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Abstract

Long-form egocentric video understanding pro-001
vides rich contextual information and unique002
insights into long-term human behaviors, hold-003
ing significant potential for applications in em-004
bodied intelligence, long-term activity analysis,005
and personalized assistive technologies. How-006
ever, existing benchmark datasets primarily fo-007
cus on single, short (e.g., minutes to tens of008
minutes) to moderately long videos, leaving a009
substantial gap in evaluating extensive, ultra-010
long egocentric video recordings. To address011
this, we introduce X-LeBench, a novel bench-012
mark dataset meticulously designed to fill this013
gap by focusing on tasks requiring a compre-014
hensive understanding of extremely long ego-015
centric video recordings. Our X-LeBench de-016
velops a life-logging simulation pipeline that017
produces realistic, coherent daily plans aligned018
with real-world video data. This approach en-019
ables the flexible integration of synthetic daily020
plans with real-world footage from Ego4D—a021
massive-scale egocentric video dataset covers022
a wide range of daily life scenarios—resulting023
in 432 simulated video life logs spanning from024
23 minutes to 16.4 hours. The evaluations of025
several baseline systems and multimodal large026
language models (MLLMs) reveal their poor027
performance across the board, highlighting the028
inherent challenges of long-form egocentric029
video understanding, such as temporal local-030
ization and reasoning, context aggregation, and031
memory retention, and underscoring the need032
for more advanced models. Our dataset is avail-033
able at X-LeBench.034

1 Introduction035

Understanding long-form egocentric videos cap-036

tured from a first-person perspective over extended037

periods holds significant potential for advancing038

various domains such as embodied intelligence,039

long-term activity analysis, and personalized assis-040

tive technologies (Plizzari et al., 2024; Lv et al.,041

2024; Park et al., 2016). These videos provide rich042

contextual information and unique insights into 043

human behaviors as they unfold naturally through- 044

out the day. The ability to analyze such extensive 045

recordings is key to developing more personalized 046

agent systems that can construct long-term mem- 047

ory, anticipate user needs, and interact seamlessly 048

in real-world settings (Lin et al., 2022b; Jia et al., 049

2022; Pramanick et al., 2023). 050

However, most existing datasets (Soomro, 2012; 051

Caba Heilbron et al., 2015; Kay et al., 2017; Li 052

et al., 2020; Xiao et al., 2021; Miech et al., 2019), 053

predominantly feature short individual video clips 054

captured from third-person views, making them 055

insufficient for understanding the continuous, nu- 056

anced context of daily human activities or for in- 057

depth human-centered research that requires a first- 058

person perspective. While more recent benchmarks 059

and datasets focus on egocentric video understand- 060

ing (Damen et al., 2018, 2022; Grauman et al., 061

2022; Zhu et al., 2023; Mangalam et al., 2023; 062

Grauman et al., 2024; Lv et al., 2024; Fan et al., 063

2025), they remain limited in capturing contin- 064

uous, long-term human activities. For instance, 065

Ego4D (Grauman et al., 2022) features massive- 066

scale egocentric videos covering a wide range of 067

daily activities, with video durations ranging from 068

5 seconds to 7 hours, yet subsequent research (Man- 069

galam et al., 2023; Grauman et al., 2024; Islam 070

et al., 2024; Rodin et al., 2024; Chandrasegaran 071

et al., 2024) often focuses on isolated clips or 072

recordings, falling short of capturing the full scope 073

of long-term daily human activities. This limita- 074

tion hinders the evaluation of models designed to 075

process ultra-long video streams. In particular, it 076

restricts the ability to challenge current long-form 077

video understanding systems and models that con- 078

struct long-term memory from video recordings 079

and retrieve relevant information in response to 080

user queries. Without extensive, continuous con- 081

textual data, evaluating the robustness of their per- 082

formance becomes difficult. 083
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07:30 - 07:32

C walks inside the house, washes hands, and dries them with a towel.

18:35 - 18:44

C prepares a meal in the kitchen, eats, and watches television in the living room.

12:10 - 12:34

C walks with others and shops for groceries.

20:19 - 20:27

C plays games and adjusts furniture in an apartment/house.

…

…

…

………

Figure 1: Example of generated video life logs in X-LeBench. Generated video life logs consist of multiple videos
with corresponding timestamps. The visualization shows the time organization and content allocation of data.

