 15

Naive ORSO (EG) ORSO (ETC) ORSO (UCB) ORSO (EXP3) ORSO (D3RB)

Figure 5: Regret of different selection algorithms with varying budgets. We recall that a budget B
indicates that the ORSO has been run for B × n iters iterations.

ORSO is Effective with Large Reward Sets We also evaluate ORSO with different selection
algorithms when we are provided with a fixed but large set of reward functions. Specifically, we
conduct experiments on the ANT task using ORSO with a budget B = 15 and candidate shaping
reward sets of sizes K ∈ {48, 96}.

0 5000 10000 15000 20000
Iteration

0

5

10

C
um

M
ax

 T
as

k
R

ew
ar

d K = 48

0 5000 10000 15000 20000
Iteration

0

5

10

C
um

M
ax

 T
as

k
R

ew
ar

d K = 96

Uniform EG ETC UCB EXP3 D3RB Human

Figure 6: Comparison of multiple selection algorithms for the ANT task with a high number of
reward function candidates. The shaded areas represent 95% confidence intervals over 5 different
seeds. The order of the reward functions is randomized for each seed.

In this setting – with a fixed budget, but no iterative improvement – algorithms that commit to a
selection earlier can allocate more iterations to training on the chosen reward functions. On the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

other hand, exploring for longer may allow us to find the optimal reward function but potentially
leave insufficient time for training.

As illustrated in Figure 6, D3RB consistently identifies and selects an effective reward function
from the set. In contrast, “greedier” methods such as ε-greedy, explore-then-commit, and UCB can
depend more on the stochasticity of training and on average do not surpass human-designed reward
functions. Exp3 and uniform exploration, while more exploratory, may overemphasize exploration
at the expense of exploiting promising reward functions, leading to suboptimal performance.

6 RELATED WORK

Traditionally, researchers manually specified reward components and tuned their coefficients (Ng
et al., 1999; Margolis & Agrawal, 2022; Liu et al., 2024), a method that often requires significant
domain expertise and involves numerous iterations of trial and error.

Recent work has increasingly explored the potential of foundation models in reward design. Ap-
proaches like L2R (Yu et al., 2023) leverage large language models to generate reward functions by
converting natural language descriptions into code using predefined reward API primitives, though
this requires notable effort in manual template design. Other works such as EUREKA (Ma et al.,
2024) and Text2Reward (Xie et al., 2024) use language models to generate dense reward functions
based on task descriptions and environment codes.

Foundation models have also been directly employed as reward models. Researchers have used
cosine similarity of CLIP embeddings (Rocamonde et al., 2024), vision language models for trajec-
tory preference labeling (Wang et al., 2024), and large language models for constructing preference
datasets and intrinsic reward modeling (Klissarov et al., 2024; Kwon et al., 2023).

In parallel, research on online model selection has addressed the challenge of dynamically choosing
suitable models in sequential decision-making environments (Agarwal et al., 2017; Foster et al.,
2019; Pacchiano et al., 2020; Lee et al., 2021).

A more comprehensive review of related work is provided in Appendix A.

7 CONCLUSION

In this paper, we introduce ORSO, a novel approach for reward design in reinforcement learning
that significantly accelerates the design of shaped reward functions. We find that even simple strate-
gies like ε-greedy and explore-then-commit yield substantial improvements over naive selection,
suggesting that reward design can be effectively framed as a sequential decision problem. ORSO
reduces both time and computational costs by more than half compared to earlier methods, making
reward design accessible to a wider range of researchers. What once required a larger amount of
computational resources can not be done on a single desktop in a reasonable time. By formalizing
the reward design problem and providing a theoretical analysis of ORSO’s regret when using the
D3RB algorithm, we also contribute to the theoretical understanding of reward design in RL.

Looking ahead, our work opens several promising directions for future research, including the devel-
opment of more sophisticated exploration strategies tailored for reward design, and the application
of our approach to more complex, real-world RL problems.

7.1 LIMITATIONS AND FUTURE WORK

A key limitation of ORSO is its reliance on a predefined task reward, which is typically straightfor-
ward to construct for simpler tasks but can be challenging for more complex ones or for tasks that
include a qualitative element to them, e.g., making a quadruped walk with a “nice” gait. Future work
could explore eliminating the need for such hand-crafted task rewards by leveraging techniques that
translate natural language instructions directly into evaluators, potentially using vision-language
models, similarly to Wang et al. (2024); Rocamonde et al. (2024). Another alternative is to use
preference data to learn a task reward model (Christiano et al., 2017; Zhang & Ramponi, 2023) and
use the latter as a signal for the model selection algorithm.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E Schapire. Corralling a band of
bandit algorithms. In Conference on Learning Theory, pp. 12–38. PMLR, 2017.

Pulkit Agrawal. The task specification problem. In 5th Annual Conference on Robot Learn-
ing, Blue Sky Submission Track, 2021. URL https://openreview.net/forum?id=
cBdnThrYkV7.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multi-
armed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Eric R Chen, Zhang-Wei Hong, Joni Pajarinen, and Pulkit Agrawal. Redeeming intrinsic re-
wards via constrained policy optimization. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=36Yz37cEN_Q.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Chris Dann, Claudio Gentile, and Aldo Pacchiano. Data-driven online model selection with regret
guarantees. In International Conference on Artificial Intelligence and Statistics, pp. 1531–1539.
PMLR, 2024.

Dylan J Foster, Akshay Krishnamurthy, and Haipeng Luo. Model selection for contextual bandits.
Advances in Neural Information Processing Systems, 32, 2019.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and JoÃĢo GM AraÃšjo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
feedback. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=tmBKIecDE9.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=10uNUgI5Kl.

Jonathan Lee, Aldo Pacchiano, Vidya Muthukumar, Weihao Kong, and Emma Brunskill. Online
model selection for reinforcement learning with function approximation. In International Con-
ference on Artificial Intelligence and Statistics, pp. 3340–3348. PMLR, 2021.

Minghuan Liu, Zixuan Chen, Xuxin Cheng, Yandong Ji, Ri-Zhao Qiu, Ruihan Yang, and Xiaolong
Wang. Visual whole-body control for legged loco-manipulation. In 8th Annual Conference on
Robot Learning, 2024. URL https://openreview.net/forum?id=cT2N3p1AcE.

11

https://openreview.net/forum?id=cBdnThrYkV7
https://openreview.net/forum?id=cBdnThrYkV7
https://openreview.net/forum?id=36Yz37cEN_Q
https://openreview.net/forum?id=tmBKIecDE9
https://openreview.net/forum?id=10uNUgI5Kl
https://openreview.net/forum?id=cT2N3p1AcE

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=IEduRUO55F.

A Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra.
Benchmarking reinforcement learning algorithms on real-world robots. In Conference on robot
learning, pp. 561–591. PMLR, 2018.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac gym: High
performance GPU based physics simulation for robot learning. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021. URL
https://openreview.net/forum?id=fgFBtYgJQX_.

Gabriel B. Margolis and Pulkit Agrawal. Walk these ways: Tuning robot control for generalization
with multiplicity of behavior. In 6th Annual Conference on Robot Learning, 2022. URL https:
//openreview.net/forum?id=52c5e73SlS2.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999.

Aldo Pacchiano, My Phan, Yasin Abbasi Yadkori, Anup Rao, Julian Zimmert, Tor Lattimore, and
Csaba Szepesvari. Model selection in contextual stochastic bandit problems. Advances in Neural
Information Processing Systems, 33:10328–10337, 2020.

Younghyo Park, Gabriel B. Margolis, and Pulkit Agrawal. Position: Automatic environment shaping
is the next frontier in RL. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=dslUyy1rN4.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-
language models are zero-shot reward models for reinforcement learning. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=N0I2RtD8je.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erickson.
RL-VLM-f: Reinforcement learning from vision language foundation model feedback. In Forty-
first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=YSoMmNWZZx.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang,
and Tao Yu. Text2reward: Reward shaping with language models for reinforcement learning.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=tUM39YTRxH.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gonzalez
Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian Ichter, Ted
Xiao, Peng Xu, Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie Tan, Yuval Tassa,
and Fei Xia. Language to rewards for robotic skill synthesis. In 7th Annual Conference on Robot
Learning, 2023. URL https://openreview.net/forum?id=SgTPdyehXMA.

