
Vector-Valued Control Variates

Zhuo Sun 1 Alessandro Barp 2 3 François-Xavier Briol 1 3

Abstract
Control variates are variance reduction tools for
Monte Carlo estimators. They can provide sig-
nificant variance reduction, but usually require a
large number of samples, which can be prohibitive
when sampling or evaluating the integrand is com-
putationally expensive. Furthermore, there are
many scenarios where we need to compute mul-
tiple related integrals simultaneously or sequen-
tially, which can further exacerbate computational
costs. In this paper, we propose vector-valued
control variates, an extension of control variates
which can be used to reduce the variance of mul-
tiple Monte Carlo estimators jointly. This allows
for the transfer of information across integration
tasks, and hence reduces the need for a large num-
ber of samples. We focus on control variates
based on kernel interpolants and our novel con-
struction is obtained through a generalised Stein
identity and the development of novel matrix-
valued Stein reproducing kernels. We demon-
strate our methodology on a range of problems
including multifidelity modelling, Bayesian infer-
ence for dynamical systems, and model evidence
computation through thermodynamic integration.

1. Introduction
A significant computational challenge in statistics and ma-
chine learning is the approximation of intractable integrals.
Examples include the computation of posterior moments,
the model evidence (or marginal likelihood), Bayes factors,
or integrating out latent variables. This challenge has lead to
the development of a wide range of Monte Carlo (MC) meth-
ods; see (Green et al., 2015) for a review. Let f : Rd → R
denote some integrand of interest, and Π some distribution
with Lebesgue density π known up to an intractable normal-
isation constant. The integration task we consider can be

1University College London, London, UK 2University of Cam-
bridge, Cambridge, UK 3The Alan Turing Institute, London, UK.
Correspondence to: François-Xavier Briol <f.briol@ucl.ac.uk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

expressed as estimating

Π[f] :=
∫
Rd f(x)π(x)dx

using evaluations of the integrand at some points in the do-
main: {xi, f(xi)}ni=1. These evaluations are usually com-
bined to create an estimate of Π[f] of the form Π̂[f] =
1
n

∑n
i=1 f(xi). For example, when realisations are indepen-

dent and identically distributed (IID), this corresponds to
a MC estimator. In that case, assuming that f is square-
integrable with respect to Π (i.e. Π[f2] <∞), we can use
the central limit theorem (CLT) to show that such estimators
converge to Π[f] as n→∞, and this convergence is then
controlled by the asymptotic variance of the integrand f .
Analogous results can also be obtained for Markov chain
Monte Carlo (MCMC) realisations (Jones, 2004), in which
case {xi}ni=1 are realisations from a Markov Chain with in-
variant distribution Π, or for randomised quasi-Monte Carlo
(Hickernell et al., 2005), in which case {xi}ni=1 form some
lattice or sequence filling some hypercube domain.

The main insight behind the concept of control variate (CV)
is that it is instead often possible to use an estimator of
Π[f − g] for some g : Rd → R. This is justified if Π[g] is
known in closed form, in which case we may use Π̂CV[f] :=
Π̂[f − g] + Π[g]. Furthermore, if g is chosen appropriately,
the variance of the CLT for this new estimator will be much
smaller than that of the original, and a smaller number of
samples will be required to approximate Π[f] at a given
level of accuracy.

Suppose now that n = (n1, . . . , nT) ∈ NT (T ∈ N+) is a
multi-index. In this paper, we will focus on cases where
we have not just one integral, but a sequence of integrands
ft : Rd → R and distributions Πt for which we would like
to use {{xtj , ft(xtj)}nt

j=1}Tt=1 to estimate

Πt[ft] :=
∫
Rd ft(x)πt(x)dx for t ∈ [T], (1)

where [T] = {1, . . . , T}. This is a common situation
in practice; for example, our paper considers the case of
multifidelity modelling (Peherstorfer et al., 2018) where
f1, . . . , fT may be a computationally expensive physical
model f , and we might be interested in expectations of that
model with respect to unknown parameters. Another ex-
ample we will also study is when π1, . . . , πT are closely
related posterior distributions, such as in the case of power
posteriors (Friel & Pettitt, 2008).

1

Vector-Valued Control Variates

Of course, the estimation of integrals in (1) could be tackled
individually, and this is in fact the most common approach.
However, the main insight from this paper is that if both
the integrands and distributions are related across tasks, we
can improve on this by sharing computation across these
tasks. We propose to construct a CV to jointly reduce the
variance of estimators for these integrals and hence obtain a
more accurate approximation. We will call such a function
a vector-valued control variate (vv-CV). In order to encode
the relationship between integration tasks, we will propose a
flexible class of CVs based on interpolation in reproducing
kernel Hilbert space of vector-valued functions (vv-RKHS).
More precisely, we generalise existing constructions of Stein
reproducing kernels to derive novel vv-RKHSs with the
property that each output has mean zero.

We note that very few methods exist to tackle multiple in-
tegrals jointly. One exception is (Xi et al., 2018), which
also proposes an algorithm based on vv-RKHSs. How-
ever, that work is limited to cases where the integral of
the kernel is known in closed-form, which is rarely pos-
sible in practice. In contrast, our vv-CVs are applicable
so long as πt is known up to an unknown constant and
∇x log πt can be evaluated pointwise for all t ∈ [T] (where
∇x = (∂/∂x1, . . . , ∂/∂xd)

⊤). This will usually be sat-
isfied in Bayesian statistics, and is a requirement for the
implementation of most gradient-based MCMC algorithms.

The remainder is as follows. In Section 2, we review existing
CVs based on Stein’s method. In Section 3, we introduce
vv-CVs, then in Section 4 we show how to find an optimal
vv-CV. Finally, in Section 5, we demonstrate the advantage
of our approach on problems in multifidelity modelling,
Bayesian inference for differential equations and model
evidence computation through thermodynamic integration.

Notation Vectors x ∈ Rd are column vectors, ∥x∥q =

(
∑d

i=1 x
q
i)

1/q for q ∈ N, and 111d = (1, . . . , 1)⊤ ∈ Rd. For
a multi-index m ∈ Nd, we write |m| =

∑d
i=1 mi for its

total degree. For a matrix M ∈ Rp×q, Mij denotes the
entry in row i and column j, ∥M∥2F =

∑p
i=1

∑q
j=1 M

2
ij

is the Frobenius squared-norm, Tr(M) =
∑m

i=1 Mii is the
trace, and M† is the pseudo-inverse. Im denotes the m-
dimensional identity matrix, and Sm

+ the set of symmetric
strictly positive definite matrices in Rm×m. We denote by
Cj the set of functions whose mixed partial derivatives of
order at most j are continuous, and given a differentiable
function g on Rd1×Rd2 , ∂r

xg(x, y) denotes its partial deriva-
tive in the rth-coordinate of its first entry evaluated at (x, y).

2. Background
We now briefly review existing constructions for Stein-based
CVs for a single integration problem.

The first step consists of constructing a set of functions G

which all integrate to a known value against Π. This can
generally be challenging since π may not be computationally
tractable, e.g., involving an unknown normalisation constant.
Without loss of generality, we will discuss the construction
of functions which integrate to zero, but notice that we can
obtain functions with mean equal to any constant β ∈ R by
simply adding this constant β to a zero-mean function.

Zero-Mean Functions through Stein Operators One
way of constructing zero-mean functions is to use Stein’s
method (Anastasiou et al., 2023). The main ingredients of
Stein’s method are a function class and an operator acting
on this class. More precisely, a Stein class of Π is a class
of functions U associated to an operator S, called Stein
operator, such that a Stein identity holds: Π[S[u]] = 0
∀u ∈ U . An obvious choice for the class of zero-mean
functions G is to consider all functions of the form g =
S[u] for u ∈ U . To ensure such g has finite variance, we
assume that all functions in G are square-integrable with
respect to Π. This can be guaranteed under weak regularity
conditions on U and S; see Theorem 3.2. Note also that S
depends implicitly on Π, but we only make this explicit in
our notation (i. e. SΠ) when it is helpful for clarity.

The most common choice of Stein operator is the Langevin
Stein operator, which acts on differentiable vector-valued
functions (vv-functions) u : Rd → Rd:

L[u](x) := ∇x · u(x) + u(x) · ∇x log π(x). (2)

The advantage of L is that it only requires knowledge of Π
through evaluations of∇x log π, which does not require the
normalisation constant of π. Indeed, let π = π̃/C for some
unknown C ∈ R, then ∇x log π = ∇x log π̃. For more
general Stein operators, see (Anastasiou et al., 2023).

Parametric Spaces G is usually chosen to be a paramet-
ric space and we will hence write it GΘ, where Θ denotes
the space of parameter values. Most existing CVs can be
obtained by taking gθ = S[uθ] for some uθ ∈ UΘ where
UΘ is another parametric class. However, note that there
might not be a unique uθ leading to gθ. For the remain-
der of the paper, θ will hence be a parameter indexing gθ
directly as opposed to an element of the Stein class. Ex-
amples of parametric CVs are the polynomial-based CVs
of (Mira et al., 2013) (see also (Assaraf & Caffarel, 1999;
Papamarkou et al., 2014; Oates et al., 2016)), in which case
the Stein class is parametrised directly by coefficients of
a polynomial. Using a space of neural networks has also
been studied in (Wan et al., 2019; Si et al., 2021). This later
choice can be advantageous due to the flexibility of this
function class, but is much more challenging to implement
because selecting a CV becomes a non-convex problem.

Another example are kernel interpolants, which will be
the main focus of our paper. This class is nonpara-

2

Vector-Valued Control Variates

metric, but it is often convenient to fix the dataset size
and parametrise it. Let Hk denote a reproducing kernel
Hilbert space (RKHS) with kernel k : Rd × Rd → R
(Berlinet & Thomas-Agnan, 2011), so that k is symmetric
(k(x, y) = k(y, x) ∀x, y ∈ Rd) and positive semi-definite
(∀m ∈ N+,

∑m
i,j=1 cicjk(xi, xj) ≥ 0 ∀c1, . . . , cm ∈ R

and ∀x1, . . . , xm ∈ Rd). The kernel could be a squared-
exponential kernel k(x, y) = exp(−∥x − y∥22/2l2) with
lengthscale l > 0, or a polynomial kernel k(x, y) =
(x⊤y + c)l where c ∈ R and l ∈ N is the degree of the
polynomial. Oates et al. (2017) noticed that the image of
U = Hd

k := Hk× . . .×Hk under L is a RKHS with kernel

k0(x, y) := ∇x · ∇yk(x, y) +∇x log π(x) · ∇yk(x, y)

+∇y log π(y) · ∇xk(x, y)

+ (∇x log π(x) · ∇y log π(y))k(x, y), (3)

see also Thm 2.6 Barp et al. (2022b) for a more general
result. Given m observations, it is known that the optimal
interpolant inHk0 is of the form gθ(x) =

∑m
i=1 θik0(x, xi)

where θi ∈ R for all i ∈ [m]. This therefore provides a
natural parametrisation for practical implementation. Oates
et al. (2017) called this class of CVs control functionals
(CF); see also (Briol et al., 2017; Oates et al., 2019; South
et al., 2022a) for more details.

Selecting a CV In order to select a CV, we will pick
the “best” element from GΘ, where “best” will refer to
minimising MC variance:

J(θ) = VarΠ[f − gθ] := Π[(f − gθ −Π[f])2], (4)

Following the framework of empirical risk minimisation,
this can be approximated with {xj , f(xj)}mj=1 as follows:

Jm(θ, β) = 1
m

∑m
j=1(f(xj)− gθ(xj)− β)2 + λ∥gθ∥2,

where β ∈ R is an additional parameter which tends to Π[f]
as m → ∞ and λ → 0. Here, λ ≥ 0 is a regularisation
parameter and ∥gθ∥ can be any suitable norm. For example,
∥gθ∥ = ∥θ∥2 or ∥gθ∥ = ∥gθ∥Hk

for some kernel k. Assum-
ing that Θ ⊆ Rp, this objective can then be minimised by
the solution to a linear system when θ 7→ gθ is linear and
θ 7→ ∥gθ∥2 is quadratic. In more general cases, it can be
minimised using stochastic optimisation (Si et al., 2021). In
that case, we initialise θ(0) and β(0), then iteratively take
gradient steps with minibatches of size m̃≪ m.

There are two particular perspectives which motivate the
objective in (4). Firstly, it can be interpreted as a least-
squares objective for the function f − Π[f] (Leluc et al.,
2021). Secondly, by noticing that for any square-integrable
function h and MC estimator with n samples we have
VarΠ[Π̂MC[h]] = VarΠ[h]/n, we can notice that J(θ) fully
determines the CLT variance of a MC estimator of Π[f−gθ],

which makes it particularly well suited for these estima-
tors. This latter viewpoint has also motivated alternative
objectives based on the variance of the randomised quasi-
Monte Carlo or MCMC CLT; see e.g. Hickernell et al.
(2005); Oates & Girolami (2016); Dellaportas & Kontoyian-
nis (2012); Mijatovic & Vogrinc (2018). The MCMC case
is briefly discussed in Appendix A.1, but the remainder of
the paper will focus on the objective in (4) for simplicity.

The CV Estimator Recall that a CV estimator takes the
form Π̂CV[f] := Π̂[f − g] + Π[g] for some CV g. Once a
function gθ̂ has been selected through the procedure in the
previous subsection, the only part missing is therefore an
estimator for Π[f−gθ̂]. We present two possible approaches
below. A first option is to create an estimator based on the
remainder of the data {xi, f(xi)}m+n

i=m+1:

Π̂[f − gθ̂] =
1
n

∑m+n
i=m+1(f(xi)− gθ̂(xi)).

This estimator is unbiased whenever Π̂[f − gθ̂] is unbiased.
This is the case when using a MC estimator, but not when
using a MCMC estimator. The question of how to select m
is of practical importance for the quality of the estimator.
When m is small, most of the function evaluations are used
for the MC estimator, whereas when m is large, most of the
evaluations are used to construct the CV.

Due to the difficulty of choosing m, a second option is to use
all of the data for selecting gθ̂ (i.e. n = 0). More precisely,
denoting by (θ̂, β̂) the minimiser of Jm(θ, β), we could use
Π̂[f − gθ̂] = β̂. This estimator will be biased, but will also
be more accurate than the first estimator if the least-squares
problem can be solved at a fast rate than the MC CLT.

3. Methodology
We will now extend existing CVs to the case where multiple
related integration problems are tackled jointly. This will
be done through a multi-task learning approach (Micchelli
& Pontil, 2005; Evgeniou et al., 2005), where each integral
corresponds to a task and the relationship between tasks will
be modelled explicitly. This will allow us to share informa-
tion across integration tasks, and hence improve accuracy
when the number of integrand evaluations is limited.

