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ABSTRACT

There have recently been significant advances in the problem of unsupervised
object-centric representation learning and its application to downstream tasks.
The latest works support the argument that employing disentangled object rep-
resentations in image-based object-centric reinforcement learning tasks facilitates
policy learning. We propose a novel object-centric reinforcement learning algo-
rithm combining actor-critic and model-based approaches, by incorporating an
object-centric world model in critic. The proposed method fills a research gap in
developing efficient object-centric world models for reinforcement learning set-
tings that can be used for environments with discrete or continuous action spaces.
We evaluated our algorithm in simulated 3D robotic environment and a 2D envi-
ronment with compositional structure. As baselines, we consider the state-of-the-
art model-free actor-critic algorithm built upon transformer architecture and the
state-of-the-art monolithic model-based algorithm. While the proposed method
demonstrates comparable performance to the baselines in easier tasks, it outper-
forms the baselines within the 1M environment step budget in more challenging
tasks increased number of objects or more complex dynamics.

1 INTRODUCTION

Figure 1: A high-level overview of the proposed method. ROCA learns the policy by extracting
object-centric representations from the source image and treating them as a complete graph.

One of the primary problems in visual-based reinforcement learning is determining how to repre-
sent the environment’s state efficiently. The most common approach is to encode the entire input
image, which is then used as input for the policy network (Mnih et al., 2015; Zhang et al., 2021).
However, previous studies (Santoro et al., 2017) have shown that such representations may fail to
capture meaningful relationships and interactions between objects in the state. Object-centric rep-
resentations can be introduced to overcome this issue. Such representations are expected to result
in more compact models with enhanced generalization capabilities (Keramati et al., 2018). State-
of-the-art unsupervised object-centric representation (OCR) models (Singh et al., 2022; Locatello
et al., 2020b; Engelcke et al., 2022) have a fundamental appeal for RL as they do not require addi-
tional data labeling for training. Recent studies (Stanić et al., 2022; Yoon et al., 2023) have shown
that object-centric state factorization can improve model-free algorithms’ generalization ability and
sample efficiency.

Another way to reduce the number of necessary environment samples is to use model-based meth-
ods (Sutton & Barto, 2018). In model-based reinforcement learning (MBRL), the agent constructs
models for transition and reward functions based on its experience of interaction with the envi-
ronment. The agent performs multi-step planning to select the optimal action using the model’s
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predictions without interacting with the environment. The model-based algorithms could be more
efficient than model-free algorithms if the accuracy of the world model is sufficient. State-of-the-art
MBRL methods, employing learning in imagination (Hafner et al., 2023) and lookahead search with
value equivalent dynamics model (Ye et al., 2021) master a diverse range of environments.

To further enhance sample efficiency, a promising direction is to combine both approaches by de-
veloping a world model that leverages object representations and explicitly learns to model relation-
ships between objects (Zholus et al., 2022). An example of this approach is the contrastively-trained
transition model CSWM (Kipf et al., 2020). It uses a graph neural network to approximate the dy-
namics of the environment and simultaneously learns to factorize the state and predict changes in the
state of individual objects. CSWM has shown superior prediction quality compared to traditional
monolithic models.

However, OCR models demonstrate high quality in relatively simple environments with strongly
distinguishable objects (Wu et al., 2023). Additionally, in object-structured environments, actions
are often applied to a single object or a small number of objects, simplifying the prediction of
individual object dynamics. In more complex environments, the world model must accurately bind
actions to objects to predict transitions effectively. Despite recent progress (Biza et al., 2022), no
fully-featured dynamics models considering the sparsity of action-object relationships have been
proposed. These challenges make it difficult to employ object-centric world models in RL. For
instance, the CSWM model has not been utilized for policy learning in offline or online settings.

Our research is focused on value-based MBRL as object-based decomposition of value function
could contribute to the training of object-centric world model consistent with policy. We introduce
the Relational Object-Centric Actor-Critic (ROCA), an off-policy object-centric model-based algo-
rithm inspired by the Soft Actor-Critic (SAC) (Haarnoja et al., 2018; 2019; Christodoulou, 2019) that
operates with both discrete and continuous action spaces. The ROCA algorithm uses the pre-trained
SLATE model (Singh et al., 2022), which extracts representations of the individual objects from the
input image. Similar to CSWM (Kipf et al., 2020), we utilize a structured transition model based
on graph neural networks. Our reward, state-value, and actor models are graph neural networks
designed to align with the object-centric structure of the task. Inspired by TreeQN (Farquhar et al.,
2018), we use a world model in the critic module to predict action-values. The ROCA algorithm
is the first to apply a GNN-based object-centric world model for policy learning in the RL setting
successfully. To evaluate the algorithm’s quality, we conducted experiments in 2D environments
with simple-shaped objects and visually more complex simulated 3D robotic environments. The
proposed algorithm demonstrates high sample efficiency and outperforms the object-oriented vari-
ant of the model-free PPO algorithm (Schulman et al., 2017), which uses the same SLATE model as
a feature extractor and is built upon the transformer architecture. Furthermore, our method performs
better than the state-of-the-art MBRL algorithm DreamerV3 (Hafner et al., 2023).