Chen Bo Calvin Zhang and Giorgia Ramponi. HIP-RL: Hallucinated inputs for preference-
based reinforcement learning in continuous domains. In ICML 2023 Workshop The Many
Facets of Preference-Based Learning, 2023. URL https://openreview.net/forum?
id=PRm1KxRrWI.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

12

https://openreview.net/forum?id=IEduRUO55F
https://openreview.net/forum?id=fgFBtYgJQX_
https://openreview.net/forum?id=52c5e73SlS2
https://openreview.net/forum?id=52c5e73SlS2
https://openreview.net/forum?id=dslUyy1rN4
https://openreview.net/forum?id=N0I2RtD8je
https://openreview.net/forum?id=N0I2RtD8je
https://openreview.net/forum?id=YSoMmNWZZx
https://openreview.net/forum?id=YSoMmNWZZx
https://openreview.net/forum?id=tUM39YTRxH
https://openreview.net/forum?id=tUM39YTRxH
https://openreview.net/forum?id=SgTPdyehXMA
https://openreview.net/forum?id=PRm1KxRrWI
https://openreview.net/forum?id=PRm1KxRrWI

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A RELATED WORK

Reward Design for RL Designing effective reward functions for reinforcement learning has been
a long-standing challenge. Several approaches have been proposed to tackle it.

Traditionally, researchers manually specify reward components and tune their coefficients (Ng et al.,
1999; Margolis & Agrawal, 2022; Liu et al., 2024). This method often demands significant domain
expertise and can be highly resource-intensive, involving numerous iterations of trial and error in
designing reward functions, training policies, and adjusting reward parameters.

Another approach is to learn reward functions from expert demonstrations via methods like appren-
ticeship learning (Abbeel & Ng, 2004) and maximum entropy inverse RL (Ziebart et al., 2008).
While these methods can capture complex behaviors, they often rely on high-quality demonstrations
and may struggle in environments where such data is scarce or noisy.

Preferences can also be used to learn reward functions (Zhang & Ramponi, 2023; Christiano et al.,
2017). This approach involves collecting feedback in the form of preferences between different
trajectories, which are then used to infer a reward function that aligns with the desired behavior.
This method is particularly useful in scenarios where it is difficult to explicitly define a reward
function or obtain expert demonstrations, as it allows for more intuitive and accessible feedback
from users.

Foundation Models and Reward Functions Recent work has explored the use of large lan-
guage/vision models (LL/VMs) to aid in the reward design process. L2R (Yu et al., 2023) leverages
large language models to generate reward functions for RL tasks by first creating a natural language
“motion description” and then converting it into code using predefined reward API primitives. While
innovative, L2R has notable limitations: it requires significant manual effort in designing templates
and primitives and is constrained by the latter. EUREKA (Ma et al., 2024) and Text2Reward (Xie
et al., 2024) use LLMs to generate dense reward functions for RL given the task description in
natural language and the environment code.

Foundation models have also been directly used as reward models. Rocamonde et al. (2024) uses the
cosine similarity of CLIP embeddings of language instructions and renderings of the state as a state-
only reward model. Similarly, Wang et al. (2024) automatically generates reward functions for RL
using a vision language model to label pairs of trajectories with preference, given a task description.
Motif (Klissarov et al., 2024) first constructs a pair-wise preferences dataset using a large language
model (LLM), learns a preference-based intrinsic reward model with the Bradley-Terry (Bradley &
Terry, 1952) model, and then uses this reward model to train a reinforcement learning agent. Kwon
et al. (2023) uses a similar approach, where an LLM is used during training to evaluate an RL policy,
given a few examples of successful behavior or a description of the desired behavior.

Online Model Selection The problem of model selection in sequential decision-making environ-
ments has gained significant attention in recent years (Agarwal et al., 2017; Foster et al., 2019; Pac-
chiano et al., 2020; Lee et al., 2021). This area of research addresses the challenge of dynamically
choosing the most suitable model or algorithm from a set of candidates while learning.

Agarwal et al. (2017) introduced CORRAL, a method to combine multiple bandit algorithms in a
master algorithm. Foster et al. (2019) proposed model selection guarantees for linear contextual
bandits. Pacchiano et al. (2020) extend the CORRAL algorithm and propose Stochastic CORRAL.
Lastly, Lee et al. (2021) propose Explore-Commit-Eliminate (ECE), an algorithm for model selec-
tion in RL with function approximation. A common requirement across all these approaches is the
need to know the regret guarantees of the base algorithms.

Our work is closely related to Dann et al. (2024), which removes the need for known regret guaran-
tees and instead uses realized regret bounds for the base learners. In our setting, the set of models
comprises the reward functions set and their corresponding policies.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B ONLINE MODEL SELECTION

In this section, we introduce the model selection problem and some necessary notation modified
from Dann et al. (2024) for our analysis.

We consider a general sequential decision-making process consisting of a meta learner interacting
with an environment over T ∈ N rounds via a set of base learners. At each round of interaction
t = 1, 2, . . . , T , the meta learner selects a base learner bt and after executing bt, the environment
returns a model selection reward Rt ∈ R. The objective of the meta learner is to sequentially choose
base learners b1, . . . , bT to maximize the expected cumulative sum of model selection rewards, i.e.,
maxE

[∑T
t=1 Rt

]
. We denote by vb = E[R | b] the expected model selection reward, given that

the learner chooses base learner b, i.e., the value of base learner b. The total model selection reward
accumulated by the algorithm over T rounds is denoted by uT =

∑T
t=1 v

bt . The objective is to
minimize the cumulative regret after T rounds of interaction,

Reg(T) :=

T∑
t=1

reg(bt) =

T∑
t=1

v⋆ − vbt , (5)

where v⋆ is the value of the optimal base learner.

In our setting, each base learner corresponds to a reward function r and its associated policy π,
i.e., b = (f, π). In this case, choosing to execute base learner b means training with algorithm A
starting from checkpoint π and using RL reward function f . The model selection reward R is then
the evaluation of the trained policy under the task reward r, i.e., J (π). The regret of base learner
b can therefore be written as reg(b) = v⋆ − vb = J (π⋆) − J (π), where π⋆ is the optimal policy.
Therefore the objective becomes minimizing

Reg(T) =

T∑
t=1

J (π⋆)− J
(
πfit

ni
t

)
. (6)

We note an important difference between the online model selection problem and the multi-armed
bandit (MAB) problem. In model selection, the meta learner interacts with an environment over
T rounds, selecting from K base learners. In each round t, the meta learner picks a base learner
it ∈ [K] (index of base learner chosen at step t) and follows its policy, updating the base learner’s
state with new data. Unlike MAB problems, where mean rewards are stationary, the mean rewards
here are non-stationary due to the stateful nature of base learners (the base learners are learning as
they see more data), making the design of effective model selection algorithms challenging.

Notation The policy associated with base learner i at round t is denoted by πi
t, so that πt = πit

t .
We denote the number base learner i has been played up to round t as ni

t =
∑t

ℓ=1 1 {iℓ = i} and
the total cumulative reward for learner i as ui

t =
∑t

ℓ=1 1 {iℓ = i} vπi
t , where we use vπ

i
t = vb

i
t to

highlight that the policy associated with base learner i changes over time, but the reward function
used for RL does not. We denote the internal clock for each base learner with a subscript (k) such
that πi

(k) is the policy of learner i when chosen for the k-th time, i.e., πi
t = πi

(ni
t)

.

Remark 1. The cumulative regret in Equation (6) is an upper bound for the model selection cumu-
lative regret.

Proof. This is straightforward to see. Let us first note that, by definition, for all t ∈ [T], we have

J (π⋆
t) ≥ J

(
πfit

ni
t

)
. (7)

Therefore,
T∑

t=1

J (π⋆)− J (π⋆
t) ≤

T∑
t=1

J (π⋆)− J
(
πfit

ni
t

)
, (8)

i.e.,
MReg(T) ≤ Reg(T), (9)

concluding the proof.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C ORSO WITH DOUBLING DATA-DRIVEN REGRET BALANCING

Here, we present the complete ORSO algorithm with Doubling Data-Driven Regret Balancing
(D3RB) as the model selection algorithm.

D3RB is built upon the idea of regret balancing, which aims to optimize the performance of multiple
models by balancing their respective regrets. Imagine weighing two models on a balance scale where
the “weight” corresponds to their regret; the goal is to keep the regret of both models balanced. This
approach ensures that models with higher regret rates are selected less frequently, while those with
lower regret rates are favored.

