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ABSTRACT

Source-Free Domain Adaptation (SFDA) enables model adaptation under distri-
bution shifts without access to source data, making it an appealing solution for
privacy-sensitive applications. Despite being a fundamental problem in machine
learning, regression remains largely underexplored in SFDA, where most existing
work has focused predominantly on classification tasks. To bridge this gap, we
propose a novel algorithm that leverages sample-wise, histogram-informed super-
visory signals to refine pseudo-labels under an uncertainty-aware paradigm. This
design simultaneously achieves pseudo-label refinement and uncertainty modeling,
two key components that are critical for effective adaptation in classification but
remain largely absent in regression. We further theoretically show that the resulting
histograms exhibit robustness to potential perturbations, supporting reliable SFDA
for regression. Empirical results across multiple benchmarks confirm the effec-
tiveness of our method and reveal that histogram-guided learning promotes more
compact and structured feature representations, mitigating the inherent challenges
of adapting regression models under distribution shift.

1 INTRODUCTION

With growing needs for model adaptivity and the concerns about data privacy, Source-Free Domain
Adaptation (SFDA) has emerged as a practical solution, allowing models to adapt to a target domain
without requiring access to source data. A key focus of recent research in SFDA for classification
tasks lies in constructing informative supervision signals by exploiting the geometric structure of the
feature space and the intrinsic uncertainty in the output space. Specifically, the clustered structure of
the feature space, induced by the discrete and non-ordinal nature of class labels, offers topological
cues for refining pseudo-labels, as local neighborhoods often contain diverse supervision signals
that help correct ambiguous predictions, particularly those near decision boundaries (Liang et al.,
2020; |Yang et al.;2022b}; |2021)) (Figure ['I_E]) Meanwhile, the softmax distribution in the output space
naturally reveals sample-level uncertainty (Figure[Tb), and facilitates confidence-aware self-training
strategies, e.g., guiding feature alignment and further pseudo-label correction in a curriculum-based
manner (Zhang et al.l 2022b; Mitsuzumi et al.| [2024).

In contrast, regression tasks pose fundamentally different challenges. Notably, the local manifold
learned by regression typically maps to smoothly varying, continuous, and inherently ordered output
values. As a result, nearby points in the feature space tend to share similar predictions, offering
limited supervision signals for pseudo-label refinement (Figure [Ic). In addition, deep regression
models are inherently deterministic: the regression head outputs only a single scalar prediction for
each input, providing no estimate of prediction variance or confidence. This absence of explicit
uncertainty makes it difficult to assess prediction reliability or perform label correction (Figure [Ib).
This issue is further exacerbated under distribution shift, where the model’s predictions become less
reliable, compounding the difficulty of adaptation. Moreover, recent studies (Zhang et al., [2024;
2025)) show that typical losses (e.g. MSE, L1) for deep regression models tend to induce a lower
marginal entropy of feature representations Z while minimizing the conditional entropy #(Z|Y)
given the target variable Y. Such entropy-reducing properties limit feature generalizability and hinder
robust representation learning under inaccurate labels, making it even more challenging to adapt to
the target domain in the absence of source data and target labels. Consequently, Source-Free Domain
Adaptive Regression (SFDAR) remains largely underexplored and demands new approaches tailored
to its unique challenges.
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Figure 1: This figure highlights key differences between classification and regression tasks under
SFDA. (a) shows how the clustered feature space in classification supports neighborhood-based
label correction, aided by distributional output information (distinct color—shape markers indicate
different classes). In contrast, (c) illustrates that the smooth feature space in regression restricts
the effectiveness of such refinement strategies (the gradually changing colors represent continuous
target values). (b) further demonstrates that classification outputs naturally encode uncertainty (e.g.,
entropy of class probabilities), while regression outputs are typically deterministic and lack explicit
distributional information (e.g., entropy or confidence estimates).

To this end, we propose Mutual Enhancement of Regression-Classification Integration (MERCI), a
novel framework that introduces histogram-informed supervisory signals to support SFDAR. MERCI
adopts a bifurcated architecture: alongside the primary regression head, it introduces a histogram
head to model the sample-wise conditional distribution of the target label. This module can further
guide and regularize regression predictions through cross-head interactions, as illustrated in Figure 2]
More specifically, to enable effective histogram head training, an initial uncertainty-aware label set is
constructed via multiple stochastic forward passes (e.g., dropout) through the regression model. In
parallel, a unimodal prior is imposed to reflect the inherent continuity and smoothness of regression
outputs. The resulting discrete histogram distributions thus enable the construction of informative,
continuous supervision signals via their expected values, which in turn enhance the training of the
target regression model. The benefits of incorporating histogram signals for SFDAR are twofold.
First, they introduce uncertainty-awareness into regression and provide rich distributional cues
for pseudo-label refinement. Second, the distributional losses imposed by the histogram head are
more effective at tightening the learned feature representations (Zhang et al., 2025)), as shown in
Figures [ and thereby resolving the aforementioned fundamental challenges in SFDAR and
improving adaptation performance. In addition, we theoretically show that the resulting histograms
exhibit certain robustness to potential perturbations, which further supports the reliability and the
effectiveness of MERCI for SFDAR.

Our main contributions can be summarized as follows:

1) We propose MERCI, a novel framework for SFDAR that integrates histogram-based model-
ing into regression. MERCI refines the supervision signal to guide the adaptation process
by capturing the label uncertainty and further strengthens generalization by encouraging
feature compression.

2) We design a structured histogram learning module that supports regression adaptation
without labeled target data, and provide theoretical analysis to support its robustness and
effectiveness.

3) We conduct extensive experiments across diverse regression tasks, along with detailed
ablation studies, to demonstrate the effectiveness and reliability of MERCI.

2 RELATED WORK

Unsupervised Domain Adaptive Regression. Traditional domain adaptation methods for regression
typically assume access to labeled source data and unlabeled target data, aiming to improve model
performance in the target domain. Mainstream approaches reduce domain discrepancy through
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adversarial training or explicit feature alignment (Ganin et al., 20165 |Chen et al.,|2021)). For example,
RSD (Chen et al.| |2021) highlights the sensitivity of regression models to feature scales and minimizes
subspace distances accordingly. To improve stability, DARE-GRAM (Nejjar et al., 2023) aligns
the inverse Gram matrices of source and target features. Other approaches leverages the training
dynamics of distribution-informed neural networks with MMD in NTK-induced RKHS (Wu et al.,
2022), or perform uncertainty-aware feature alignment (Nejjar et al.l 2024)). However, all these
methods require access to raw source data during adaptation. To address privacy and security
concerns, recent efforts such as TASFAR (He et al.,[2024) and SSA (Adachi et al.|[2024) attempt
to eliminate the use of raw source data, but still depend on source-trained modules or statistics, and
thus do not fully adhere to source-free constraint. Related studies in other modalities, including
energy-based test-time adaptation for depth completion |Chung et al.| (2025); [Wang et al.| (2024),
non-stationarity-aware test-time adaptation for time-series forecasting |Kim et al.|(2025), and fully
test-time adaptation for tabular prediction |Zhou et al.| (2025), demonstrate the increasing interest in
adapting models under distribution shift without source data. Although these methods offer useful
insights, their architectures and problem formulations are tailored to specific tasks and cannot be
directly applied to the SFDAR setting considered here. In this work, we consider a challenging
Source-Free Domain Adaptive Regression (SFDAR) setting, where only a pre-trained source model is
available for adaptation. Further details of the SFDAR problem, including its real-world applications
and general types of distribution shift, are provided in Appendix [D.2}

Classification in Source-Free Domain Adaptation (SFDA). SFDA for classification tasks has been
extensively studied and can be broadly categorized into two branches: pseudo-label correction and
contrastive representation-based self-training. Among them, SHOT (Liang et al.,|2020) proposes a
source hypothesis transfer strategy based on entropy minimization and deep clustering. Subsequent
works extend SHOT by improving feature structure through neighborhood consistency (Yang et al.,
2022b;[2021) or contrastive learning (Zhang et al.| 2022b; Mitsuzumi et al., [2024). These methods
all rely on the inherently clustered structure of the classification feature space and the uncertainty
encoded in softmax outputs, which together facilitate confidence-aware pseudo-labeling and self-
training. However, such assumptions break down in regression tasks, where the feature space lacks
clear clustering and the output is continuous and deterministic.