Creating benchmark datasets that span several084

hours of egocentric video is necessary but presents085

significant challenges. Data acquisition is a pri-086

mary hurdle, requiring participants to wear record-087

ing devices for extended periods is labor-intensive088

and raises privacy concerns. Device limitations,089

including storage constraints and reliability issues,090

further complicate continuous video capture. Ad-091

ditionally, annotating long-form videos is time-092

consuming and prone to annotator fatigue, affecting093

label accuracy and consistency.094

To address these challenges, we introduce X-095

LeBench, a versatile and scalable benchmark096

dataset designed for evaluating tasks on extremely097

long egocentric videos. X-LeBench features a life-098

logging simulation pipeline that simulates extended099

video logs by integrating short (seconds) or mod-100

erately long (hours) video clips with dynamically101

generated daily plans. Leveraging large language102

models (LLMs), it generates realistic, contextually103

rich schedules aligned with real-world activities104

based on adjustable input settings. Specifically,105

this simulation integrates synthetic daily plans with106

actual footage from Ego4D, then iteratively opti-107

mizes the simulation process based on retrieved108

information, producing video life logs that mirror109

daily activities in rich contexts with duration ex-110

tended to dozens of hours. A generated sample is111

shown in Fig. 1, showcasing video segments with112

different timestamps. Notably, X-LeBench offers113

a customizable and scalable design, enabling the114

synthesis of datasets with various durations and115

content to accommodate diverse research needs.116

Our initial evaluations of baseline systems and117

multimodal LLM (MLLM) reveal consistently poor118

performance on X-LeBench, highlighting the in-119

herent difficulties of long-form egocentric video120

understanding and underscoring the need for more121

advanced models capable of interpreting and ana-122

lyzing ultra-long egocentric videos. 123

Our contributions are: (1) We present X- 124

LeBench, the first benchmark dataset that encom- 125

passes ultra-long egocentric video recordings; (2) 126

We introduce a novel and customizable pipeline 127

that simulates realistic, hours-long egocentric video 128

life logs by integrating synthetic daily plans with 129

real-world footage; (3) We conduct extensive evalu- 130

ations of existing models on X-LeBench, exposing 131

significant performance gaps and key challenges 132

for future research. 133

2 Related Works 134

2.1 Egocentric Video Benchmarks 135

Egocentric video understanding has received in- 136

creasing attention (Cheng et al., 2024; Huang et al., 137

2024). Ego4D is a landmark dataset, offering 138

3,670+ hours of egocentric footage across 74 loca- 139

tions, facilitating significant progress in the field. 140

Related works (Bain et al., 2023; Lin et al., 141

2022a; Pramanick et al., 2023; Islam et al., 142

2024) extend Ego4D, further exploring various 143

applications of egocentric video understanding. 144

EgoSchema (Mangalam et al., 2023) offers an ego- 145

centric video question-answering benchmark with 146

over 5,000 curated multiple-choice pairs but fo- 147

cuses on 3-minute clips. The AEA dataset (Lv 148

et al., 2024) offers multimodal egocentric data, 149

HourVideo (Chandrasegaran et al., 2024) curates 150

hour-long videos from Ego4D for evaluating video- 151

language understanding. EgoPlan-Bench2 (Qiu 152

et al., 2024) assesses planning capabilities of 153

MLLMs. However, these works either lack co- 154

herent, continuous, long-term daily-life recordings 155

or face data scale and diversity limitations. 156

Recently, EgoLife’s week-long recordings (Yang 157

et al., 2025) offer valuable long-context data, but 158

high costs, operational issues, limited 6 subjects, 159

and an indoor focus restrict its scalability and di- 160

2



versity. In contrast, we developed a novel, cost-161

effective pipeline to synthesize ultra-long, coherent162

egocentric video life logs from existing datasets,163

offering a scalable and extensible alternative and164

significantly broadening the scope and applicability165

of long-term egocentric video understanding.
Table 1: The comparison of various benchmarks.

Dataset Avg. Duration
(mins)

Annotation
Scheme Egocentric #QAs #Data

MVBench 0.27 Auto No 4,000 3,641
ActivityNet-QA 1.85 Manual No 8,000 800

EgoSchema 3 Auto&Manual Yes 5,063 5,063
EgoPlan-Bench2 up to 5 Auto&Manual Yes 1,321 1,113
MovieChat-1K 9.4 Manual No 1,950 130

MLVU 12 Auto&Manual Partial 2,593 757
Video-MME (Short) 1.37

Manual No 2,700 900Video-MME (Medium) 9.38
Video-MME (Long) 39.76

HourVideo 45.7 Auto&Manual Yes 12,976 500
InfiniBench 76.34 Auto&Manual No 108,200 1219
LVBench 68.35 Manual No 1,594 103
EgoLife 2,658 Auto&Manual Yes 3,000 6

Ours (Short) 142
Auto&Manual Yes 26,932 432Ours (Medium) 319

Ours (Long) 516166

2.2 Long-form Video Benchmarks167

The definition of “long” in video understanding168

varies across benchmarks, with durations rang-169

ing from minutes to hours. As shown in Tab. 1,170

EgoSchema defines 3-minute videos as long using171

their proposed certificate length, Video-MME (Fu172

et al., 2024) classifies videos with a length of 30-60173

minutes as long. HourVideo and LVBench (Wang174

et al., 2024b) define long videos as 20+ and 30+175

minutes, respectively. MLVU (Zhou et al., 2024)176

offers videos of diversified lengths with a 12-177

minute average length, providing comprehensive178

evaluation tasks for MLLMs’ long video under-179

standing capabilities. InfiniBench (Ataallah et al.,180

2024) pushes the boundary with 50-minute videos181

and over 108,000 question-answer pairs, posing182

significant challenges for leading AI models.183

Despite recent advances, existing datasets re-184

main insufficiently long for evaluating ultra-long185

video processing and rarely focus on egocentric186

content. X-LeBench fills this gap by redefining187

“long video” to include multi-hour, contextually188

consistent egocentric recordings with rich annota-189

tions to advance model and system development.190

2.3 LLM-assisted Annotation Scheme191

Traditional annotation processes require exten-192

sive human effort, but advances in LLMs and193

MLLMs (Achiam et al., 2023; Yao et al., 2024;194

Bai et al., 2023; Team et al., 2023; Touvron et al.,195

2023; Lin et al., 2023) have facilitated automated196

annotation in benchmarks. As shown in Tab. 1,197

several video understanding benchmarks lever-198

age LLMs/MLLMs to streamline annotation pro- 199

cess (Mangalam et al., 2023; Rawal et al., 2024; 200

Pătrăucean et al., 2023; Li et al., 2024). For 201

instance, EgoSchema generates question-answer 202

pairs by querying an LLM with human-annotated 203

narrations and tailored prompts. 204

Given the multi-hour duration of our dataset, 205

manual annotation is impractical and prone to 206

fatigue-induced errors. To address this, we also 207

adopt an automatic and manual annotation scheme. 208

First, we adapt Ego4D’s manual annotations to 209

align with our task requirements. Next, we use 210

LLMs to consolidate summaries of 5-minute video 211

clips from Ego4D at various granularities, creating 212

single-video, multi-video, and holistic-level sum- 213

maries (detailed in Appendix C). 214

3 X-LeBench 215

In real-world scenarios, continuous egocentric life- 216

logging is often constrained by hardware limita- 217

tions and privacy concerns, making it infeasible 218

to record uninterrupted long-term videos. Conse- 219

quently, long-duration life-logging must be recon- 220

structed from multiple video segments captured 221

at different times. Building on this insight, we 222

develop the life-logging simulation pipeline that 223

leverages LLMs’ text-processing capabilities and 224

Ego4D’s extensive annotations. It generates simu- 225

lated video life logs that realistically reflect daily 226

activities and maintain contextual coherence, lead- 227

ing to the creation of X-LeBench. The following 228

sections detail our methodology. 229

3.1 Life-logging Simulation Pipeline 230

As shown in Fig. 2, we constructed the pipeline by 231

implementing the following three stages: 232

Stage 1 - Persona Generation. To ensure the sim- 233

ulations better reflects the multifaceted nature of 234

real-world human activity, enriching the realism 235

and variability of the resulting dataset, we dynami- 236

cally generate personalized character profiles based 237

on different predefined locations and the Myers- 238

Briggs Type Indicators (MBTI) (Myers, 1962), gen- 239

erating basic background information including the 240

character’s personality traits, lifestyle, hobbies and 241

general daily routines. By incorporating varied 242

character settings, we capture a wide range of be- 243

havioral variations that enrich our dataset. This 244

pragmatic choice enables the generation of diverse 245

daily plans and activity patterns, promoting vari- 246

ability across simulations. 247
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Stage 1: Persona Generation

Basic Profile

Location, Personality, 

Lifestyle …

Daily Agenda

Daily activities that fit the 

character's background

Daily Plan Chunk

Daily activities records within 

different time segments

Stage 2: Video Info. Extraction

Video 

Frames

Video 

Summaries

Senarios

Time period 

reasoning

Scene

reasoning

Stage 3: 

New Dataset Generation

Daily Plan 

Chunk

Time 

Matching

Scene 

Matching

Content 

Matching

Life-log 

Simulation

Video Database

Dataset Reference

Retrieve

Update

Reflection
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consolidated 

summary

&

Figure 2: Overview of life-logging simulation pipeline. Stage 1: Generation of personalized persona profiles and
daily plan chunks based on predefined parameters. Stage 2: Core information (time, scene, content) extraction of
videos in the video selection library. Stage 3: Matching and retrieval of daily plan chunks with videos, and life-log
simulations are iteratively refined through reflection, resulting in the final optimized output.