Concretely, regret balancing involves associating each learner with a candidate regret bound. The
model selection algorithm then competes against the regret bound of the best-performing learner
among those that are well-specified – meaning their realized regret stays within their candidate
bounds. Traditional approaches often rely on known expected regret bounds. In contrast, D3RB
focuses on realized regret, allowing the model selection algorithm to compete based on the actual
regret outcomes of each base learner. The algorithm dynamically adjusts the regret bounds in a
data-driven manner, adapting to the realized regret of the best-performing learner over time. This
approach overcomes the limitation of needing known regret bounds, which are often unavailable for
complex problems.

D3RB maintains three estimators for each base learner: regret coefficients d̂it, average rewards ûi
t/n

i
t

and balancing potentials ϕi
t. At each step t, D3RB selects the base learner with the lower balancing

potential and executes it. Then it performs the misspecification test in Equation (10) to check if
the estimated regret coefficient for base learner it is consistent with the observed data. If the test
triggers, i.e., the d̂it is too small, then the algorithm doubles it. Lastly, D3RB sets the balancing

potential ϕi
t to d̂itt

√
nit
t .

ûit
t

nit
t

+
d̂itt−1

√
nit
t

nit
t

+ c

√√√√ ln
K lnn

it
t

δ

nit
t

< max
j∈[K]

ûj
t

nj
t

− c

√√√√ ln
K lnnj

t

δ

nj
t

(10)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 2 ORSO with D3RB

Require: MDPM = (S,A, P, r, ρ0), algorithm A, generator G, minimum regret coefficients dmin,
failure probability δ

1: Sample K reward functionsRK =
{
f1, . . . , fK

}
∼ G

2: Initialize K policies
{
π1, . . . , πK

}
3: Initialize balancing potentials ϕi

1 = dmin for all i ∈ [K]

4: Initialize regret coefficients d̂i0 = dmin for add i ∈ [K]
5: Initialize counts ni

0 = 0 and total values ûi
0 = 0 for all i ∈ [K]

6: for t = 1, 2, . . . , T do
7: Select a base learner it ∈ [K] ∈ argmini∈[K] ϕ

i
t

8: Update πit ← Afit (Mit , N, πit)

9: Evaluate Rt = J
(
πit
)
← Eval(πit)

10: // Update necessary variables
11: Set ni

t = ni
t−1, û

i
t = ûi

t−1, d̂
i
t = d̂it−1, and ϕi

t+1 = ϕi
t for all i ∈ [K] \ {it}

12: Update statistics for current learner nit
t = nit

t−1 + 1 and ûit
t = ûit

t−1 +Rt

13: Perform misspecification test

ûit
t

nit
t

+
d̂itt−1

√
nit
t

nit
t

+ c

√√√√ ln
K lnn

it
t

δ

nit
t

< max
j∈[K]

ûj
t

nj
t

− c

√√√√ ln
K lnnj

t

δ

nj
t

(11)

14: if test is triggered then
15: Double the regret coefficient d̂i1t ← 2d̂itt−1
16: else
17: Keep the regret coefficient unchanged d̂i1t ← d̂itt−1
18: end if
19: Update the balancing potential ϕit

t+1 ← d̂itt

√
nit
t

20: end for
21: // Best policy and reward function under the task reward
22: return π⋆

T , f
⋆
T = argmaxi∈[K] J (πi)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D PROOF OF LEMMA 4.4

In this section, we present the complete proof of Lemma 4.4. We will start by showing that when
Assumption 4.2 holds, then with probability at least 1− δ, the estimated regret coefficient of learner
i⋆ will never double provided that dmin ≥ c, where c is the confidence multiplier in D3RB.

Lemma D.1 (Non-doubling regret coefficient). When E holds, and algorithm D3RB is in use

d̂i⋆t = dmin and ni
T ≤ ni⋆

T + 1 for all i ∈ [K] (12)

for all t ∈ N.

Proof. In order to show this result it is sufficient to show that when E holds, algorithm i⋆ does not
undergo any doubling event. Doubling of the regret coefficients only happens when the misspecifi-
cation test triggers for algorithm i⋆.

We will show this by induction.

Base Case (t = 1) At t = 1, for all algorithms i ∈ [K]:

• d̂i1 = dmin (by initialization)

• ni
1 = 1 if i is the first algorithm chosen, 0 otherwise

Therefore ni
1 ≤ ni⋆

1 + 1 holds

Inductive Step Inductive hypothesis: assume that for some t ≥ 1:

• d̂i⋆t−1 = dmin

• ni
t−1 ≤ ni⋆

t−1 + 1 for all i ∈ [K]

We need to show these properties hold for t. Let it = i⋆. When E holds, the left-hand side (LHS) of
D3RB’s misspecification test satisfies

ûit
t

nit
t

+
d̂itt−1

√
nit
t

nit
t

+ c

√√√√ ln
K lnn

it
t

δ

nit
t

=
ûi⋆
t

ni⋆
t

+
d̂i⋆t−1

√
ni⋆
t

ni⋆
t

+ c

√√√√ ln
K lnni⋆

t

δ

ni⋆
t

(it = i⋆)

≥ ui⋆
t

ni⋆
t

+
d̂i⋆t−1

√
ni⋆
t

ni⋆
t

(event E)

(i)
=

ui⋆
t

ni⋆
t

+
dmin

√
ni⋆
t

ni⋆
t

(13)

where (i) holds because by the induction hypothesis d̂i⋆t−1 = dmin. We will now show that ni⋆
t ≥ nj

t

for all j ∈ [K]. Since by the inductive hypothesis d̂i⋆ℓ = dmin for all ℓ ≤ t − 1, the potential

ϕi⋆
ℓ = dmin

√
ni⋆
ℓ−1 for all ℓ ≤ t.

For i ∈ [K] let t(i), be the last time – before time t – algorithm i was played. For i ̸= i⋆ we have
t(i) < t. Since i was selected at time t(i), by definition of the potentials,

d̂i⋆t(i)−1

√
ni⋆
t(i)−1 = dmin

√
ni⋆
t(i)−1 ≥ d̂it(i)−1

√
ni
t(i)−1 ≥ dmin

√
ni
t(i)−1

so that ni⋆
t(i)−1 ≥ ni

t(i)−1. Since both ni⋆
t = ni⋆

t(i)−1 + 1 and ni
t = ni

t(i)−1 + 1 we conclude that

ni⋆
t ≥ ni

t.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We now turn our attention to the right-hand side (RHS) of D3RB’s misspecification test. When E
holds, the RHS of D3RB’s misspecification test satisfies,

max
j∈[K]

ûj
t

nj
t

− c

√√√√ ln
K lnnj

t

δ

nj
t

≤ max
j∈[K]

uj
t

nj
t

(i)

≤ max
j∈[K]

ui⋆

(nj
t)

nj
t

(ii)

≤ ui⋆
t

ni⋆
t

(14)

where inequalities (i) and (ii) hold because of Assumption 4.2. Combining inequalities 13 and 14
we conclude the misspecification test of algorithm D3RB will not trigger. Thus, d̂i⋆t remains at dmin

and for all i ∈ [K], ni
t ≤ ni⋆

t + 1 continues to hold. This finalizes the proof.

We are now ready to prove the regret bound on the base learners given in Lemma 4.4.

Lemma 4.4. Under event E and Assumption 4.2, with probability 1− δ, the regret of all learners i
is bounded in all rounds T as

ni
T∑

t=1

reg(πi
(t)) ≤ 6di⋆T

√
ni⋆
T + 1 + 5c

√
(ni⋆

T + 1) ln
K lnT

δ
, (4)

where di⋆T = di⋆
(ni⋆

T)
.

Proof. Consider a fixed base learner i and time horizon T , and let t ≤ T be the last round where i
was played but the misspecification test did not trigger. If no such round exists, then set t = 0. By
Corollary 9.1 in Dann et al. (2024), i can be played at most 1 + log2

d̄i
T

dmin
times between t and T ,

where d̄iT = maxℓ≤T diℓ. Thus,

ni
T∑

k=1

reg
(
πi
(k)

)
≤

ni
t∑

k=1

reg
(
πi
(k)

)
+ 1 + log2

d̄iT
dmin

.