Regression as Classification. Recently, classification-style losses, such as cross-entropy, have been
introduced into regression-related tasks, and have demonstrated promising performance (Cao et al.,
2017;(Sun et al., 2025} Imani & White| [2018)). Zhang et al.|(2023) and |Imani et al.| (2024} analyze
the benefits of incorporating such distributional losses into regression tasks from the perspectives
of feature representation and gradient stability, respectively, further validating the importance of
learning a distribution over target labels, rather than predicting a single point estimate. However,
these methods and theoretical findings are limited to fully supervised learning scenarios with accurate
response values. In contract, the challenge in SFDAR lies in effectively constructing meaningful
classification proxies and generating supervision signals without source data. In our study, we propose
leveraging histograms as a bridge between classification and regression to address this challenge.

3 PROBLEM SETUP

We consider a regression problem with input space X C R? and target space , where d
denotes the input dimension. In the SDFA setting, we assume that the source and target domain
distributions, P,fy and PXTy, are unknown and potentially different. These distributions are defined
over the joint space X x ), and can be factorized into marginal and conditional components as

follows: P = P¢ Pys‘X and Po, = PP, respectively. In SFDA, we are given a source regression

model hs : X — Y pretrained on a labeled source dataset Ds £ {x3,y$}5, sampled from Pg,,
along with an unlabeled target dataset Dy 2 {x*}* drawn from P}. Given access to hs and Dy,
our objective is to learn a rarget regression model h : X — ) that performs well on the target
domain by adapting hs on D-., without access to the original source data Ds.

We denote the source and target models as hg = feq,s © gs and hy = fie, v © g, Where gg and g are
feature extractors, f.., s and f.., « represent the corresponding regression heads, and o denotes the
functional composition operator. In practice, the source and target models hg and h typically share
the same network architecture, with the target model initialized from the source model. We therefore
use the generic notation h = f,., o g to refer to either model unless a distinction is necessary.
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Notations. For any v € RY, we let |[v]| £ 9_, v7 denote its £, norm. For any positive

integer K, and define the (K —1)-dimensional probability simplex as:
AR-T 2 (s eRE 5, >0, Y1 | s; = 1}. Forany p € AK~1 we also use p[j] to denote its jth
component for j € [K]. We use capital letters (e.g., X, Y™) to denote random variables, and the
corresponding lowercase letters (e.g., X, y, x*, y7) to denote their realizations. For any discrete set S,
we use |S| to denote its cardinality.

4 METHODOLOGY

Our framework, MERCI, employs a dual-head architecture comprising a regression head ( fi,) and
a classification tasked-based histogram head ( fyis), both built upon a shared feature extractor (g).
Importantly, the histogram head in our framework goes beyond conventional classification tasks: it
approximates a discretized version of the conditional density P(Y™|X™ = x) for the target label Y™
given input X™ = x. By leveraging the ordered and continuous nature of regression outputs, this head
allows for better uncertainty characterization and facilitates more robust adaptation in the absence of
source data and target label. Moreover, the loss component associated with the histogram head also
implicitly encourages the learned features to compress irrelevant label information, which in turn
improves generalization performance across domains (Zhang et al., 2025)).

An overview of the framework is shown in Figure[2] It operates through bi-directional knowledge
transfer between the regression and histogram heads, consisting of two key components: (1) For each
target input x, we perform multiple stochastic forward passes through the regression head (e.g., via
dropout) to generate an ensemble of predictions. These predictions are used to construct a partial label
set and build a unimodal prior distribution, enabling the learning of a histogram that approximates the
conditional target label distribution (Section[d.I)); (2) The predictive distribution from the histogram
head is then used to generate a continuous pseudo-label (¥) combining the uncertainty estimation,
which in turn refines the regression head (Section &.2).
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Figure 2: Overview of MERCI. The regression head f.., produces multiple dropout-based stochastic
predictions, from which the instance-level mean . and standard deviation o are estimated. These
statistics define a unimodal prior with variance scaling factor k, and the stochastic prediction set
y is discretized into ¥° to supervise the histogram head. The histogram head f,... refines these
supervision signals via Lo, and Ly, and the resulting refined continuous pseudo-labels y are fed
back to guide f... through the regression losses Lrysg 0F Lyse. The red dashed arrows in the figure
illustrate the cross-head interactions within the MERCI framework.

4.1 REGRESSION-TO-CLASSIFICATION: HISTOGRAM-BASED POSTERIOR ESTIMATION

We begin by describing how to leverage the regression model’s predictions to guide the training of the
histogram head and obtain a discrete approximation of the conditional distribution P(Y*|X™ = x).
Specifically, let f;s denote the histogram head applied after the shared feature extractor g, such that
hrist = frisi0 g = X — AR

Here, the label space ) is uniformly partitioned
into K bins of equal width: ) = uszlyk, where the number of bins K is chosen adaptively in our
implementation [CT] Under this binning scheme, the kth element of the
histogram head output, h,,;.,(x)[k], approximates the probability that the target label falls within bin
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Vi, ie., P(YT € Y |X" = x). For each bin )i, we associate a representative value ¥y, such as the
left endpoint, right endpoint, or midpoint of the interval. We denote the collection of all representative
values as ) = {¥1,...,YK }, with each ¥, corresponding uniquely to a class index (i.e., bin index)
k in the discrete label space [K]. We have included the details of selecting the bin number K and
assigning the bin representative values in the Appendix

Histogram Approximation. To capture predictive uncertainty for a given input x from the target
domain, we perform M stochastic forward passes through the source regression model by enabling
dropout at inference time. This yields an ensemble of predictions y = {1, . .., ¥}, which are used
to construct a partial label set to supervise the learning of the histogram head. To further refine the
approximation of the target label distribution, we incorporate structural characteristics inherent to
many regression tasks. In many real-world settings, such as age estimation, house price prediction, or
depth/angle estimation, the label distribution conditioned on a given input tends to be unimodal, with
the target value concentrated around a plausible mean and exhibiting smooth variation. To reflect this,
we introduce a unimodal prior distribution over the label space Y, denoted as 7(y|x). For simplicity,
in our implementation, we construct a Gaussian prior for 7, as detailed in Section[C.1]

To integrate the unimodal prior into the histogram-based approximation, we compute the probability
mass of 7 over the K predefined bins and use these values as a discrete prior distribution on ),
denoted as 7. Additionally, let y> = {¥%, ..., 7%, } denote the discrete label set obtained by mapping
the original continuous predictions ¥y to their corresponding bin indices. By combining the uncertainty-
aware partial label set ¥* with the unimodal prior belief 7, we approximate the histogram distribution
for the unknown target label Y™ through the following optimization problem:

p* € arginf {fo,(D;¥") + Apriod(D, ) } - M
pell

Here, IT € AK—1 denotes a parameterized set of discrete distributions over K classes, induced by
the hypothesis space of the histogram model h,;,,, and A, is a learnable coefficient. For ease of
presentation, we assume that IT is a convex and closed set; otherwise, we replace it with its closed
convex hull in (I, as defined in Definition [B.4]and further discussed in Remark [B.1}

[C3). The divergence function d(-, -) is defined in Definition B.1}

Interpretation. The optimization problem in (1) admits a twofold interpretation. First, it can be
viewed as a generalization of Bayesian inference, characterized by three key arguments: (a) a loss
function /5, (b) a divergence d measuring the deviation from a prior 7, and (c) a feasible solution
space II. From this perspective, the optimal solution p* to can be interpreted as an extension
to the generalized variational Bayesian posterior (Knoblauch et al., |[2019; Husain & Knoblauchl
2022;Soen et al., [2024)), balancing empirical performance with adherence to prior knowledge. The
Bayesian interpretation of (T)) is further discussed in Appendix [B.2}

Beyond the Bayesian viewpoint, we also establish a robustness property associated with p*, highlight-
ing its resilience to certain perturbations. We formalize this connection in the following proposition.