Our contributions can be summarized as follows:

• We propose a novel architecture that combines a value-based model-based approach with
the actor-critic SAC algorithm by incorporating a world model into the critic module.

• We extended the SAC algorithm by introducing a new objective function to train the model-
based critic.

• We propose a GNN-based actor to pool object-centric representations.

• We modified the GNN-based CSWM transition model by adjusting its edge model: we pass
a pair of slots along with an action into the edge model.

2 RELATED WORK

Object-Centric Representation Learning Recent advancements in machine learning research
have been dedicated to developing unsupervised OCR algorithms (Ramesh et al., 2021; Locatello
et al., 2020b; Engelcke et al., 2022). These methods aim to learn structured visual representations
from images without relying on labeled data, modeling each image as a composition of objects.
This line of research is motivated by its potential benefits for various downstream tasks, including
enhanced generalization and the ability to reason over visual objects. One notable approach in
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this field is Slot-Attention (Locatello et al., 2020b), which represents objects using multiple latent
variables and refines them through an attention mechanism. Building upon this, SLATE (Ramesh
et al., 2021) further improves the performance by employing a Transformer-based decoder instead
of a pixel-mixture decoder.

Object-Centric Representations and Model-Free RL Stanić et al. (2022) uses Slot-Attention
as an object-centric feature extractor and examines the performance and generalization capabilities
of RL agents. In another study (Sharma et al., 2023), a multistage training approach is proposed,
involving fine-tuning a YOLO model (Jocher et al., 2022) on a dataset labeled by an unsupervised
object-centric model. The frozen YOLO model is then employed as an object-centric features ex-
tractor in the Dueling DQN algorithm. Object representations are pooled using a graph attention
neural network before being fed to the Q-network.

Object-Centric Representations and MBRL As related work in object-oriented MBRL, we con-
sider Watters et al. (2019). It uses MONet (Burgess et al., 2019) as an object-centric features extrac-
tor and learns an object-oriented transition model. However, unlike our approach, this model does
not consider the interaction between objects and is only utilized during the exploration phase of the
RL algorithm.

Figure 2: ROCA overview. Framework consists of a pre-trained frozen SLATE model, which ex-
tracts object-centric representations from an image-based observation, and GNN-based modules: a
transition model, a reward model, a state-value model, and an actor model. The transition and re-
ward models form a world model. The world model and the state-value model together constitute
the critic module, which predicts Q-values.

3 BACKGROUND

3.1 MARKOV DECISION PROCESS

We consider a simplified version of the object-oriented MDP (Diuk et al., 2008):

U = (S,A, T,R, γ,O,Ω), (1)

where S = S1×· · ·×SK — a state space, Si — an individual state space of the object i, A — an ac-
tion space, T = (T1, . . . , TK) — a transition function, Ti = Ti(Ti1(si, s1, a), . . . , TiK(si, sK , a))

— an individual transition function of the object i, R =
∑K

i=1 Ri — a reward function,
Ri = Ri(Ri1(si, s1, a), . . . , RiK(si, sK , a)) — an individual reward function of the object
i, γ ∈ [0; 1] — a discount factor, O — an observation space, Ω : S → O — an ob-
servation function. The goal of reinforcement learning is to find the optimal policy: π∗ =
argmaxπEst+1∼T (·|st,at),at+1∼π(·|st+1) [

∑τ
i=0 γ

tR(st, at)] for all s0 where τ is the number of time
steps.

In model-based approach the agent uses the experience of interactions with the environment to build
a world model that approximates the transition function T̂ ≈ T and the reward function R̂ ≈ R and
use its predictions as an additional signal for policy learning.
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3.2 SOFT ACTOR-CRITIC

Soft Actor-Critic (SAC) (Haarnoja et al., 2018; 2019) is a state-of-the-art off-policy reinforcement
learning algorithm for continuous action settings. The goal of the algorithm is to find a policy that
maximizes the maximum entropy objective:

π∗ = argmaxπ

τ∑
i=0

E(st,at)∼dπ

[
γt(R(st, at) + αH(π(·|st))

]
where α is the temperature parameter, H(π(·|st)) = − log π(·|st) is the entropy of the policy π at
state st, dπ is the distribution of trajectories induced by policy π. The soft action-value function
Qθ(st, at) parameterized using a neural network with parameters θ is trained by minimizing the soft
Bellman residual:

JQ(θ) = E(st,at)∼D

[(
Qθ(st, at)−R(st, at)− γEst+1∼T (st,at)Vθ̄(st+1)

)2] (2)

where D is a replay buffer of past experience and Vθ̄(st+1) is estimated using a target network for
Q and a Monte Carlo estimate of the soft state-value function after sampling experiences from the
D.