3.1. Vector-Valued Functions using Stein’s Method

For the remainder of this paper, we consider integrands
corresponding to the outputs of a vector-valued function
f : Rd → RT so that f(x) = (f1(x), . . . , fT (x))

⊤. Our
objective is to approximate Π[f] = (Π1[f1], . . . ,ΠT [fT])

⊤,
and we shall assume that ft is square-integrable with respect
to Πt ∀t ∈ [T]. Formally, Π is known as a vector probability
distribution. To approximate Π[f], we will construct a class
of zero-mean vv-functions through Stein’s method. This

3

Vector-Valued Control Variates

can be done by considering a Stein class U whose image
G under the Stein operator Svv : U → G is a class of RT -
valued functions on Rd. We will need a generalised form of
Stein identity for vv-functions:

Πt[gt] = Πt[(Svv[u])t] = 0, ∀u ∈ U and ∀t ∈ [T]. (5)

In other words, each output of the vv-function should inte-
grate to zero against the corresponding probability distribu-
tion. Of course, the ordering of the sequence of integrands
and distributions matters here, as we do not guarantee that
Πt[gt′] = 0 for t ̸= t′. The property above can be obtained
by constructing an operator Svv through a sequence of Stein
operators Ssv

Πt
for t ∈ [T] whose images are scalar-valued

functions integrating to zero under Πt. These can then be
applied in an element-wise fashion as follows

g = Svv[u] = (Ssv
Π1

[u1], . . . ,Ssv
ΠT

[uT])
⊤. (6)

Once again, G can be parametrised and we will denote it
GΘ. We can then use an objective based on the variances
f − gθ to select an optimal element:

Jvv(θ) = ∥VarΠ[f − gθ]∥ = ∥Π[(f − gθ −Π[f])2]∥, (7)

where gθ ∈ GΘ. In the above VarΠ should be thought of as
applying VarΠt

, the variance under Πt, to the tth element of
the vv-function. The norm could be any norm on RT , but
we will usually make use of the 1-norm so as to interpret
this objective as the sum of variances on each integrand. For
this objective to make sense, we require (gθ)t to be squared-
integrable with respect to Πt ∀t ∈ [T]. Similarly to the T =
1 case, we are focusing on a least-squares objective, which
directly controls the variance of MC estimators, but this
could be adapted to other estimators as previously discussed.

Let m = (m1, . . . ,mT) ∈ NT
+. Once again, the objective

can be approximated via MC estimates based on the dataset
D = {{x1j , f1(x1j)}m1

j=1, . . . , {xTj , fT (xTj)}mT
j=1} fol-

lowing the framework of empirical risk minimisation. For
example, when the norm above is a 1-norm, the objective is
simply the sum of individual variances:

Lvv
m(θ, β) := Jvv

m (θ, β) + λ∥gθ∥2 (8)

=
∑T

t=1
1
mt

∑mt

j=1(ft(xtj)− (gθ(xtj))t − βt)
2 + λ∥gθ∥2,

where λ ≥ 0 and now β = (β1, . . . , βT) ∈ RT . Once
again, the second term is used to regularise Jvv

m , but the
norm acts on vv-functions. For U , we could take a class of
polynomials, kernels or neural networks, but will usually
require flexible classes of vv-functions in order to encode re-
lationships between tasks. Assuming that each Πt has a C1

and strictly positive density πt with respect to the Lebesgue
measure, we will also be able to use the Langevin Stein op-
erators L, which only require access to the score functions
for each distribution Π1, . . . ,ΠT . For this purpose, we now
define l : Rd → RT×d to be the matrix-valued function
with entries lij(x) = ∂j log πi(x).

3.2. Kernel-based Vector-Valued CVs

The main choice of Stein class U studied in this paper is
vv-RKHSs (Carmeli et al., 2006; 2010; Álvarez et al., 2012).
This choice is particularly convenient as it allows us to build
on the rich literature in statistical learning theory which con-
siders kernels encoding relationships between tasks. A main
contribution of this section will be the design of novel Stein
reproducing kernels specifically for numerical integration, a
task not commonly tackled in statistical learning theory.

A vv-RKHS HK is a Hilbert space of functions mapping
from Rd to RT with an associated matrix-valued reproduc-
ing kernel (mv-kernel) K : Rd × Rd → RT×T which is
symmetric (K(x, y) = K(y, x)⊤ ∀x, y ∈ Rd) and posi-
tive semi-definite (∀m ∈ N+,

∑m
i,j=1 c

⊤
i K(xi, xj)cj ≥ 0

for all c1, . . . , cm ∈ RT and x1, . . . , xm ∈ Rd). Any vv-
RKHS satisfies a reproducing property, so that ∀f ∈ HK ,
f(x)⊤c = ⟨f,K(·, x)c⟩HK

and K(·, x)c ∈ HK ∀x ∈
Rd and ∀c ∈ RT . The reproducing kernels discussed
in Section 2 are a special case which can be recovered
when T = 1. We say that K is Cr,r(Rd × Rd) pro-
vided that ∂α

x ∂
α
y K(x, y) is continuous for all multi-indices

α = (α1, . . . , αd) with α1 + · · · + αd ≤ r, and that K is
bounded with bounded derivatives if there exists C ≥ 0
for which ∥∂α

x ∂
α
y K(x, y)∥F ≤ C for all x, y ∈ Rd and

multi-indices α with α1 + · · ·+ αd ≤ 1.

To construct vv-CVs, a natural approach is to construct a
mv-kernel K0 using another mv-kernel K and an operator
Svv. Then, assuming we have access to such a K0 and to
data D, a natural generalisation of the scalar valued case is:

gθ(x) =
∑T

t=1

∑mt

j=1 K0(x, xtj)θtj , (9)

where θtj ∈ RT , for all t ∈ [T], j ∈ [mt]. The remainder of
this section will hence focus on how to obtain K0. Our con-
struction is based on the CFs of (Oates et al., 2017; 2019),
which use a scalar-valued kernel k0 obtained through a ten-
sor product structure U = Hd

k. The initial motivation for
introducing vv-functions in this setting was that L requires
inputs which are vv-functions which can be thought of as
introducing a dummy dimension for convenience, and is in
no way related to the multitask setting in this paper. We now
illustrate the natural extension of k0 to a mv-kernel.

Theorem 3.1. Consider HK which is a vv-RKHS with
mv-kernel K : Rd × Rd → RT×T , and sup-
pose that K ∈ C1,1(Rd × Rd). Furthermore, as-
suming u = (u1, . . . , uT) ∈ HK , let Svv[u] =
(LΠ1

[u1], . . . ,LΠT
[uT])

⊤. Then, the image of Hd
K =

HK × . . . × HK under Svv is a vv-RKHS with kernel
K0 : Rd × Rd → RT×T with:

(K0(x, y))tt′ =
∑d

r=1 ∂
r
x∂

r
yK(x, y)tt′ + lt′r(y)∂

r
xK(x, y)tt′

+ ltr(x)∂
r
yK(x, y)tt′ + ltr(x)lt′r(y)K(x, y)tt′ ,

4

Vector-Valued Control Variates

The proof is in Appendix B.1. Notice that (K0(x, y))tt′

depends only on the score function of Πt and Πt′ , and so
we (once again) do not require knowledge of normalisa-
tion constants. However, in order to evaluate K0(x, y) for
some x, y ∈ Rd, we will require pointwise evaluation of
∇x log πt(x) and ∇y log πt(y) for all t ∈ [T]. Finally, an-
other interesting point is that (K0(x, y))tt′ is a scalar-valued
kernel when t = t′, but this is not the case for t ̸= t′ since
it is not symmetric in that case.

To use elements of this RKHS as vv-CVs, we will require
that the least-squares objective in (7) is well-defined. This
can be guaranteed when the elements of the RKHS are
square-integrable, and the theorem below, proved in Ap-
pendix B.2, provides sufficient conditions for this to hold.

Theorem 3.2. Suppose that K is bounded with bounded
derivatives, and Πt[∥∇x log πt∥22] < ∞ for all t ∈ [T].
Then, for any g ∈ HK0

, gt is square-integrable with respect
to Πt for all t ∈ [T].

Now the mv-kernel in Theorem 3.1 takes a very general
form as it has minimal requirements on K or Π1, . . . ,ΠT .
This is convenient as it can be applied in a wide range of
settings, but this generality comes at the cost of computa-
tional complexity. We will now study several special cases
which will often be sufficient for applications.

Special Case I: Separable kernel K For simplicity, the
literature on multi-task learning often focuses on the case
of separable kernels. We say a mv-kernel K is separable
if it can be written as K(x, y) = Bk(x, y), where k is a
scalar valued kernel and B ∈ ST

+. The advantage of this
formulation is that it decouples the model for individual
outputs (as given by k) from the model of their relationship,
as given by the components of the matrix B, which can
be thought of as a covariance matrix for tasks. As we will
see in Section 4, this can be particularly advantageous for
selecting the hyperparameters of vv-CVs. Using such a
kernel K, the kernel K0 in Theorem 3.1 becomes:

(K0(x, y))tt′ = Btt′
∑d

r=1 ∂
r
x∂

r
yk(x, y) + lt′r(y)∂

r
xk(x, y)

+ ltr(x)∂
r
yk(x, y) + ltr(x)lt′r(y)k(x, y),

for ∀t, t′ ∈ [T]. This expression is interesting because it
reduces the choice of K to the choice of a matrix B and
a kernel k, and this matrix B has a natural interpretation
in that Btt′ denotes the covariance between ft and f ′

t . See
Appendix E.1 for illustrations of such K0.

Special Case II: Separable kernel K with one target
distribution A further simplification of the kernel is pos-
sible when K is separable and all distributions are the same:
Π1 = · · · = ΠT ≡ Π. In this case K0 itself becomes a
separable kernel of the form: (K0(x, y))tt′ = Btt′k0(x, y)

∀t, t′ ∈ [T], where k0 is given in (3). The scalar case can
then be recovered by taking T = 1 and B = 1.

Selecting a Base Kernel and Alternative Constructions
The base kernel K needs to be chosen by the user. As
for the scalar case, we expect that the performance of our
approach will depend on whether the smoothness of K0

closely matches the smoothness of the integrand f , and
the smoothness of K should therefore be chosen accord-
ingly. We also suggest selecting the hyperparameters of
K through either cross validation or through maximisation
of the log-marginal likelihood of a zero-mean multi-output
Gaussian process with kernel K0; see Appendix D.2 for
details. Furthermore, see Appendix C for alternative con-
structions, including vv-CVs derived from the second-order
matrix-valued Stein kernels and vv-CVs based on other
parametric spaces such as polynomials and neural networks.

4. Selecting a Vector-Valued CV
We will now derive both a closed-form expression for the
optimal parameters of these kernel-based vv-CVs and a
stochastic optimisation scheme to approximate it.

Closed-form Solutions We start with a theorem which
provides a result akin to the RKHS representer theorem, but
which focuses specifically on the function which minimises
the objective in (8). This theorem shows that there exists a
unique parameter minimising the variance objective.

Theorem 4.1. Let D =
{{x1j , f1(x1j)}m1

j=1, . . . , {xTj , fT (xTj)}mT
j=1}. The

function which minimises the objective in (8) where
∥gθ∥ := ∥gθ∥HK0

and β ∈ RT is of the form:

gθ(x) =
∑T

t=1

∑mt

j=1 θ
⊤
tjK0(x, xtj), θtj ∈ RT

with optimal parameter θ∗ given by the solution of this
convex linear system of equations:∑

t′
∑

j′

(∑
t

1
mt

∑
j K0(xt′′j′′ , xtj)·tK0(xtj , xt′j′)t·

+ λK0(xt′′j′′ , xt′j′)
)
θ∗t′j′

=
∑

t
1
mt

∑
j K0(xt′′j′′ , xtj)·t(ft(xtj)− βt),

∀t′′ ∈ [T], j′′ ∈ [mT].

Furthermore, if K0 is strictly positive definite and the points
xtj are distinct, then the system is strictly convex and θ∗ is
unique.

See Appendix B.3 for the proof. Theorem 4.1 assumes that
β is known and fixed, which may not be the case in practice.
However, given a fixed gθ the objective (8) is a quadratic in β
with the optimal value β∗

t = 1
mt

∑mt

j=1 ft(xtj)−(gθ(xtj))t.
This naturally leads to the use of block coordinate descent

5

Vector-Valued Control Variates

Algorithm 1 Block-coordinate descent for vv-CVs with
unknown task relationship

Input: D, m̃, L, λ, β(0), θ(0) and B(0)

for iteration l = 1 to L do
Select a mini-batch Dm̃ of size m̃ = (m̃1, . . . , m̃T)

⊤(
θ(l), β(l)

)
← UPDATEθ,β(θ

(l−1), β(l−1), B(l−1);Dm̃

)
B(l) ← UPDATEB

(
θ(l), β(l), B(l−1);Dm̃

)
.

end for
Return: θ(L), β(L) and B(L)

approaches which iterate between optimising β and θ. This
could be either directly implemented using the closed-form
solutions, or through the use of numerical optimisers such as
the stochastic optimisation approaches we will now present.
The next paragraph highlights how this can be implemented
for special case I and II. We remark that the use of stochastic
optimisation tools will be essential in most applications due
to the size of the linear systems leading exact solutions to
being intractable in practice.

Unknown Task Relationship We now extend our ap-
proach to account for simultaneously estimating β, θ, but
also the matrix B. In this setting, we will use the same
objective as in (8), but penalised by the norm of B:

L̄vv
m(θ, β,B) = Jvv

m (θ, β,B) + λ∥gθ∥2 + ∥B∥2, (10)

We now use Jvv
m (θ, β,B) to denote Jvv

m (θ, β) in order to
emphasise the dependence on B. A second regularisation
parameter is unnecessary as this would be equivalent to
rescaling k. The objective in (10) is a natural extension to
(8) and can be straightforwardly minimised through stochas-
tic optimisation; see Algorithm 1. To ensure B is strictly
positive definite, we can take B = LL⊤, where L is a
lower triangular matrix with diagonal elements forced to be
greater than zero via an exponential transformation. The
pseudo-code in Algorithm 1 presents this abstractly as a
function UPDATE. This is because different choices of vv-
CVs might benefit from different updates. For example,
pre-conditioners for the gradients could be used when read-
ily available, or when these can be estimated from data. In
Section 5, we will exclusively be using the Adam optimiser
(Kingma & Ba, 2015), a first-order method with estimates
of lower-order moments. Additionally, we study the convex
case when B is known and only β and θ are required to be
estimated in Appendix A.2.