Each daily plan is then segmented into time-248

specific activity chunks, ensuring structured activ-249

ity distribution. During this stage, we use GPT-250

4o (Hurst et al., 2024) for character generation,251

setting 9 different locations based on Ego4D’s de-252

mographic data, and 16 MBTI types per location,253

resulting in 144 diverse persona profiles (profile254

example is shown in Appendix A).255

Stage 2 - Video Information Extraction. We256

construct our video selection library by carefully257

selecting 7852 videos from the Ego4D labeled258

with scenario information and dense clip-level sum-259

maries, excluding redacted content. Then we ex-260

tract three key attributes from each video, including261

the time, scene, and the main content. Specifi-262

cally, we use Gemini-1.5-Pro (Team et al., 2024)263

to analyze videos and transform information. To264

facilitate simulation with reasonable environment265

settings and lighting conditions, videos are cate-266

gorized into different scene environments: indoor,267

outdoor, and mixed, as well as different time pe-268

riods: daytime, nighttime, twilight, and uncertain269

(e.g., indoor videos lacking external cues are la-270

beled “uncertain”). Content information is derived271

from Ego4D scenario tags, and 1-sentence sum-272

maries consolidated from 5-minute clip-level sum-273

maries from each video. This structured metadata274

ensures precise alignment between video content275

and the generated daily plans in the next stage.276

Stage 3 - New Dataset Generation. In this stage,277

we match the generated daily plan chunks (Stage 1)278

with videos (Stage 2) to construct coherent video279

life-log simulations. For each plan chunk, we re-280

trieve a video that aligns with its time, scene, and281

content, the selection process follows below rule:282

V = argmax
V ∈Mv

S(Mv(Ct, Cscene, Cscenario), Cdesc) (1)283

where V is the selected video for chunk C, de- 284

termined by the alignment with C’s core informa- 285

tion, which is time (Ct), scene (Cscene), scenario 286

(Cscenario), and 1-sentence summary description 287

(Cdesc). Mv(·) denotes the operation of matching 288

videos based on the provided chunk information. 289

S(·) represents the sentence similarity computa- 290

tion between Cdesc and 1-sentence summary set of 291

matching videos. Specifically, Ct and Cscene are 292

inferred from chunk timestamps and content, while 293

Cscenario is inferred using the dataset’s predefined 294

scenario list (i.e., the dataset reference in Fig. 2). 295

To efficiently identify most suitable videos from 296

the large-scale video selection library, selection pro- 297

cess follows a coarse-to-fine retrieval strategy. We 298

first apply a coarse-grained filtering step, i.e., the 299

operation Mv(Ct, Cscene, Cscenario), a rule-based 300

matching to narrow down the candidate video set. 301

Finally, to refine the selection, we calculate the sen- 302

tence similarity between Cdesc and the summaries 303

of the candidate video set Mv, ensuring alignment 304

across time, scene, and content dimensions. 305

In addition, to enhance the contextual reason- 306

ableness and coherence of overall video life logs, 307

we preferentially select videos recorded in the same 308

location for each simulation. Furthermore, an it- 309

erative optimizing strategy is adopted, i.e., after 310

each matching of a daily plan chunk, we update the 311

life-log simulation memory with the information 312

of selected video, require LLM uses this context to 313

reasonably adjust and update the subsequent daily 314

plan chunks, ensuring that the overall simulation 315

maintains logical coherence and contextual align- 316

ment. Details can be found in Appendix B. 317

Statistics. Our life-logging simulation pipeline 318

allows for flexible customization by inputting vari- 319

ous location and MBTI type, generating diverse 320
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Figure 3: Dataset statistics. (a) Video selection library consists of 7852 videos from Ego4D dataset, covering 135
scenarios, here shows the top 30. (b) X-LeBench has video life-log durations span from 23 minutes to 16.4 hours,
here shows distribution of duration range across different data categories. (c) and (d) show the distribution of scene
and time information categories of videos in video selection library, respectively. (e) Statistical information of
duration lengths of different data categories, including minimum, mean, median and maximum values. (f) The
distribution of number of videos with different occurrences.

persona profiles and simulations. We can cus-321

tomize different numbers of chunks to get video322

life logs of various video compositions. In this323

work, we set three different chunk numbers for324

simulation, namely 4, 9, and 15 (corresponding to325

short, medium, and long life-log categories) for326

each location-MBTI combination generated per-327

sona, thus obtaining 432 extremely long video life328

logs. To assess dataset quality, we compare our329

method with a randomly sampled baseline (Ap-330

pendix E), our method retrieves videos with con-331

textualized timestamps and more consistent con-332

tent that closely resemble real-life recorded scenes.333

We also conduct a five-point human evaluation334

on realism and contextual consistency. As sum-335

marized in Tab. 2, Fig. 3 (b) and (e), our dataset336

achieved scores over 4 across all categories, demon-337

strating strong alignment with real-world activity338

patterns and logical continuity. Evaluation details339

are provided in the Appendix D. Also, the dataset340

exhibits diverse duration distributions: Short data341

are mostly 1-2 hours; Medium data are mostly 4-5342

hours; And long data are mostly 6-8 hours. With343

the average duration of 2.37, 5.32 and 8.6 hours.344

Table 2: Statistics of dataset duration length and quality.

Life-log Category Max
(min)

Mean
(min)

Min
(min) Realism Contextual

Consistency
Short 580 142 23 4.71 4.50

Medium 760 319 118 4.26 4.37
Long 984 516 220 4.41 4.02

Our video selection library contains 7852 videos,345

covers a wide range of daily life scenarios and346

scenes across different times of the day, a total of 347

135 scenarios are covered. Fig. 3 (a), (c) and (d) 348

illustrate the top 30 most frequent scenarios, time 349

distributions, and scene types. In addition, due to 350

the commonality of human activities (e.g., eating, 351

cooking), certain videos are selected multiple times. 352

Fig. 3 (f) shows that most videos appear fewer than 353

five times, with a small number of videos appearing 354

more than 5 times, reflecting the diversity of our 355

simulations while preserving the representativeness 356

of repeated contexts. 357

Table 3: The number of annotations.