The policy π is parameterized using a neural network with parameters ϕ. The parameters are
learned by minimizing the expected KL-divergence between the policy and the exponential of the
Q-function:

Jπ(ϕ) = Est∼D

[
Eat∼πϕ(·|st)

[
α log(πϕ(at|st))−Qθ(st, at)

]]
(3)

The objective for the temperature parameter is given by:

J(α) = Eat∼π(·|st)
[
− α(log π(at|st) + H̄)

]
(4)

where H̄ is a hyperparameter representing the target entropy. In practice, two separately trained
soft Q-networks are maintained, and then the minimum of their two outputs are used to be the soft
Q-network output.

While the original version of SAC solves problems with continuous action space, the version for
discrete action spaces was suggested by Christodoulou (2019). In the case of discrete action space,
πϕ(at|st) outputs a probability for all actions instead of a density. Such parametrization of the policy
slightly changes the objectives 2, 3 and 4. We describe SAC in more details in appendix B.

4 RELATIONAL OBJECT-CENTRIC ACTOR-CRITIC

Figure 2 outlines the high-level overview of the proposed actor-critic framework (ROCA). As an
encoder we use SLATE (Singh et al., 2022), a recent object-centric model. SLATE incorporates a
dVAE (van den Oord et al., 2018) for internal feature extraction, a GPT-like transformer (Ramesh
et al., 2021) for decoding, and a slot-attention module (Locatello et al., 2020c) to group features
associated with the same object. We refer to appendix C for a more detailed description of SLATE.
In ROCA the pre-trained frozen SLATE model takes an image-based observation st as input and
produces a set of object vectors, referred to as slots, zt = (z1t , . . . , z

K
t ) (K - the maximum number

of objects to be extracted). An actor model encapsulates the current agent’s policy and returns an
action for the input state zt. Critic predicts the value Q(zt, a) of the provided action a sampled
from the actor given the current state representations zt. It is estimated using the learned transition
model, reward model, and state-value model. The input state representation zt = (z1t , . . . , z

K
t ) is

treated as a complete graph while being processed by GNN-based components of the ROCA.

4.1 TRANSITION MODEL

We approximate the transition function using a graph neural network Kipf et al. (2020) with an edge
model edgeT and a node model nodeT which takes a factored state zt = (z1t , . . . , z

K
t ) and action

at as input and predicts changes in factored states ∆z. The action is provided to the node model
nodeT and the edge model edgeT as shown in Figure 3. The factored representation of the next
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Figure 3: Overview of GNN-based transition model and state-value model. a) Representation of the
state as a complete graph. b) Transition model: message-passing update scheme for the embedding
of object 1. c) State-value model: message-passing update scheme for the state-value prediction for
the object 1.

state is obtained via ẑt+1 = zt +∆z. Since we treat the set of slots as a complete graph, the com-
plexity of the update rule 5 is quadratic in the number of slots. The same applies to all GNN models
in the ROCA.

∆zi = nodeT (z
i
t, a

i
t,
∑
i̸=j

edgeT (z
i
t, z

j
t , a

i
t)) (5)

4.2 REWARD MODEL

The reward model uses almost the same architecture as the transition model. Still, we average object
embeddings returned by the node models and feed the result into the MLP to produce the scalar
reward. The reward model is trained using the mean squared error loss function with environmental
rewards rt as target (6).{

embedi
R= nodeR(z

i
t, a

i
t,
∑

i̸=j edgeR(z
i
t, z

j
t , a

i
t))

R̂(zt, at)= MLP (
∑K

i=1 embed
i
R/K)

(6)

4.3 STATE-VALUE MODEL

The state-value function is approximated using a graph neural network V̂ , which does not depend
on actions in either the edge model edgeV or the node model nodeV . As in the reward model, we
average object embeddings returned by the node models and feed the result into the MLP to produce
the scalar value. {

embedi
V = nodeV (z

i
t,
∑

i ̸=j edgeV (z
i
t, z

j
t ))

V̂ (zt) = MLP (
∑K

i=1 embed
i
V /K)

(7)

4.4 ACTOR MODEL

The actor model uses the same GNN architecture as the state-value model but employs different
MLP heads for continuous and discrete action spaces. In the case of the continuous action space, it
returns the mean and the covariance of the Gaussian distribution. For the discrete action space, it
outputs the probabilities for all actions.

embedi
actor= nodeactor(z

i
t,
∑

i ̸=j edgeactor(z
i
t, z

j
t ))

µ(zt) = MLPµ(
∑K

i=1 embed
i
actor/K)

σ2(zt) = MLPσ2(
∑K

i=1 embed
i
actor/K)

π(zt) = MLPπ(
∑K

i=1 embed
i
actor/K)

(8)

4.5 CRITIC MODEL

In the critic, we use a world model to predict action-values. Specifically, we employ a Q-function
decomposition based on the Bellman equation. It was initially introduced in the Q-learning TreeQN
algorithm (Farquhar et al., 2018):

Q̂(zt, at) = R̂(zt, at) + γV̂ (zt +∆z) (9)
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where R̂ — the reward model 6, V̂ — the state-value model 7, zt +∆z — the next state prediction,
generated by the transition model 5. Since the critic’s output values are computed using the world
model, we refer to our approach as a value-based model-based method.