If t = 0, then the desired statement holds. Thus, it remains to bound the first term in the RHS above
when t > 0. Since i = it and the test did not trigger we have, for any base learner j with nj

t > 0,

ni
t∑

k=1

reg
(
πi
(k)

)
= ni

tv
⋆ − ui

t (definition of regret)

= ni
tv

⋆ − ni
t

nj
t

uj
t +

ni
t

nj
t

uj
t − ui

t

=
ni
t

nj
t

(
nj
tv

⋆ − uj
t

)
+

ni
t

nj
t

uj
t − ui

t

=
ni
t

nj
t

 nj
t∑

k=1

reg
(
πj
(k)

)+
ni
t

nj
t

uj
t − ui

t (definition of regret)

≤ ni
t

nj
t

(
djt

√
nj
t

)
+

ni
t

nj
t

uj
t − ui

t (definition of regret rate)

=

√
ni
t

nj
t

djt

√
ni
t +

ni
t

nj
t

uj
t − ui

t.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

We now focus on j = i⋆ and use the balancing condition in Lemma 9.2 in Dann et al. (2024) to

bound the first factor
√
ni
t/n

i⋆
t . This condition gives that ϕi

t+1 ≤ 3ϕi⋆
t+1. Since both ni⋆

t > 0 and

ni
t > 0, we have ϕi

t+1 = d̂it
√
ni
t and ϕi⋆

t+1 = d̂i⋆t

√
ni⋆
t . Thus, we get√

ni
t

ni⋆
t

=

√
ni
t

ni⋆
t

· d̂
i
t

d̂i⋆t
· d̂

i⋆
t

d̂it
=

ϕi
t+1

ϕi⋆
t+1

· d̂
i⋆
t

d̂it
≤ 3

d̂i⋆t

d̂it
≤ 3, (15)

where the last inequality holds because of Lemma D.1 and because d̂it ≥ dmin.

Plugging this back into the expression above and setting j = i⋆, we have

ni
t∑

k=1

reg
(
πi
(k)

)
≤ 3di⋆t

√
ni
t +

ni
t

ni⋆
t

ui⋆
t − ui

t.

To bound the last two terms, we use the fact that the misspecification test did not trigger in round t.
Therefore,

ui
t ≥ ûi

t − c

√
ni
t ln

K lnni
t

δ
(event E)

= ni
t

 ûi
t

ni
t

+ c

√
ln

K lnni
t

δ

ni
t

+
d̂it
√
ni
t

ni
t

− 2c

√
ni
t ln

K lnni
t

δ
− d̂it

√
ni
t

≥ ni
t

ni⋆
t

ûi⋆
t −

√
ni
t

ni⋆
t

c

√
ni
t ln

K lnni⋆
t

δ
− 2c

√
ni
t ln

K lnni
t

δ
− d̂it

√
ni
t. (test not triggered)

Rearranging terms and plugging this expression in the bound above gives

ni
t∑

k=1

reg(πi
(k)) ≤ 3di⋆t

√
ni
t +

√
ni
t

ni⋆
t

c

√
ni
t ln

K lnni⋆
t

δ
+ 2c

√
ni
t ln

K lnni
t

δ
+ d̂it

√
ni
t

≤ 3di⋆t

√
ni
t + 3c

√
ni
t ln

K lnni⋆
t

δ
+ 2c

√
ni
t ln

K lnni
t

δ
+ d̂it

√
ni
t (Equation (15))

≤ 3di⋆t

√
ni
t + 3c

√
ni
t ln

K lnni⋆
t

δ
+ 2c

√
ni
t ln

K lnni
t

δ
+ 3d̂i⋆t

√
ni⋆
t

(Equation (15))

≤ 3di⋆t

√
ni
t + 3d̂i⋆t

√
ni⋆
t + 5c

√
ni
t ln

K ln t

δ
(max(ni

t, n
i⋆
t) ≤ t)

≤ 3di⋆t

√
ni
t + 3dmin

√
ni⋆
t + 5c

√
ni
t ln

K ln t

δ
(Lemma D.1)

Finally, Lemma D.1 also implies ni
t ≤ ni⋆

t + 1 and since dmin ≤ di⋆t ,

ni
t∑

k=1

reg(πi
(k)) ≤ 6di⋆t

√
ni⋆
t + 1 + 5c

√
(ni⋆

t + 1) ln
K ln t

δ
.

The statement follows by setting t = T .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E REWARD FUNCTIONS DEFINITIONS

In this section, we present the definition of the human-engineered reward functions and the task
reward functions used to evaluate the generated reward in Table 1. The task reward functions are the
same as the ones used in Ma et al. (2024).

Table 1: Task reward functions definitions.

ENVIRONMENT TASK REWARD

CARTPOLE
∑

1 {agent is alive}
BALLBALANCE

∑
1 {agent is alive}

ANT current distance - previous distance
HUMNAOID current distance - previous distance
ALLEGROHAND

∑
1 {rotation distance < 0.1}

SHADOWHAND
∑

1 {rotation distance < 0.1}

The human-designed reward functions from (Makoviychuk et al., 2021) are

• CARTPOLE

r =
(
1.0− pole angle2 − 0.01 · |cart vel| − 0.005 · |pole vel|

)
.

The reward is additionally multiplied by −2.0 if |cart pos| > reset dist and multi-
plied by −2.0 once again if pole angle > π

2 .

• BALLBALANCE

r = pos reward× speed reward =
1

1 + ball dist
× 1

1 + ball speed
,

where

ball dist =
√
ball pos x2 + ball pos y2 + (ball pos z− 0.7)2,

where 0.7 is the desired height above the ground, and

ball speed = ∥ball velocity∥2 .

• ANT and HUMNAOID

r = rprogress + ralive × 1 {torso height ≥ termination height}+ rupright

+ rheading + reffort + ract + rdof

+ rdeath × 1 {torso height ≤ termination height} ,

where

rprogress = current potential - previous potential

rupright = ⟨torso up vector,up vector⟩ > 0.93

rheading = heading vector×
{
1.0, if norm angle to target ≥ 0.8
norm angle to target

0.8 , otherwise

ract = −
∑
∥actions∥2

reffort =

N∑
i=1

actionsi × normalized motor strengthi × dof velocityi

potential = −
∥ptarget − ptorso∥2

dt

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• ALLEGROHAND and SHADOWHAND

r = −10rdist + rrot − 2× 10−4ract

where

rdist = ∥pobj − ptarget∥2

rrot =
1

|rot dist|+ 0.1

ract =
∑
∥actions∥2

rot dist = 2× arcsin
(
max

(
1, ∥qobj, qtarget∥2

))
where q is the quaternion and q is its conjugate.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E.1 REWARD FUNCTIONS SELECTED BY ORSO

We report the best reward function selected by ORSO below. The reward functions are reported as
is, with only the formatting of comments and spacing changed to fit within the box.

Reward Function for Allegro Hand

def compute_gpt_reward(
object_rot: torch.Tensor,
goal_rot: torch.Tensor,
shadow_hand_dof_pos: torch.Tensor,
shadow_hand_dof_vel: torch.Tensor,
actions: torch.Tensor

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:

Configurable parameters
dist_reward_scale = float(2.0)
action_penalty_scale = float(0.05)
success_tolerance = float(0.05)
reach_goal_bonus = float(20.0)

Compute distance to goal rotation using Quaternion distance
q_diff = object_rot - goal_rot
dist_to_goal = torch.norm(q_diff, dim=-1)

Rotation distance reward (scaled)
rot_reward = torch.exp(-dist_reward_scale * dist_to_goal)

Action penalty (scaled)
action_penalty = torch.sum(actions**2, dim=-1)
action_penalty_scaled = action_penalty_scale * action_penalty

Check if the goal has been reached within the tolerance
success_mask = dist_to_goal < success_tolerance
goal_bonus = torch.where(

success_mask,
torch.tensor(reach_goal_bonus, device=dist_to_goal.device),
torch.tensor(0.0, device=dist_to_goal.device)

)

Total reward
reward = rot_reward - action_penalty_scaled + goal_bonus

Dictionary of individual reward components
reward_components = {

"rot_reward": rot_reward,
"action_penalty": action_penalty_scaled,
"goal_bonus": goal_bonus

}

return reward, reward_components

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Reward Function for Ant

def compute_gpt_reward(
root_states: torch.Tensor,
actions: torch.Tensor,
dt: float

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
Device
device = root_states.device