Computational Complexity Although vv-CVs can be
beneficial from an accuracy viewpoint, they also incur a sig-
nificant computational cost. Whether they should be used
will therefore depend on the computational budget avail-
able. In particular, when evaluations of f or ∇ log π are
expensive, the higher cost of using vv-CVs may be negli-
gible. Table 1 provides the computational complexity of

Table 1. Computational complexity of kernel-based CVs and vv-
CVs as a function of d,m, m̃, L and T . We assume that mt

is the same ∀t ∈ [T] up to additive or multiplicative constants
(and similarly for all m̃t with t ∈ [T]). The cost of stochastic
optimisation algorithms is assumed to only scale with the cost of
stochastic estimates of the gradient of Jvv.

Method CV VV-CV
Exact solution O((dm2

t +m3
t)T) O(dm2

tT
4 +m3

tT
6)

Stochastic optim. O(dm̃tmtLT) O(dm̃tmtLT
4)

all approaches considered in the paper. We emphasise the
impact of T , the number of tasks. In the case of existing
kernel-based CVs, the dependence is O(T). In contrast,
the computational cost of vv-CVs is between O(T 4) and
O(T 6). Table 1 also highlights the difference in computa-
tional complexity between obtaining closed form solutions
of θ and β by solving the linear system of equations in The-
orem 4.1, and using the stochastic-optimisation approaches
in Appendix A.2 and Section 4. Here, the difference is
mainly in terms of powers of T , mt and m̃t. As we can
see the exact solutions usually come with an O(m3

t) cost,
whereas the stochastic optimisation approach is associated
with aO(mtm̃tL) cost. In this case, whenever m̃tL is small
relative to mt, this will lead to computational gains.

In all applications considered, both mt and T were small
so the overall cost is controlled. However, this computa-
tional complexity can be further significantly reduced in
special cases. When using a kernel corresponding to a finite-
dimensional RKHS (e.g. a polynomial kernel), the scaling
becomes linear in mt, but isO(q3) instead ofO(m3

t), where
q ≪ mt is the dimensionality of the RKHS. Alternatively,
for certain choices of point sets and kernels, it is possible
to reduce the computational complexity to O(mt logmt)
instead of O(m3

t) by using scalable kernel methods such
as fast Fourier features or inducing points. When the in-
tegrands are evaluated at the same set of points and the
separable kernel is used, the computational cost in T also
becomes O(T 2) instead of O(T 6), once again significantly
reducing the computational complexity.

5. Experimental Results
We now illustrate our method on a range of problems in-
cluding multi-fidelity models, computation of the model
evidence for dynamical systems through thermodynamic in-
tegration and Bayesian inference for the abundance of preys
using a Lotka-Volterra system. See Appendix E for addi-
tional experiments including illustrations of matrix-valued
Stein kernels K0 in Appendix E.1 and a synthetic example
when the Stein kernel matches the smoothness of integrands
in Appendix E.2. Since we are interested in gains obtained
from the CVs, we fix n = 0 which means we are using all
the data to construct vv-CVs. The code to reproduce our re-

6

Vector-Valued Control Variates

2 0 2
x

3

2

1

0

1

2

3

f L
(x

)
Low-fidelity model

2 0 2
x

3

2

1

0

1

2

3

f H
(x

)

High-fidelity model

vv-CV (squared-exponetial k)
vv-CV (1st order polyn. k)
CV (squared-exponetial k)
f(x)

0 200 400
Number of Epochs

0.03

0.04

0.05

0.06

0.07

A
bs

ol
ut

e
er

ro
r f

or

H
[f H

]

Squared-exponential kernel CVs

MC
CF
CV
vv-CV with Fixed B (1)
vv-CV with Fixed B (2)
vv-CV with Estimated B

0 200 400
Number of Epochs

0.03

0.04

0.05

0.06

0.07

A
bs

ol
ut

e
er

ro
r f

or

H
[f H

]

First-order polynomial kernel CVs

2 0 2
x

3

2

1

0

1

2

3

f L
(x

)

Low-fidelity model

2 0 2
x

3

2

1

0

1

2

3

f H
(x

)

High-fidelity model

vv-CV (squared-exponetial k)
vv-CV (1st order polyn. k)
CV (squared-exponetial k)
f(x)

0 200 400
Number of Epochs

0.03

0.04

0.05

0.06

0.07

A
bs

ol
ut

e
er

ro
r f

or

H
[f H

]

Squared-exponential kernel CVs

MC
CF
CV
vv-CV with Fixed B (1)
vv-CV with Fixed B (2)
vv-CV with Estimated B

0 200 400
Number of Epochs

0.03

0.04

0.05

0.06

0.07

A
bs

ol
ut

e
er

ro
r f

or

H
[f H

]
First-order polynomial kernel CVs

Figure 1. Numerical integration of univariate discontinuous multi-
fidelity model. Upper: fitted CVs for both functions. Lower Left:
performance of CVs based on a squared-exponential kernel for the
high-fidelity function as a number of epochs of the optimisation
algorithm. The lines provide the mean over 100 repetitions of the
experiment, whereas the shaded areas provide one standard devia-
tion above and below the mean. Lower Right: same experiment
for a polynomial kernel for the high-fidelity function.

sults is available at: https://github.com/jz-fun/
Vector-valued-Control-Variates-Code.

5.1. Multidelity Modelling in the Physical Sciences

Many problems in the engineering and physical sciences
can be tackled with multiple models of a single system
of interest. These models are often associated with vary-
ing computational costs and levels of accuracy, and their
combination to solve a task is usually called multi-fidelity
modelling; see (Peherstorfer et al., 2018) for a review. We
will consider a high-fidelity model fH and a low-fidelity
model fL, and will attempt to estimate the integral of fH
with our vv-CVs and using function evaluations from both
the high- and low-fidelity models. For clarity, we will now
denote the function f = (fL, fH) and the vector-probability
distribution Π = (ΠL,ΠH). We note that this is a special
case of the problem considered in our paper since we use
evaluations of multiple functions but are only interested in
ΠH [fH] (whereas ΠL[fL] is not of interest).

Univariate Step Function The first example considered
is a toy problem from the multi-fidelity literature (Xi et al.,
2018). The low-fidelity function is fL(x) = 2 if x ≥ 0
and −1 otherwise. The high-fidelity function is fH(x) =
1 if x ≥ 0 and 0 otherwise. In this example, K0 is smoother

than f1 and f2, which are both discontinuous. The integral
is over the real line and taken against Π = N (0, 1), and we
fix the sample sizes to m = (mL,mH) = (40, 40).

Results with a squared-exponential and 1st order polynomial
kernel k can be found in Figure 1. The upper plots clearly
show that the approximations are not of very high-quality,
but the lower plots show that all CVs can still lead to an order
of two gain in accuracy over MC methods. We also observe
that vv-CVs can lead to further gains over existing CVs by
leveraging evaluations of fL. For both kernels, we provide
three different versions of the vv-CVs with separable struc-
ture to highlight the impact of the matrix B. The first two
cases use Algorithm 2 with a fix value of B. In the first in-
stance, B11 = B22 = 0.1, B12 = B21 = 0.01, whereas in
the second instance B11 = B22 = 0.5, B12 = B21 = 0.01.
The third case is based on estimating B through Algorithm
1. Clearly, B can have a significant impact on the perfor-
mance of the vv-CV, and estimating a good value from
data can provide further gains. The choice of k is also sig-
nificant: all CVs based on the squared-exponential kernel
significantly outperform the CVs based on a 1st order poly-
nomial kernel. It is also found that even when the model is
mis-specified, the proposed method still perform better than
standard scalar-valued CVs.

Modelling of Waterflow through a Borehole A more
complex example often used to assess multifidelity methods
is the following model of water flow passing through a bore-
hole (Xiong et al., 2013; Kandasamy et al., 2016; Park et al.,
2017). Both fL and fH have d = 8 inputs representing a
range of parameters influencing the geometry and hydraulic
conductivity of the borehole, as well as transmissivity of the
aquifer. Prior distributions have been elicited from scientists
over input parameters to account for uncertainties about
their exact value. See Appendix E.4 for the details of each
input and the multi-fidelity models. One quantity of interest
here is the expected water flow under these distributions,
and we hence have ΠL = ΠH .

Table 2. Expected values of the flow of water through a borehole.
The numbers provided give the mean absolute integration error for
100 repetition of the task of estimating ΠH [fH], and the numbers
in brackets provide the sample standard deviation. To provide
the absolute error, the true value (72.8904) is estimated by a MC
estimator with 5× 105 samples.

m VV-CV- EST. B VV-CV-FIX. B CF MC
10 3.72 (0.27) 1.94 (0.15) 2.24 (0.16) 6.42 (0.44)
20 1.29 (0.10) 1.35 (0.10) 1.96 (0.10) 4.31 (0.31)
50 1.04 (0.06) 1.77 (0.12) 1.76 (0.07) 2.63 (0.17)
100 1.07 (0.06) 1.65 (0.14) 1.71 (0.05) 1.83 (0.15)
150 0.85 (0.05) 1.30 (0.09) 1.67 (0.04) 1.42 (0.10)

Results of our simulation study are presented in Table 2.
We compare a standard MC estimator with a kernel-based

7

https://github.com/jz-fun/Vector-valued-Control-Variates-Code
https://github.com/jz-fun/Vector-valued-Control-Variates-Code

Vector-Valued Control Variates

CV fitted with a closed form solution (denoted CF) and
two kernel-based vv-CVs corresponding to special case II
in Section 3. The first with B11 = B22 = 5 × 10−4 and
B12 = B21 = 5× 10−5, and the second with B estimated
using Algorithm 1. The kernel used is a tensor product of
squared-exponential kernels with a separate lengthscale for
each dimension. Clearly, vv-CVs significantly outperform
MC in the large majority of cases, and estimating B can
lead to significant gains over using a fixed B. The worst
performance for vv-CVs with estimated B is when values
of m are the lowest. This is because m is not large enough
to learn a good B. See Appendix E.4 for further details.

5.2. Model Evidence for Dynamical Systems

We now consider Bayesian inference for non-linear differen-
tial equations such as dynamical systems, which can be par-
ticularly challenging due to the need to compute the model
evidence. This is usually a computationally expensive task
since sampling from the posterior repeatedly requires the
use of a numerical solver for differential equations which
needs to be used at a fine resolution.

0 10
Time

2

0

2

u 1

oscillator

x = 1

20 40 60 80
Sample Size

25.4

25.6

25.8

M
od

el
 E

vi
de

nc
e sv-CVs

20 40 60 80
Sample Size

25.4

25.6

25.8

M
od

el
 E

vi
de

nc
e vv-CVs

Figure 2. Model evidence computation through thermodynamic
integration. Left: Illustration of the van der Poll oscillator model
(black line) and corresponding observations (red dots). Center:
Estimates of the model evidence as a function of the number
of posterior samples for kernel-based CVs. The box-plots were
created by repeating the experiment 20 times and the black line
gives an estimate of the truth obtained from (Oates et al., 2017)
(25.58). Right: Same experiment but with kernel-based vv-CVs.

In (Calderhead & Girolami, 2009), the authors propose
to use thermodynamic integration (TI) (Friel & Pettitt,
2008) to tackle this problem, and (Oates et al., 2016; 2017)
later showed that CVs can lead to significant gains in ac-
curacy in this context. TI introduces a path from the
prior p(x) to the posterior p(x|y), where y and x rep-
resent the observations and the unknown parameters re-
spectively. This is accomplished by the power posterior
p(x|y, t) ∝ p(y|x)tp(x), where t ∈ [0, 1] is called the in-
verse temperature. When t = 0, p(x|y, t) = p(x), whereas
when t = 1, p(x|y, t) = p(x|y). The standard TI formula
for the model evidence has a simple form which can be ap-
proximated using second-order quadrature over a discretised
temperature ladder 0 = t1 ≤ · · · ≤ tw = 1 (Friel et al.,

2014). It takes the following form

log p(y) =
∫ 1

0

[∫
X log p(y|x)p(x|y, t)dθ

]
dt

≈
∑w

i=1
ti+1−ti

2 (µi+1 + µi)− (ti+1−ti)
2

12 (vi+1 − vi),

where µi is the mean and vi the variance of the integrand
f(x) := log p(y|x) with respect to πi(x) := p(x|y, ti). To
estimate {µi, vi}wi=1, we need to sample from all power
posteriors on the ladder, then use a MCMC estimator which
can be enhanced through CVs. This gives T = 2w integrals
which are related: w integrals to compute means and w
integrals to compute variances, each against different power
posteriors. As we will see, this structure will allow vv-CVs
to provide significant gains in accuracy.

Our experiments will focus on the van der Poll oscillator,
which is an oscillator u : R+ × X → R (where x ∈ R)
given by the solution of d2u/ds2−x(1−u2)du/ds+u = 0,
where s represents the time index. For this experiment, we
will follow the exact setup of (Oates et al., 2017) and trans-
form the equation into a system of first order equations:
du1/ds = u2, du2/ds = x(1 − u2

1)u2 − u1, which can be
tackled with ODE solvers. Our data will consist of noisy
observation of u1 (the first component of that system) given
by y(s) = N (u1(s;x), σ

2) with σ = 0.1 at each point
s ∈ {0, 1, . . . , 10}; see the left-most plot of Figure 2 for
an illustration. We will take a ladder of size w = 31 with
ti = ((i−1)/30)5 for i ∈ {1, . . . , 31}. This gives a total of
T = 62 integrals will need to be computed simultaneously,
which is likely to be too computationally expensive for vv-
CVs in their full generality. As a result, we chose B to be
a block diagonal matrix which puts integrands in groups
of 4 means or 4 variances (except one group of 3 for mean
and variance). To sample from the power-posteriors, we
use population MC with the manifold Metropolis-adjusted
Langevin algorithm (Girolami & Calderhead, 2011). Due to
the high computational cost of using ODE solvers, our num-
ber of samples will be limited to less than 100 per integrand
and this number will be the same for each integration task.

Our results are presented in Figure 2. The kernel parameters
were taken to be identical to those in (Oates et al., 2017).
As observed in the centre plot, kernel-based CVs provide
relatively accurate estimates of the model evidence. As
the sample size increases, we notice less variability in these
estimates, but the central 50% of the runs are contained in an
interval which excludes the true value. In comparison, the
right-most plot shows that kernel-based vv-CVs can provide
significant further reduction in variance. The distribution
of estimates is also much more concentrated and centered
around the true value.

5.3. Bayesian Inference of Lotka-Volterra System

We now consider another model: the Lotka-Volterra system
(Lotka, 1925; Volterra, 1926; Lotka, 1927) of ordinary dif-

8

Vector-Valued Control Variates

Table 3. Posterior Expected Abundance of Preys. The numbers
provided give the sum of the mean absolute integration error for
10 repetition of each task. To provide the absolute error, the true
values of the associated expectations are estimated by MCMC
estimators with 8× 105 posterior samples.

