
Beyond Generation: Leveraging LLM Creativity to Overcome Label Bias
in Classification

Anonymous ACL submission

Abstract001

Large Language Models (LLMs) exhibit im-002
pressive capabilities in In-Context Learning003
(ICL) but are prone to label bias—an undesir-004
able tendency to favor certain answers. Exist-005
ing calibration methods mitigate bias by lever-006
aging in-domain data, yet such data is often007
unavailable in real-world scenarios. To ad-008
dress this limitation, we propose SDC (Syn-009
thetic Data Calibration), a simple-yet-effective010
approach that generates synthetic in-domain011
data from a few in-context demonstrations and012
utilizes it for calibration. By approximating013
the benefits of real in-domain data, SDC ef-014
fectively reduces label bias without requiring015
access to actual domain-specific inputs. Ex-016
perimental evaluations on 279 classification017
and multiple-choice tasks from the SUPER-018
NATURALINSTRUCTIONS benchmark. The re-019
sults show that SDC significantly reduces label020
bias, achieving an average Bias Score reduc-021
tion of 57.5%, and outperforming all competi-022
tive baselines. Moreover, when combined with023
Leave-One-Out Calibration (LOOC), SDC fur-024
ther improves performance, underscoring its025
effectiveness and generalizability in enhancing026
the reliability of LLMs.027

1 Introduction028

Large Language Models (LLMs) demonstrate im-029

pressive capabilities in handling unseen tasks by030

conditioning on examples of input-output pairs,031

known as In-Context Learning (ICL) demonstra-032

tions. However, recent research reveals that LLMs’033

predictions exhibit Label Bias (Zhao et al., 2021;034

Chen et al., 2023, 2024), an undesirable tendency035

to favor certain answers. This phenomenon is in-036

fluenced by the label distribution in the demonstra-037

tions (Min et al., 2022), or by the order of them038

(Lu et al., 2022; Zheng et al., 2023). Such a bias039

undermines the reliability of LLM predictions and040

limits their practical applications, particularly in041

fields demanding high reliability, i.e finance.042

To address label bias, several calibration-based 043

methods have been proposed, each using progres- 044

sively more information from the target task’s input. 045

Contextual Calibration (CC) (Zhao et al., 2021) 046

uses little to no domain-relevant input, instead 047

feeding tokens like N/A to estimate and correct 048

for the model’s prior predictions. Domain-Context 049

Calibration (DCC) (Fei et al., 2023) refines this 050

idea by sampling random texts directly from the 051

in-domain input, thereby capturing more domain- 052

specific signals in the calibration process. More 053

recently, Leave-One-Out Calibration (LOOC) (Reif 054

and Schwartz, 2024) removes each demonstration 055

in turn to compute a more precise bias estimation, 056

effectively harnessing the original demonstration 057

inputs themselves. Although each of these methods 058

reduces label bias, they also reveal that additional, 059

task-related text (domain, random samples, or full 060

demonstrations) can significantly improve calibra- 061

tion quality. 062

Motivated by these trends, we first performed a 063

preliminary investigation into how real in-domain 064

inputs help estimate a better prior for calibration. 065

As expected, when in-domain data is available, it 066

yields remarkably accurate estimates of the model’s 067

tendency to favor certain labels. However, real in- 068

domain inputs are often unavailable in real-world 069

ICL scenarios, where the model faces entirely un- 070

seen tasks with only a handful of example demon- 071

strations. Leveraging the strong generative capabil- 072

ities of LLMs, we propose using the model itself to 073

create synthetic in-domain data. In this work, we 074

develop SDC—Synthetic Data Calibration. SDC 075

leverages LLMs to generate synthetic in-domain 076

data from a few in-context demonstrations. This 077

synthetic data is then used to calibrate model pre- 078

dictions, following the same approach as in our 079

preliminary experiments. By doing so, SDC effec- 080

tively mitigates label bias without requiring real 081

in-domain data. 082

We compared the proposed method with 083
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Method p diag(pdc)
−1p diag(pI)