Extract necessary information from the root states
velocity = root_states[:, 7:10] # [vx, vy, vz]
torso_position = root_states[:, 0:3] # [px, py, pz]

Forward velocity along the x-axis
forward_velocity = velocity[:, 0]

Reward component: scaled forward velocity
Retain existing scaling factor
forward_reward = forward_velocity * 2.0

Penalty for large actions
(to avoid unnecessary or jerky movements)
action_penalty = torch.sum(actions**2, dim=-1)
Increased scaling factor for more impact
action_penalty_scaled = action_penalty * 1.0

Desired height range (e.g., 0.45 to 0.55)
target_height = torch.tensor(0.5, device=device)
height_diff = torch.abs(torso_position[:, 2] - target_height)
Adjusted temperature parameter to increase contribution
balance_temperature = 0.1
Retain existing scaling
balance_reward = torch.exp(-height_diff/balance_temperature) * 5.0

Additional penalty for deviation from target angle
(to encourage running straight)
target_angle = torch.tensor(0.0, device=device)
Assuming index 5 is yaw angle
angle_diff = torch.abs(root_states[:, 5] - target_angle)
angle_penalty = -torch.exp(-angle_diff / balance_temperature)

Survival bonus to encourage longer episode lengths
Reduced overall magnitude
survival_bonus = torch.ones_like(forward_velocity) * 0.5

Total reward calculation
reward = forward_reward + balance_reward +

angle_penalty - action_penalty_scaled +
survival_bonus

Dictionary of individual reward components for debugging
reward_components = {

’forward_reward’: forward_reward,
’action_penalty_scaled’: -action_penalty_scaled,
’balance_reward’: balance_reward,
’angle_penalty’: angle_penalty,
’survival_bonus’: survival_bonus

}

return reward, reward_components

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Reward Function for Ball Balance

def compute_gpt_reward(
ball_positions: torch.Tensor,
ball_linvels: torch.Tensor

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
"""
Compute the reward for keeping the ball on the table top
without falling.

Args:
- ball_positions: torch.Tensor of shape (N, 3) giving the

positions of the balls.
- ball_linvels: torch.Tensor of shape (N, 3) giving the

linear velocities of the balls.

Returns:
- reward: the total reward as a torch.Tensor of shape (N,)
- reward_components: dictionary with individual reward components.
"""

Assume ball_positions[:, 2] is the height z of the ball.
target_height = torch.tensor(0.5, device=ball_positions.device)

Reward for staying close to the target height
height_diff = torch.abs(ball_positions[:, 2] - target_height)
Decreased temperature for larger impact
height_temp = torch.tensor(5.0, device=ball_positions.device)
height_reward = torch.exp(-height_diff * height_temp)

Reward for having low linear velocity
ball_linvels_norm = torch.linalg.norm(ball_linvels, dim=1)
Increased scale for more significant impact
vel_scale = torch.tensor(10.0, device=ball_positions.device)
vel_reward = torch.exp(-ball_linvels_norm * vel_scale)

Penalty for being far from the center (in xy-plane)
center_xy = torch.tensor([0, 0], device=ball_positions.device)
xy_diff = torch.linalg.norm(

ball_positions[:, :2] - center_xy,
dim=1

)
Some threshold distance
xy_threshold = torch.tensor(0.5, device=ball_positions.device)
xy_penalty = torch.where(

xy_diff > xy_threshold,
-torch.exp(xy_diff - xy_threshold),
torch.tensor(0.0, device=ball_positions.device)

)

Combine the rewards
total_reward = height_reward + vel_reward + xy_penalty

Compile individual components into a dictionary
reward_components = {

"height_reward": height_reward,
"vel_reward": vel_reward,
"xy_penalty": xy_penalty

}

return total_reward, reward_components

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Reward Function for Cartpole

def compute_gpt_reward(
dof_pos: torch.Tensor,
dof_vel: torch.Tensor,

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:

Extract pole angle and angular velocity
pole_angle = dof_pos[:, 1]
pole_ang_vel = dof_vel[:, 1]

Reward components
Reward for keeping the pole upright
upright_bonus_t = 10.0
upright_bonus = torch.exp(-upright_bonus_t*(pole_angle**2))

Penalty for pole’s angular velocity (to encourage stability)
ang_vel_penalty_t = 0.1
ang_vel_penalty = torch.exp(-ang_vel_penalty_t*(pole_ang_vel**2))

Sum the rewards and penalties
reward = upright_bonus + ang_vel_penalty

Create a dictionary of individual reward components for
debugging or further analysis
reward_components = {

’upright_bonus’: upright_bonus,
’ang_vel_penalty’: ang_vel_penalty,

}

return reward, reward_components

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Reward Function for Humanoid

def compute_gpt_reward(
root_states: torch.Tensor,
targets: torch.Tensor,
dt: float

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
Extract relevant components
velocity = root_states[:, 7:10]

Vector pointing to the target
torso_position = root_states[:, 0:3]
to_target = targets - torso_position
to_target[:, 2] = 0

Normalize to_target to get direction
direction_to_target = torch.nn.functional.normalize(

to_target,
p=2.0,
dim=-1

)

Project velocity onto direction to target to get velocity
component in the right direction
velocity_towards_target = torch.sum(

velocity * direction_to_target,
dim=-1,
keepdim=True

)

Reward for moving towards the target quickly
speed_reward = velocity_towards_target.squeeze()

Apply an exponential transformation to encourage higher speeds
temp_speed = 0.1
speed_reward_transformed = torch.exp(speed_reward/temp_speed)-1.0

Combine rewards (single component in this case)
total_reward = speed_reward_transformed

Reward components in a dictionary form
rewards = {"speed_reward": speed_reward_transformed}

return total_reward, rewards

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Reward Function for Shadow Hand

def compute_gpt_reward(
object_rot: torch.Tensor,
goal_rot: torch.Tensor,
actions: torch.Tensor,
success_tolerance: float,
reach_goal_bonus: float,
rot_reward_scale: float,
action_penalty_scale: float

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:

Rotation Distance Reward with adjusted scaling
rot_dist = torch.norm(object_rot - goal_rot, dim=-1)
New temperature parameter for rotational reward
rot_reward_temp = 3.0
rot_reward = torch.exp(-rot_dist*rot_reward_scale/rot_reward_temp)

Goal Achievement Bonus
goal_reached = rot_dist < success_tolerance
goal_bonus = reach_goal_bonus * goal_reached.float()

Action Penalty with increased scale
Increasing the action penalty scale
increased_aps = 2.0 * action_penalty_scale
action_penalty = torch.sum(actions**2, dim=-1) * increased_aps

Intermediate Reward for making progress towards rotating to goal
interm_steps_temp = 0.5
intermediate_steps_reward = torch.exp(-rot_dist/interm_steps_temp)

Penalty for large deviations from goal orientation
deviation_scale = 0.2
deviation_penalty = rot_dist * deviation_scale

Calculate total reward
total_reward = rot_reward + goal_bonus +

intermediate_steps_reward - action_penalty -
deviation_penalty

Create a dictionary of individual rewards for monitoring
reward_dict = {

"rot_reward": rot_reward,
"goal_bonus": goal_bonus,
"intermediate_steps_reward": intermediate_steps_reward,
"action_penalty": action_penalty,
"deviation_penalty": deviation_penalty

}

return total_reward, reward_dict

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

F IMPLEMENTATION DETAILS

Rejection Sampling While the LLM produces seemingly good code, this does not guarantee that
the sampled code is bug-free and runnable. In ORSO, we employ a simple rejection sampling tech-
nique to construct sets of only valid reward functions with high probability, such that reward func-
tions that cannot be compiled or produce ±∞ or NaN values are discarded.

Given criteria ϕ to be satisfied, our rejection sampling scheme repeats the steps in Algorithm 3 until
we have sampled the desired number, K, of valid reward functions.

Algorithm 3 Rejection Sampling in ORSO

1: Sample a candidate reward function f ∼ G
2: if ϕ(f) is satisfied then
3: Add f to the set of candidate reward functions
4: else
5: Reject reward function f
6: end if

In our practical implementation, checking if criteria ϕ are satisfied consists of instantiating an envi-
ronment with the generated reward function, running a random policy on it, and checking the values
produced by the reward function. If the environment cannot be instantiated or if the values returned
by the reward function are ±∞ or NaN, the reward function is rejected. It is worth making two im-
portant observations. First, this is much computationally cheaper than instantiating the environment
for training because one does not need to initialize large neural networks and can use fewer parallel
environments than the number necessary for training. Moreover, we note that the rejection sampling
mechanism only guarantees a higher probability of a valid reward function code as the policy used
to evaluate the function is random and the optimization process used during the training of an RL
algorithm could still induce undesirable values.