Proposition 4.1. Let d%(-) denote the the Legendre-Fenchel conjugate of d(-,7), as defined in
Definition Let [* represent a maximizer of the optimization problem:
4

(* € argsup {inf Wor(p;y") + Ex{t(Y")}] — /\pmdg(—) , 2)
(eFy((K]) \ PET Aprior

where Fp,([K]) denotes the set of all bounded and measurable functions mapping from the discrete
label space K] to R. Then, for the optimal solution p* to , the following holds:

p*€arg glf [Cen(D;¥") + E5 {*(Y)H]. ()
pe

The proof of Proposition &.1]is provided in Appendix[B.2] According to Proposition[4d.T] the optimal
solution p* to (1)) minimizes the loss under perturbations introduced by an adversary. This implies
that solving () to approximate the histogram distribution yields the optimal belief even when the
original loss function £y, is replaced by a perturbed version, thereby ensuring robustness to potential
distribution shift and model misspecification in the SFDA setting.
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4.2 CLASSIFICATION-TO-REGRESSION: HISTOGRAM INFORMATION TRANSFER

We next describe two strategies that make use of the approximated histogram distribution to supervise
the learning of the regression head.

Pseudo-Label Calculation. For each x} in the target domain data Dy, let p?¢ € AKX~ denote the
approximated histogram distribution produced by the histogram head h,;,,. To better stabilize the
adaptation process and retain useful information from the source model’s predictions (Qiu et al.,
2021), we update p using a moving average strategy: pS'* = NORMALIZE{ap/ + (1 — «)p;}. To
obtain a more confident pseudo-label, we compute a truncated expectation over the most probable
bins in p, effectively filtering out uncertain predictions. Specifically, we start from the bin with
the highest predicted probability and sequentially include bins in descending order of probability
until the cumulative mass reaches a predefined confidence mass threshold 7. Let Z; C [K] denote the
minimal such subset of bins, formally defined as:

Z; € argmin |S| s.t. Zp"ld > T
SC[K] s

The continuous pseudo-label is then computed as a normalized weighted average over the representa-
tive values y; corresponding to the selected bins:

— 1 ~o . 3 DY ]
52 0SB, whereC= 3 ) @

JETL; JETL;

During training, these uncertainty-refined pseudo-labels are used to supervise the learning of the
regression head by minimizing the following batch-wise mean squared error (MSE) over a batch B:

Luse 2 Z{hmgz -y7¥. )

7EB

Robust Loss Version for Linear Regression. In addition to the standard MSE loss, we further
account for the uncertainty inherent in the pseudo-labels, which is an important consideration in
the SFDA setting due to potential domain shifts. To this end, we adopt a distributionally robust
optimization (DRO) objective that minimizes the worst-case risk over a neighborhood of the empirical
distribution. Specifically, let zf £ g(x7) denote the feature representation of input x; obtained
from the shared extractor. We express the regression head f,., as a linear function: y = (8, 2"),
where (-, -) denotes the inner product, the weight vector 3 incorporates both the weights and bias
term (with the bias absorbed by appending a constant to z), and we define the pointwise MSE as:
luse(z,y; 8) = ((,6’, z) —y)?2. Let D, denote the empirical distribution over the pseudo-label-feature
pairs {(zF,¥;)} 5. To incorporate pseudo-label uncertainty, we minimize the followmg worst-case
expected loss over all distributions within a divergence ball of radius ¢ centered at py._:

inf sup Ep{él\/ISE(ZTa YTi ﬂ)}v (6)

BERT p: 1wy (p, PNy ) <0

where r denotes the feature dimension, Wa(-, -) represents the optimal transport divergence with
square cost function, as defined in Definition [B.2] and the expectation in (6) is taken with respect to
the joint distribution of (Z*,Y™) induced by p.

Lemma 4.1. (Blanchet et al.| | 2019) The optimal solution B* to the worst-case risk minimization
problem in (6) can be equivalently obtained by solving the following regularized objective:

p* € arginf {‘CRMSE(ﬂ; {(Z;F,}_/l) ivzji) + \/S||6H2} )

BERT

where Lyse(5;{(2],5:) \/NT ((8,2:) — }71‘)2, referred to as root mean square
error (RMSE).

As indicated by Lemma [.T] once the pseudo-labels y; are obtained, a solution that is robust to
potential uncertainty can be derived by solving a regularized risk minimization problem. Specifically,
the distributionally robust solution corresponds to minimizing the RMSE with an ¢» regularization
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term (i.e., weight decay). Therefore, we optimize the regression head by minimizing the following
batch-wise RMSE objective:

1
Lonen = /T = ¢ 5 3 (ho?) = 5T @

i€B

4.3 OVERALL TRAINING OBJECTIVE

For each input x7 in a batch B, let y» = {yZ 1,---+ 57+ denote the discrete labels obtained by
mapping the continuous predictions to the associated bin indices; p; = hpi.(X]) € AE=1 the
current histogram output; p"ld the histogram obtained from previous training epochs; and 7; the prior
constructed from p?' and y?. We define the following batch-wise loss terms:

~  =p

Lo, = @ ZieB gPL(ﬁi; ?E), with ZPL(pla yz) - |§—71?| ZkGﬂ’ logﬁi[k] ;
Ly, = ﬁ ZieB EKL(ﬁH?; aﬁ?ld)a with eKL(ﬁw???ﬁ;m) = dKL(p7 ) Zk 1 771[ ] log (:7:[[]]:}),
where L., and Ly, correspond to the partial-label and the prior-regularization terms in (), re-
spectively. In addition, to account for the role of feature scale in regression (Chen et al.| 2021 ),

we optionally include a feature-norm consistency term: Lpy = 18] BI >ies |llg(x g I = 1lgs -

Consequently, the final objective, depending on whether Luse in (3) or Lruse in (7) is used, is glven
by:

‘CMERCI = )\PL‘CPL + )\prior»CKL + )\MSE»CMSE ("‘)\FNEFN)?
'CMER,CI—R, = )\PL»CPL + )\prim»CKL + )\R,MSE»CRMSE ("‘)\FN»CFN)a

5 EXPERIMENTAL RESULTS

Datasets and Evaluation Metrics. We conduct experiments on four regression tasks: age estimation
on UTKFace (Zhang et al.,|2017)), head pose estimation on Biwi-Kinect (Fanelli et al., 2013)), house
price prediction on the California Housing dataset (Pace & Barry,|1997)), and digit prediction on
two digit datasets, SVHN (Netzer et al.,[2011) and MNIST (LeCun et al., [1998)). For the UTKFace
and Biwi-Kinect datasets, we use gender as the domain attribute and consider two domains, Female
and Male, for adaptation. In the California Housing dataset, we treat different geographic regions
(Near Bay and Far Bay) as distinct domains. For the digit datasets, we follow the setup in |Adachi
et al.| (2024), and adaptation is performed across different datasets. To comprehensively evaluate
the performance of our regression models, we employ four widely used evaluation metrics: Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), Coefficient of Determination (R?), and
Pearson Correlation Coefficient (R).