−1p

Bias Score ↓ 0.098 0.060 0.029
RSD ↓ 0.562 0.385 0.194

Table 1: The bias evaluation results for the uncalibrated
model predictions, as well as for the model predictions
calibrated using pdc and pI .

competitive baselines on 279 diverse classifi-084

cation and multiple-choice tasks from SUPER-085

NATURALINSTRUCTIONS (Wang et al., 2022) us-086

ing two widely used LLMs: Llama3-7b (AI@Meta,087

2024) and Qwen2-7b (Yang et al., 2024). The re-088

sults show that SDC achieves the best performance089

among all comparisons, as evidenced by an average090

57.5% reduction in Bias Score (Reif and Schwartz,091

2024) on two models. Furthermore, when combin-092

ing the label bias estimated by SDC with LOOC,093

the model’s label bias is further mitigated, achiev-094

ing state-of-the-art Micro-F1, strongly demonstrat-095

ing the generalizability and effectiveness of SDC.096

2 Preliminaries097

Label Bias In-Context Learning (ICL) en-098

ables LLMs to solve unseen tasks by prompt-099

ing them with several demonstrations. Let100

C = {(x1, y1), (x2, y2), . . . , (x|C|, y|C|)} denotes101

the demonstrations, where x∗ and y∗ are the input102

and output, respectively. The model is then ex-103

pected to predict the answer y for the input x by104

feeding the concatenation of C and x into the model,105

formally: y = argmaxy∈Y p(y|x, C), where p(·)106

denotes the probability predicted by the model, Y107

is the set of all possible output answers.108

However, ICL has been shown to exhibit label109

bias, where the model displays an unexpected pref-110

erence for certain answers. This bias can be in-111

fluenced by the order of examples in C or the to-112

ken frequency of answers encountered during the113

LLM’s pretraining phase. In this work, we fol-114

low Reif and Schwartz (2024) to measure label115

bias and performance using three metrics: Bias116

Score, Relative Standard Deviation of class-wise117

accuracy (RSD), and Micro-F1. The first two cap-118

ture how strongly the model favors certain classes,119

whereas Micro-F1 evaluates its overall classifica-120

tion performance. Formal definitions and detailed121

explanations of these metrics are available in Ap-122

pendix A.1.123

Progressive Use of Task Input in Previous Stud-124

ies. Several calibration-based methods have been125

proposed to estimate and correct the model’s prior126

preference over possible labels, each one exploiting 127

progressively more domain-relevant input: 128

Contextual Calibration (CC) (Zhao et al., 129

2021) uses minimal domain information to esti- 130

mate the prior, simply replacing the real input with 131

a placeholder token (N/A). Formally, pCC(y
i) = 132

p
(
yi|[N/A], C

)
. 133

Domain-Context Calibration (DC) (Fei et al., 134

2023) samples text from in-domain data rather than 135

using N/A, thus incorporating more task-related 136

content. This process is described by pdc(y
i) = 137

1
|M |

∑M
m=1 p

(
yi|[random text]m, C

)
, where M is 138

the number of selected random text. 139

Leave-One-Out Calibration (LOOC) (Reif 140

and Schwartz, 2024) goes further by exploiting 141

the original demonstration inputs themselves. It 142

excludes each (x, y) from C in turn, forms C−k, and 143

computes the label-wise probability pLOOC(y
i) 144

over these reduced contexts. Repeating for all la- 145

bels yields the overall prior pLOOC . 146

In every case, the model’s final output probabili- 147

ties p are rescaled by diag(p∗)
−1, where p∗ is the 148

respective prior from one of the above approaches. 149

Mitigating Label Bias using In-Domain Data 150

Inspired by the observation that richer domain- 151

specific input often yields a more accurate prior, 152

we examine an idealized scenario where complete 153

in-domain data X I = {xI1, . . . , xI|X I |} is available. 154

In this case, we directly average model predictions 155

over all in-domain inputs: 156

pt(y
i) =

1

|X I |
∑

xI
j ∈X I

p
(
yi|xIj , C

)
. (1) 157

The estimated prior becomes pI = 158[
pI(y

1), . . . , pI(y
|Y |)