Iterative Improvement of the Reward Function Set In the initial phase of ORSO, the algorithm
generates a set of candidate reward functions RK for the online reward selection and policy opti-
mization step. While this approach is effective if RK contains an effective reward function, any
selection process will fail to achieve a high task reward if the set does not contain a good reward
function. To address this limitation, we introduce a mechanism for improving the reward function
set through iterative resampling and in-context evolution. This is similar to Ma et al. (2024), how-
ever, we introduce some important changes to prevent the in-context evolution from overfitting to
initially suboptimal reward functions.

Resampling is triggered when at least one reward function has been used to train a policy for the
number of iterations specified in the environment configuration or if all the reward functions in the
set incurred too large a regret compared to the previous best policy if the algorithm has undergone
at least one resampling step.

There are several strategies for resampling reward functions, each with its trade-offs. The simplest
approach is to sample new reward functions from scratch, using the same generator G that was used
in the initial phase. However, this method may not provide significant improvement, as it essentially
restarts the search process without leveraging the information gained from the previous iterations of
training.

A more sophisticated approach is to greedily in-context evolve the reward function from the best-
performing candidate so far as is done in Ma et al. (2024). This involves making incremental ad-
justments to the reward function that has shown the most promise, potentially moving it closer to an
optimal reward function. However, while this greedy strategy can lead to improvements, it also has
the risk of overfitting to an initially suboptimal reward function if, for example, the initial set does
not contain effective reward functions.

To mitigate the risk of overfitting, we introduce a simple strategy that allows the algorithm to be
more exploratory. Specifically, we combine greedy evolution with random sampling: half of the
reward functions are evolved in context from the best-performing candidate, while the other half
is sampled from scratch. This approach allows the algorithm to explore new regions of the reward

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

function space while still exploiting the knowledge gained from previous iterations. We provide the
full pseudo-code for ORSO with rejection sampling and iterative improvement in Algorithm 4.

Algorithm 4 ORSO with Rejection Sampling and Iterative Improvement

Require: MDPM = (S,A, P, r, ρ0), algorithm A, generator G, budget T , threshold n iters
1: Sample K valid reward functionsRK =

{
f1, . . . , fK

}
∼ G using Algorithm 3

2: Initialize K policies
{
π1, . . . , πK

}
3: Initialize selection counts NK = {0, . . . , 0}
4: Set t← 1
5: while t ≤ T do
6: Select a model it ∈ [K] according to a selection strategy
7: Update πit ← Afit (M, N, πit)

8: Evaluate J (πit)← Eval(πit)
9: Update selection counts: N it ← N it + 1

10: Update variables (e.g., reward estimates and confidence intervals)
11: if N it ≥ n iters or regret w.r.t. previous best is too high then
12: ResampleRK ∼ G (half in-context evolution, half from scratch)
13: Sample a new set of reward functionsRK =

{
f1, . . . , fK

}
using rejection sampling

14: Reset policies
{
π1, . . . , πK

}
15: Reset selection counts NK = {0, . . . , 0}
16: end if
17: t← t+ 1
18: end while
19: return π⋆

T , f
⋆
T = argmaxi∈[K] J (πi)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

G SELECTION ALGORITHMS AND HYPERPARAMETERS

In this section, we present the pseudocode for all reward selection algorithms used in our experi-
ments with their associated hyperparameters in Table 2.

Algorithm 5 ε-Greedy

Require: Number of arms K, total time T , exploration probability ε
1: Initialize counts ni

0 = 0 and total values ûi
0 = 0 for all i ∈ [K]

2: for t = 1, . . . , T do
3: Select arm

it =

{
argmaxi(û

i
t/n

i
t), with probability 1− ε

i ∼ Uniform([K]), with probability ε

4: Play arm it and observe reward rt
5: Set ni

t = ni
t−1, and ûi

t = ûi
t−1 for all i ∈ [K] \ {it}

6: Update statistics for current learner nit
t = nit

t−1 + 1 and ûit
t = ûit

t−1 + rt
7: end for

Algorithm 6 Explore-then-Commit

Require: Number of arms K, total time T , exploration phase length T0

1: Initialize counts ni
0 = 0 and total values ûi

0 = 0 for all i ∈ [K]
2: // Explore
3: for t = 1, . . . , T0 do
4: Select arm it = (t mod K) + 1
5: Play arm it and observe reward rt
6: Set ni

t = ni
t−1, and ûi

t = ûi
t−1 for all i ∈ [K] \ {it}

7: Update statistics for current learner nit
t = nit

t−1 + 1 and ûit
t = ûit

t−1 + rt
8: end for
9: // Commit

10: i⋆ = argmaxi(u
i
t/n

i
t)

11: for t = T0 + 1 to T do
12: Play arm i⋆ and observe reward rt
13: end for

Algorithm 7 UCB (Upper Confidence Bound)

Require: Number of arms K, total time T , confidence multiplier c
1: Initialize counts ni

0 = 0 and total values ûi
0 = 0 for all i ∈ [K]

2: for t = 1, . . . ,K do
3: Select arm it = t
4: Play arm it and observe reward rt
5: Update statistics for current learner nit

t = nit
t−1 + 1 and ûit

t = ûit
t−1 + rt

6: end for
7: for t = K + 1, . . . , T do
8: Select arm

it = argmax
i

(
ûi
t

ni
t

+ c

√
2
ln t

ni
t

)
9: Play arm it and observe reward rt

10: Set ni
t = ni

t−1, and ûi
t = ûi

t−1 for all i ∈ [K] \ {it}
11: Update statistics for current learner nit

t = nit
t−1 + 1 and ûit

t = ûit
t−1 + rt

12: end for

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Algorithm 8 Exp3 (Exponential-weight algorithm for Exploration and Exploitation)

Require: Number of arms K, total time T , learning rate η
1: Initialize weights wi

0 = 1 and probabilities pi0 = 1/K for all i ∈ [K]
2: for t = 1, . . . , T do
3: Select arm it according to distribution Pt = [p1t , . . . , p

K
t]

4: Play arm it and observe reward rt
5: Estimate reward r̂t = rt/p

it
t

6: Update weight wit
t = wit

t−1 exp(ηr̂t/K)
7: Update probabilities

pit = (1− η)
wi

t∑K
j=1 w

j
t

+
η

K
for all i ∈ [K]

8: end for

Table 2: Hyperparameters for MAB Algorithms

ALGORITHM PARAMETER VALUE

EPSILON-GREEDY ε 0.1
EXPLORE-THEN-COMMIT T0 5 ·K
UCB c 1.0
EXP3 η 0.1

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

H ADDITIONAL EXPERIMENTAL RESULTS

In this section, we report additional experimental evaluations. In particular, we show how different
configurations of budget constraints B and sizes K of the reward function set perform with different
reward selection algorithms in different environments in Figures 7 to 10.

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0

C
ar

tp
ol

e
%

 o
f H

um
an

 R
ew

ar
d

B = 5

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0
B = 10

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0
B = 15

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0

B
al

l B
al

an
ce

%
 o

f H
um

an
 R

ew
ar

d

B = 5

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0
B = 10

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0
B = 15

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0

A
nt

%
 o

f H
um

an
 R

ew
ar

d

B = 5

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0
B = 10

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0
B = 15

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0

H
um

an
oi

d
%

 o
f H

um
an

 R
ew

ar
d

B = 5

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0
B = 10

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0
B = 15

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0

A
lle

gr
o

H
an

d
%

 o
f H

um
an

 R
ew

ar
d

B = 5

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0
B = 10

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0
B = 15

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
ha

do
w

 H
an

d
%

 o
f H

um
an

 R
ew

ar
d

B = 5

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0
B = 10

0.0 0.2 0.4 0.6 0.8 1.0
Normlized # Iterations

0.0

0.2

0.4

0.6

0.8

1.0
B = 15

Human Naive EG ETC UCB EXP3 D3RB

Figure 7: Number of iterations necessary to reach human-engineered reward function performance
with different computation budgets and tasks. The shaded areas represent 95% confidence intervals.
To construct this plot, we sample the first index when the performance reaches each percentage point
from 1% to 100% of human performance during training.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Normalized # Iterations

0.00

0.25

0.50

0.75

1.00

%
 o

f H
um

an
 R

ew
ar

d

B = 5

0.0 0.2 0.4 0.6 0.8 1.0
Normalized # Iterations

0.00

0.25

0.50

0.75

1.00
B = 10

0.0 0.2 0.4 0.6 0.8 1.0
Normalized # Iterations

0.00

0.25

0.50

0.75

1.00
B = 15

Human Naive EG ETC UCB EXP3 D3RB

Figure 8: Number of iterations necessary to reach human-engineered reward function performance
with different computation budgets. The shaded areas represent 95% confidence intervals.