Object-related Retrieval People-related
Retrieval Action Counting Summary Ordering

1444 583 5295 4032

Moment Retrieval Summarization
single-video multi-video holistic

9869 4032 1245 432

3.2 Benchmark Tasks 358

As shown in Tab. 4, X-LeBench introduces a suite 359

of evaluation tasks specifically designed for daily- 360

life long-form egocentric videos. These tasks en- 361

compass object-, people-, and moment-related tem- 362

poral localization, multi-level summarization, ac- 363

tion counting, and summary ordering. Details and 364

examples are in Appendix C. 365

The full-length video is presented to the system 366

only once before querying. The system is required 367

to extract features or frames from the extremely 368

long video and store them in a buffer, responding 369

to query based solely on the stored information. 370
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Temporal Localization

Object-related Retrieval Q: What did I put on the table in the record provided for the 21:56 - 22:25 time period? A: [22:01:55 - 22:02:03], [22:02:20 - 22:02:42], ...
People-related Retrieval Q: Who did I talk to in the living room in the record provided for the 21:56 - 22:25 time period? A: [22:02:35 - 22:02:39], [22:03:30 - 22:03:50], ...
Moment Retrieval Q: When did I ⟨use phone⟩ in the record provided for the 21:56 - 22:25 time period? A: [22:15:00 - 22:15:06], [22:18:49 - 22:19:00], ...

Summarization

Single-video Summarization Q: Summarize the activities performed in the recordings provided for the time period 22:13 - 22:25. A: C interacts with others and writes in a house and a studying room.
Multi-video Summarization Q: Summarize the activities performed in the recordings provided in the morning (before 12:00). A: C engages in various activities, including preparing meals, riding...
Holistic Summarization Q: Summarize the activities performed in all provided life-log recordings. A: C engages in a variety of activities throughout the day, including

preparing meals, riding, visiting restaurants, ...

Counting

Action Counting Q: In the record provided for the 07:25 - 07:48 time period, how many times have each of the A: wipe soap: 2; remove cheese: 1; ...
actions in the following list been performed in the 0-28 second record of the period?
Action list: 1. wipe soap, 2. remove cheese, ...

Ordering

Summary ordering Q: Please rank the following summaries of camera wearer C’s activities in order of presentation of A: Correct order of the summaries:
the life-log recordings. 7, 2, 11, 5, 8, 1, 6, 3, 4, 0, 12, 9, 13, 10, 14.
Summary 0: C climbs, interacts with others, and observes climbing activities in various indoor...
...
Summary 14: C interacts with others and writes in a house and a studying room.

Table 4: Tasks in this benchmark and their corresponding examples. Q and A denote query and answer examples.

This approach presents a significant challenge to371

current video understanding systems, which are372

typically designed to process short videos and thus373

cannot store information in the presented videos374

in buffers for future use. Furthermore, as video375

duration increases, answers to queries may recur376

across multiple time segments. To address this, we377

explicitly annotate the queried period for each task,378

ensuring precise and unambiguous retrieval, while379

mitigating annotation gaps inherent in single-video380

datasets. After generating the life-log footage, we381

adapt corresponding Ego4D annotations for our382

novel task designs. Tab. 3 summarizes the number383

of annotations per task.384

4 Experiments385

4.1 Settings386

X-LeBench includes various task types, as outlined387

in Sec. 3.2, encompassing four categories: tem-388

poral localization, summarization, counting, and389

ordering. These tasks are further divided into eight390

subtasks, with their respective input-output formats391

detailed in Tab. 4. Given the interleaved, ultra-long392

chronological context (Fig. 1), we uniformly con-393

struct time-stamped prompts as the long-context394

input following the format shown in Fig. 5.395

To reflect real-world usability, tasks require free-396

form textual outputs instead of closed-set multiple-397

choice answers. This approach increases practical398

usability while significantly raising the complexity399

of tasks, as it demands more nuanced understand-400

ing and reasoning. To ensure the evaluability of out-401

puts, the prompts provide extended context along402

with task-specific instructions and output format403

requirements for each task type, standardizing the404

expected responses. For temporal localization and405

summarization, each query is independently evalu-406

ated, while for counting and ordering, we aggregate407

the query contents of each data entry to action or 408

order lists for a unified assessment. Notably, the 409

computational cost and time associated with ana- 410

lyzing ultra-long contexts, along with their overall 411

poor performance and limited analytical value, we 412

test only a limited set on temporal localization. 413

Overall, X-LeBench presents significant chal- 414

lenges for current video understanding systems, 415

which are often limited by short context handling, 416

weak temporal reasoning, and poor long-horizon 417

memory retrieval. To evaluate performance under 418

these constraints, we test three representative mul- 419

timodal approaches to handle ultra-long contexts: 420

(1) Gemini-1.5-Flash (Team et al., 2024): A na- 421

tive multimodal model excels in handling ultra- 422

long contexts and is trained jointly on multimodal 423

data. It is used in an end-to-end manner by uni- 424

formly sampling 1200 frames per data, with a tem- 425

perature of 0.1. 426

(2) Socratic Models (Zeng et al., 2022): Most 427

advanced multimodal systems cannot process ultra- 428

long videos. Inspired by related works (Chan- 429

drasegaran et al., 2024; Zeng et al., 2022), we di- 430

vide videos into 30-second segments and generate 431

captions for these segments using the Qwen-VL- 432

7B model (Wang et al., 2024a), captioning seg- 433

ments at 1 frame per second and resolution settings 434

of 560 × 420. The captions are then aggregated 435

with timestamps as life-log records, forming the in- 436

put for executing long-context understanding tasks. 437

The Gemini-1.5-Flash model is used for perform- 438

ing tasks on these textual life log records, with the 439

same parameters as in method (1). 440

(3) Retrieve-Socratic: Considering the inher- 441

ent temporal nature of our dataset, we propose 442

an enhanced version of the Socratic Models ap- 443

proach. This method incorporates a rule-based 444

filtering mechanism to extract only task-relevant 445
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time segments, reducing irrelevant temporal data.446