]
, and we can obtain 159

the calibrated model prediction diag(pI)
−1p. 160

Empirical Setup and Observations. We 161

instantiate this scenario using the Llama3- 162

7b model and evaluate on 279 classifica- 163

tion and multiple-choice tasks from SUPER- 164

NATURALINSTRUCTIONS (Wang et al., 2022). We 165

compare the result with DC, where the estimate 166

prior represented as pdc. Table 1 reports the 167

average Bias Score and RSD for the uncalibrated 168

model and for the calibrated predictions under 169

both pdc and pI . Notably, leveraging the full 170

in-domain dataset (i.e., pI ) leads to a marked 171

reduction in Bias Score and RSD, confirming that 172
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richer domain content significantly improves the173

model’s prior estimation. However, since complete174

in-domain data is often unavailable in real-world175

ICL, we next explore utilize the LLM to generate176

domain-relevant data for calibration.177

3 SDC: Synthetic Data Calibration178

Building on our findings that domain-relevant in-179

put greatly improves calibration (Section 2), we180

now address the more realistic setting in which real181

in-domain data is unavailable. We propose SDC, a182

method that leverages the strong generative capa-183

bility of LLMs to create synthetic in-domain input184

from just a few demonstration examples.185

The key intuition behind SDC is that LLMs,186

when prompted with demonstrations, can gener-187

ate diverse synthetic data that capture essential188

patterns of the target domain. By calibrating pre-189

dictions with this synthetic data, we approximate190

the benefits of real in-domain data without its191

availability. In SDC, the LLM is prompted with192

In:x1,Out:y1...In:x|C|,Out:y|C|,In: to gener-193

ate synthetic data. 1 By sampling outputs from the194

model, we can collect a set of unlabeled synthetic195

in-domain data, X s = {xs1, . . . , xs|X s|}. We then196

follow Eq. 1 to estimate the model’s prediction197

prior.198

ps(y
i) =

1

|X s|
∑

xs
i∈X s

p(yi|xsi , C), (2)199

and calibrate the model prediction p via200

diag(ps)
−1p, where ps=[ps(y1), ..., ps(y|Y |)].201

By doing this, SDC only need a few in-domain202

demonstrations serve merely as seeds to guide the203

LLM in generating synthetic data. Unlike methods204

that rely on in-domain input, these demonstrations205

enable the production of a diverse synthetic set that206

approximates domain characteristics and is used207

solely for prior estimation and calibration.208

4 Experimental Settings209

4.1 Datasets210

We follow Reif and Schwartz (2024) to conduct ex-211

periments on 276 classification and multiple-choice212

tasks from the SUPER- NATURALINSTRUCTIONS213

benchmark (Wang et al., 2022). In this benchmark,214

there are 1,000 evaluation instances and an addi-215

tional set of 32 held-out instances for estimating216

1We try multiple strategies to construct the prompt, and
this one performs the best. Results and discussion can be seen
in Appendix A.2

Metric Llama3-7b Qwen2-7b
Micro-F1 (↑)
Original LM 0.562 0.579
CC 0.581 0.583
DC∗ 0.610 0.609
LOOC 0.654 0.662
MLB-Syd 0.663 0.667
MLB-Syd + LOOC 0.668 0.674
Bias Score (↓)
Original LM 0.098 0.122
CC 0.081 0.128
DC∗ 0.060 0.109
LOOC 0.043 0.061
MLB-Syd 0.041 0.055
MLB-Syd + LOOC 0.033 0.051
RSD (↓)
Original LM 0.562 0.506
CC 0.496 0.509
DC∗ 0.385 0.426
LOOC 0.275 0.259
MLB-Syd 0.257 0.234
MLB-Syd + LOOC 0.227 0.228

Table 2: The averaged results of SDC and
the comparisons across 276 tasks from SUPER-
NATURALINSTRUCTIONS. The best results are high-
lighted in bold, and the second best are underlined.
SDC achieves the highest performance in improving
task outcomes and mitigating label bias on both mod-
els. Additionally, combining SDC with LOOC further
enhances task performance and reduces label bias. *
indicates the method require the assess of in-domain
data.