T m VV-CV- EST. B VV-CV-FIX. B CF MCMC
2 500 0.462 0.404 0.666 0.568
5 500 0.393 0.419 0.521 0.987
10 500 0.938 1.031 2.540 2.663

ferential equations. This system is given by: dv1(s)/ds =
αv1(s) − βv1(s)v2(s), dv2(s)/ds = δv1(s)v2(s) − γv2(s).
Here, s ∈ [0, S] for some S ∈ R+ denotes the time,
and v1(s) and v2(s) are the numbers of preys and preda-
tors, respectively. The system has initial conditions v1(0)
and v2(0). We have access to noisy observations of
v = (v1, v2) at points s1, . . . , sm ∈ [0, S] denoted y1j , y2j
and which are both observed with log-normal noise with
standard deviation σy1

and σy2
respectively for all j ∈

{1, . . . ,m}, given some unknown parameter value x∗ =
(α∗, β∗, δ∗, γ∗, v1(0)

∗, v2(0)
∗, σ∗

y1
, σ∗

y2
)⊤. In practice, we

reparameterise x such that the model parameters are defined
in R8; see Appendix E.6 for details. Given these observa-
tions, we can construct a posterior Π on the value of x∗.
We will then be interested in computing posterior expec-
tations of v1 at a set of time points s′1, . . . , s

′
T , and hence

have T integrands of the form ft(x) = v1(s
′
t;x) where x

highlights the dependence on the parameter x. CVs were
previously considered for individual tasks in this context by
Si et al. (2021). However, these T integrands are related
when s′1, . . . , s

′
T are close to each other.

We use the dataset of snowshoe hares (preys) and Cana-
dian lynxes (predators) from Hewitt (1921), and implement
Bayesian inference on model parameters x by using no-
U-turn sampler (NUTS) in Stan (Carpenter et al., 2017).
For sv-CVs, we estimate each individual Π[ft] separately;
while for vv-CVs, we estimate a collection these tasks
Π[f] := (Π[f1], . . . ,Π[fT])

⊤ jointly. See Appendix E.6
for experimental details. In Table 3, we compare kernel
vv-CVs (special case II) with standard MCMC estimators
and CF estimators. We consider two cases of vv-CVs: the
first is the case when B is with Btt = 5 × 10−4 for all
t and Btt′ = 5 × 10−5 for ∀t ̸= t′, and the second with
B estimated using Algorithm 2. The kernel used is a ten-
sor product of squared-exponential kernels with a separate
lengthscale for each dimension. We increase the number
of tasks from T = 2 to T = 10. Once again, vv-CVs sig-
nificantly outperforms MCMC, especially for large T , and
estimating B provides further gains over using a fixed B.

6. Conclusion
This paper considered variance reduction techniques that
share information across related integration problems. The

proposed solution, vector-valued control variates, was
shown to lead to significant variance reduction for prob-
lems in multi-fidelity modelling and Bayesian computation.
Our approach is, to the best of our knowledge, the first al-
gorithm able to perform multi-task learning for numerical
integration by using only evaluation of the score functions
of the corresponding target distributions. It is also the first
algorithm which can simultaneously learn the relationship
between integrands and provide estimates of the correspond-
ing integrals without the requirement of a tractable kernel
mean as in (Xi et al., 2018).

On an algorithmic level, further work will be needed to make
the method more computationally practical and efficient.
One particular line of research which could be considered
is how special cases of our matrix-valued Stein kernels in
Theorem 3.1 can be selected to reduce the computational
cost whilst still producing a rich class of vv-CVs. Since a
preprint version of this paper appeared online, it has been
shown that approaches based on meta-learning could be
competitive for very large T ; see Sun et al. (2023).

On a theoretical level, we could also look at the question
of when transferring information across tasks will lead to
sufficient gains in accuracy to warrant the additional compu-
tational cost. In addition, it could be of interest to understand
the negative transfer problems which can arise when the in-
tegrands are not in RKHSHK0 or when the sample size is
too small to estimate B well.

Acknowledgements
The authors would like to thank Chris J. Oates for helpful
discussions and for sharing some of his code for the thermo-
dynamic integration example. ZS was supported under the
EPSRC grant [EP/R513143/1]. AB was supported by the
Department of Engineering at the University of Cambridge,
and this material is based upon work supported by, or in
part by, the U.S. Army Research Laboratory and the U. S.
Army Research Office, and by the U.K. Ministry of Defence
and under the EPSRC grant [EP/R018413/2]. FXB was
supported by the Lloyd’s Register Foundation Programme
on Data-Centric Engineering and The Alan Turing Institute
under the EPSRC grant [EP/N510129/1], and through an
Amazon Research Award on “Transfer Learning for Numer-
ical Integration in Expensive Machine Learning Systems”.

References
Álvarez, M. A., Rosasco, L., and Lawrence, N. D. Kernels

for vector-valued functions: A review. Foundations and
Trends in Machine Learning, 4(3):195–266, 2012.

Anastasiou, A., Barp, A., Briol, F.-X., Ebner, B., Gaunt,
R. E., Ghaderinezhad, F., Gorham, J., Gretton, A., Ley,

9

Vector-Valued Control Variates

C., Liu, Q., Mackey, L., Oates, C. J., Reinert, G., and
Swan, Y. Stein’s method meets Statistics: A review of
some recent developments. Statistical Science, 38(1):
120–139, 2023.

Assaraf, R. and Caffarel, M. Zero-variance principle for
Monte Carlo algorithms. Physical Review Letters, 83(23):
4682, 1999.

Barp, A., Takao, S., Betancourt, M., Arnaudon, A., and Giro-
lami, M. A unifying and canonical description of measure-
preserving diffusions. arXiv preprint arXiv:2105.02845,
2021.

Barp, A., Oates, C. J., Porcu, E., and Girolami, M. A
riemann–stein kernel method. Bernoulli, 28(4):2181–
2208, 2022a.

Barp, A., Simon-Gabriel, C.-J., Girolami, M., and Mackey,
L. Targeted separation and convergence with kernel dis-
crepancies. arXiv preprint arXiv:2209.12835, 2022b.

Berlinet, A. and Thomas-Agnan, C. Reproducing Kernel
Hilbert Spaces in Probability and Statistics. Springer
Science & Business Media, 2011.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM Review,
60(2):223–311, 2018. ISSN 00361445. doi: 10.1137/
16M1080173.

Briol, F.-X., Oates, C. J., Cockayne, J., Chen, W. Y., and
Girolami, M. On the sampling problem for kernel quadra-
ture. In Proceedings of the International Conference on
Machine Learning, pp. 586–595, 2017.

Calderhead, B. and Girolami, M. Estimating Bayes factors
via thermodynamic integration and population MCMC.
Computational Statistics and Data Analysis, 53(12):4028–
4045, 2009.

Carmeli, C., De Vito, E., and Toigo, A. Vector valued
reproducing kernel Hilbert spaces of integrable functions
and Mercer theorem. Analysis and Applications, 4(4):
377–408, 2006.

Carmeli, C., De Vito, E., Toigo, A., and Umanita, V. Vector
valued reproducing kernel Hilbert spaces and universality.
Analysis and Applications, 8(1):19–61, 2010.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D.,
Goodrich, B., Betancourt, M., Brubaker, M., Guo, J.,
Li, P., and Riddell, A. Stan: A probabilistic programming
language. Journal of statistical software, 76(1), 2017.

Ciliberto, C., Mroueh, Y., Poggio, T., and Rosasco, L. Con-
vex learning of multiple tasks and their structure. In
International Conference on Machine Learning, pp. 1548–
1557, 2015.

Dellaportas, P. and Kontoyiannis, I. Control variates for
estimation based on reversible Markov chain Monte Carlo
samplers. Journal of the Royal Statistical Society Series
B: Statistical Methodology, 74(1):133–161, 2012.

Dinuzzo, F., Ong, C. S., Gehler, P. V., and Pillonetto, G.
Learning output kernels with block coordinate descent.
In International Conference on Machine Learning, 2011.

Evgeniou, T., Micchelli, C. A., and Pontil, M. Learning
multiple tasks with kernel methods. Journal of Machine
Learning Research, 6:615–637, 2005.

Friel, N. and Pettitt, A. N. Marginal likelihood estimation
via power posteriors. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 70(3):589–
607, 2008.

Friel, N., Hurn, M., and Wyse, J. Improving power pos-
terior estimation of statistical evidence. Statistics and
Computing, 24(5):709–723, 2014.

Girolami, M. and Calderhead, B. Riemann manifold
Langevin and Hamiltonian Monte Carlo methods. Jour-
nal of the Royal Statistical Society Series B: Statistical
Methodology, 73(2):123–214, 2011.

Green, P., Latuszyski, K., Pereyra, M., and Robert, C.
Bayesian computation: a summary of the current state,
and samples backwards and forwards. Statistics and Com-
puting, 25:835–862, 2015.

Hewitt, C. G. The conservation of the wild life of Canada.
New York: C. Scribner, 1921.

Hickernell, F. J., Lemieux, C., and Owen, A. B. Control
variates for quasi-Monte Carlo. Statistical Science, 20(1):
1–31, 2005.

Jones, G. L. On the Markov chain central limit theorem.
Probability Surveys, 1:299–320, 2004.

Kandasamy, K., Dasarathy, G., Oliva, J., Schneider, J., and
Poczos, B. Gaussian process optimisation with multi-
fidelity evaluations. In Neural Information Processing
Systems, pp. 992–1000, 2016.

Kingma, D. P. and Ba, J. L. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Leluc, R., Portier, F., and Segers, J. Control variate selection
for monte carlo integration. Statistics and Computing, 31
(4):1–27, 2021.

Lotka, A. J. Elements of physical biology. Williams &
Wilkins, 1925.

10

Vector-Valued Control Variates

Lotka, A. J. Fluctuations in the abundance of a species
considered mathematically. Nature, 119(2983):12–12,
1927.

Micchelli, C. A. and Pontil, M. On learning vector-valued
functions. Neural Computation, 17(1):177–204, 2005.

Mijatovic, A. and Vogrinc, J. On the Poisson equation for
Metropolis-Hastings chains. Bernoulli, 24(3):2401–2428,
2018. ISSN 13507265.

Mira, A., Solgi, R., and Imparato, D. Zero variance Markov
chain Monte Carlo for Bayesian estimators. Statistics and
Computing, 23(5):653–662, 2013.

Oates, C. J. and Girolami, M. Control functionals for quasi-
Monte Carlo integration. In Proceedings of the Interna-
tional Conference on Artificial Intelligence and Statistics,
volume 51, pp. 56–65, 2016.

Oates, C. J., Papamarkou, T., and Girolami, M. The con-
trolled thermodynamic integral for Bayesian model com-
parison. Journal of the American Statistical Association,
111(514):634–645, 2016.

Oates, C. J., Girolami, M., and Chopin, N. Control func-
tionals for Monte Carlo integration. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 79
(3):695–718, 2017.

Oates, C. J., Cockayne, J., Briol, F.-X., Girolami, M., et al.
Convergence rates for a class of estimators based on
Stein’s method. Bernoulli, 25(2):1141–1159, 2019.

Papamarkou, T., Mira, A., and Girolami, M. Zero vari-
ance differential geometric Markov chain Monte Carlo
algorithms. Bayesian Analysis, 9(1):97–128, 2014.

Park, C., Haftka, R. T., and Kim, N. H. Remarks on multi-
fidelity surrogates. Structural and Multidisciplinary Opti-
mization, 55(3):1029–1050, 2017.

Peherstorfer, B., Willcox, K., and Gunzburger, M. Survey
of multifidelity methods in uncertainty propagation, in-
ference, and optimization. SIAM Review, 60(3):550–591,
2018.

Si, S., Oates, C. J., Duncan, A. B., Carin, L., and Briol, F.-X.
Scalable control variates for Monte Carlo methods via
stochastic optimization. Proceedings of the 14th Confer-
ence on Monte Carlo and Quasi-Monte Carlo Methods.
arXiv:2006.07487, 2021.

South, L. F., Karvonen, T., Nemeth, C., Girolami, M., and
Oates, C. J. Semi-exact control functionals from Sard’s
method. Biometrika, 109(2):351–367, 2022a.

South, L. F., Riabiz, M., Teymur, O., and Oates, C. J. Post-
Processing of MCMC. Annual Review of Statistics and
Its Application, 2022b.

Steinwart, I. and Christmann, A. Support vector machines.
Springer Science & Business Media, 2008.

Sun, Z., Oates, C. J., and Briol, F.-X. Meta-learning
control variates: Variance reduction with limited data.
arXiv:2303.04756, to appear at UAI, 2023.

Volterra, V. Variazioni e fluttuazioni del numero d’individui
in specie animali conviventi. Società anonima tipografica”
Leonardo da Vinci”, 1926.

Wan, R., Zhong, M., Xiong, H., and Zhu, Z. Neural control
variates for variance reduction. Joint European Confer-
ence on Machine Learning and Knowledge Discovery in
Databases, pp. 533–547, 2019.

Xi, X., Briol, F.-X., and Girolami, M. Bayesian quadrature
for multiple related integrals. In International Conference
on Machine Learning, pp. 5373–5382, 2018.

Xiong, S., Qian, P. Z. G., and Wu, C. F. J. Sequential design
and analysis of high-accuracy and low-accuracy computer
codes. Technometrics, 55(1):37–46, 2013.

11

Vector-Valued Control Variates

Appendix

We now complement the main text with additional details. Firstly, we provide additional methodology in Appendix A,
including alternative objectives based on the variance of MCMC, stochastic optimisation algorithm for vv-CVs when the task
relationship B is known (under special case I and II) and the calculation of the computational complexity that is presented in
Table 1. Secondly, in Appendix B, we provide the proofs of all the theoretical results in the main text. Then, in Appendix C,
we present alternative constructions of vv-CVs. These constructions include a more general form of kernel-based vv-CVs
as well as some polynomial-based CVs. Finally, in Appendix D and Appendix E, we provide additional details on our
implementation of vv-CVs and provide additional numerical experiments.

A. Additional Methodology
In this first appendix, we will present additional methodology for Section 3. We briefly discuss an alternative objective
based on the variance of the MCMC case in Appendix A.1. The selection of vv-CVs under special case I and II when B is
known and the corresponding algorithm is presented in Appendix A.2.