4.6 TRAINING

The SLATE model is pre-trained on the data set of trajectories collected with a uniform random
policy (100K observations for Shapes2D tasks and 200K observations for the Object Reaching task).
Following the original paper (Singh et al., 2022), we apply decay on the dVAE temperature τ from
1.0 to 0.1 and a learning rate warm-up for the parameters of the slot-attention encoder and the
transformer at the start of the training. After pre-training, we keep the parameters of the SLATE
model frozen.

To train all the other components of ROCA we use SAC objectives (2, 3, 4). For both continuous and
discrete environments, a conventional double Q-network architecture is used in the critic module.
Additionally, we use the data sampled from the replay buffer to train the world model components.
The transition model is trained using the mean squared error loss function to minimize the prediction
error of the object representations for the next state, given the action. The reward model is trained
using the mean squared error loss function with environmental rewards rt as targets.

JWM = Est,at,rt,st+1∼D

[
βT ∥zt +∆z − zt+1∥2 + βR

(
R̂(zt, at)− rt

)2] (10)

In total, we use four optimizers. The temperature parameter, the actor, and the value model use
individual optimizers. The transition and reward models share the world model optimizer.

Due to the stochastic nature of the SLATE model, object-centric representation can shuffle at each
step. To enforce the order of object representation during the world model objective (10) optimiza-
tion, we pre-initialize the slots of the SLATE model for the next state zt+1 with the current values
zt.

Figure 4: Return and success rate averaged over 30 episodes and three seeds for ROCA, DreamerV3,
and OCRL models. ROCA learns faster or achieves higher metrics than the baselines. Shaded areas
indicate standard deviation.

5 ENVIRONMENTS

The efficiency of the proposed ROCA algorithm was evaluated in the 3D robotic simulation envi-
ronment CausalWorld (Ahmed et al., 2020) on the Object Reaching task as it was done in (Yoon
et al., 2023), and in the compositional 2D environment Shapes2D (Kipf et al., 2020) on the Naviga-
tion and PushingNoAgent tasks. Current state-of-the-art slot-based object-centric models struggle
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to extract meaningful object-centric representations in visually complex environments (Locatello
et al., 2020a; Engelcke et al., 2021). As a result, testing object-centric RL algorithms in visually
rich environments, like Habitat (Szot et al., 2022) , becomes challenging due to the low quality of
representations. However, the visual complexity of the selected environments enables object-cen-
tric models to extract high-quality object representations. This allows us to focus on the problem of
object-centric MBRL, which is the primary objective of this paper.

Figure 5: Return averaged
over 30 episodes and three
seeds for ROCA, DreamerV3,
and OCRL models for Navi-
gation 10x10 task. ROCA ex-
hibits better performance than
baselines but still does not
solve the task. Shaded areas
indicate standard deviation.

Object Reaching Task In this task, a fixed target object (vio-
let cube) and a set of distractor objects (orange, yellow, and cyan
cubes) are randomly placed in the scene. The agent controls a tri-
finger robot and must reach the target object with one of its fingers
(the other two are permanently fixed) to obtain a positive reward
and solve the task. The episode ends without reward if the finger
first touches one of the distractor objects. The action space in this
environment consists of the three continuous joint positions of the
moveable finger. During our experiments, we discovered that one
of the baseline algorithms is sensitive to the choice of color scheme
for the cubes. Therefore, we also conducted experiments in the task
with the original color scheme (Yoon et al., 2023): the color of the
target cube is blue, and the colors of the distracting cubes are red,
yellow, and green. Examples of observations are shown in appendix
C.

Navigation Task Shapes2D environment is a four-connected
grid world where objects are represented as figures of simple
shapes. Examples of observations in the considered versions of the
Shapes2D environment are shown appendix C. One object — the
cross is selected as a stationary target. The other objects are mov-
able. The agent controls all movable objects. In one step, the agent
can move an object to any free adjacent cell. The agent aims to
collide the controlled objects with the target object. Upon collision,
the object disappears, and the agent receives a reward of +1. When

an object collides with another movable object or field boundaries, the agent receives a reward of
−0.1, and the positions of objects are not changed. For each step in the environment, the agent
receives a reward of −0.01. The episode ends if only the target object remains on the field. In the
experiments, we use a 5x5-sized environment with five objects and a 10x10-sized environment with
eight objects. The action space in the Shapes2D environment is discrete and consists of 16 actions
for the Navigation 5x5 task (four movable objects) and 28 actions for the Navigation 10x10 task
(seven movable objects).

PushingNoAgent Task The agent controls all movable objects as in the Navigation task, but col-
lisions between two movable objects are permitted: both objects move in the direction of motion.
The agent is tasked to push another movable object into the target while controlling the current
object. The pushed object disappears, and the agent receives a reward of +1 for such an action.
When the currently controlled object collides with the target object or field boundaries, the agent
receives a reward of −0.1. When the agent pushes a movable object into the field boundaries, the
agent receives a reward of −0.1. For each step in the environment, the agent receives a reward of
−0.01. The episode ends if only the target object and one movable object remain on the field. In the
experiments, we use a 5x5-sized environment with five objects.