the Bias Score. The possible labels for all tasks 217

are predefined, such as “Positive/Negative” or 218

“Yes/No”. 219

4.2 Implementation Details 220

We use Llama3-7b (AI@Meta, 2024) and Qwen2- 221

7b (Yang et al., 2024) as the base models. For each 222

task, we randomly sampled 8 instances as demon- 223

strations for both generating synthetic in-domain 224

inputs and evaluating models on each task. We 225

apply Nucleus Sampling (Holtzman et al., 2020) 226

with a threshold of p=0.85 to sample diverse syn- 227

thetic in-domain inputs. For each task, 40 synthetic 228

in-domain unlabeled instances are generated to es- 229

timate the model’s prior. We use greedy search 230

when evaluating the model. Regarding DC, we 231

also sample 40 random texts of the average input 232

length, keeping the same number as the synthetic 233

instances. We conduct all experiments 3 times and 234

report the averaged results. 235
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Figure 1: Results of SDC across various numbers of demonstrations.
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Figure 2: Bias Score of SDC with various number of
synthetic in-domain samples.

5 Results and Analysis236

5.1 Main Results237

The results of SDC and baselines applied to two238

LLMs are shown in Table 2. All methods reduce239

label bias in the original models, as seen in higher240

Micro-F1 scores and lower Bias Scores and RSD.241

Notably, DC, which uses in-domain data for cali-242

bration, reduces Bias Score by an average of 24.7%243

across the two models compared to the original244

LMs. In contrast, SDC, which does not use in-245

domain data, significantly reduces Bias Score by246

an average of 57.5% across the two models. This247

demonstrates the effectiveness of using synthetic248

in-domain data in mitigating label bias.249

Moreover, we combine SDC with LOOC by250

averaging their estimated priors. The results indi-251

cate that this combination further improves task252

performance and reduces label bias, with an aver-253

age 17.6% increase in Micro-F1 and reductions of254

62.3% and 57.5% in Bias Score and RSD, respec-255

tively. This highlights the adaptability of SDC,256

which is further enhanced when integrated with257

other methods.258

5.2 Analysis259

Generalizability on Number of Demonstrations:260

The number of demonstrations is a crucial pa-261

rameter that influences both synthetic data gen-262

eration and model predictions. We conducted ad-263

ditional experiments on Llama3-7b using 2, 4, 8,264

and 12 demonstrations, with the results shown in 265

Fig. 1. Notably, under this setting, SDC uses the 266

same number of demonstrations for both synthetic 267

data generation and model predictions. The figure 268

shows that SDC effectively mitigates bias across 269

all tested demonstration sizes and consistently out- 270

performs alternatives in every comparison. This 271

highlights its strong generalizability to different 272

numbers of demonstrations. 273

Impact of Synthetic Data Quantity: The amount 274

of synthetic in-domain data is crucial for SDC, as 275

the model’s prior estimation relies on averaging 276

the model’s prediction distribution over this data. 277

Increasing the amount reduces randomness in the 278

estimated prior. To assess the impact of data quan- 279

tity, we conducted experiments on Llama3-7b with 280

SDC using synthetic instances ranging from 5 to 281

140. The results, shown in Fig. 2, demonstrate that 282

SDC consistently mitigates label bias regardless 283

of the data quantity. As the amount of synthetic 284

data increases, SDC achieves a lower Bias Score, 285

indicating stronger bias mitigation. Notably, SDC 286

performs effectively with even only 5 synthetic in- 287

stances, matching the Bias Score of DC, which 288

uses real in-domain data. These findings suggest 289

that SDC is effective even with a small number of 290

synthetic examples, providing a flexible and effi- 291

cient approach to reducing label bias without the 292

need for real in-domain data. 293

6 Conclusion 294

This work introduces SDC (Synthetic Data Cal- 295

ibration) to mitigate label bias in LLMs without 296

requiring real in-domain data. By leveraging LLMs 297

to generate synthetic calibration data, SDC signifi- 298

cantly reduces label bias, achieving a 57.5% Bias 299

Score reduction across 279 tasks. Moreover, com- 300

bining SDC with LOOC further enhances perfor- 301

mance, demonstrating its effectiveness and adapt- 302

ability. These results highlight SDC ’s potential in 303

improving LLM reliability across diverse tasks. 304
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Limitations305