Methods. As a relatively underexplored research topic, Source-Free Domain Adaptation for Regres-
sion (SFDAR) lacks established baselines. To enable a comprehensive evaluation, we compare our
approach with representative methods from three related settings: Unsupervised Domain Adaptation
(UDA), Data-Free (DF) Domain Adaptation, and Source-Free (SF) Domain Adaptation. For the UDA
setting, we adopt DANN (Ganin et al.,|2016), RSD (Chen et al.,2021)), and DARE-GRAM (Nejjar
et al., 2023). For the data-free setting, we consider SSA (Adachi et al., |2024) and TASFAR (He
et al.,|2024), which require no raw source data but rely on source-derived statistics or pre-trained
components. To enhance comparison within the SF setting, we additionally implement the Batch Nor-
malization adaptation baseline (Benz et al.,[2021)) and introduce two augmentation-based baselines,
VM and AugSelfTr, which operate without any source data or statistics (Zhang et al.,[2022a)). For our
methods, MERCI and MERCI-R correspond to training with £yzrcr and Lygrer-r, respectively,
while “w. FN” denotes the use of feature norm regularization (Lpy).

Further details, including dataset descriptions, evaluation metric computations, implementations
details, and experimental configurations, are provided in Appendix D}
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Table 1: MAE and R? on Biwi-Kinect dataset (Fanelli et al.| [2013)). Best non-Oracle SF results are
bolded, best non-Oracle results are underlined.

| Female —> Male (MAE) | Male — Female (MAE) | Female — Male (R?) | Male — Female (R?)
Method | Type | Pitth Roll  Yaw | Mean | Pitch Roll  Yaw | Mean | Pitth Roll Yaw | Mean | Pitth Roll  Yaw | Mean
DANN (Ganin ct al. 12016 UDA | 46776 4.6790 34183 | 42583 | 7.0520 5.0633 6.3409 | 6.1521 | 0.9213 0.6011 09764 | 0.8329 | 0.8674 0.6387 0.9292 | 0.8118
RSD (Chen et alJ 2021 UDA | 47010 27304 3.3952 | 42755 | 7.0438 49587 6.0774 | 6.0266 | 0.9217 0.6060 0.9765 | 0.8347 | 0.8586 0.6542 0.9347 | 0.8158
DARE-GRAM (Nejjar ct al )2023] | UDA | 4.8748 4.8832 34692 | 44091 | 69178 52421 55510 | 59036 | 0.9188 0.5829 09753 | 0.8257 | 0.8679 0.6414 0.9439 | 0.8178
SSA {Adachi et al.|| 2024 DF | 50149 49848 35495 | 45164 | 77513 5.1466 6.2680 | 63886 | 0.9092 0.5616 09748 | 0.8152 | 0.8639 0.6176 0.9298 | 0.8045
TASFAR {He et al.| 2024 DF | 50718 50165 3.7800 | 46228 | 8.5715 56320 6.1813 | 6.7949 | 0.9081 0.5346 0.9724 | 0.8050 | 0.8034 05647 0.9048 | 0.7576
Source SF [ 51743 50695 3.6009 | 4.6149 | 87046 53419 63284 | 67916 | 0.9092 05459 0.9748 | 0.8100 | 0.8049 0.5752 09260 | 0.7687
BN-adapt {Benz et al.J2021] SF | 50398 50036 35446 | 4.5293 | 8.2665 52135 6.0984 | 6.5261 | 09069 0.5502 09751 | 0.8107 | 0.8267 0.6059 0.9332 | 0.7886
VM SF | 48403 49430 34149 | 43994 | 84844 5.1861 6.1158 | 6.5955 | 0.9148 05597 0.9767 | 0.8171 | 0.8124 0.6048 09299 | 0.7824
AugSelfTr SE | 49817 49731 3.4001 | 44517 | 7.8359 50880 54812 | 6.1350 | 0.9108 05586 0.9769 | 0.8154 | 0.8288 0.6231 09410 | 0.7976
MERCI SF | 46454 49101 34350 | 43302 | 7.1005 5.1010 50537 | 57517 | 0.9212 05642 0.9767 | 0.8207 | 0.8441 0.6218 09527 | 0.8062
MERCI w. FN SF | 46464 49037 3.4126 | 43209 | 7.0032 5.0866 4.6776 | 5.5892 | 0.9222 05718 0.9771 | 0.8237 | 0.8502 0.6281 09594 | 0.8126
MERCI-R SF | 45074 48546 33719 | 4.2446 | 74265 51209 5.1885 | 5.9120 | 0.9249 05745 0.9775 | 0.8256 | 0.8373 0.6235 09502 | 0.8037
MERCI-R w. FN SF | 45551 4.8520 3.3933 | 42668 | 7.0206 5.0580 4.4793 | 5.5193 | 0.9226 05717 0.9775 | 0.8239 | 0.8490 0.6362 0.9630 | 0.8161
Oracle | - | 08474 10630 0.8644 | 09249 | 11487 13535 1.0908 | 1.1977 | 0.9973 0.9805 0.9984 | 0.9921 | 0.9963 09767 0.9978 | 0.9903

5.1 OVERALL RESULTS, ANALYSIS AND DISCUSSION

Overall Results. Comprehensive experimental results on four datasets are presented in Tables[T] 2}
[E2)and [E-4] Overall, our proposed method, including all variants of MERCI, consistently improves
the performance of the source model across all evaluation metrics without accessing any source
data. In most cases, MERCI outperforms data-free (DF) methods, which still rely on source-derived
information. On certain tasks, it even surpasses UDA methods that have access to the original source
data. Moreover, the performance gains are more obvious on more challenging tasks (i.e., those with
higher source model MAE), demonstrating the reliability of our approach under challenging scenarios.
Additional experiments validating the robustness of MERCI to varying distribution shift severities
are presented in Appendix [E-4]

Table 2: Results on UTKFace (Left) (Zhang et al.,2017)) and California Housing (Right) (Pace &
Barryl [1997) datasets. Best non-Oracle SF results are bolded, best non-Oracle results are underlined.

| | Female — Male | Male — Female | Far Bay — Near Bay | Near Bay — Far Bay
Method | Type |[MAE, RMSE| R’f R? |MAE, RMSE, R®7 R{ |MAE| RMSE| R’{ R{ |MAE| RMSE| R’ Rt

DANN [Ganin ct al.12016] UDA | 62233 87264 08088 09005 | 7.0306 103967 07295 0.8623 | 04907 0.6957 05919 08129 | 0.5605 0.7196 04811 07365
RSD {Chen et al.12021 UDA | 62172 87435 08080 09007 | 7.0332 103930 07298 08624 | — - - - - - - -