By narrowing the contextual focus, this approach447

aims to improve efficiency and relevance in long-448

context understanding. The extracted contextual449

information is then processed using the same So-450

cratic Models’ pipeline and parameter settings as451

in method (2).452

We also evaluate the LongVU (Shen et al., 2024),453

an open-source method for long-form video under-454

standing, detailed results are in Appendix E.455

4.2 Results456

As shown in Fig. 4 and Tab. 5, we evaluate the per-457

formance of three methods across short, medium,458

long, and all data categories. The “all” category459

represents an aggregated evaluation of the former460

3 data types, offering a more comprehensive and461

holistic assessment. The evaluation metrics for462

each task are detailed in Appendix C.463

Overall Performance. As shown in last three464

rows of Tab. 5 and Fig. 4 (a), the Retrieve-Socratic465

method demonstrates superior performance in most466

tasks. Due to input token limitations, longer videos467

require larger frame sampling intervals, result-468

ing in increased information loss. Consequently,469

both Socratic and Retrieve-Socratic methods sig-470

nificantly outperform Gemini-1.5-Flash on tempo-471

ral localization and summarization tasks. Specif-472

ically, Retrieve-Socratic achieves an average im-473

provement of 8.26% in recall for temporal localiza-474

tion and 1.87 points higher scores in summariza-475

tion. The underperformance of Gemini-1.5-Flash476

in temporal localization reflects its difficulty in477

fine-grained temporal reasoning under long-context478

constraints. Additionally, Retrieve-Socratic further479

improves upon the basic Socratic approach by nar-480

rowing the temporal context, leading to notable481

gains in both temporal localization and summariza-482

tion tasks. In holistic summarization and order-483

ing, where the queried information spans the entire484

video, the performance of Socratic and Retrieve-485

Socratic methods remains comparable, demonstrat-486

ing their robustness in global reasoning.487

Interestingly, our analysis of the specific results488

indicates that the Retrieve-Socratic method tends489

to output 0 more frequently in the counting task.490

This leads to noticeably poorer performance com-491

pared to other methods, suggesting that excessive492

context reduction may introduce unintended biases493

in certain tasks.494

Impact of Data Types. As illustrated in Fig. 4495

(b) and Tab. 5, the performance trends across data496

types are not uniform. These trends may be in- 497

fluenced by varying task-specific objectives and 498

understanding burden imposed by different data 499

types on each method. Overall, both Socratic 500

and Retrieve-Socratic demonstrate more stable per- 501

formance trends across data types compared to 502

Gemini-1.5-Flash. This suggests that the process- 503

ing capability of textual information is more robust 504

when dealing with such long-context information. 505

For the ordering task, all methods achieve strong 506

performance on short videos (accuracy exceeding 507

85%). However, as video length increases, per- 508

formance across all methods declines significantly, 509

with accuracy dropping below 25% for long data. 510

Remarks. (1) Model refusal rate: We observe a 511

notable refusal rate from Gemini-1.5-Flash due to 512

its built-in information security constraints, partic- 513

ularly when directly processing long-form video 514

input. The refusal rates increase with input length, 515

reaching 20.14%, 27.08%, and 30.56% for short, 516

medium, and long videos, respectively. both the 517

Socratic and Retrieve-Socratic methods, which con- 518

vert video content into textual descriptions before 519

prompting the model, achieve a 0% refusal rate. 520

LongVU does not exhibit any refusal behavior. (2) 521

Temporal reasoning failure: In the multi-video sum- 522

marization task, a significant portion of responses 523

are invalid, even when timestamps are included in 524

input context, and the query time is explicitly speci- 525

fied in the question (e.g., “12:00 to 17:00”). Typical 526

invalid responses include statements like “There is 527

no information available within the specified time 528

period”, indicating a breakdown in the temporal 529

understanding of the model. The failure rates of 530

the multi-video summarization task are 55.28%, 531

51.89%, and 57.03% for Gemini-1.5-Flash, So- 532

cratic Models and Retrieve-Socratic, respectively. 533

LongVU demonstrates almost no temporal aware- 534

ness, it consistently disregards the specified time 535

window and instead summarizes the entire video 536

content. Also, in the ordering task, its performance 537

on short, medium, and long data drops drastically to 538

37.5%, 1.7%, and 0.69%, respectively. Manual re- 539

view of the outputs reveals that even on short data, 540

LongVU frequently returns meaningless outputs 541

like “0, 1, 2, 3” without establishing any meaning- 542

ful temporal structure. Therefore, we only included 543

LongVU in tasks that require global summaries or 544

coarse-grained time reasoning (i.e., holistic sum- 545

marization and ordering). Additional results and 546

analysis are in the Appendix E. 547
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Method
Data

Category
Object-related
Retrieval (%)

People-related
Retrieval (%)

Moment
Retrieval (%)

Summarization (10) AVG.
Temporal Localization (%)

AVG.
Summarization (10)

Action Counting (%) Ordering (%)
single multi-video holistic

Gemini-1.5-Flash

Short 1.67 0.00 10.26 5.12 3.02 4.90 4.20 4.36 13.87 93.70

Medium 1.92 6.90 10.53 4.82 3.12 5.24 5.88 4.46 16.74 44.66

Long 1.75 11.11 8.33 4.57 3.44 5.33 6.45 4.43 16.76 24.40

Socratic Models

Short 8.33 25.00 17.95 6.80 3.69 6.47 14.28 5.67 9.53 85.59

Medium 5.77 20.69 18.42 6.64 4.09 6.41 13.45 6.04 14.04 55.63

Long 12.28 22.22 10.83 5.82 4.37 6.15 11.83 5.61 19.85 23.33

Retrieve - Socratic

Short 8.33 25.00 17.95 6.88 3.79 6.53 14.28 5.75 9.92 87.67

Medium 9.62 17.24 7.89 7.01 4.30 6.56 10.92 6.36 9.38 54.55

Long 10.53 66.67 14.17 6.84 4.69 6.48 15.59 6.48 9.77 24.17

Gemini-1.5-Flash All 1.77 5.17 9.14 4.73 3.20 5.16 5.66 4.43 16.44 41.96

Socratic Models All 8.87 22.41 13.70 6.22 4.06 6.34 12.97 5.76 17.15 42.61

Retrieve - Socratic All 9.47 27.59 13.71 6.90 4.28 6.52 13.92 6.30 9.67 43.01

Table 5: Evaluation results on X-LeBench. Including temporal localization tasks (object-related, people-related
and moment retrieval), summarization tasks (single-video, multi-video and holistic level), action counting and
summary ordering task. AVG. temporal localization and summarization is the average performance of all temporal
localization tasks and summarization tasks, respectively.
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Figure 4: Performance comparison on X-LeBench. (a): Radar chart showing the overall performance of each
method across all tasks. For fair comparison across tasks, scores for summarization are scaled by a factor of 10
(maximum 100). (b): The performance comparison across different data categories for different tasks.

4.3 Summary of Key Findings548

Temporal Reasoning: The Core Bottleneck.549

Evaluated models struggle with temporal reasoning,550

showing high failure rates in multi-video summa-551

rization and localization. This highlights the need552

for models with improved temporal alignment and553

contextual memory for long sequences.554

Textual Representations: A Path Towards Scal-555

able Understanding. Our findings suggest that556

structured textual representations serve as a highly557

effective and scalable intermediate for ultra-long558

video understanding. As demonstrated by the So-559

cratic and Retrieve-Socratic methods, converting560

raw long video inputs into textual forms signifi-561

cantly reduces model refusal rates and consistently562

enables more stable and improved performance.563

This strategy not only effectively alleviates the se-564

vere token limitations of current multimodal mod-565

els but also dramatically reduces computational566

overhead. This makes it a practical and highly scal-567

able alternative for long-form video understanding,568

especially in scenarios where direct processing of569

extended video sequences remains challenging.570

Context Filtering: Balancing Efficiency and571

Completeness. The Retrieve-Socratic approach572

leverages rule-based temporal filtering to retain 573

only task-relevant context, resulting in superior per- 574

formance in temporal localization and summariza- 575

tion tasks. However, its relatively weaker perfor- 576

mance in counting task suggests that aggressive 577

pruning may omit essential contextual cues. Going 578

forward, this insight underscores the need to de- 579

sign more adaptive retrieval-augmented generation 580

(RAG) systems capable of balancing context fil- 581

tering with comprehensive long-term information 582

retention in ultra-long video understanding. 583

5 Conclusion 584

We introduce X-LeBench, the first benchmark for 585

ultra-long egocentric video understanding, featur- 586

ing a customizable life-logging simulation pipeline. 587

By curating 432 video life logs from Ego4D, cate- 588

gorized into short, medium, and long durations. X- 589

LeBench provides a diverse, structured dataset for 590

long-form video analysis. It includes tasks in tem- 591

poral localization, summarization, counting, and 592

ordering, offering a rigorous evaluation framework. 593

We hope to to advance research in long-form ego- 594

centric video processing, fostering the development 595

of more robust and temporally aware AI models. 596
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6 Limitations597