Cartpole Balance Ant Humanoid Allegro Shadow
0.0

0.5

1.0

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 5, K = 4

Cartpole Balance Ant Humanoid Allegro Shadow
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 5, K = 8

Cartpole Balance Ant Humanoid Allegro Shadow
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 5, K = 16

Cartpole Balance Ant Humanoid Allegro Shadow
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 10, K = 4

Cartpole Balance Ant Humanoid Allegro Shadow
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 10, K = 8

Cartpole Balance Ant Humanoid Allegro Shadow
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 10, K = 16

Cartpole Balance Ant Humanoid Allegro Shadow
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 15, K = 4

Cartpole Balance Ant Humanoid Allegro Shadow
0

1

2

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 15, K = 8

Cartpole Balance Ant Humanoid Allegro Shadow
0

1

2

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 15, K = 16

Human No Design Naive ORSO (D3RB)

Figure 9: Average performance with 95% confidence intervals for ORSO with different budget con-
straints and reward function set size. The red horizontal dashed line represents the policies trained
with the human-engineered reward function.

D3RB EXP3 UCB ETC EG Naive
0.0

0.5

1.0

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 5, K = 4

D3RB EXP3 UCB ETC EG Naive
0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 5, K = 8

D3RB EXP3 UCB ETC EG Naive
0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 5, K = 16

D3RB EXP3 UCB ETC EG Naive
0.0

0.5

1.0

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 10, K = 4

D3RB EXP3 UCB ETC EG Naive
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 10, K = 8

D3RB EXP3 UCB ETC EG Naive
0.0

0.5

1.0

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 10, K = 16

D3RB EXP3 UCB ETC EG Naive
0.0

0.5

1.0

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 15, K = 4

D3RB EXP3 UCB ETC EG Naive
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 15, K = 8

D3RB EXP3 UCB ETC EG Naive
0.0

0.5

1.0

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 15, K = 16

Figure 10: Comparison of different reward selection algorithms for ORSO with different budget
constraints and reward function set size.

We also plot in Figure 11 the time necessary to achieve the same performance as policies trained
with human-designed reward functions as a function of the number of parallel GPUs available for
all budget constraints and all tasks considered.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

1 2 4 8 16
Number of GPUs

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Cartpole (B = 5)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.00

0.05

0.10

0.15

0.20

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Ball Balance (B = 5)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.00

0.25

0.50

0.75

1.00

1.25

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Ant (B = 5)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

1

2

3

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Humanoid (B = 5)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

5

10

15

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Allegro Hand (B = 5)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.0

2.5

5.0

7.5

10.0

12.5

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Shadow Hand (B = 5)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Cartpole (B = 10)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.0

0.1

0.2

0.3

0.4
Ti

m
e

to
 H

um
an

 (h
ou

rs
)

Ball Balance (B = 10)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Ant (B = 10)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

2

4

6

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Humanoid (B = 10)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

10

20

30

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Allegro Hand (B = 10)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

5

10

15

20

25

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Shadow Hand (B = 10)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.000

0.002

0.004

0.006

0.008

0.010

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Cartpole (B = 15)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.0

0.2

0.4

0.6

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Ball Balance (B = 15)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

1

2

3

4

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Ant (B = 15)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

2

4

6

8

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Humanoid (B = 15)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

10

20

30

40

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Allegro Hand (B = 15)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

10

20

30

40

Ti
m

e
to

 H
um

an
 (h

ou
rs

)

Shadow Hand (B = 15)

Naive
ORSO (D3RB)

Figure 11: Time necessary to achieve the same performance as policies trained with human-designed
reward functions as a function of the number of parallel GPUs.

H.1 CHOSEN REWARD FUNCTIONS FOR LARGE REWARD SET

In order to validate that ORSO with D3RB indeed chooses the optimal reward function, we train a
policy for each of the K = 96 reward functions for the ANT task in Figure 6. In Table 3, we report
the mean task reward with 95% confidence intervals over five seeds. Rewards are ordered from best
to worst, with those within one confidence interval of the best reward underlined. Bolded values
indicate the reward functions selected by ORSO across the seeds we ran.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 3: Mean task reward for each Reward ID with 95% confidence intervals (CI).

REWARD ID MEAN (± CI)

34 10.24 ± 0.36
18 10.01 ± 0.63
71 9.98 ± 0.37
79 9.88 ± 0.73
21 9.77 ± 0.22
94 9.70 ± 0.38
66 9.67 ± 0.27
81 9.55 ± 0.80
70 9.51 ± 0.63
37 9.46 ± 0.55
33 9.34 ± 0.83
95 9.27 ± 0.33
47 9.24 ± 0.68
63 9.21 ± 0.76
54 9.20 ± 0.80
80 9.16 ± 0.25
62 8.88 ± 0.37
38 8.81 ± 0.45
49 8.81 ± 0.77
35 8.69 ± 1.07
5 8.61 ± 0.56
52 8.35 ± 1.43
67 8.32 ± 0.85
46 8.30 ± 0.89
68 8.20 ± 1.22
75 8.09 ± 0.40
84 8.05 ± 1.25
85 7.77 ± 0.97
72 7.64 ± 1.27
55 7.43 ± 1.46
20 7.26 ± 0.18
23 7.26 ± 1.12
86 7.15 ± 0.42
36 7.06 ± 0.68
91 6.93 ± 1.45
1 6.50 ± 1.17
31 6.36 ± 0.80
61 6.06 ± 0.93
19 5.78 ± 1.43
25 5.67 ± 1.41
48 5.65 ± 1.54
59 5.59 ± 1.02
26 5.50 ± 0.89
60 5.47 ± 1.17
44 5.47 ± 1.36
40 5.34 ± 1.73
73 5.33 ± 1.77
0 5.30 ± 1.38

REWARD ID MEAN (± CI)

56 5.05 ± 0.62
39 4.91 ± 0.64
74 4.88 ± 0.49
30 4.83 ± 0.78
78 4.83 ± 0.35
6 4.76 ± 0.91
2 4.69 ± 0.92
28 4.66 ± 1.21
8 4.65 ± 0.44
16 4.57 ± 1.08
29 4.53 ± 0.81
65 4.44 ± 0.62
50 4.23 ± 1.94
58 3.89 ± 0.43
53 3.86 ± 0.44
32 3.79 ± 0.73
22 3.74 ± 0.54
3 3.48 ± 1.66
69 3.22 ± 0.42
4 3.18 ± 0.42
88 3.18 ± 0.43
64 3.12 ± 0.16
9 3.11 ± 0.39
17 3.10 ± 0.15
93 3.02 ± 0.21
14 2.99 ± 0.52
45 2.89 ± 0.29
83 2.72 ± 0.82
27 2.50 ± 0.72
10 2.15 ± 0.43
57 1.69 ± 0.80
7 1.67 ± 1.01
82 1.03 ± 0.35
42 0.63 ± 0.80
41 0.37 ± 0.30
43 0.33 ± 0.16
76 0.22 ± 0.08
89 0.22 ± 0.07
24 0.21 ± 0.03
11 0.21 ± 0.08
12 0.19 ± 0.14
15 0.19 ± 0.14
92 0.14 ± 0.07
77 0.13 ± 0.04
13 0.05 ± 0.00
51 0.05 ± 0.00
87 0.05 ± 0.02
90 0.00 ± 0.00

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

H.2 VISUALIZING ORSO

To better visualize how ORSO selects the best reward function, discards suboptimal ones efficiently,
and thanks to this, explores more reward functions, we provide further visualizations in this section.