DARE-GRAM {Nejar et al. J2023] | UDA | 62622 88235  0.8045 0.8986 | 69333 102150 07390 0.8678 | 0.4776 06762 0.6144 08200 | 05678 07305 04647 (0.7263
SSA [Adachi et al.1 2004 DF | 70709 10.1284 07423 08861 | 7.6017 10.6361 07170 08530 | 0.4690 06550 0.6390 08017 | 0.7711 10032  -0.0065 0.4088
TASFAR {He et al.| 2024 DF | 72788 97731 07656 0.8804 | 10.1191 166058 03070 0.6634 | 05055 06714 06247 07975 | 07366 09179  0.1581 0.5095
Source SF | 65494 91600 0.7892 0.8998 | 79390 124863 0.6098 0.8369 | 0.5160  0.6840 06050 0.7899 | 0.7346  0.9039  0.1830 05678
BN-adapt [Benz et al. J2021 SF | 63018 90182 07957 08951 | 73387 107872 0.7090 0.8581 | 0.6644 08767 03519 0.7794 | 0.7068  0.8840 02174  0.6700
VM SF | 60859 86171 08134 09060 | 7.4787 119665 0.6415 08373 | 04999  0.6641 0.6276 0.8065 | 0.6949  0.8584 02631 0.5940
AugSelfTr SF | 61548 86981 08100 09031 | 74219 118506 0.6483 0.8415 | 0.5092  0.6825 06069 0.7975 | 0.7108  0.8669 02485 0.5884
MERCI SF | 59570 83558 0.8247 09104 | 7.0126 109240 07013 0.8590 | 04674  0.6347 06602 08230 | 0.6949  0.8917 02047 06105
MERCI w. FN SF | 58613 82914 08273 09116 | 70568 110425 06949 08552 | 04652  0.6338 06612 0.8241 | 0.6786 08647 02520 06151
MERCI-R SF | 5.8263 82325 0.8298 09117 | 7.0802 109199 07014 0.8594 | 04661  0.6340 0.6609 0.8238 | 0.6909  0.8841 02179  0.6070
MERCIR w. FN SF | 58571 83965 08229 09094 | 7.1764 110313 0.6954 0.8604 | 0.4646 0.6290 0.6664 0.8259 | 0.6649  0.8503 02758 0.6159
Oracle | | 50135 70991 08758 09373 | 49198  7.2291 08690 09336 | 02794 03947 08686 09335 | 02729 04115 08307 09127

Table 3: Summary of histogram information across four datasets and different adaptation tasks.

| | Histogram Information | Partial Label Set Quality | Continuous Pseudo-Label Quality

Dataset Task Number of Correct Label Top-1 pseudo-label | Source Model Init. §  Besty
atase as Bins (K) Length Coverage Accuracy MAE MAE MAE
UTKFace Female — Male 40.40 3.26 0.85 0.21 6.55 6.39 5.77
UTKFace Male — Female 65.00 1.93 0.75 0.15 7.94 7.63 6.94
Biwi-Kinect Female — Male (pitch) 36.20 3.79 0.87 0.24 5.17 4.61 4.53
Biwi-Kinect Female — Male (yaw) 40.20 3.85 0.99 0.36 3.60 3.66 3.39
Biwi-Kinect Female — Male (roll) 95.60 0.85 0.68 0.07 5.07 5.02 4.87
Biwi-Kinect Male — Female (pitch) 36.00 3.88 0.69 0.14 8.70 8.74 7.40
Biwi-Kinect Male — Female (yaw) 36.20 3.90 0.83 0.23 6.33 6.56 5.16
Biwi-Kinect Male — Female (roll) 64.20 1.11 0.67 0.09 5.34 5.30 5.07
Digits SVHN — MNIST 20.20 0.80 0.75 0.25 1.72 1.77 1.51
Digits MNIST — SVHN 40.80 0.56 0.54 0.11 291 3.08 2.49
California House | Near Bay — Far Bay 74.00 0.26 0.97 0.13 0.73 0.71 0.66
California House | Far Bay — Near Bay 66.00 0.17 0.98 0.12 0.52 0.48 0.47

Ablation Study. We first conduct ablation experiments to investigate the different training strategies
for the histogram head f,,.... As shown in Figure [3a] applying the partial label loss (Lp,,) improves
regression performance, and combining it with the KL divergence loss (L. ) consistently yields the
best results. To further assess the effectiveness of incorporating the histogram head f,,,, we conduct
an ablation study where the regressor is directly trained using the histogram expectation estimated
from the partial label set, denoted as Init. ¥® in Figure [3al This baseline yields unstable performance,
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Figure 3: Ablation and hyperparameter sensitivity analysis on the UTKFace dataset

underscoring the importance of a learnable histogram head. For the regressor, as shown in Tables
and 2] MERCI-R consistently outperforms MERCI by employing a robust RMSE-based loss that
is more tolerant to noisy supervision. Additionally, feature scale normalization (Lyy) contributes
to stabilizing MSE-based training in more challenging SFDAR setting, such as on the Biwi-Kinect
(Male — Female). Further ablation results and discussions are provided in Appendix [E.2]

Histogram Information Analysis. To better assess the quality of the histogram and its role in
correcting supervision signals, we summarize key statistics across all adaptation tasks in Table 3]
The “Histogram Information” columns demonstrate that our self-adaptive histogram construction
consistently produces reasonable bin widths and corresponding bin numbers, validating its applicabil-
ity across datasets. To further understand the benefit of introducing a histogram head f,,;., and the
partial label loss, we evaluate the “Partial Label Set Quality” and find that ground-truth regression
values are well covered by the assigned intervals, even though the top-1 pseudo-label is unreliable.
This highlights that the partial label set as a whole could provide meaningful and robust supervision
for label correction under weak supervision. Finally, we compare the initial and best “Continuous
Pseudo-Labels” y, taking the source model prediction as reference. The initial pseudo-labels (Init. ¥)
outperform the source model slightly but exhibit instability, whereas the best pseudo-labels (Best y)
obtained during adaptation are markedly more accurate, often matching or surpassing the final adapted
regressor. These results highlight the effectiveness of bi-directional learning between the regression
and histogram heads, and further justify the introduction of fi,, instead of directly supervising the
regressor with the initial histogram information.

Hyperparameter Sensitivity. We perform a sensitivity analysis of four key hyperparameters: the
confidence mass threshold 7 in Ly;sr and Ly 55, the variance scaling factor  in L, and the dropout
configurations—namely the dropout ratio p and the sampling number M. As shown in Figures [3b|
and MERCI maintains stable performance over a wide range of 7 (0.3-0.7) and x (1-4). We thus
fix 7 = 0.68 and x = 3 in all experiments. Since dropout configurations affect the initial histogram
construction, we observe stable performance under moderate dropout ratios and sampling numbers,
and accordingly set p = 0.8 and M = 30 for all datasets. For the remaining hyperparameters, we set
the moving average coefficient  to 0.5 across all datasets, and treat the coefficients of different loss
terms (€.g., APL, Apuors Armse) @S learnable parameters to simplify the selection process and better fit
the SFDAR problem. Additional sensitivity analysis is provided in Appendix [E.3]

Feature Representation Learning. We present UMAP visualizations (Mclnnes et al.| 2018)) of the
target feature space before and after adaptation on Biwi-Kinect and UTKFace datasets. As shown
in Figures 4{and source features retain partial ordering but remain loosely structured, whereas
adapted features are more locally compact. Moreover, incorporating f;.. introduces global diversity.
These observations are consistent with the criteria of a well-performing regressor (Zhang et al.,[2023)
and further support the effectiveness of the proposed discretized information and the histogram head.
Detailed analyses are provided in Appendix [E.6

6 CONCLUSION

The conditional distribution of the target label is a vital yet often overlooked aspect in deep regression
learning, especially in SFDAR, where obtaining such information becomes particularly challenging.
In this work, we propose MERCI, a novel framework tailored for SFDAR. By leveraging a learned,
sample-wise histogram, MERCI effectively captures the underlying distributional characteristics of
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(a) Target Data from (b) Target Data after Adaptation (c) Target Data after Adaptation
Source Model (Without fhist ) (MERCI-R)

Figure 4: UMAP visualization of target data feature space on Biwi-Kinect dataset

target data without requiring ground-truth labels or source data. It further generates uncertainty-aware
pseudo-labels through truncated histogram expectations to facilitate robust regressor adaptation.
Supported by both theoretical analysis and comprehensive experiments, MERCI demonstrates strong
and consistent performance across a range of regression tasks under domain shift. This work provides
an insightful direction for modeling and leveraging uncertainty in regression under domain shift,
paving the way for more reliable and generalizable adaptive regression framework.