6 EXPERIMENTS

We utilize a single SLATE model for Navigation5x5 and PushingNoAgent5x5 tasks as they share
the same observation space. However, we train a distinct SLATE model for Navigation10x10 and
each version of the Object Reaching task. Appendix A provides detailed information regarding the
hyperparameters of the SLATE model.
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In continuous Object Reaching tasks, we conventionally use the dimension of the action space as
the target entropy hyperparameter for ROCA. For 2D tasks with a discrete action space, we scale
the entropy of a uniform random policy with the tuned coefficient. For more information on the
hyperparameters of the ROCA model, please refer to appendix A.

We compare ROCA with a model-free algorithm based on PPO, using the same pre-trained frozen
SLATE model as a feature extractor. To combine the latent object representations into a single vector
suitable for the value and policy networks of the PPO, we used a Transformer encoder (Vaswani
et al., 2023) as a pooling layer. We referred to the transformer-based PPO implementation provided
by (Yoon et al., 2023) as the OCRL baseline. For the Object Reaching Task, we employed the same
hyperparameter values as the authors. For Shapes2D tasks, we fine-tuned the hyperparameters of
the OCRL baseline. The tested values are listed in the appendix D. Since there are no established
state-of-the-art object-centric MBRL algorithms, we have chosen the DreamerV3 (Hafner et al.,
2023) algorithm as a MBRL baseline. In order to ensure a fair comparison between the ROCA and
the DreamerV3, we conducted experiments where we trained the DreamerV3 with a pretrained en-
coder obtained from the DreamerV3 model that solves the task. For all the tasks, we conducted
experiments using two different modes: one with the encoder frozen and another with the encoder
unfrozen. However, we did not observe any improvement in the convergence rate compared to the
DreamerV3 model that does not use the pretrained encoder. Additionally, we discovered that the pre-
trained world model significantly accelerates the convergence of DreamerV3, but this mode makes
the comparison unfair to the ROCA. For the DreamerV3 algorithm we use default hyperparameter
values from the official repository. The results of an additional experiment evaluating out-of-distri-
bution generalization to unseen colors in the Object Reaching task can be found in appendix F.

Figure 6: Ablation study. SAC-CNN — a version of SAC with a standard CNN encoder. SAC-
SLATE — a version of SAC with a pretrained SLATE encoder which averages object emebeddings
to obtain the embedding of the current state. SAC-WM-SLATE — a modification of SAC-SLATE
which uses a monolithic world-model in its critic. SAC-GNN-SLATE — an object-centric version
of SAC with a pretrained SLATE encoder which uses GNNs as actor and critic. ROCA (no-tuning)
— a version of ROCA without target entropy tuning. ROCA outperforms the considered baselines.
Shaded areas indicate standard deviation.

Results The graphs in Figure 4 depict how the episode return of ROCA and the baselines depend
on the number of steps for Navigation 5x5, PushingNoAgent5x5, and two versions of the Object
Reaching task. For the Navigation 5x5 task, ROCA performs better than the OCRL baseline. Al-
though DreamerV3 shows slightly more stable and efficient learning than ROCA, ROCA eventually
achieves a higher return. In the PushingNoAgent 5x5 task, ROCA outperforms both baselines. The
baselines are initially more effective in the Object Reaching task with our color scheme, but ROCA
outperforms them after 200K steps. For the Object Reaching task with the original color scheme,
the OCRL baseline demonstrates much better performance, but ROCA also surpasses both baselines
after 200K steps. Figure 5 demonstrates the results in the more challenging Navigation 10x10 task.
Both baselines fail to achieve a positive return. ROCA performs better than both baselines but can
not solve the task entirely, as it only moves five out of seven objects to the target. We believe that
the poor performance of the OCRL baseline in the Object Reaching task with VOYC color schema
is due to its sensitivity to the quality of the SLATE model. One potential solution to overcome this
issue could be increasing the number of training epochs for the SLATE.
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Ablations ROCA is built upon SAC, and thus, the ablation study aims to assess the impact of
the different modifications we introduced to the original SAC with a monolithic CNN encoder.
Figure 6 illustrates the results of additional experiments estimating the effects of the pre-trained
SLATE encoder, the object-centric actor and critic, the object-centric world model and the target
entropy tuning. We evaluate the quality of several monolithic and object-centric versions of SAC
and compare them with ROCA. SAC-CNN is standard monolithic version of SAC that utilizes the
convolutional encoder from the original DQN implementation (Mnih et al., 2015). In SAC-SLATE,
the CNN encoder is replaced with a pre-trained frozen SLATE encoder, while the other model com-
ponents remain the same. To obtain the monolithic state representation z∗t from the object-centric
one zt, produced by the SLATE, we take the average over the object axis: z∗t =

∑K
i=0 z

i
t/K. Note,

that z∗t is independent of the slot order in zt and can be fed into the standard actor and critic MLPs.
SAC-WM-SLATE builds upon SAC-SLATE and can be considered as a monolithic version of the
ROCA. Its actor, state-value, reward, and transition models are implemented using MLPs. SAC-
GNN-SLATE is an object-centric version of SAC and can be viewed as ROCA without the world
model in the critic module. It uses a pretrained frozen SLATE encoder and GNN-based actor and
critic modules. Additionally, we compare the ROCA with a variant where the target entropy is
set to the default value, equal to the scaled entropy of the uniform random policy with coefficient
0.98 (Christodoulou, 2019).