A.1. Alternative Objectives based on the Variance of MCMC

We present an alternative objective based on the variance of MCMC here, which is given by the following remark.
Remark 1. Given {Xi}∞i=1 an ergodic Markov chain with invariant distribution Π, the variance of the MCMC CLT is
proportional to

J(θ) + 2
∑∞

i=1 CovΠ[f(X1)− gθ(X1), f(Xi)− gθ(Xi)]

where the second term accounts for the correlation in the Markov chain. Given some realisation of the Markov chain
{xj}mj=1 and the corresponding evaluations {f(xj)}mj=1, this can be approximated as:

Jm(θ, β) + 2
∑m−1

s=1
1
m

∑m−s
i=1 (f(xi)− gθ(xi)− Π̂MC[f − gθ])(f(xi+s − gθ(xi+s)− Π̂MC[f − gθ])).

A.2. Stochastic Optimisation with a Known Task Relationship

In this section, we discuss the selection of vv-CVs under special case I and II when B is known and give the corresponding
algorithm in Algorithm 2.

In this case, we will assume that B ∈ ST
+ is known. The proposed algorithm is a stochastic optimisation algorithm

which we run for L time steps; pseudo-code is provided in Algorithm 2. We propose to initialise the algorithm at
θ(0) = (0, . . . , 0) ∈ Rp, since this is equivalent to having gθ(x) = 0 (i.e. having no CV) for both the kernel- and
polynomial-based vv-CVs. We also suggest initialising the parameter β ∈ RT with any estimate of Π[f]. This is a natural
initialisation since we expect βt to equal Π[ft] for all t ∈ [T] when m1, . . . ,mT →∞. For example, when the data consists
of IID realisations from Π1, . . . ,ΠT , a natural initialisation point is β(0) = (Π̂MC

1 [f1], . . . , Π̂
MC
T [fT])

⊤.

For each iteration, we take mini-batches of size m̃ ∈ NT where |m̃| ≤ |m|. Note here that m̃ = (m̃1, . . . , m̃T)
⊤ is a

multi-index giving the size of the mini-batch for each of the T datasets. This formulation allows for the use of different
datasets across integrands, but also different mini-batch sizes for each task (which may be useful if the datasets are of
different size for each integrand). An epoch consists of having gone through all data points for all T tasks, and we randomly
shuffle the indices for mini-batches after each epoch. As default, we propose to take m̃t ∝ mt/(

∑T
t=1 mt) for all t ∈ [T].

This choice guarantees that the number of samples for each integrand in the mini-batches is proportional to the proportion of
samples for that integrand in the full dataset.

Once a mini-batch has been selected, we update our current estimate of the parameters θ and β using steps based on the
gradient of our loss function: ∇(θ,β)L

vv
m̃(θ, β). The pseudo-code in Algorithm 2 presents this abstractly as a function

UPDATEθ,β(θ, β,B;D), which takes in the current estimates of the parameters, the value of B and the dataset (or minibatch)
used for the update; this is because different choices of vv-CVs might benefit from different updates. For example, pre-
conditioners for the gradients could be used when readily available, or when these can be estimated from data. In Section 5,
we will exclusively be using the Adam optimiser (Kingma & Ba, 2015), a first order method with estimates of lower-order
moments.

12

Vector-Valued Control Variates

Algorithm 2 Stochastic optimisation for vv-CVs with known task relationship

Input: D, m̃, L, λ, β(0) and θ(0).
for iterations l from 1 to L do

Select a mini-batch Dm̃ of size m̃(
θ(l), β(l)

)
← UPDATEθ,β(θ

(l−1), β(l−1), B;Dm̃

)
end for
Return: θ(L), β(L)

For the penalisation term, it would be natural to take the RKHS norm ∥gθ∥ = ∥gθ∥HK0
since this would lead to the objective

used in Theorem 4.1. However, this can be impractical from a computational viewpoint since this norm depends on kernel
evaluations for all of the training points. For this reason, we follow the recommendation of (Si et al., 2021) and use instead
the Euclidean norm: ∥gθ∥ = ∥θ∥2. This still leads to a convex objective since the objective remains quadratic in θ.

Algorithm 2 is a natural approach to minimising our objective since our kernel-based vv-CVs are linear in θ and Lvv
m is

convex in (θ, β). Many stochastic optimisation methods, such as stochastic gradient descent, will hence converge to a
global minimum under regularity conditions (Bottou et al., 2018). However, note that Algorithm 2 naturally applies to other
vv-CVs whether linear or not.

A.3. Calculation of Computational Complexity

In this section, we derive the computational complexity reported in Table 1. Suppose we have mt samples for each of T
tasks and similarly for all m̃t with t ∈ [T].

Computational cost of CV:

• Exact solution: For each task, we need to compute k0(·, ·) for all pairs, which results in a cost of O(dm2
t) per task. To

compute the exact solution of kernel-based control variates, it takes O(m3
t) per task. So, in total, the computational

cost of the exact solution of CV is O((dm2
t +m3

t)T).

• Stochastic optimisation: To use stochastic optimisation, suppose we use L epochs. At each iteration of one epoch, we
need to compute k0(·, ·) for m̃tmt pairs, which costs O(dm̃tmt). We need to do this for all L iterations. This results
in O(dm̃tmtL) per task. Hence, in total, the computational cost of stochastic optimisation of CV is O(dm̃tmtLT) for
all T tasks.

Computational cost of vv-CV:

• Exact solution: There are mtT samples (i.e. m2
tT

2 pairs) in total and we are using mv-Stein kernels. Thus, the
computational cost of computing K0(·, ·) is O(d(mtT)

2T 2) = O(dm2
tT

4). To compute the exact solution of vv-CV,
we can re-arrange the Gram tensor of all samples into a matrix of size mtT

2 ×mtT
2. Hence, the computational cost

of computing the exact solution of vv-CV is O((mtT
2)3) = O(m3

tT
6). Thus, in total, the computational cost of

computing the exact solution of vv-CV is O(dm2
tT

4 +m3
tT

6).

• Stochastic optimisation: At each iteration, one mini-batch of the stochastic optimisation of vv-CV has m̃tT samples.
We need to compute K0(·, ·) for these samples with all mtT samples. This leads to a cost of O(m̃tTmtTdT

2) =
O(dm̃tmtT

4) per iteration. Note that we need to do this for all L iterations. So, in total, the computational cost of
stochastic optimisation of vv-CV is O(dm̃tmtLT

4).

B. Proofs of the Main Theoretical Results
In this second appendix, we recall the proofs of the theoretical results in the main text. The derivation of the mv-kernel K0

from Theorem 3.1 can be found in Appendix B.1. The proof that kernel-based vv-CVs are square-integrable (Theorem 3.2) is
in Appendix B.2. Finally, the proof of the existence of the optimal parameters as the solution to a linear system (Theorem 4.1)
is given in Appendix B.3.

13

Vector-Valued Control Variates

B.1. Proof of Theorem 3.1

Proof. We will show K0 is a kernel and derive its matrix components by constructing an appropriate feature map. The first
order Stein operator maps matrix-valued functions u = (u1, u2 . . . , uT) : Rd → Rd×T to the vv-function Svv[u] : Rd → RT

given by

Svv[u] = (LΠ1
[u1] , . . . ,LΠT

[uT])
⊤

where LΠt
[ut](x) = ∇x · ut(x) +∇x log πt(x) · ut(x) ∀t ∈ [T].

Since K ∈ C1,1(Rd × Rd), we can use Corollary 4.36 of (Steinwart & Christmann, 2008) to conclude that HK is a
vector-valued RKHS of continuously differentiable functions from Rd to RT , hence the tensor product Hd

K consists of
suitable functions u ∈ Hd

K , with components ui = (ui
1, . . . , u

i
T) ∈ HK for i ∈ [d]. Now since the RKHS consists of

differentiable functions, we have by Lemma C.8 in Barp et al. (2022b):〈
∂j
xK(·, x)et, ui

〉
HK

= et · ∂jui(x) = ∂jui
t(x) ≡

∂ui
t

∂xj (x) ∀t ∈ [T]

where et ∈ RT is a vector of zeros with value 1 in the tth component. Then, writing Ket
x ≡ K(·, x)et,

Svv[u](x) =
∑T

t=1

∑d
r=1(∂

r
xu

r
t (x) + ∂r

x log πt u
r
t (x))et

=
∑T

t=1

∑d
r=1 ⟨∂r

xK
et
x + ltr(x)K

et
x , ur⟩HK

et

=
∑T

t=1 ⟨∂•
xK

et
x + lt•(x)K

et
x , u⟩Hd

K
et,

where ltr(x) = ∂r
x log πt(x), and ∂•

xK
et
x and lt•(x) denote respectively the tuples (∂1

xK
et
x , . . . , ∂d

xK
et
x) ∈ Hd

K and
(lt1(x), . . . , ltd(x)) ∈ Rd.

We have thus obtained a feature map, i.e., a map γ : Rd → B(Hd
K ,RT), where B(Hd

K ,RT) denotes the space of bounded
linear maps fromHd

K to RT , via the relation

γ(x)[u] = Svv[u](x),

with adjoint γ(x)∗ =
∑T

t=1(∂
•
xK

et
x + lt•(x)K

et
x)et. Recall the adjoint map γ(y)∗ ∈ B(RT ,Hd

K) to γ(y), is defined for
any a ∈ RT , u ∈ Hd

K by the relation

⟨γ(y)∗[a], u⟩Hd
K
= γ(y)[u] · a.

In particular, by Proposition 1 of Carmeli et al. (2010) we have that

K0(x, y) ≡ γ(x) ◦ γ(y)∗ ∈ RT×T

will then be the kernel associated to the “feature operator” (that is, a surjective partial isometry whose image is HK0)
Svv : Hd

K → HK0 . Subbing in the expressions for the feature map and its adjoint derived above, and using the equalities〈
∂s
xK(·, x)et, ∂r

yK(·, y)et′
〉
HK

= et · ∂s
x∂

r
yK(x, y)et′ = (∂s

x∂
r
yK(x, y))tt′ ∀t, t′ ∈ [T]

and
〈
∂ss
x K(·, x)et, ∂r

yK(·, y)et′
〉
HK

= (∂ss
x ∂r

yK(x, y))tt′ ∀t, t′ ∈ [T],

which hold for any differentiable matrix-valued kernel (Barp et al., 2022b), we obtain the following expression for the
components of K0

(K0(x, y))tt′ =
∑d

r=1(∂
r
x∂

r
yK(x, y))tt′ + lt′r(y)(∂

r
xK(x, y))tt′

+ ltr(x)∂
r
y(K(x, y))tt′ + ltr(x)lt′r(y)(K(x, y))tt′ .

In particular for separable kernels (i.e. K(x, y) = Bk(x, y)) we have

(K0(x, y))tt′ = Btt′
∑d

r=1 ∂
r
x∂

r
yk(x, y) + lt′r(y)∂

r
xk(x, y) + ltr(x)∂

r
yk(x, y) + ltr(x)lt′r(y)k(x, y).

14

Vector-Valued Control Variates

B.2. Proof of Theorem 3.2

Proof. Recall that if a scalar kernel k satisfies
∫
Rd k(x, x)dµ(x) < ∞, then its RKHS consists of square µ-integrable

functions (for any finite measure µ) (Steinwart & Christmann, 2008, Theorem 4.26).

If g ∈ HK0 then gt belongs to the RKHS with scalar-valued kernel (this follows from (Carmeli et al., 2010, Prop. 1), using
as feature operator the dot product with respect to et, where et is defined in Appendix B.1)

(K0(x, y))tt =
∑d

r=1(∂
r
x∂

r
yK(x, y))tt + ltr(y)∂

r
x(K(x, y))tt

+ ltr(x)∂
r
y(K(x, y))tt + ltr(x)ltr(y)(K(x, y))tt ∀t ∈ [T].

In particular since K is bounded with bounded derivatives, and

Πt [|ltr|] + Πt

[
|ltr|2

]
≤

√
Πt [|ltr|2] + Πt

[
|ltr|2

]
∀t ∈ [T], r ∈ [d]

then
∫
Rd(K0(x, x))ttdΠt(x) <∞ if ∥∇x log πt(x)∥2 is square integrable with respect to Πt, and the result follows.

B.3. Proof of Theorem 4.1

Proof. We want to find

argming∈HK0
Lvv
m(g, β)

where Lvv
m(g, β) :=

∑T
t=1

1
mt

∑mt

j=1(ft(xtj)− gt(xtj)− βt)
2 + λ∥g∥2HK0

.

Note that the objective is the same as that in (8), with the only difference being that the first input is now a function as
opposed to the parameter value parameterising this function. We will abuse notation by using the same mathematical
expression for both objectives.

By Ciliberto et al. (2015, Section 2.1), any solution of the minimization problem has the form ĝ(·) ≡∑T
t′=1

∑mt′
j′=1 K0(· , xt′j′)θt′j′ . Subbing this solution into Lvv

m(g, β) yields

Lvv
m(ĝ, β) =

∑T
t=1

1
mt

∑mt

j=1(ft(xtj)− (
∑T

t′=1

∑mt′
j′=1 K0(xtj , xt′j′)tθt′j′ − βt)

2

+ λ
∑T

t′,t′′=1

∑mt′
j′=1

∑mt′′
j′′=1 θ

T
t′j′K0(xt′j′ , xt′′j′′)θt′′j′′

= λ
∑T

t′,t′′=1

∑mt′
j′=1

∑mt′′
j′′=1 θ

T
t′j′K0(xt′j′ , xt′′j′′)θt′′j′′

+
∑T

t=1
1
mt

∑mt

j=1

(
y2tj + (

∑T
t′=1

∑mt′
j′=1 K0(xtj , xt′j′)tθt′j′)

2

− 2
∑T

t′=1

∑mt′
j′=1 ytjK0(xtj , xt′j′)tθt′j′

)
,

where ytj ≡ ft(xtj)− βt. The problem thus becomes a minimization problem over the coefficients θ,

argminθ∈R|D| λ
∑T

t′,t′′=1

∑mt′
j′=1

∑mt′′
j′′=1 θ

T
t′j′K0(xt′j′ , xt′′j′′)θt′′j′′

− 2
∑T

t,t′=1
1
mt

∑mt

j=1

∑mt′
j′=1 θ

T
t′j′K0(xt′j′ , xtj)·tytj +

∑T
t=1

1
mt

∑mt

j=1 y
2
tj

+
∑T

t,t′,t′′=1

∑mt

j=1

∑mt′
j′=1

∑mt′′
j′′=1 θ

T
t′j′K0(xt′j′ , xtj)·t

1
mt

K0(xtj , xt′′j′′)t·θt′′j′′ .