Limitations and Extensions. One limitation of the current implementation lies in its reliance on
sampling over the entire target dataset to construct the histogram representation. This process can
become time-consuming when applied to large-scale datasets. A potential solution/future direction is
to explore strategies that enable effective histogram learning based on representative data subsets,
thereby improving scalability and efficiency.

ETHICS STATEMENT

We confirm that this work does not involve human subjects, animal studies, or personally identifiable
data. The datasets used (e.g., UTKFace, Biwi-Kinect, California Housing, and Digits) are publicly
available and widely used for academic research. All experimental protocols comply with community
ethical standards, and no additional ethical approval was required.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our implementation procedures in Section[5]and Appendices [C|
and D] to ensure transparency and reproducibility. All experiments are conducted under a unified
setup with consistent architecture, optimizer, learning rate, batch size, and training epochs to ensure
fair comparison. The core algorithmic code is included in the supplementary materials, and we will
publicly release dataset download instructions, the full implementation, and trained source model
checkpoints.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of LLMs in this work solely as a general-purpose assistant tool, primarily
for grammar checking, sentence polishing, and writing refinement, which did not contribute to the
conception, methodology, analysis, or conclusions of this work. All substantive contributions of
this submission, spanning problem formulation, idea and methodology development, theoretical
analysis, experimental design and implementation, result interpretation, and manuscript preparation,
are entirely attributed to the human authors.

B TECHNICAL DETAILS

Before delving into the technical details, we present a notation table that summarizes the key symbols
used throughout the paper. For each entry, we provide the notation in the first column, its description
in the second column, and the section where it first appears in the third column.

Table B.1: Notation used throughout the paper.

Notations Descriptions First appearance
X/YIZ Random variables of input/label/feature representation Section|1
F(-|) Conditional Entropy Section|1
X CR? Input space Section|3
YCR Label space Section|3
Underlying distribution over X x ) related to source domain; .
Pey: Ds Unavaii]abige source domain data D 2 {x$, y?} 25, Section|3
- Underlying distribution over X x ) related to target domain; .

Peyi Pr Unlabe}lled%arget domain data D, 2 {x7}N1 ¢ Section|3
9s/9+/9 Feature extractors of source/target/general model Section |3
feews/ feogr/ frex Regression heads of source/target/general model Section |3
St Histogram head of MERCI model Section |4
K Number of histogram bins Section|3
W, 0, K mean, standard deviation, and variance scaling factor of Gaussian Prior ~ Section 4
Vi Continuous Pseudo-Label Section |4
Yk Representative regression value of the k-th histogram bin Sectionf4.1
p; € AK-1 Empirical discrete distribution over K histogram bins of x; Sectionf4.1
T Discrete Prior Distribution Sectionf4.1
Vi Uncertainty-aware regression prediction (continuous) Sectionf4.1
e, yr Pseudo-histogram label (i.e., bin index) and partial bin index set for x]  Section4.1
Di Empirical distribution over the pseudo-label-feature pairs {(z7,7;) Y%,  Section}4.1
(L Instance-level and mini-batch/dataset level loss term Sectionf4.1
H={(},p, ¥0)};, Histogram information set Section|C.2
DROPOUT(-, p) Dropout function with ratio p € [0, 1] Section|C.2

B.1 PRELIMINARIES

Let S denote a set that admits Polish topology, let Pt (S) denote the set of finitely-additive measures
over S, let P(S) C PT(S) stand for the set of Borel probability measures supported on S, and let
Fi(S) represent the set of all bounded and measurable functions mapping from S to R

We first present several useful definitions and lemmas following [Husain & Knoblauch|(2022).

Definition B.1 (Divergences). A divergence is a function d : P(S) x P(S) — R, such that for any
w1, o € P(S), (1) d(p1, p2) > 0; (2) d(p1, p2) =0 < 1 = pe; and (3) d is proper convex lower
semi-continuous in its first argument.

Definition B.2 (Optimal transport divergence; Blanchet et al.|(2019)). Let ¢ : R? x R? — [0, +00]
be any lower semi-continuous function such that ¢(u, u) = 0 for every u € RY. Given two probability
distributions Pj (-) and P»(+) supported on R?, the optimal transport divergence between P; and P,
denoted by W.(Py, P5), is defined as

We(Pr, Py) = inf{Er{c(U1,U2)} : m € Cpl(P1, P»)},
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where Cpl(Py, P»), sometimes called the coupling set of P; and P», comprises all probability
measures on the product space R? x R? such that their marginal measures are P; (-) and Ps(+). In
particular, when taking the square cost function c(uy,us) = ||uy — uz||3 for uy, us € RY, we denote
W, as Wo.

Definition B.3 (Legendre-Fenchel conjugate). For a given m € P(S), the Legendre-Fenchel conju-
gate of (-, ) : P(S) — R is defined as below:

d:(f) = sup {/fdu— d(,u,7r)} forall £ € F(S).
pePt(s) ~Js

Definition B.4 (Closed convex hull). For a set IT, the convex hull of TI, denoted co(II), is the smallest
convex set containing I1. Equivalently, it can be defined as:

CO(H) = {Z)\iui iy ell,\; > O,Z)\i =1,n GN}
i=1 i=1

The closed convex hull of T1, denoted ¢o(II), is the smallest closed convex set that includes IT, and
can be equivalently defined as the closure of co(IT).

Remark B.1. For ease of presentation, we assume in Equation (I)) (Section . T) that II—the set of

distributions over )7 induced by the classification model—is convex and closed. If this assumption
does not hold, we may instead work with its closed convex hull €5(I1) in (1).

Lemma B.1. For any u,m € P(S), the following holds:

d(p,m) = sup {E,(() —dz(()}.
fG.Fb(S)

Lemma B.2. Let ¢ : P(S) — R denote a convex and lower semicontinuous function. For any
m € P(S), divergence 4, A > 0, and set I1 C P(S), define a function F : P(S) x Fp(S) — Ras

F(p, () = €(p) + ME,(() = a7(0)} + tam (),
where 1gmy (p) = 400 if p ¢ co(I1), and 0 otherwise. Then, it holds that

inf  sup F(p,l)= sup inf F(p,0).
PEP(S) re Fp (S) (P 0) (€F(S) PEP(S) ®.0)

Lemma B.3 (Fenchel-Young inequality). Let S be a complete normed vector space and let S* be
the dual space to S. For a function f : S — R U {—o0, +00}, its convex conjugate is the function
f*: 8" > RU{—00, +o0} defined as: f*(x*) = sup {{(z*,x) — f(x) : © € S} for any z* € S*.
Then, it holds for every x € S and x* € §*:

(%, ) < flx) + f7(27).

B.2 PROOF OF PROPOSITION [ 1]

We now present the proof of Proposition [4.1|by modifying the proofs in Husain & Knoblauch| (2022).