Despite our efforts to construct an extremely long598

video dataset with contextually coherent activity599

contents, limitations remain due to the scarcity and600

insufficient diversity of available data. For details601

of videos, contextual inconsistencies exist within602

the dataset, such as different kitchen or office set-603

tings within the same data. However, since our604

focus is on long-term activity content, these dis-605

crepancies are beyond the scope of this work. In606

addition, while MBTI is employed in our simula-607

tion pipeline to introduce behavioral diversity, we608

acknowledge that it is a heuristic framework with609

limited scientific validity. Its inclusion serves a610

pragmatic purpose—to support structured variation611

in persona-driven daily plans—and is not intended612

to imply psychological rigor or generalizable per-613

sonality modeling.614

Future work could involve expanding both the615

modalities and time spans of collected data through616

diverse devices and sources to enhance a compre-617

hensive understanding of long-form human activ-618

ity.619
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A Persona Profile 900

To simulate diverse egocentric behaviors, we gen- 901

erated 144 unique persona profiles by combining 902

16 MBTI personality types with 9 different loca- 903

tion settings. Each profile serves as input for our 904

dataset creation. Tab. 6 presents a detailed example 905

of a persona profile, illustrating its structure and 906

content. 907

B Coarse-to-Fine Video Matching and 908

Iterative Optimization 909

As described in Sec. 3.1, the life-log simulation 910

pipeline generates multiple daily activity chunks, 911

which are then matched with videos from the video 912

selection library to construct the dataset. Stage 3 913

follows a coarse-to-fine matching approach based 914

on Equation 1 with the implementation details out- 915

lined below: 916

B.1 Coarse Matching (Mv(·)) 917

For each activity chunk C, key information is ex- 918

tracted, including Ct (time period), Cscene (scene 919

type), and Cscenario (scenario). The Cscene and 920

Cscenario attributes are inferred using GPT-4o 921

based on the chunk’s textual description Cdesc. 922

Candidate videos are retrieved from the video se- 923

lection library where the resource region matches 924
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Field Description
Location UK
Personality Traits

• MBTI Type: INFP

• Character Traits:

– Idealistic and creative, often daydreaming about a better world
– Highly empathetic and compassionate, with a strong sense of personal values
– Prefers deep, meaningful connections over a wide social circle
– Flexible and adaptable, but can be disorganized and easily overwhelmed by details
– Values authenticity and is highly attuned to the feelings of others

Lifestyle C wakes up around 7:30 AM and starts the day with meditation or journaling. Works from home as a
freelance writer from 9:00 AM to 5:00 PM, with breaks for lunch and short walks. Evenings are spent
reading, writing poetry, or engaging in creative projects, and bedtime is around 11:00 PM.

Hobbies

• Writing poetry and short stories

• Reading literature and philosophy

• Practicing mindfulness and meditation

• Volunteering at local community centers

• Exploring nature and taking long walks in the countryside

Daily Agenda

• Wake up at 7:30 AM

• Meditation or journaling from 8:00 AM to 8:30 AM

• Start work at 9:00 AM

• Lunch break from 1:00 PM to 2:00 PM

• End work at 5:00 PM

• Evening walk or light exercise from 6:00 PM to 7:00 PM

• Dinner and relaxation from 7:00 PM to 9:00 PM

• Reading or creative activities from 9:00 PM to 10:30 PM

• Go to bed at 11:00 PM

Daily Plan Chunks

• 07:30–08:00: Wake up and stretch

• 08:05–08:35: Meditation or journaling

• 08:40–09:10: Prepare a healthy breakfast and make tea

• 09:15–09:45: Eat breakfast, clean the kitchen, and set up the workspace

• 09:50–10:50: Start work as a freelance writer

• 10:55–11:00: Continue working on writing projects

• 11:05–11:20: Take a short break to stretch and hydrate

• 11:25–13:00: Continue working on writing projects

• 13:05–14:00: Lunch break and light reading

• 14:05–16:00: Resume work and handle emails and client communications

• 16:05–17:00: Continue handling emails and client communications

• 17:05–17:35: End work and tidy up the workspace

• 17:40–18:40: Evening walk or light exercise in the park

• 18:45–20:00: Prepare and eat dinner, relax with some music

• 20:05–21:35: Engage in creative activities (writing poetry, reading literature, or working on a
personal project)

• 21:40–22:30: Wind down with light reading or calming music

Table 6: Persona Profile: Tabular representation of an INFP individual’s daily life, lifestyle, hobbies, and activities.
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the persona’s predefined location. A video is in-925

cluded in the candidate set Mv(·) when its time926

and scene type match the Ct and Cscene, with an927

overlap between its scenarios and Cscenario larger928

than 0.33 (i.e., the IoU of their scenarios). Note929

that, if no matching videos are found, the criteria930

are relaxed by lowering the overlap threshold to 0.2931

or removing the regional constraint. This process932

produces the initial candidate set Mv(·).933

B.2 Fine Matching (S(·))934

From the candidate set Mv(·), a finer selection is935

made by computing the sentence similarity S(·)936

between the chunk’s textual description Cdesc and937

the textual summaries of the candidate videos. The938

two videos with the highest similarity scores are939

identified, and one is randomly selected to increase940

dataset diversity while maintaining relevance.941

B.3 Iterative Optimization942

Once a matching video is selected, its metadata943

is incorporated into the persona’s memory as a944

record of completed activities. This updated mem-945

ory, along with the persona’s predefined attributes,946

is provided to GPT-4o to perform a reflection pro-947

cess, enabling the model to refine and adjust the948

upcoming plan chunks to maintain logical coher-949

ence. The next plan chunk is then processed using950

the updated persona memory, and coarse-to-fine951

matching is repeated iteratively. This process con-952

tinues until all plan chunks are matched with cor-953

responding videos, ensuring contextually coherent954

and realistic life-log simulations.955

C Task Details956

As described in Sec. 3.2, X-LeBench provides957

a comprehensive benchmark for daily activity-958

related tasks, comprising four major categories959

with eight subtasks. Here, we detail the task set-960

tings and the prompt templates used during evalu-961

ation. The prompt templates and example outputs962

are illustrated in Tab. 4 and Fig. 5.963

C.1 Temporal Localization964

Task Design and Annotation: This task evalu-965

ates a model’s ability to locate relevant time seg-966

ments in ultra-long egocentric videos based on user967

queries. This task, akin to Episodic Memory (Grau-968

man et al., 2022) and Natural Language Video Lo-969

calization (Zhang et al., 2021, 2020), is uniquely970

challenging for ultra-long videos due to their ex-971

tensive duration and diverse content. We divide972

Instruction:

You will act as a "Life Recording Assistant" using the provided records to help camera 

wearer *C* obtain specific information. The provided data contains daily life 

recordings of C with the corresponding record time, following the format: …

Task Description

First, you need to analyze the given question and identify corresponding segments (i.e., 

records within the specified or relevant time periods)  that contain relevant information 

or specified in the question.  Then, based on your analysis and question, analyze the 

provided recordings in depth, and get accurate answers to the questions.

Context

The following frames/records are recorded during time of [start time 1 – end time 1]:

<records_1>

The following frames/records are recorded during time of [start time 2 – end time 2]:

<records_2>

…..

Task-specific Instruction
…..

Figure 5: Example of input context.

this task into three subtasks based on the type of 973

information being retrieved: objects, people, and 974

moments. For object- and people-related retrieval, 975

we adopt the annotations from the Episodic Mem- 976

ory task (specifically, the Natural Language Query 977

subtask) in Ego4D. Specifically, we retrieve the 978

annotations corresponding to the videos selected 979

by the daily plan chunks (as generated in Sec. 3.1), 980

classify them into topics based on the query tem- 981

plates defined in Ego4D, and remapped the times- 982

tamps to align with the virtual time used in the 983

daily plan. 984

While Ego4D defines three query cate- 985

gories—objects, people, and place—we argue that 986

the “Place” query template (“Where did I put X?”) 987

fundamentally pertains to object location. Thus, we 988

reclassify these queries under the “object-related” 989

category. Additionally, queries without explicit 990

template annotations were assigned to one of 13 991

predefined types using an edit-distance-based 992

classification, followed by manual verification. For 993

moment retrieval, annotations for this subtask were 994

derived from the Moments Query subtask of the 995

Episodic Memory task in Ego4D. 996

Evaluation Metrics: Following previous works 997

on temporal localization (Grauman et al., 2022; 998

Zhang et al., 2021, 2020), we employed a top-x 999

recall with an intersection over union threshold 1000

(“recall@x, tIoU”). x and t are predefined variables 1001

that indicate the number of retrieved results we look 1002

at and the IoU threshold, respectively. Here, we set 1003

x to 5 and t to 0.3. 1004

C.2 Summarization 1005

Task Design and Annotation: Summarization is a 1006

fundamental task in numerous benchmarks (Wang 1007

et al., 2024b; Zhou et al., 2024; Ataallah et al., 1008

2024). In our context, it provides insights at vary- 1009
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ing granularities—specific chunks, predefined peri-1010

ods (e.g., morning, afternoon, evening), and holis-1011

tic summaries. These diverse scopes challenge sys-1012

tems to summarize at multiple summary levels in1013

ultra-long videos. Our summarization tasks involve1014

generating hierarchical summaries for: Single-1015

video (chunk-level) summaries; Multi-video sum-1016

maries for predefined periods (morning, afternoon,1017

evening1); And holistic (full-day) summaries. To1018

generate summaries at these levels, we employed1019

a hierarchical approach inspired by (Islam et al.,1020

2024). Single-video summaries are initially con-1021

solidated during the earlier stages of processing1022

(as described in Sec. 3.1). Then, multi-video sum-1023

maries are produced by LLM-based aggregation,1024

followed by holistic summaries generated in a sim-1025

ilar manner.1026

Evaluation Metrics: We incorporate LLM-based1027

evaluation metrics inspired by MLVU (Zhou et al.,1028

2024) to evaluate our summary tasks from the per-1029

spectives of ’Completeness’ and ’Reliability’.1030

C.3 Counting1031

Task Design and Annotation: This task assesses1032

a model’s ability to identify, track, and count occur-1033

rences of specific actions across ultra-long videos.1034

The goal is to test fine-grained aggregation capabili-1035

ties over multiple time segments. Future extensions1036

may include object/person counting.1037

To maintain annotation reliability, we limit the1038

counting task to intervals with available annota-1039

tions, as Ego4D annotation only covers a fraction1040

of the total video duration. Unannotated actions1041

could otherwise lead to incorrect counts. Specifi-1042

cally, we derive annotations from the Forecasting1043

task in Ego4D, ensuring consistency.1044

Evaluation Metrics: We employed a simple accu-1045

racy metric. Accuracy was calculated as the ratio1046

of correctly counted actions to the total number of1047

actions queried.1048

C.4 Ordering1049

Task Design and Annotation: Ordering task eval-1050

uates a model’s capability to recognize temporal1051

relationships between main activities across video1052

records in ultra-long video life logs. Unlike prior1053

studies focusing on fine-grained actions, we intro-1054

duce the novel challenge of ordering events based1055

on single-video summaries. Models are tasked with1056

1Morning: before 12 p.m., afternoon: 12 p.m. to 5 p.m.,
evening: after 5 p.m.

ordering shuffled single-video summaries of en- 1057

tire life logs, posing significant challenges to the 1058

system’s temporal understanding ability in long- 1059

context inputs. This setup ensures the initial se- 1060

quence of events is obscured, requiring the model 1061

to reconstruct the correct temporal order. 1062

We formulate the task as an open-ended se- 1063

quence generation problem. Each video summary 1064

receives an index post-randomization, preventing 1065

numerical hints about the original order. The model 1066

is expected to output the correct order based on its 1067

understanding of the contents. 1068

Evaluation Metrics: We use ordering accuracy, 1069

defined as the ratio between the number of correctly 1070

predicted order and the total number of summaries. 1071

D Dataset Quality Evaluation 1072

X-LeBench will be made publicly available, users 1073

can access and download videos for research un- 1074

der the Ego4D license (see Ego4D website). To 1075

validate the quality of our dataset, we conducted a 1076

human evaluation focusing on realism and contex- 1077

tual consistency. These key aspects are assessed 1078

to ensure the dataset accurately reflects realistic 1079

human behavior patterns and maintains logical con- 1080

tinuity across activities throughout the day. Evalu- 1081

ators concentrated on the content of the activities, 1082

disregarding minor inconsistencies (e.g., clothing 1083

or environmental details) that do not affect the over- 1084

all activity realism. The implementation details of 1085

this evaluation are outlined in the following sec- 1086

tions. 1087

D.1 Evaluation Criteria 1088

The evaluation criteria are defined as follows: 1089

• Realism. Each record is assessed for tem- 1090

poral and content alignment with real-world 1091

daily activities. Mismatches, such as daytime 1092

footage with nighttime timestamps, are con- 1093

sidered unrealistic. Evaluators should score 1094

all records from 1 (very unrealistic) to 5 1095

(highly realistic). 1096

• Contextual Consistency. This criterion evalu- 1097

ates the logical flow and smoothness between 1098

consecutive records. Abrupt transitions, such 1099

as jumping from office work to outdoor ac- 1100

tivities, are considered a lack of consistency. 1101

Evaluators should score all records from 1 1102

(very poor consistency) to 5 (strong sequence). 1103

This ensures the dataset reflects realistic daily 1104

human behavior. 1105
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Table 7: Comparison between our method and random sampling. Left two columns are from our method; Right two
columns are from random baseline.