While our proposed Synthetic Data Calibration306

(SDC) method demonstrates promising improve-307

ments in mitigating label bias across a variety of308

classification and multiple-choice tasks, several309

limitations warrant discussion. First, the quality310

and representativeness of the synthetic in-domain311

data depend heavily on the underlying generative312

capabilities of the LLM. In domains with highly313

specialized or nuanced language, the generated ex-314

amples may not fully capture the true distribution315

of real inputs, potentially limiting calibration effec-316

tiveness. Second, SDC ’s performance is sensitive317

to the prompt design and the choice of demonstra-318

tion examples. Small variations in these factors can319

affect the diversity and accuracy of the synthetic320

data, suggesting a need for further investigation321

into robust prompt engineering strategies.322
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Method Baseline Label First Input First No Label
Bias Score ↓ 0.098 0.045 0.041 0.073
RSD ↓ 0.562 0.287 0.257 0.384

Table 3: The bias evaluation results for various prompt-
ing strategies.

A Appendix417

A.1 Bias Evaluation Metrics418

We follow (Reif and Schwartz, 2024) to use Bias
Score and Relative Standard Deviation of class-
wise accuracy (RSD) to assess the label bias
in the model’s predictions. The Bias Score di-
rectly measures the model’s tendency toward each
class by holding out a set of instances IBS =
{(x1, y1), (x2, y2), . . . , (x|IBS |, y|IBS |)} from the
test set and calculating the average predicted prob-
abilities for each class:

pBS(y
i) =

1

|Iyi

BS |

∑
(x,y)∈Iyi

BS

p(y|x, C)

where Iyi

BS = {(x, y) ∈ IBS |y = yi}, yi denotes
the answer of the i-th class. Given the average pre-
dicted probabilities for each class, the Bias Score is
computed as the L1 distance between the model’s
prediction distribution and the uniform distribution.

BiasScore =
1

2

∑
yi∈Y

∣∣∣∣pBS(y
i)− 1

|Y |

∣∣∣∣ .
Additionally, RSD assesses the variance in the
model’s prediction accuracy across classes, defined
as:

RSD =

√
1
|Y |

∑|Y |
i=1 (acci−acc)2

acc
,

where acci denotes the accuracy of the model’s419

prediction for the i-th class. Note that a lower Bias420

Score or RSD indicates the model has less tendency421

toward certain answers, representing lower label422

bias.423

A.2 Prompt Design424

We explore three ways to construct the prompt of425

synthetic data generation:426

• Label First Prompting, where the demonstra-427

tion sequence is
(
y1, x1, y2, x2, . . . , y|C|

)
and428

the LLM is asked to generate the next input429

x|C|+1 for a (randomly selected) label y|C|+1.430

• Input First Prompting, where 431

the demonstration sequence is 432(
x1, y1, x2, y2, . . . , x|C|, y|C|

)
and the 433

LLM is asked to only generate new input x, 434

without conditioning on a specific label. 435

• No Label Prompting, where the demon- 436

stration contains only input examples, e.g. 437(
x1, x2, . . . , x|C|

)
. This format prompts the 438

model to continue with a new input example 439

x|C|+1, but makes no mention of any label. 440

We apply these three strategies to Llama3- 441

7b and report their results on SUPER- 442

NATURALINSTRUCTIONS in Table 3. From 443

the table, we see that Input First Prompting 444

achieves the best performance. We suspect 445

this is because it does not require the model to 446

learn explicit input-label correspondences, thus 447

simplifying free-form generation of synthetic 448

in-domain data. At the same time, including the 449

label in the demonstration provides a helpful hint 450

about the overall task. 451

6


	Introduction
	Preliminaries
	SDC: Synthetic Data Calibration
	Experimental Settings
	Datasets
	Implementation Details

	Results and Analysis
	Main Results
	Analysis

	Conclusion
	Appendix
	Bias Evaluation Metrics
	Prompt Design