Proof. By definition, we have
Lo (P75 Y°) + B {C7(YT)} 2 Inf (Lo (P3Y") + E5 {7 (YT)}]. (B1)
We now prove the other direction in the following.
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The optimization problem in (I)) can be expressed as below:

inf {Lon (7 5°) 4 Apwiend (P, 7)
p€ell

=inf [Len(5;¥") + Apuior sup {Ez(0) —di(0)}
pell (EFL(S)

= inf_ sup [ler(P3Y") + Apuior {E5(0) — dZ(0)} + e (p)]
PEP(Y) €FH(S)

= sup inf [ler(Bi¥") + Apuier {E5(0) — d%(0)} + e (D)]
(eFp(S) PEP(Y)

= Sup [ inf~ {gPL (ﬁ? ?b) + )\prior]E’ﬁ(l)) + LH (i)))} - Apri(‘)rd; (l))]
(EFH(S) | PEP(Y)

= s |8 10 5) 4 A B0}~ At 1)

reFy(S) LPE
. L o
- {lnf {6 (F:5") + Eolt')} — Atz ( )] (B2)
reF,(S) LPEl Aprior

where the first step follows from Lemma [B.1] the third step comes from Lemma [B.2] and the
assumption that IT is closed and convex, and the last step holds by letting ' = \,,.,.( and applying
the definition of F(S).

Consequently, we further obtain that
dnf [l (77Y") + B {" (YD)} = (e (P™55") + B {T"(YT)}]

. ~ o~ ok * r
= 108 6 5 9°) + B ()] = Aty ()
* r* ~x. S Pk
s (5) = [ 5755) + B {0 (Y
prior
. ~ ~ U
= sup inf [le(P;Y") + Ep {'(Y")}] - )‘priord?r( )}
1'€Fy(S) pell /\prior
* rx Sr.G *
+ Ap,,iord%()\ —) = [ (P 9") + B {07 (YT)}]
. . - o k. o -
:@lrellf"l {EPL(p; yb) + /\priord(p7 7T')} + /\priord%<>\ . ) — [KPL(p*; yb) + E’ﬁx {l (YT)H
v~ o~ wg U o X
=Ll (P yb) + Apriord(p*7 )+ /\priord%<>\ _ ) - [KPL(p*Q y')+ Eg+ {[ (YT)}]
= e { 4G 7) a2 (5 ) ~ B ()
prer ’ " )\prior P )\prior
>0, (B3)

where the second step is due to the definition of {* given in Proposition the third step follows
from (B2), the fourth step comes from the definition of p}, ., and the last step comes from the
Fenchel-Young inequality in Lemma|[B3] The proof is established by combining (BI) and (B3). O

Remark B.2. Let O denote the sample space, 7 a prior on ©, and py the likelihood model indexed
by 6 € O. Given prior 7, observed data x, and a parameterized subset IT C P(O), the associated
variational posterior (Blei et al.2017) is defined as

gvi € arg glf [Eq(a){— log pa ()} + dkw(q, 77)] .
qe
By extending the negative log-likelihood function to a general loss function { € F,(©) and general-

izing dy, to any divergence d as defined in Definition[B.T] the generalized variational posterior with
A > 0 (Husain & Knoblauch, 2022) is defined as

dovi € arg ;nf {Eqo){((6;2)} + Ad(q, )} .
q€
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Similarly, the optimization problem (I]) can be expressed as:

q* € arginf {{(q;x) + A\d(q, )},
qell

which can be viewed as a generalization of ggy;. Here, the loss function ¢ need not depend linearly on
q; we only require that the mapping ¢ — ¢(g; x) is convex and lower semicontinuous.

C ALGORITHM

C.1 IMPLEMENTATION DETAILS FOR HISTOGRAM APPROXIMATION

In this section, we elaborate on the implementation details of the histogram distribution approximation
and summarize the complete training objective.

Self-Adaptive Histogram Construction. To discretize the continuous regression outputs into
histogram bins, it is crucial to choose an appropriate bin width. On one hand, excessively wide
bins may cause a large portion of the data to concentrate within a few intervals, leading to degraded
learning performance or training collapse. On the other hand, overly narrow bins may result in
sparse class distributions, making the associated classification task difficult and reducing predictive
accuracy. To balance these two extremes, we introduce a self-adaptive histogram binning method that
automatically adjusts the bin structure based on the distribution of the regression head’s outputs.

Specifically, for each input x7 from the target dataset Dy, let y; = {V;1,...,¥inm} denote a
collection of predictions from the regression head, obtained through stochastic inference techniques

such as dropout. Let ya {?l}f\fl denote the aggregated set of all such predictions. Then, we apply
Gaussian kernel density estimation (KDE) to ), and denote the resulting density function as /().
To estimate the central tendency of the target label distribution, we identify the peak (mode) of the

estimatfj'd density as: Vpeak E arg max, ¢y fi(y), and let oy denote the corresponding quantile level
of Yy in the cumulative distribution.

The bin width is then defined adaptively as:
b £ Qpeasc+0.05 () — Qapegy—0.05 (1)

where Q, (/) denotes the a-quantile of the density function / for o € [0, 1]. This design uses the
most concentrated 10% of the data to guide the choice of bin width, allowing the binning scheme
to adapt to the local density structure of the pproximated target label distribution. Given the overall
range of the regression outputs and the adaptive bin width, we compute the total number of bins as:

K2 int{ max() ; min(Y) } (1)

Finally, we assign a representative value vy, for each bin )y, in the partition )) = uszlyk, we assign
a representative value y, which is determined by taking into account the overall skewness of the
estimated target distribution. Specifically, let 1) be a small tolerance parameter. Define Vi, teft, Vi, mids
and YV, righe denote the left endpoint, midpoint, and right endpoint of the kth bin, respectively. Then,
the representative value yy is set as follows:

Vi teft, 1 Qpear < 0.5 — 1 (left-skewed)
Vi 2 Vi right, if Qpeak > 0.5+ (right-skewed) (C2)

Vi, mid, otherwise (approximately symmetric)

In our implementation, we set n = 0.02.

Partial Label Loss. After adaptively partitioning the regression label space into K bins, each
continuous prediction y; ; € y; (for j € [M]) is mapped to a bin index ¥ ;. We denote the resulting

discrete labels as y7 £ {7, ..., 37 5, }. Given the partial label set y} C [K] and the approximated
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histogram distribution p; = hy,...(x7) € AK~1, we define the following partial label loss:

EPL(ﬁZ’ ?;) £ |’\b| Z Ingz (C3)
keyy

Then, with the partial label loss defined in (C3), for a batch B, the batch-wise partial bin set loss is:

Lo, gPL iy Y C4
|B|Z (73 97) (C4)

i€B

Additionally, to further accommodate the source-free setting, preserve the continuity of the regression
space, and retain the uncertainty information, we also introduce a method to refine the partial label
set y? in a structured way. Specifically, we identify the index range spanned by y? as ki, = miny?
and k. = maxy?, and treat the interval [Kpin, kmax] as the core region of label predictions for
x; . To further reflect predictive uncertainty and promote smoother label assignment, we expand this
interval by a relaxation factor proportional to the total number of bins. The resulting partial label
(bin) set is then defined as:

VA ke [K]: k€ [kmin— € K], kmin + - K]]}.

where € € (0,1) controls the extent of relaxation. This relaxed binning strategy allows the model to
maintain a contiguous set of plausible labels, mitigating overconfidence and better accommodating
the inherent uncertainty in the predictions. In our experiments, we set € = 0.05.

Unimodal Prior. For each xT, we employ a unimodal Gaussian prior 7(y|xT) ~ N (u;,0?) for
its label distribution, where the mean ; and variance o are constructed based on the histogram

distribution obtained from the previous training iteration and the partial label set y;.