Since the quadratic terms are positive definite, the resulting objective is a convex function of θ, thus, by differentiating it, we
obtain that the solution θ is the solution to∑T

t′=1

∑mt′
j′=1

(∑T
t=1

1
mt

∑mt

j=1 K0(xt′′j′′ , xtj)·tK0(xtj , xt′j′)t· + λK0(xt′′j′′ , xt′j′)
)
θt′j′

=
∑T

t
1
mt

∑mt

j=1 K0(xt′′j′′ , xtj)·t(ft(xtj)− βt), ∀t′′ ∈ [T], j′′ ∈ [mT].

Finally, generalising the scalar case, we say that a matrix-valued reproducing kernel K0 is strictly positive definite if
for any finite set of γs ∈ RT and distinct points ys ∈ Rd we have

∑
s,ℓ γ

⊤
s K0(ys, yℓ)γℓ = 0 implies each γs is zero –

15

Vector-Valued Control Variates

this means that the mean embedding of K0 is injective (or characteristic) over the set of linear functionals of the form
δγy : f 7→

∑
t ft(y)γt. It follows that the map RDx × RT → RDx × RT , where Dx = {x1j , . . . , xTmT

}, defined as

θ 7→

 T∑
t=1

mt∑
j=1

K0(x1j , xtj)θtj , . . . ,

T∑
t=1

mt∑
j=1

K0(xTmT
, xtj)θtj


is injective between vector spaces of the same dimension, and thus invertible by the rank theorem. Hence, since by above
the quadratic term is positive definite, the linear system may be inverted to find θ∗.

C. Alternative Constructions
In this third appendix, we will now provide alternative constructions to those presented in the main text. First, in Ap-
pendix C.1, we present kernel-based vv-CVs derived from the second order Langevin Stein operator. Then, in Appendix C.2
and Appendix C.3 we point out how these constructions can lead to polynomial-based vv-CVs.

C.1. Kernel-based vv-CVs from Second-Order Langevin Stein Operators

The Langevin Stein operator can also be adapted to apply to the derivative of twice differentiable scalar-valued functions
u : Rd → R, in which case it is called the second-order Langevin Stein operator:

L′[u](x) := ∆xu(x) +∇xu(x) · ∇x log π(x), (11)

where ∆x = ∇x · ∇x.

In this section we will consider the second-order Langevin Stein operator which acts on scalar-valued functions. The
following theorem provides a characterisation of the class of vv-functions obtained when applying this operator to functions
in a vv-RKHS.

Theorem C.1. Consider HK which is a vv-RKHS with mv-kernel K : Rd × Rd → RT×T , and suppose that K ∈
C2,2(Rd × Rd). Furthermore, for suitably regular vv-functions u = (u1, . . . , uT) : Rd → RT define the differential
operator

Svv[u] = (L′
Π1

[u1], . . . ,L′
ΠT

[uT])
⊤.

Then, the image ofHK under Svv is a vv-RKHS with reproducing kernel K0 : Rd × Rd → RT×T :

(K0(x, y))tt′ =
∑d

r,s=1 ∂
ss
x ∂rr

y (K(x, y))tt′ + lt′r(y)∂
ss
x ∂r

y(K(x, y))tt′

+ lts(x)∂
s
x∂

rr
y (K(x, y))tt′ + lts(x)lt′r(y)∂

s
x∂

r
y(K(x, y))tt′ ∀t, t′ ∈ [T].

We note that this theorem is very similar to Theorem 3.1, and recovers the kernel of (Barp et al., 2022a) when T = 1,
provided we use the manifold analog of (11). Indeed, one advantage of (11) is that the associated Theorem C.1 can be easily
extended to manifolds (more generally, we can obtain a similar result for any generators of measure-preserving diffusion
given in Corollary 5.3 of Barp et al. (2021)). However, one particular disadvantage of this construction from a computational
viewpoint is that it requires higher-order derivatives of the kernel K. It also requires the evaluation of a double sum, which
significantly increases computational cost relative to our construction in the main text. For this reason, we did not explore
this construction in more details.

Proof. We proceed as for the proof of Theorem 3.1 and shall derive a feature map for K0. Recall that g = Svv[u] =
(L′

Π1
[u1], . . . ,L′

ΠT
[uT])

⊤, where L′
Πi

is the second-order Stein operator, which maps scalar functions to scalar functions.
Here u belongs to a RKHS of RT -valued functions with matrix kernel K. From the differentiability assumption on K, we
haveHK ⊂ C2, i.e., it is a space of twice continuously differentiable functions. Note that (here ∂jj = ∂j∂j = ∂2

∂xj∂xj
)

〈
∂jj
x K(·, x)et, u

〉
HK

= ∂jjut(x) ≡ ∂2ut

∂xj∂xj
(x) ∀t ∈ [T],

16

Vector-Valued Control Variates

where et is the tth standard basis vector of RT as before. Thus

L′
Πt
[ut](x) = ∆xut(x) +∇x log πt(x) · ∇xut(x)

=
∑d

s=1 ∂
ssut(x) +

∑d
s=1 lts(x)∂

sut(x)

=
∑d

s=1 ⟨∂ss
x K(·, x)et, u⟩HK

+
∑d

s=1 ⟨lts(x)∂s
xK(·, x)et, u⟩HK

=
∑d

s=1 ⟨∂ss
x K(·, x)et + lts(x)∂

s
xK(·, x)et, u⟩HK

∀t ∈ [T].

Hence

Svv[u](x) =


〈∑d

s=1 ∂
ss
x K(·, x)e1 + l1s(x)∂

s
xK(·, x)e1, u

〉
HK

...〈∑d
s=1 ∂

ss
x K(·, x)eT + lTs(x)∂

s
xK(·, x)eT , u

〉
HK

 ∈ RT .

Note that for each x ∈ Rd, each component of the above is a bounded linear operator HK → R (i.e., the map u 7→
(Svv(u)(x))s ∈ R to the s-component is a bounded linear operator), then we have obtained a a feature map, i.e., a map
γ : Rd → B(HK ,RT), where B(HK ,RT) denotes the space of bounded linear maps fromHK to RT . Specifically

γ(x) ≡ Svv[·](x) ∈ B(HK ,RT).

In particular, as before

K0(x, y) ≡ γ(x) ◦ γ(y)∗ ∈ B(RT ,RT)

will thus be the kernel associated to the “feature operator” Svv : HK → HK0
. Recall that γ(y)∗ ∈ B(RT ,HK) is the

adjoint map to γ(y), i.e., it satisfies for any a ∈ RT , u ∈ HK :

⟨γ(y)∗[a], u⟩HK
= γ(y)[u] · a.

From this we obtain

γ(y)∗ : a 7→
∑d

r=1

∑T
t=1 at

(
∂rr
y K(·, y)et + ltr(y)∂

r
yK(·, y)et

)
∈ HK .

From K0(x, y)a = γ(x) ◦ γ(y)∗[a] for all a ∈ RT and the above expressions we can finally calculate K0. We have

K0(x, y)a = Svv[γ(y)∗a](x) =


〈∑d

s=1 ∂
ss
x K(·, x)e1 + l1s(x)∂

s
xK(·, x)e1, γ(y)∗a

〉
HK

...〈∑d
s=1 ∂

ss
x K(·, x)eT + lTs(x)∂

s
xK(·, x)eT , γ(y)∗a

〉
HK

 .

We obtain that K0(x, y)a is a vector with components:

(K0(x, y)a)t =
∑d

r,s=1

∑T
t′=1 at′

(
(∂ss

x ∂rr
y K(x, y))tt′ + lt′r(y)(∂

ss
x ∂r

yK(x, y))tt′

+ lts(x)(∂
s
x∂

rr
y K(x, y))tt′ + lts(x)lt′r(y)(∂

s
x∂

r
yK(x, y))tt′

)
∀t ∈ [T].

Thus the components of K0(x, y) ∈ RT×T are

(K0(x, y))tt′ =
∑d

r,s=1(∂
ss
x ∂rr

y K(x, y))tt′ + lt′r(y)(∂
ss
x ∂r

yK(x, y))tt′

+ lts(x)(∂
s
x∂

rr
y K(x, y))tt′ + lts(x)lt′r(y)(∂

s
x∂

r
yK(x, y))tt′ ∀t, t′ ∈ [T].

17

Vector-Valued Control Variates

Analogously to the mv-kernel in Theorem 3.1, there are several cases of practical interest. The first is when K(x, y) =
Bk(x, y) is a separable kernel, in which case:

(K0(x, y))tt′ = Btt′
∑d

r,s=1 ∂
ss
x ∂rr

y k(x, y) + lt′r(y)∂
ss
x ∂r

yk(x, y)

+ lts(x)∂
s
x∂

rr
y k(x, y) + lts(x)lt′r(y)∂

s
x∂

r
yk(x, y) ∀t, t′ ∈ [T].

The second is when K is separable and Π1 = . . . = ΠT , in which case lr(x) := l1r(x) = . . . = lTr(x) ∀r ∈ [d] and:

(K0(x, y))tt′ = Btt′
∑d

r,s=1 ∂
ss
y ∂rr

x k(x, y) + lr(x) ∂
ss
y ∂r

xk(x, y)

+ ls(y) ∂
s
y∂

rr
x k(x, y) + ls(y)lr(x)∂

s
y∂

r
xk(x, y) ∀t, t′ ∈ [T].

C.2. Alternative Constructions beyond Kernels

Although kernels are a natural way of constructing functions for multi-task problems, it is also possible to generalise
constructions based on other parametric families such as polynomials or neural networks. We will not explore this avenue in
detail in the present paper, but now provide brief comments on how such generalisations could be obtained.

Firstly, uθ could be based on any additive model such as a polynomial or wavelet expansion. In that case, it is straightforward
to construct vv-CVs with a separable structure as follows:

(uθ(x))t =
∑

i

∑T
t′=1 Btt′θiϕi(x), (gθ(x))t =

∑
i

∑T
t′=1 Btt′θiSsv

Πt
[ϕi(x)] ∀t ∈ [T], (12)

where B ∈ ST
+ and ϕi : Rd → R is a (sufficiently regular) basis function. In particular, taking the basis functions to be of

the form xα for α ∈ Nd recovers the polynomial-based CVs of (Mira et al., 2013). We also note that any model of this form
leads to a quadratic MC variance objective, whose solution can be obtained in closed form under mild regularity conditions
on the basis functions.

Secondly, we could use non-linear models for uθ. In that case, one approach would be to use a separable structure of the
form:

(uθ(x))t =
∑T

t′=1 Btt′ϕθ(x), (gθ(x))t =
∑T

t′=1 Btt′Ssv
Πt
[ϕθ(x)] ∀t ∈ [T]. (13)

where ϕθ(x) is a non-linear function of the parameters θ. The above is a generalisation of the neural networks-based CVs of
(Wan et al., 2019; Si et al., 2021) whenever ϕθ is a neural network. Unfortunately the MC variance objective will usually be
non-convex in those cases, and we therefore have no guarantees of recovering the optimal parameter value when using most
numerical optimisers.

C.3. Polynomial vv-CVs

In Appendix C.2, we have discussed a construction for vv-CVs based on polynomials which recovers the work of (Mira
et al., 2013). However, it is also possible to obtain polynomial-based vv-CVs directly through our kernel constructions
in Theorem 3.1 and Appendix C.1. In particular, one option would be to take K(x, y) = Bk(x, y) where B ∈ ST

+ and
k(x, y) = (x⊤y + c)l where c ∈ R and l ∈ N. Firstly, using the first-order Langevin Stein operator and setting l = 1, we
obtain:

(K0(x, y))tt′ = Btt′
∑d

r=1

[
1 + lt′r(y)yr + ltr(x)xr + ltr(x)lt′r(y)

(
x⊤y + c

)]
∀t ∈ [T].

Similarly when l = 2, we get:

(K0(x, y))tt′ = Btt′
∑d

r=1

[
2xryr + 2

(
x⊤y + c

)
+ 2yrlt′r(y)

(
x⊤y + c

)
+ 2xrltr(x)

(
x⊤y + c

)
+ ltr(x)lt′r

(
x⊤y + c

)2] ∀t ∈ [T].

These two choices were considered in the experiments in Section 5. An alternative would be to consider this same kernel,
but using the construction based on second-order Langevin Stein operators. Again, taking l = 1, we obtain:

(K0(x, y))tt′ =
∑d

r=1 ltr(x)lt′r(y)Btt′ ∀t ∈ [T].

18

Vector-Valued Control Variates

Similarly, when l = 2, we get:

(K0(x, y))tt′ = Btt′

[
4
(
d+

∑d
r=1 lt′r(y)yr + ltr(x)xr

)
+ 2

(∑d
r=1 ltr(x)lt′r(y)

(
x⊤y + c

)
+

∑d
r,s=1 lts(x)lt′r(y)xrys

)]
∀t ∈ [T].

D. Implementation Details
In this appendix, we focus on implementation details which may be helpful for implementing the algorithms in the main
text. Firstly, in Appendix D.1 we derive the derivatives of several common kernels; this is essential for the implementation
of Stein reproducing kernels. Then, in Appendix D.2, we provide details on how to select hyperparameters. Finally, in
Appendix D.3, we discuss how to turn the problem of estimating B from data into a sequence of convex optimisation
problems.

D.1. Kernels and Their Derivatives

We now provide details of all the kernels used in the paper, as well as expressions for their derivatives.

Polynomial Kernel The polynomial kernel kl(x, y) = (x⊤y + c)l with constant c ∈ R and power l ∈ N has derivatives
given by

∇xkl(x, y) = l(x⊤y + c)l−1y, ∇ykl(x, y) = l(x⊤y + c)l−1x,

∇x · ∇ykl(x, y) =
∑d

j=1
∂2

∂xj∂yj
kl(x, y) =

∑d
j=1

∂
∂xj

[
l(x⊤y + c)l−1xj

]
=

∑d
j=1 l(l − 1)(x⊤y + c)l−2yjxj + l(x⊤y + c)l−1

= l(l − 1)(x⊤y + c)l−2x⊤y + dl(x⊤y + c)l−1.

Squared-Exponential Kernel The squared-exponential kernel (sometimes called Gaussian kernel) k(x, y) =

exp(−∥x−y∥2
2

2λ) with lengthscale λ > 0 has derivatives given by

∇xk(x, y) = − (x−y)
λ k(x, y), ∇yk(x, y) =

(x−y)
λ k(x, y),

∇x · ∇yk(x, y) =
∑d

j=1
∂2

∂yj∂xj
k(x, y) =

∑d
j=1

∂
∂yj

[
− (xj−yj)

λ k(x, y)
]

=
∑d

j=1

[
1
λ −

(xj−yj)
2

λ2

]
k(x, y) =

[
d
λ −

(x−y)⊤(x−y)
λ2

]
k(x, y).