Video Info. Video Summary Timestamp Video Summary Video Info.

Daytime & Indoor C washes hands and holds
the cupboard door in the bathroom. 06:35 C talks, reads a book, arranges books,

draws, and walks inside a house. Daytime & Indoor

Daytime & Indoor C, X, Y, and O discuss
in a meeting room. 08:35 C scrolls through the phone,

climbs a ladder, and fixes cables. Daytime & Outdoor

Daytime & Indoor C dials a phone, drinks water,
and writes in a bedroom. 16:35 C plays a drum set in a studio. Nighttime & Indoor

Nighttime & Indoor C reads a book on the bed in the bedroom. 23:00 C prepares avocado in the kitchen. Daytime & Outdoor

D.2 Evaluation Setting1106

Given the extremely long duration of the dataset,1107

which makes full evaluation cost-prohibitive, we1108

select 6 data samples (two each from the long,1109

medium, and short categories), consisting of 561110

videos, totalling 31.9 hours. The evaluators are1111

provided with a detailed evaluation manual and the1112

original video data. Each evaluator independently1113

assesses the video records and records their results1114

on a formatted debriefing sheet. Kendall’s W (Abdi,1115

2007) is computed to assess the inter-rater reliabil-1116

ity (IRR) of the evaluations.1117

D.3 Evaluation Procedure1118

Evaluator Training. Evaluators are trained using1119

detailed guideline (Fig. 6) that include evaluation1120

standards, examples, and formatting instructions.1121

Evaluation. Three independent evaluators assess1122

all provided data following the guidance. Evalua-1123

tors score all records from 1 to 5 for realism and1124

contextual consistency, with a brief justification for1125

records scored below 3.1126

Consensus Evaluation. Compute inter-rater reli-1127

ability (IRR) using Kendall’s W for the scores of1128

56 records to ensure reliability between evaluators.1129

Resolve discrepancies through discussion and re-1130

evaluation. Here, the evaluations achieve 0.536, it1131

suggests a moderate level of agreement among the1132

raters.1133

Reporting. The final report presents the mean1134

score for all evaluators.1135

E Additional Results1136

E.1 Comparison with Trivial Baseline1137

Our proposed pipeline is designed to maintain tem-1138

poral coherence and contextual consistency by inte-1139

grating multi-dimensional information (time, scene,1140

and content) via life-logging simulation pipeline.1141

To validate the effectiveness of our method, we1142

compare it with a trivial baseline that randomly1143

samples videos. Table 7 shows the comparison 1144

between the two methods. 1145

As can be observed, our approach retrieves 1146

videos with contextually appropriate timestamps 1147

and consistent content, closely mirroring real-life 1148

life-logging scenarios. In contrast, random sam- 1149

pling results in time-inconsistent and semantically 1150

disjointed videos, further validating the effective- 1151

ness of our method. 1152

E.2 Evaluation on LongVU 1153

To extend our evaluation, we tested LongVU (Shen 1154

et al., 2024), a state-of-the-art open-source model 1155

tailored for long video understanding. Results are 1156

summarized in Table 8. 1157

Table 8: Performance of LongVU.

Data Category Holistic Summary (10) Ordering (%)
Short 5.21 37.5

Medium 4.81 1.70
Long 4.73 0.69

Our manual review of outputs shows LongVU 1158

struggles with temporal reasoning. Even with ex- 1159

plicit cues (e.g., “frames 0–500 are recorded from 1160

13:00–13:10”), it still outputs summaries cover- 1161

ing the full video. In ordering tasks, LongVU fre- 1162

quently outputs invalid sequences such as “0, 1, 1163

2, 3” or “100, 100, 100, 100”, especially for long 1164

videos. Consequently, we only evaluated LongVU 1165

on tasks that require global information or coarse- 1166

grained temporal understanding (i.e., holistic sum- 1167

marization and ordering). Its performance signifi- 1168

cantly drops as video length increases, underscor- 1169

ing the limitations of current open-source models 1170

in ultra-long video understanding and temporal rea- 1171

soning. 1172
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Guideline
1. Your goal is to assess the realism and contextual consistency of given video life-log records, assess if the data 

accurately reflects realistic human behavior patterns and maintains logical continuity across activities throughout 
the day.

2. Focusing only on content-related activity without considering detailed aspects such as clothing, gender or house 
layout consistency.

1. Evaluation Materials
1. Dataset: 6 set video records (2 long, 2 medium, 2 short; total xx hours).  
2. Guidelines: This manual includes examples and explanations for the evaluation process.  
3. Debriefing Sheet: Formatted for 5-score rating and justifications. 

2. Criteria Definition
    Realism: Each record should be assessed for temporal and content alignment with real-world daily activities. 
Mismatches, such as daytime footage with nighttime timestamps, are considered unrealistic. Please score all records from 
1 (very unrealistic) to 5 (highly realistic).

1 point: Extremely unrealistic in timing or content.
2 points: Major inconsistencies with typical human habits or time setting.
3 points: Moderately inconsistent, yet somewhat realistic.
4 points: Mostly aligns with human routines and timing.
5 points: Fully realistic.

    Contextual Consistency: This criterion evaluates the logical flow and smoothness between consecutive records. Abrupt 
transitions, such as jumping from office work to outdoor activities, are considered a lack of consistency. Please score all 
records from 1 (very poor consistency) to 5 (strong sequence).

1 point: Poor logical flow with extreme inconsistencies.
2 points: Significant unrealistic shifts in activity.
3 points: Moderate inconsistencies in sequence.
4 points: Mostly logical with minor discrepancies.
5 points: Fully coherent and contextually seamless.

3. Evaluation Procedure
   Step 1: Preparation

Review this manual thoroughly.
Familiarize yourself with evaluation standards and examples.

   Step 2: Evaluation
See the criteria definition section first.
Realism Assessment: For records in each data, rate from 1 to 5, provide a brief justification for records scored 
below 3.
Contextual Consistency Assessment: For records in each data, rate from 1 to 5, provide a brief justification for 
records scored below 3.

Figure 6: The content of guideline.
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