The ablation studies have shown that in the monolithic mode, the SLATE model significantly im-
proves performance only in the relatively simple Navigation5x5 task. However, extending the critic
with the world model does not improve the convergence rate. The object-centric SAC-GNN-SLATE
outperforms all monolithic models. Finally, the ROCA, which uses an object-centric world model in
the critic module, outperforms the SAC-GNN-SLATE. Note that we obtained the presented results
after fine-tuning the hyperparameters for all of the models.

7 CONCLUSION AND FUTURE WORK

We presented ROCA, an object-centric off-policy value-based model-based reinforcement learning
approach that uses a pre-trained SLATE model as an object-centric feature extractor. Our experi-
ments in 3D and 2D tasks demonstrate that ROCA learns effective policies and outperforms object-
centric model-free and model-based baselines. The world model is built upon a GNN architecture,
showing that graph neural networks can be successfully applied in MBRL settings for policy learn-
ing. While we use the SLATE model as an object-centric feature extractor, in principle, we can
replace SLATE with other slot-based object-centric models. However, ROCA does have limitations.
Firstly, its world model is deterministic and may struggle to predict the dynamics of highly stochas-
tic environments. Additionally, as our model is based on the SAC algorithm, it is sensitive to the
target entropy hyperparameter, especially in environments with discrete action spaces (Xu et al.,
2021; Zhou et al., 2023).

In our future work, we consider the primary task to be evaluating the ROCA in more visually chal-
lenging environments. To accomplish this, we plan to replace the SLATE with the recently proposed
DINOSAUR (Seitzer et al., 2023) model, which has shown promising results on realistic datasets.
In addition, we have plans to experiment with non-slot object-centric approaches, such as Deep
Learning Particles (Daniel & Tamar, 2022). Our plans include enhancing the model’s robustness to
changes in the target entropy by adopting a metagradient-based approach (Wang & Ni, 2020), which
eliminates the need for this hyperparameter. In many environments, only a small number of objects
interact at a time. Therefore, representing the environment’s state as a complete graph leads to re-
dundant connections. To address this issue, we plan to implement approaches (Goyal et al., 2022;
Zadaianchuk et al., 2022) that sparsify the state graph.
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Ossama Ahmed, Frederik Träuble, Anirudh Goyal, Alexander Neitz, Yoshua Bengio, Bernhard
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Aleksandar Stanić, Yujin Tang, David Ha, and Jürgen Schmidhuber. Learning to generalize with
object-centric agents in the open world survival game crafter, 2022.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Von-
drus, Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen
Koltun, Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training home assistants
to rearrange their habitat, 2022.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

Yufei Wang and Tianwei Ni. Meta-sac: Auto-tune the entropy temperature of soft actor-critic via
metagradient, 2020.

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=mQtyk75pYZ


Under review as a conference paper at ICLR 2024

Nicholas Watters, Loic Matthey, Matko Bosnjak, Christopher P. Burgess, and Alexander Lerchner.
Cobra: Data-efficient model-based rl through unsupervised object discovery and curiosity-driven
exploration, 2019.

Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Animesh Garg. Slotformer: Unsupervised
visual dynamics simulation with object-centric models. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
TFbwV6I0VLg.

Yaosheng Xu, Dailin Hu, Litian Liang, Stephen McAleer, Pieter Abbeel, and Roy Fox. Target
entropy annealing for discrete soft actor-critic, 2021.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data, 2021.

Jaesik Yoon, Yi-Fu Wu, Heechul Bae, and Sungjin Ahn. An investigation into pre-training object-
centric representations for reinforcement learning, 2023.

Andrii Zadaianchuk, Georg Martius, and Fanny Yang. Self-supervised reinforcement learning with
independently controllable subgoals, 2022.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learn-
ing invariant representations for reinforcement learning without reconstruction. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=-2FCwDKRREu.

Artem Zholus, Yaroslav Ivchenkov, and Aleksandr Panov. Factorized World Models for Learning
Causal Relationships. In ICLR Workshop on the Elements of Reasoning: Objects, Structure and
Causality, 2022. URL https://openreview.net/forum?id=BCGfDBOIcec.

Haibin Zhou, Zichuan Lin, Junyou Li, Qiang Fu, Wei Yang, and Deheng Ye. Revisiting discrete soft
actor-critic, 2023.