Preconditioned Squared-Exponential Kernel Following Oates et al. (2017), we also considered a preconditioned
squared-exponential kernel:

k(x, y) = 1
(1+α∥x∥2

2)(1+α∥y∥2
2)
exp

(
−∥x−y∥2

2

2λ2

)
.

with lengthscale λ > 0 and preconditioner parameter α > 0. This kernel has derivatives given by:

∇xk(x, y) =
[

−2αx
1+α∥x∥2

2
− (x−y)

λ2

]
k(x, y), ∇yk(x, y) =

[
−2αy

1+α∥y∥2
2
+ (x−y)

λ2

]
k(x, y),

∇x · ∇yk(x, y) =
∑d

j=1
∂2

∂xj∂yj
k(x, y) =

∑d
j=1

∂
∂yj

[(
−2αxj

1+α∥x∥2
2
− (xj−yj)

λ2

)
k(x, y)

]
=

∑d
j=1

(
1
λ2 k(x, y) +

[
−2αxj

1+α∥x∥2
2
− (xj−yj)

λ2

]
∂

∂yj
k(x, y)

)
=

∑d
j=1

(
1
λ2 k(x, y) +

[
−2αxj

1+α∥x∥2
2
− (xj−yj)

λ2

] [
−2αyj

1+α∥y∥2
2
+

(xj−yj)
λ2

]
k(x, y)

)
= k(x, y)

[
4α2x⊤y

(1+α∥x∥2
2)(1+α∥y∥2

2)
+ 2α(x−y)⊤y

λ2(1+α∥y∥2
2)
− 2α(x−y)⊤x

λ2(1+α∥x∥2
2)

+ d
λ2 − (x−y)⊤(x−y)

λ4

]
.

19

Vector-Valued Control Variates

Product of Kernels Finally, some of our examples will also use products of well-known kernels. Consider the kernel
k(x, y) =

∏d
j=1 kj(xj , yj). The derivatives of this kernel can be expressed in terms of the components of the product and

their derivates as follows:

∇xk(x, y) =
(

∂k1(x1,y1)
∂x1

∏
j ̸=1 kj(xj , yj), . . . ,

∂kd(xd,yd)
∂xd

∏
j ̸=d kj(xj , yj)

)⊤

∇yk(x, y) =
(

∂k1(x1,y1)
∂y1

∏
j ̸=1 kj(xj , yj), . . . ,

∂kd(xd,yd)
∂yd

∏
j ̸=d kj(xj , yj)

)⊤

∇y · ∇xk(x, y) =
∑d

j=1
∂2

∂xj∂yj
k(x, y) =

∑d
j=1

∂
∂yj

(
∂kj(xj ,yj)

∂xj

∏
i̸=j ki(xi, yi)

)
=

∑d
j=1

[
∂2kj(xj ,yj)

∂yj∂xj

∏
i̸=j ki(xi, yi)

]
.

D.2. Hyper-parameters Selection

Most kernels (whether scalar- or matrix-valued) will have hyperparameters which we will have to select. For example, the
squared-exponential kernel will often have a lengthscale or amplitude parameter, and these will have a significant impact on
the performance.

We propose to select kernel hyperparameters through a marginal likelihood objective by noticing the equivalence between
the optimal vv-CV based on the objective in (8) and the posterior mean of a zero-mean Gaussian process model with
covariance matrix K0(x, y); see (Oates et al., 2017) for a discussion in the sv-CV case. Unfortunately, computing the
marginal likelihood in the general case can be prohibitively expensive due to the need to take inverses of large kernel
matrices; the exact issue we were attempting to avoid through the use of the stochastic optimisation approaches. For
simplicity, we instead maximise the marginal likelihood corresponding to B = IT :

ν∗ := argmaxν − 1
2

∑T
t=1

(∑mt

j,j′=1 ft(xtj)(KΠt
(ν) + λImt

)−1
jj′ft(xtj′) + log det[KΠt

(ν) + λImt
]
)
.

where KΠt(ν) is a matrix with entries KΠt(ν)ij = kΠt(xti, xtj ; ν) where kΠt is a Stein reproducing kernel of the form in
(3) specialised to Πt which has hyperparameters given by some vector ν. This form is not optimal when B ̸= IT , but we
found that it tend to perform well in our numerical experiments. The regularisation parameter λ can also be selected through
the marginal likelihood. However, in practice we are in an interpolation setting and therefore choose λ as small as possible
whilst still being large enough to guarantee numerically stable computation of the matrix inverses above.

D.3. Convex Optimisation for Estimating B

As discussed in Section 4, estimating the matrix B for a separable kernel from data leads to a non-convex optimisation
problem. Thankfully, we can approximate the optimum using a sequence of convex problems by extending the work of
Dinuzzo et al. (2011); Ciliberto et al. (2015) together with Theorem 4.1 above. For this, we will require that the kernel K0 is
separable, and shall thus restrict ourselves to the case where we have a single target distribution (i.e. special case II).
Theorem D.1. Suppose that Πt = Π for t ∈ [T] and K(x, y) = Bk(x, y) so that K0(x, y) = Bk0(x, y) where k0 is
defined in (3). Then the following objective is convex in (θ, β,B) for any value of δ > 0:

L̄vv
m,δ(θ, β,B) = J vv

m(θ, β, IT) + λ
∑T

t,t′=1

∑mt

j=1

∑mt′
j′=1 Tr

[
B† (k0(xtj , xt′j′)θtjθ

⊤
t′j′ + δ2IT

)]
+ ∥B∥2,

and for each β and any sequence δℓ → 0, the associated sequence of minimisers (θℓ, Bℓ) converges to (θ∗, B∗) s.t.,
(θ∗B

†
∗, B∗) minimises the objective in (10).

Proof. Since the kernel K0 is separable, the objective (10) may be written in the form of Ciliberto et al. (2015, Problem (Q)).
Has shown therein,

∑T
t,t′=1

∑mt

j=1

∑mt′
j′=1 Tr

[
B† (k0(xtj , xt′j′)θtjθ

⊤
t′j′

)]
is jointly convex in B and θ, and since the first

term in Lvv
m,δ(θ, β,B) is convex in β and θ jointly, Lvv

m,δ(θ, β,B) is jointly convex in (θ,B, β). Moreover, by Theorem 3.1 &
3.3 in (Ciliberto et al., 2015), when δ → 0, (θ,B) converges in Frobenius norm to (θ∗, B∗), where (θ∗B

†
∗, B∗) a minimiser

of (10), where B†
∗ denotes the pseudoinverse of B∗.

This theorem could therefore be used to construct an approach based on convex optimisation algorithms which are used
iteratively for a decreasing sequence of penalisation parameters in order to converge to an optimum approaching the global
optimum. However, this approach is limited to the case where all distributions are identical, and is hence not as widely
applicable as Algorithm 1.

20

Vector-Valued Control Variates

E. Additional Details for the Experimental Study
This last Appendix provides additional experiments including: an illustration plot of matrix-valued Stein reproducing
kernel in Appendix E.1; a synthetic example from (South et al., 2022b) when the Stein kernel matches the smoothness of
integrands in Appendix E.2; extra experiments for physical modelling of waterflow when having unbalanced datasets in
Appendix E.4.2.

Meanwhile, additional details of our numerical experiments in Section 5 of the main paper are provided: multifidelity
univariate step functions in Appendix E.3; multifidelity modelling of waterflow in Appendix E.4, model evidence for
dynamic systems in Appendix E.5 and Bayesian inference of Lotka-Volterra system in Appendix E.6.

E.1. Illustration of Matrix-valued Stein Kernels

An illustration of matrix-valued Stein kernels K0 is demonstrated in Figure 3 for the case T = 2. As observed, the choice of
kernel k can have significant impacts on K0. Moreover, K0 possesses a well-known property of Stein kernels: even when
k is translation-invariant (see the top row) this may not be the case for K0. This is due to the fact that K0 depends on l.
Finally, we can also observe that the two outputs of 1⊤K0(x, y) are correlated, a property which will be key when it comes
to vv-CVs.

5 0 5
x

1

0

1

sq
ua

re
d

ex
po

en
tia

l k (1TK0(x, 0))1

(1TK0(x, 0))2

5 0 5
x

0

2

sq
ua

re
d

ex
po

en
tia

l k (1TK0(x, 1))1

(1TK0(x, 1))2

5 0 5
x

0.0

2.5

5.0

sq
ua

re
d

ex
po

en
tia

l k (1TK0(x, 2))1

(1TK0(x, 2))2

5 0 5
x

20

10

0

1s
t o

rd
er

 p
ol

yn
. k

(1TK0(x, 0))1

(1TK0(x, 0))2

5 0 5
x

5

0

5

1s
t o

rd
er

 p
ol

yn
. k

(1TK0(x, 1))1

(1TK0(x, 1))2

5 0 5
x

0

50

1s
t o

rd
er

 p
ol

yn
. k (1TK0(x, 2))1

(1TK0(x, 2))2

5 0 5
x

40

20

0

2n
d

or
de

r p
ol

yn
. k

(1TK0(x, 0))1

(1TK0(x, 0))2

5 0 5
x

100

0

100

2n
d

or
de

r p
ol

yn
. k (1TK0(x, 1))1

(1TK0(x, 1))2

5 0 5
x

0

500

2n
d

or
de

r p
ol

yn
. k (1TK0(x, 2))1

(1TK0(x, 2))2

Matrix-valued Stein reproducing kernel

Figure 3. Illustration of a separable mv-kernel K0 for T = 2 through projections with 1 = (1, 1). Here, Π1 = N (0, 1), Π2 = N (0, 1.25),
B11 = B22 = 1 and B12 = B21 = 0.1. The first row corresponds to taking k to be a squared-exponential kernel, whereas the second
and third row correspond to taking a polynomial kernel k(x, y) = (x⊤y + 1)l with l = 1 and l = 2 respectively.

E.2. Additional Experiment: A Synthetic Example

Here is a synthetic example selected from (South et al., 2022b) (denoted f2), and to make the problem fit into our framework
we introduced another similar integrand (denoted f1):

f1(x) = 1.5 + x+ 1.5x2 + 1.75 sin(πx) exp(−x2),

f2(x) = 1 + x+ x2 + sin(πx) exp(−x2).

For this problem, we trained all CVs through stochastic optimisation and use m = (50, 50) MC samples. This synthetic
example was originally used by (South et al., 2022b) to show one of the drawbacks of kernel-based CVs, namely that the
fitted CV will usually tend to β in parts of the domain where we do not have any function evaluations. This phenomenon

21

Vector-Valued Control Variates

can be observed on the red lines in Figure 4 (left and center) which gives a CV based on a squared-exponential kernel. This
behaviour is clearly one of the biggest drawbacks of existing kernel-based approaches. However, the blue curve, representing
a kernel-based vv-CV with separable kernel where B was inferred through optimisation, partially overcomes this issue by
using evaluations of both integrands, hence clearly demonstrating potential advantages of sharing function values across
integration tasks.

The right-most plot in Figure 4 presents several box plots for the sum of squared errors for each integration problem
calculated over 100 repetitions of the experiment. The different box plots show the impact of the difference in Π1 and Π2.
As we observed, vv-CVs tend to outperform CVs, although this difference in performance is more stark when Π2 has a
larger tail than Π1. This reinforces the previous point, since a more disperse Π2 means that the second integrand will be
evaluated more often at more extreme areas of the domain, which will help obtain a better vv-CV by improving the fit at the
tails of the distribution.

In this experiment, the choice of k as a squared-exponential kernel was motivated by the fact that this makes k0 infinitely
differentiable, and hence matching the smoothness of both f1 and f2.

5.0 2.5 0.0 2.5 5.0
x

0

10

20

30

40

y

f1(x)
f1(x)
vv-CV
CV

5.0 2.5 0.0 2.5 5.0
x

0

10

20

30

40

y

f2(x)
f2(x)
vv-CV
CV

1 1.1 1.15 1.2 1.25
2

10
3

10
2

10
1

10
0

S
um

 o
f s

qu
ar

ed
 e

rr
or

s

vv-CV
CV

Figure 4. Numerical integration of problem from (South et al., 2022b). Left and center: Illustration of f1 and f2, as well as the
corresponding kernel-based CVs and vv-CVs obtained through stochastic optimisation when Π1 = N (0, 1) and Π2 = N (0, 1.25).
Right: Sum of the squared errors in estimating Π1[f1] and Π2[f2]. Here, Π1 = N (0, 1) whilst Π2 = N (0, σ2) where σ2 ∈
{1, 1.1, 1.15, 1.2, 1.25}.

The experiment was replicated 100 times for all methods. The exact details of the implementation are as follows.

• CV

– Sample size: 50.
– Hyper-parameter tuning: batch size 5; learning rate 0.05; total number of epochs 30.
– Base kernel: squared exponential kernel
– Optimisation: λ = 0.001; batch size is 5; learning rate is 0.001; total number of epochs 400.

• vv-CV (estimated B)

– Sample size: (50, 50) from (Π1,Π2) for (f1, f2).
– Hyper-parameter tuning: batch size 5 (10 in total for (f1, f2)); learning rate 0.05; total number of epochs 30.
– Base kernel: squared exponential kernel
– Optimisation: B(0) is initialized at the identity matrix I2. λ = 0.001; batch size is 5 (10 in total for (f1, f2));

learning rate is 0.001; total number of epochs 400.

E.3. Experimental details of Multi-fidelity Univariate Step Functions

The experiment is replicated 100 times for all methods. Details of their implementation is given below:

22

Vector-Valued Control Variates

Table 4. Prior Distributions for the inputs of the Borehole function.

Random variable Distributions Random variable Distributions
rw Normal(0.1, 0.01618122) r Normal(100, 0.01)
Tu Normal(89335, 20) Tl Normal(89.55, 1)
Hu Normal(1050, 1) Hl Normal(760, 1)
L Normal(1400, 10) Kw Normal(10950, 30)

• Squared-exponential kernel

– CV

* Sample size: 40.
* Base kernel: squared exponential kernel.
* Hyper-parameter tuning: batch size is 10; learning rate 0.02; total number of epochs 15.
* Optimisation: λ = 1e− 5; batch size is 10; learning rate is 3e− 4; total number of epochs 400.

– vvCV (estimated B/fixed B)

* Sample size: (40, 40) from (Normal(0, 1),Normal(0, 1)) for (fL, fH).
* Hyper-parameter tuning: batch size is 5 (10 in total for (fL, fH)); learning rate 0.02; total number of epochs
15.

* Base kernel: squared exponential kernel.
* Optimisation: When B is fixed, we set B11 = B22 = 0.5, B12 = B21 = 0.01; otherwise, B(0) is initialized

at the identity matrix I2. λ = 1e− 5; batch size is 5 (10 in total for (fL, fH)); learning rate is 3e− 4; total
number of epochs 400.