Figures 12 and 13 show a full training of ORSO (D3RB) and EUREKA with a budget B = 15
and K = 16 on the ALLEGROHAND task, respectively. In both figures, the top plot shows the
task reward during training. The colors indicate the reward functions currently in use. The middle
plot more clearly shows the reward function being currently used. The vertical axis contains the
reward function indices. In both plots, the dashed vertical lines indicate that a resampling has been
triggered. Lastly, the bottom plot shows the unnormalized cumulative regret during training.

Comparing the two figures, we can see that ORSO initially explores all reward functions near-
uniformly, but quickly finds a policy that surpasses the policy from the human-engineered reward
function, leading to a decrease in regret. On the other hand, EUREKA uniformly trains on each re-
ward function leading the algorithm to explore fewer reward functions. Moreover, we see that the
lack of rejection sampling can result in initial reward function sets that contain many invalid reward
functions – indicated by a × in the figures.

0 10000 20000 30000 40000 50000 60000 70000

0

5

10

15

20

25

30

Ta
sk

 R
ew

ar
d

AllegroHand D3RB with B=15, K=16

0 10000 20000 30000 40000 50000 60000 70000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

R
ew

ar
d

Fu
nc

tio
n

0 10000 20000 30000 40000 50000 60000 70000
Iteration

60000

40000

20000

0

C
um

ul
at

iv
e

R
eg

re
t

Figure 12: ORSO (D3RB) on ALLEGROHAND with B = 15 and K = 16.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000 60000 70000

0

2

4

6

8

Ta
sk

 R
ew

ar
d

AllegroHand EUREKA with B=15, K=16

0 10000 20000 30000 40000 50000 60000 70000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

R
ew

ar
d

Fu
nc

tio
n

0 10000 20000 30000 40000 50000 60000 70000
Iteration

0

5000

10000

15000

20000

25000

30000

35000

C
um

ul
at

iv
e

R
eg

re
t

Figure 13: EUREKA on ALLEGROHAND with B = 15 and K = 16.

0 5000 10000 15000 20000 25000

0.00

0.02

0.04

0.06

0.08

Ta
sk

 R
ew

ar
d

AllegroHand EUREKA with B=5, K=8

0 5000 10000 15000 20000 25000

0

1

2

3

4

5

6

7

R
ew

ar
d

Fu
nc

tio
n

0 5000 10000 15000 20000 25000
Iteration

0

5000

10000

15000

20000

25000

C
um

ul
at

iv
e

R
eg

re
t

Figure 14: EUREKA on ALLEGROHAND with B = 5 and K = 8.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000

0

5

10

15

20

Ta
sk

 R
ew

ar
d

AllegroHand D3RB with B=5, K=8

0 5000 10000 15000 20000 25000

0

1

2

3

4

5

6

7

R
ew

ar
d

Fu
nc

tio
n

0 5000 10000 15000 20000 25000
Iteration

8000

6000

4000

2000

0

2000

4000

C
um

ul
at

iv
e

R
eg

re
t

Figure 15: ORSO (D3RB) on ALLEGROHAND with B = 5 and K = 8.

0 5000 10000 15000 20000 25000

0

2

4

6

8

10

12

Ta
sk

 R
ew

ar
d

AllegroHand EXP3 with B=5, K=8

0 5000 10000 15000 20000 25000

0

1

2

3

4

5

6

7

R
ew

ar
d

Fu
nc

tio
n

0 5000 10000 15000 20000 25000
Iteration

0

5000

10000

15000

20000

C
um

ul
at

iv
e

R
eg

re
t

Figure 16: ORSO (Exp3) on ALLEGROHAND with B = 5 and K = 8.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ta
sk

 R
ew

ar
d

AllegroHand UCB with B=5, K=8

0 5000 10000 15000 20000 25000

0

1

2

3

4

5

6

7

R
ew

ar
d

Fu
nc

tio
n

0 5000 10000 15000 20000 25000
Iteration

10000

8000

6000

4000

2000

0

2000

C
um

ul
at

iv
e

R
eg

re
t

Figure 17: ORSO (UCB) on ALLEGROHAND with B = 5 and K = 8.

0 5000 10000 15000 20000 25000

0

2

4

6

8

10

12

Ta
sk

 R
ew

ar
d

AllegroHand ETC with B=5, K=8

0 5000 10000 15000 20000 25000

0

1

2

3

4

5

6

7

R
ew

ar
d

Fu
nc

tio
n

0 5000 10000 15000 20000 25000
Iteration

0

1000

2000

3000

4000

C
um

ul
at

iv
e

R
eg

re
t

Figure 18: ORSO (ETC) on ALLEGROHAND with B = 5 and K = 8.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000

0

2

4

6

8

10

12

14

Ta
sk

 R
ew

ar
d

AllegroHand EG with B=5, K=8

0 5000 10000 15000 20000 25000

0

1

2

3

4

5

6

7

R
ew

ar
d

Fu
nc

tio
n

0 5000 10000 15000 20000 25000
Iteration

0

5000

10000

15000

20000

C
um

ul
at

iv
e

R
eg

re
t

Figure 19: ORSO (EG) on ALLEGROHAND with B = 5 and K = 8.

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2

4

6

8

Ta
sk

 R
ew

ar
d

Ant EUREKA with B=10, K=4

0 2000 4000 6000 8000 10000 12000 14000 16000

0

1

2

3

R
ew

ar
d

Fu
nc

tio
n

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

0

1000

2000

3000

4000

5000

C
um

ul
at

iv
e

R
eg

re
t

Figure 20: EUREKA on ANT with B = 10 and K = 4.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2

4

6

8

10

Ta
sk

 R
ew

ar
d

Ant D3RB with B=10, K=4

0 2000 4000 6000 8000 10000 12000 14000 16000

0

1

2

3

R
ew

ar
d

Fu
nc

tio
n

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

0

500

1000

1500

2000

C
um

ul
at

iv
e

R
eg

re
t

Figure 21: ORSO (D3RB) on ANT with B = 10 and K = 4.

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2

4

6

8

10

Ta
sk

 R
ew

ar
d

Ant EXP3 with B=10, K=4

0 2000 4000 6000 8000 10000 12000 14000 16000

0

1

2

3

R
ew

ar
d

Fu
nc

tio
n

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

500

250

0

250

500

750

1000

C
um

ul
at

iv
e

R
eg

re
t

Figure 22: ORSO (Exp3) on ANT with B = 10 and K = 4.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2

4

6

8

10

Ta
sk

 R
ew

ar
d

Ant UCB with B=10, K=4

0 2000 4000 6000 8000 10000 12000 14000 16000

0

1

2

3

R
ew

ar
d

Fu
nc

tio
n

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

0

500

1000

1500

2000

2500

3000

C
um

ul
at

iv
e

R
eg

re
t

Figure 23: ORSO (UCB) on ANT with B = 10 and K = 4.

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2

4

6

8

Ta
sk

 R
ew

ar
d

Ant ETC with B=10, K=4

0 2000 4000 6000 8000 10000 12000 14000 16000

0

1

2

3

R
ew

ar
d

Fu
nc

tio
n

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

0

1000

2000

3000

4000

C
um

ul
at

iv
e

R
eg

re
t

Figure 24: ORSO (ETC) on ANT with B = 10 and K = 4.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2

4

6

8

Ta
sk

 R
ew

ar
d

Ant EG with B=10, K=4

0 2000 4000 6000 8000 10000 12000 14000 16000

0

1

2

3

R
ew

ar
d

Fu
nc

tio
n

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

0

1000

2000

3000

4000

5000

C
um

ul
at

iv
e

R
eg

re
t

Figure 25: ORSO (EG) on ANT with B = 10 and K = 4.

43

	Introduction
	Preliminaries
	Method: Reward Design as Sequential Decision Making
	Orso: Online Reward Selection and Policy Optimization

	Theoretical Guarantees
	Practical Implementation and Experimental Results
	Experimental Setup
	Baselines
	Implementation

	Results
	Ablation Study

	Related Work
	Conclusion
	Limitations and Future Work

	Related Work
	Online Model Selection
	Orso with Doubling Data-Driven Regret Balancing
	Proof of lem:baselearnerregret
	Reward Functions Definitions
	Reward Functions Selected by Orso

	Implementation Details
	Selection Algorithms and Hyperparameters
	Additional Experimental Results
	Chosen Reward Functions for Large Reward Set
	Visualizing Orso