12

https://openreview.net/forum?id=TFbwV6I0VLg
https://openreview.net/forum?id=TFbwV6I0VLg
https://openreview.net/forum?id=-2FCwDKRREu
https://openreview.net/forum?id=-2FCwDKRREu
https://openreview.net/forum?id=BCGfDBOIcec


Under review as a conference paper at ICLR 2024

A IMPLEMENTATION DETAILS

The edge and the node model in GNN-based transition model, reward model, value model and actor
model are MLP’s which consists of two hidden layers of 512 units each, LayerNorm and ReLU
activations.

Target entropy parameter is set to -3 for Object Reaching task. For tasks with discrete action space
we use the scale the entropy of a uniform random policy with coefficient 0.6, which means 1.66 for
Navigation 5x5 and PushingNoAgent 5x5 tasks and 2 for Navigation 10x10 task.

Learning

Temp. Cooldown 1
Temp. Cooldown Steps 30000

LR for DVAE 0.0003
LR for CNN Encoder 0.0001

LR for Transformer Decoder 0.0003
LR Warm Up Steps 30000

LR Half Time 250000
Dropout 0.1

Clip 0.05
Batch Size 24

Epochs 150

DVAE vocabulary size 4096

CNN Encoder Hidden Size 64

Slot Attention

Iterations 3
Slot Heads 1
Slot Dim. 192

MLP Hidden Dim. 192
Pos Channels 4

Transformer Decoder
Layers 4
Heads 4

Hidden Dim 192

Table 1: Hyperparameters for SLATE

Gamma 0.99
Buffer size 1000000
Batch size 128
τpolyak 0.005

Buffer prefill size 5000
Number of parallel environments 16

Table 2: Hyperparameters for ROCA

B SOFT ACTOR CRITIC

B.1 SOFT ACTOR-CRITIC FOR CONTINUOUS ACTION SPACES

Soft Actor-Critic (SAC) (Haarnoja et al., 2018; 2019) is a state-of-the-art off-policy reinforcement
learning algorithm for continuous action settings. The goal of the algorithm is to find a policy that
maximizes the maximum entropy objective:

π∗ = argmaxπ

τ∑
i=0

E(st,at)∼dπ

[
γt(R(st, at) + αH(π(·|st))

]
13
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where α is the temperature parameter, H(π(·|st)) = − log π(·|st) is the entropy of the policy π at
state st, dπ is the distribution of trajectories induced by policy π. The relationship between the soft
state-value function and the soft action-value function is determined as

V (st) = Eat∼π(·|st)[Q(st, at)− α log(π(at|st))] (11)

The soft action-value function Qθ(st, at) parameterized using a neural network with parameters θ
is trained by minimizing the soft Bellman residual:

JQ(θ) = E(st,at)∼D

[(
Qθ(st, at)−R(st, at)− γEst+1∼T (st,at)Vθ̄(st+1)

)2] (12)

where D is a replay buffer of past experience and Vθ̄(st+1) is estimated using a target network for
Q and a Monte Carlo estimate of (11) after sampling experiences from the D.

The policy π is restricted to a tractable parameterized family of distributions. A Gaussian policy is
often parameterized using a neural network with parameters ϕ that outputs a mean and covariance.
The parameters are learned by minimizing the expected KL-divergence between the policy and the
exponential of the Q-function:

Jπ(ϕ) = Est∼D

[
Eat∼πϕ(·|st)

[
α log(πϕ(at|st))−Qθ(st, at)

]]
(13)

After reparameterization of the policy with the standard normal distribution, the (13) becomes fea-
sible for backpropagation:

Jπ(ϕ) = Est∼D,ϵt∼N (0,1)

[
α log(πϕ(fϕ(ϵt; st)|st))−Qθ(st, fϕ(ϵt; st))

]
(14)

where action are parameterized as at = fϕ(ϵϕ; st).

The objective for the temperature parameter is given by:

J(α) = Eat∼π(·|st)
[
− α(log π(at|st) + H̄)

]
(15)

where H̄ is a hyperparameter representing the target entropy. In practice, two separately trained
soft Q-networks are maintained, and then the minimum of their two outputs are used to be the soft
Q-network output.

B.2 SOFT ACTOR-CRITIC FOR DISCRETE ACTION SPACES

While SAC solves problems with continuous action space, it cannot be straightforwardly applied
to discrete domains since it relies on the reparameterization of Gaussian policies to sample ac-
tion. A direct discretization of the continuous action output and Q value (SACD) was suggested by
(Christodoulou, 2019). In the case of discrete action space, πϕ(at|st) outputs a probability for all
actions instead of a density. Thus, the expectation (11) can be calculated directly and used in the
Q-function objective (12):

V (st) = π(st)
T
[
Q(st)− α log π(st)

]
(16)

The temperature objective (15) changes to:

J(α) = π(st)
T
[
− α(log π(st) + H̄)

]
(17)

The expectation over actions in (13) can be calculated directly, which leads to the policy objective:

Jπ(ϕ) = Est∼D

[
π(st)

T
[
α log(πϕ(st))−Qθ(st, ·)

]]
(18)

C SLATE

The SLATE (Singh et al., 2022) model is used as an object-centric representations extractor from
image-based observations st. It consists of a slot-attention module (Locatello et al., 2020c), dVAE,
and GPT-like transformer (Ramesh et al., 2021).