• First-order polynomial kernel

– CV

* Sample size: 40.
* Base kernel: first order polynomial kernel.
* Optimisation: λ = 10−5; batch size is 10; learning rate is 3× 10−4; total number of epochs 400.

– vv-CV (estimating B/fixed B)

* Sample size: (40, 40) from (Normal(0, 1),Normal(0, 1)) for (fL, fH).
* Base kernel: first order polynomial kernel.
* Optimisation: When B is fixed, we set B11 = B22 = 0.5, B12 = B21 = 0.01; otherwise, B(0) is initialized

at the identity matrix I2. λ = 10−5; batch size is 5 (10 in total for (fL, fH)); learning rate is 3× 10−4; total
number of epochs 400.

The empirical computational cost for all tasks is as follows. Scalar-valued CVs take approximately 2.4 seconds for either
choice of kernels; vv-CVs with fixed B take around 3.3 seconds with a squared-exponential kernel or around 3.1 seconds
with a 1st order polynomial kernel; vv-CVs with estimated B take around 6.6 seconds with a squared-exponential kernel or
around 6.2 seconds with a 1st order polynomial kernel.

E.4. Experimental Details of the Physical Modelling (Borehole) of Waterflow

In this section, we provide details on the Borehole example from the main paper, and provide complementary experiments.
The distributions with respect to which the integral is taken is an eight-dimensional Gaussian with independent marginals
provided in Table 4. The low-fidelity model and high-fidelity model of water flow (Xiong et al., 2013) is given by,

fL(x) =
5Tu(Hu−Hl)

log(r
rw

)
(
1.5+ 2LTu

log(r
rw)r2wKw

+Tu
Tl

)
fH(x) = 2πTu(Hu−Hl)

log(r
rw

)
(
1+ 2LTu

log(r
rw)r2wKw

+Tu
Tl

) .
where x = (rw, r, Tu, Tl, Hu, Hl, L,Kw).

23

Vector-Valued Control Variates

E.4.1. EXPERIMENT IN THE MAIN TEXT: BALANCED VV-CVS

The number of replications is 100 for all methods. Details of their implementation is given below:

• Base kernel: Instead of using k(x, x′) = exp(−∥x− x′∥22/2ν) with l > 0 which implicitly assumes that the length-
scales are identical in all directions, we now allow that each dimension can have its own length-scale. That is,

k(x, x′) :=
∏d

j=1 kj(xj , x
′
j) where kj(xj , x

′
j) = exp

(
− (xj−x′

j)
2
2

2νj

)
.

Each of the components has its own length-scale νj > 0 to be determined.

• Since π(x) =
∏d

j=1 πj(xj), the score function is∇x log π(x) =
(

∂ log π1(x)
∂x1

, . . . , ∂ log πd(x)
∂xd

)⊤
.

• Hyper-parameter tuning: batch size 5 (10 in total for (fL, fH)); learning rate of tuning 0.05; epochs of tuning 20.

• Optimisation (estimated B/pre-fixing B): When B is fixed, we set B11 = B22 = 5e − 4, B12 = B21 = 5e − 5;
otherwise, B(0) is initialized at 1e− 5× I2. λ = 1e− 5; batch size 5 (10 in total for (fL, fH)); learning rate for the
cases when sample sizes are (10, 20, 50, 100, 150) are (0.09, 0.06, 0.012, 0.0035, 0.002), respectively.

The empirical computational cost (measured in seconds) of this example is: when m = (10, 10), it takes CF, vv-CVs with
fixed B and vv-CVs with estimated B around 0.03, 1.2 and 2.6 seconds, respectively; when m = (20, 20), it takes CF,
vv-CVs with fixed B and vv-CVs with estimated B around 0.1, 3 and 5 seconds, respectively; when m = (50, 50), it takes CF,
vv-CVs with fixed B and vv-CVs with estimated B around 0.7, 7.5 and 13.5 seconds, respectively; when m = (100, 100),
it takes CF, vv-CVs with fixed B and vv-CVs with estimated B around 2.7, 17 and 27.6 seconds, respectively; when
m = (150, 150), it takes CF, vv-CVs with fixed B and vv-CVs with estimated B around 6, 29 and 49 seconds, respectively.

E.4.2. ADDITIONAL EXPERIMENT: UNBALANCED DATA-SETS FOR PHYSICAL MODELLING OF WATERFLOW

In Figure 5, we present the results of vv-CVs when the sample sizes are unbalanced; that is, we have a different number of
samples for the low-fidelity and high-fidelity models. The exact setup is given below, and we replicated the experiment 100
times.

• Sample size: mH is fixed to be 20, while mL ∈ {20, 40, 60}.

• Base kernel: product of squared exponential kernels. k(x, x′) :=
∏d

j=1 kj(xj , x
′
j), where each kj(xj , x

′
j) =

exp(−(xj − x′
j)

2
2/2νj) has its own length-scale νj > 0 to be determined.

• Hyperparameter tuning: batch size of tuning 5 (10 in total for (fL, fH)); learning rate of tuning is 0.05; epochs of
tuning is 20.

• Optimisation (estimated B/pre-fixing B): When B is fixed, we set B11 = B22 = 5× 10−4, B12 = B21 = 5× 10−5;
otherwise, B(0) is initialized at 10−5 × I2. λ = 10−5; learning rate is (0.06, 0.04, 0.02) when mL ∈ {20, 40, 60},
respectively.

Interestingly, we notice that not much is gained when increasing the number of samples for the low-fidelity model. In
fact, in the case of a fixed B, the performance tends to decrease with a larger mL. This is likely due to the “negative
transfer” phenomenon which is well-known in machine learning. This phenomenon can occur when two tasks are not similar
enough to provide any gains in accuracy. In this case, there is clearly no advantage in using a larger mL since this increases
computational cost and does not provide any gains in accuracy.

E.5. Experimental Details of the Computation of the Model Evidence through Thermodynamic Integration

To implement our vv-CVs, we need to derive the corresponding score functions. For a power posterior, the score function is
of the form:

∇θ log p(θ|y, t) = t∇θ log p(y|θ) +∇θ log p(θ)

24

Vector-Valued Control Variates

Estimated B Fixed B
0

2

4

6

8

A
bs

ol
ut

e
E

rr
or

 o
f v

v-
C

V

Low-fidelity model

Estimated B Fixed B

High-fidelity model
mL = 20
mL = 40
mL = 60

Figure 5. Performance of vv-CVs with unbalanced sample sizes. Here we fix mH = 20, and changing mL to be 20, 40, 60. Each
experiment is repeated 100 times.

where ∇θ log p(θ) is the score function corresponding to the prior. In our case, the prior is a log-normal distribution
log θ ∼ N (µ, σ2) (where σ = 0.25), and its score function is given by:

∇θ log p(θ) = − 1
θ −

log θ−µ
xσ2 .

The score functions for all temperatures are plotted in Figure 6; as observed, temperatures consecutive score functions are
very similar to one another.

In order to keep the computational cost manageable, we split the T = 62 integration problems into groups of closely
related problems. In particular, we jointly estimate the means in terms of 4 consecutive temperatures on the ladder (group
1 is µ1, µ2, µ3, µ4, group 2 is µ5, µ6, µ7, µ8, etc...). Since 31 is not divisible by 4, our last group consists of three means
µ29, µ30, µ31. Then, the same approach is taken to create groups of 4 (or 3 for the last group) variances.

The number of replications was 20 for each method. Details are given below:

• CV

* Base kernel: Preconditioned squared-exponential kernel (Oates et al., 2017).
* Hyperparameter tuning: we use the values (0.1, 3) in (Oates et al., 2017).
* Optimisation: λ = 10−3; batch size is 5; total number of epochs is 400.

• vv-CV(estimated B)

* Base kernel: Preconditioned squared-exponential kernel (Oates et al., 2017).
* Hyperparameter tuning: we use the values (0.1, 3) in (Oates et al., 2017).
* Optimisation: λ = 10−3; batch size is 5; learning rate is 0.01; number of epochs is 400.

E.6. Experimental Details of the Lotka-Volterra System

We implement log-exp transform on model parameters and avoid constrained parameters on the ODE directly.
Lotka—Volterra system can be re-parameterized as,

dv1(s)
ds = α̃v1(s)− β̃v1(s)v2(s)

dv2(s)
ds = δ̃v1(s)v2(s)− γ̃v2(s),

25

Vector-Valued Control Variates

50
0

50

lo
gp

(
|y

,t
) Temp t = 0.000e+00 Temp t = 1.348e-03 Temp t = 4.315e-02 Temp t = 3.277e-01

50
0

50

lo
gp

(
|y

,t
) Temp t = 4.115e-08 Temp t = 2.430e-03 Temp t = 5.843e-02 Temp t = 4.019e-01

50
0

50

lo
gp

(
|y

,t
) Temp t = 1.317e-06 Temp t = 4.115e-03 Temp t = 7.776e-02 Temp t = 4.889e-01

50
0

50

lo
gp

(
|y

,t
) Temp t = 1.000e-05 Temp t = 6.628e-03 Temp t = 1.019e-01 Temp t = 5.905e-01

50
0

50

lo
gp

(
|y

,t
) Temp t = 4.214e-05 Temp t = 1.024e-02 Temp t = 1.317e-01 Temp t = 7.082e-01

50
0

50

lo
gp

(
|y

,t
) Temp t = 1.286e-04 Temp t = 1.528e-02 Temp t = 1.681e-01 Temp t = 8.441e-01

50
0

50

lo
gp

(
|y

,t
) Temp t = 3.200e-04 Temp t = 2.213e-02 Temp t = 2.121e-01 Temp t = 1.000e+00

0.5 1.0 1.5 2.0 2.5

50
0

50

lo
gp

(
|y

,t
) Temp t = 6.916e-04

0.5 1.0 1.5 2.0 2.5

Temp t = 3.125e-02

0.5 1.0 1.5 2.0 2.5

Temp t = 2.649e-01

Figure 6. Score functions corresponding to the power posteriors at different temperatures on the temperature ladder.

26

Vector-Valued Control Variates

where

α̃ = exp(α), β̃ = exp(β),

δ̃ = exp(δ), γ̃ = exp(γ),

where v1 and v2 represents the number of preys and predators, respectively.

The model is,

y10 ∼ Log-Normal(log ṽ1(0), σ̃y1
)

y20 ∼ Log-Normal(log ṽ2(0), σ̃y2
)

y1s ∼ Log-Normal(log v1(s), σ̃y1
)

y2s ∼ Log-Normal(log v2(s), σ̃y2
)

where

ṽ1(0) := exp(v1(0)), ṽ2(0) := v2(0)

σ̃y1
:= exp(σy1

), σ̃y2
= exp(σy2

).

By doing so, x := (α, β, δ, γ, v1(0), v2(0), σx, σy)
⊤ can be defined on the whole R8 as the exponential transformation

will make sure they larger than zero, and thus can be assigned priors on R8, e.g., Gaussian. As a result, the expectations
asscoiated with π(x) are defined on R8 and Stan will return the scores of these parameters directly as these 8 parameters x
themselves are unconstrained through manually reparameterisation.

Priors are,

α, γ ∼ Normal(0, 0.52)
β, δ ∼ Normal(−3, 0.52)

σx, σy ∼ Normal(−1, 12)
v1(0), v2(0) ∼ Normal(log 10, 12)

The fitting for predators y1s and v1(s) at points s1, . . . , sm are shown in Figure 7. The fitting for predators y2s and v2(s) at
points s1, . . . , sm are shown in Figure 8.

19
01

19
05

19
09

19
13

19
17

Year

0

20

40

60

80

100

120

Ha
re

Observed
mean of posterior predictive
credible intervals

19
01

19
05

19
09

19
13

19
17

Year

0

20

40

60

80

100

120

v 1

mean of v1
credible intervals

Figure 7. Bayesian inference of abundance of preys of Lotka-Volterra system. Dots are observations; lines are the posterior means while
dotted lines are the corresponding 95% credible intervals. Tasks are chosen in the area between the two vertical red lines.

The number of replications is 10 for each method and for each task. Details are given below:

27

Vector-Valued Control Variates

19
01

19
05

19
09

19
13

19
17

Year

0

20

40

60

80

100

120

Ly
nx

Observed
mean of posterior predictive
credible intervals

19
01

19
05

19
09

19
13

19
17

Year

0

20

40

60

80

100

120

v 2

mean of v2
credible intervals

Figure 8. Bayesian inference of abundance of predators of Lotka-Volterra system. Dots are observations; lines are the posterior means
while dotted lines are the corresponding 95% credible intervals. Tasks are chosen in the area between the two vertical red lines.

• Tasks Π[ft] at time s′1, . . . , s
′
T (the base unit is 1 year):

* T = 2: 1913., 1913.2;
* T = 5: 1912., 1912.2, 1912.4, 1912.6, 1912.8;
* T = 10: 1912., 1912.2, 1912.4, 1912.6, 1912.8, 1913., 1913.2, 1913.4, 1913.6, 1913.8.

• Base kernel: same one as in E.4: product of squared-exponential kernels.

• Hyperparameter tuning: batch size is 10; learning rate 0.01; total number of epochs 10.

• Optimisation: λ = 10−5; batch size 10; learning rate 10−3; total number of epochs 400.

The empirical computational cost (measured in seconds) of this example is: when T = 2, it takes CF, scalar-valued CVs,
vv-CVs with fixed B and vv-CVs with estimated B around 67, 80, 150 and 159 seconds respectively for all T tasks; when
T = 5, it takes CF, scalar-valued CVs, vv-CVs with fixed B and vv-CVs with estimated B around 170, 200, 854 and 882
seconds respectively for all T tasks; when T = 10, it takes CF, scalar-valued CVs, vv-CVs with fixed B and vv-CVs with
estimated B around 340, 400, 3435 and 3469 seconds respectively for all T tasks.

E.6.1. ADDITION EXPERIMENTS FOR BAYESIAN INFERENCE OF ABUNDANCE OF PREYS OF LOTKA-VOLTERRA
SYSTEM

We present additional experiments in Table 5 under the same settings as those in the above section. We consider to estimate
Π[ft] at time s′1, . . . , s

′
T (the base unit is 1 year),

• T = 2: 1915., 1915.2;

• T = 5: 1915., 1915.2, 1915.4, 1915.6, 1915.8;

• T = 10: 1914., 1914.2, 1914.4, 1914.6, 1914.8, 1915., 1915.2, 1915.4, 1915.6, 1915.8.

Table 5. Additional Experiments for the Bayesian inference of the Lotka-Volterra system: Sum of mean absolute error of each task.

T m vv-CV- Estimated B vv-CV-Fixed B CF MC
2 500 0.169 0.144 0.242 0.275
5 500 0.322 0.245 1.246 0.661
10 500 0.916 0.792 5.835 1.797

28