The purpose of dVAE is to reduce an input image of size H×W into lower dimension representation
by a factor of K. First, the observation st is fed into the encoder network fϕ, resulting in log

14



Under review as a conference paper at ICLR 2024

probabilities ot) for a categorical distribution with C classes. Then, these log probabilities are used
to sample relaxed one-hot vectors jsoft

t from the relaxed categorical distribution with temperature
τ . Each token from jsoft

t represents information about K ×K size patch of overall P = HW/K2

patches on the image. After that, jsoft
t the vector is being used to reconstruct observation s̃t by these

patches with the decoder network gθ.
ot = fϕ(st)

jsoft
t ∼ RelaxedCategorical(ot; τ);
s̃t = gθ(j

soft
t ) .

The training objective of dVAE is to minimize MSE between observation st and reconstruction s̃t:

LdV AE = MSE(st, s̃t), (19)

Discrete tokens jt, obtained from categorical distribution, are mapped to embedding from learnable
dictionaries. Those embeddings are summed with learned position embedding pϕ to fuse informa-
tion about patches on the image. Then, the resulting embeddings u1:P

t are fed into the slot attention
module. The slot attention returns N object slots z1:Nt , which are vectors of the fixed dimension
Slot Dim, along with N attention maps A1:N

t .
ot = fϕ(st);

jt ∼ Categorical(ot);
u1:P
t = Dictionaryϕ(jt) + pϕ;

z1:Nt , A1:N
t = SlotAttentionϕ(u1:P

t ) .

The transformer predicts log-probabilities autoregressively ôit for path i from vectors û<i
t generated

for previous patches, combined with object centric representations z1:Nt . The vector ûl
t, l < i ∈

[1 : P ] is formed dictionary embedding from previously generated token ĵlt for path l with added
position embedding plϕ. The token ĵit is mapped to the class c ∈ C with the highest log-probability
ôit,c. The resulting token can be used to reconstruct observation ŝt by combining reconstructed
patches ŝit. 

û<i
t = Dictionaryϕ(ĵ

<i
t ) + piϕ;

ôit = Transformerθ(û<i
t ; z1:Nt );

ĵit = argmaxc∈[1,C] ô
i
t,c;

ŝit = gθ(ĵ
i
t) .

The training objective of the transformer is to minimize cross entropy between the distribution of
tokens ĵt generated by the transformer and tokens jt extracted by dVAE.

LT =

P∑
i=1

CrossEntropy(zit, ẑ
i
t) (20)

Combining 19 and 20 we receive loss for the SLATE model:

LSLATE = LdV AE + LT

Figure 7 illustrates the examples of original observations and slot-attention masks learned by the
SLATE model in the Object Reaching and Shapes2D tasks.

D OCRL FINE-TUNING DETAILS

We conducted additional experiments to tune the OCRL baseline in the tasks where it was outper-
formed by ROCA. In Navigation10x10 and PushingNoAgent5x5 tasks we went through combina-
tions of hyperparameters, but did not observe significant improvements:

• Entropy coefficient: [0, 0.001, 0.01, 0.025, 0.05, 0.075, 0.1]
• Clip range: [0.1, 0.2, 0.4]
• Epochs: [10, 20, 30]
• Batch size: [64, 128]

15
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Figure 7: Examples of observations and slots extracted by the SLATE model in the Object Reaching
task (top), Navigation 10x10 task (middle), and Navigation 5x5 task (bottom).

E ADDITIONAL EXPERIMENTS WITH DREAMERV3

In order to ensure a fair comparison with DreamerV3, we conducted experiments with a pretrained
encoder obtained from the DreamerV3 model that solves the task. For all the tasks, we conducted
experiments using two different modes: one with the encoder frozen and another with the encoder
unfrozen. However, we did not observe any improvement in the convergence rate. The results are
shown in the Figure 8.

Figure 8: The plots illustrate the impact of encoder pretraining for DreamerV3 algorithm. Dream-
erV3 is a default version that trains its encoder from scratch. DreamerV3:enc-fronzen is a version
with a pretrained frozen encoder. DreamerV3:enc-unfrozen is a version with a pretrained unfrozen
encoder. Return and success rate averaged over 30 episodes and three seeds for different.

F EVALUATION OF OUT-OF-DISTRIBUTION GENERALIZATION TO UNSEEN
COLORS

We evaluated the generalization of the ROCA to unseen colors of distractor objects in the Object
Reaching task. When we tested the model with the same colors it was trained on, it achieved a suc-
cess rate of 0.975± 0.005. However, when we used new colors for the distractor objects, the success
rate dropped to 0.850± 0.005. The results were averaged over three instances of the ROCA models,
and each model was evaluated on 100 episodes.
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