Specifically, we first determine the bin index with the highest probability in the previous iteration’s
histogram p{* (or initialize it as the empirical distribution over y?), and denote this index as k,, =
arg maxc x| pik]. The corresponding representative value in Y is then selected as the mean:
Hi = Yk, - To define the variance o2, we account for the spread of the refined label set around the
mode. In particular, we set ko; = b - max(|k —miny?|, |k, — maxy?|), where b is the bin width

and £ > 0 is a tunable variance scaling factor. This formulation ensures that the prior variance adapts
to the dispersion of the discrete label distribution.

Then, the discrete prior distribution 7; on Y is obtained by approximating the probability mass of 7
over the K bins:

. 1
ﬂ-l[k]:E @(ykaulv ) fork € [ ]
where (+; i1;, 02) denote the dens1ty function for the Gaussian distribution A(1;, o2), and C; is a nor-

malizing constant to ensure Z w—1 Tilk] = 1. Consequently, by taking d(-, -) as the Kullback-Leibler
(KL) divergence dy.,(, -), the second loss term in (1)) is defined as below:

~ 7|k
EKL(pwylﬁpfld) = dKL Wz,pz Zﬂ'z : (~{k]]) (C5)
The associated batch-wise loss for batch B is:
Lo =g ZEKL (Pi: 95, 57)- (C6)
1€EB

Overall Training Objective. Besides the MSE-based losses in Section[4.2] considering that feature
scale plays a critical role in regression tasks (Chen et al., 2021)), we optionally incorporate the
following batch-wise feature norm regularization term to encourage alignment between the feature
norms of the target and source models, thereby promoting stable training dynamics and further
guiding the learning of the regression model:

Len £ |B| Z |||g ||gS(X;F)

i€B

(C7)

19



® N & W

9
10
11

Under review as a conference paper at ICLR 2026

where gs(+) denotes the fixed feature extractor obtained from the pre-trained source model, and g(-)
represents the feature extractor being trained on the target domain.

Combining the components discussed above, the overall loss takes the following form, depending on
whether Luse in () or Lruse in (7) is used:

Lusrer = Apr Lo + /\priorﬁkL + AvseLvse (+)\FN£FN); (C8a)
Lhist Lreg
Lysror—r = Apr.Lpr + >\prior£KL + Armse Lrmse (+>\FN»CFN)7 (C8b)
Lhist Lreg—r

where Ly, Lx1,, and Lgy are given in (C4), (C6), and (C7), respectively, and Apy, Apsiors Amse/Armses
and \py are weighting coefficients for the four components. To reduce the burden of manual
hyperparameter tuning, these coefficients are treated as learnable parameters during training.

C.2 TRAINING ALGORITHM

In this subsection, we summarize the complete training procedure in Algorithms [T}2]

Algorithm 1: Step 1: Target Data Histogram Information Set Construction

Input: Source model hg = f,.. s © gs, target dataset D, dropout ratio p, number of sampling
repetitions M.
Output: Histogram bin number K, bin values {1, ..., Vx }, target data histogram information
set H = {(xf, 5, 99 1.1
Initialize the histogram information set: H = &;
foreach x] in D do
Compute uncertainty-aware predictions ¥; = {¥; 1, ..., ¥} by performing M stochastic
forward passes with dropout ratio p, where ¥; ,, = free,s(DROPOUT(gs(x7 ), p))
end foreach

Compute the number of histogram bins K adaptively using Eq. 1.) based on {yT} N1 ;
Compute the representative bin values {¥1, ...,V } using Eq. (C2);
foreach rarget sample x; do

Compute the empmcal discrete distribution p¢ over K bins as:

pz‘old[ ] £ ]y[ Z (Yz m € Blnk) for k € [ ]
Construct the partlal label (bin) set ¥} by mapping ¥; to the associated bin indices;
Store the histogram information tuple (x*, pf, y?) for the target sample into H.

end foreach

~old
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Algorithm 2: Step 2: Joint Adaptation Training of g, f..,, and fui.

Input: Target data D, histogram information set #, source model hs = fs o g5, number of
epochs 7, number of warm-up epochs Tyam, hyper-parameter « € (0, 1)

Output: Adapted target model h = frep v © gr

Initialize target model h with source feature extractor and regressor: f,.o.v = freg,s> v = s}

Initialize histogram head f};., with class number K;

Initialize Apr, Apriors Avse (Armse)»> and Apy;

for epocht =1to T do

foreach mini-batch B from D1 do
For each x] € B, calculate the histogram prediction p; = hy, (X} );
// Histogram loss
Calculate batch-wise partial label loss £p;, by Eq -;
Calculate batch-wise KL divergence with the unimodal prior Ly, by Eq (C5)-(C6);
Calculate batch-wise histogram loss: L. = AppLrr + Apsior Lxis
if t < T,um then
| Update R, Apr, and A, by minimizing L.,
else
// Regression loss
For each x € B, calculate pseudo-label §; based on p;* using Eq. ;
Calculate batch-wise MSE L5 by , or batch-wise RMSE Liyvse = vV Luse:
Calculate batch-wise feature norm loss Ly by ;
Calculate batch-wise regression loss: L,., = AyseLuse (+AexLen ), OF
Lies—: = ArmseLlrmse (+)\FN£FN);
// Overall batch-wise loss for MERCI (MERCI-R)
Calculate Lyiprer (Laprer-r) by ;
Update g, freg,m) fuists Aprs Apriors Amse (Armse)> and Agy by minimizing Lygrer
(Lrgror-r) 3
end
end foreach
Update p in H: pf = NORMALIZE{ap/™ + (1 — a)p; };
end for

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 DETAILS OF DATASETS

UTKFace (Zhang et al.,[2017) is a human face dataset used for age estimation, consisting of 24,106
images with age labels ranging from 1 to 106. Each image is additionally annotated with gender and
race information. We take gender as the domain attribute and conduct two domain adaptation tasks:
Female — Male and Male — Female.

Biwi-Kinect (Fanelli et al.,[2013)) is a 3D face dataset designed for head pose estimation, comprising
15,678 images. Following the setup in previous work (Adachi et al., 2024), we use gender as the
domain attribute and train three separate models to predict pitch, yaw, and roll angles, respectively.
The label ranges are [—70°, 80°] for yaw, [—70°,70°] for roll, and [-90°, 60°] for pitch.

California Housing (Pace & Barry, [1997) is a tabular dataset used for house price prediction.
Following prior work (He et al.,[2024} |Adachi et al.,|2024)), we define the source and target domains
based on geographic regions (non-coastal vs. coastal). We conduct two domain adaptation tasks:
Near Bay — Far Bay and Far Bay — Near Bay. The model architecture on California Housing
consists of a five-layer MLP with one BatchNorm layer and ReLU activation functions.

Digits dataset includes two widely-used digit recognition datasets, SVHN (Netzer et al., 2011)) and
MNIST (LeCun et al., [1998)). Although originally developed for classification, we follow the setup
in|Adachi et al.| (2024) and train a regression model to directly predict the scalar value corresponding
to each digit image.

The training and validation split ratio is set following|Adachi et al.[(2024)).
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D.2 DETAILS OF SFDAR PROBLEM

Distribution Shift Types In SFDA settings, the problem is typically formulated under joint distribu-
tion shift, where Py, . This assumption encompasses covariate shift (Ben-David et al., 2006
Mansour et al. [,|2W5|; Ben Davﬂ et al, [2010), label shift (Lipton et al., 2018} Garg et al.[[2020), and
posterior (or concept) shift (Cai & Welil, 2021}, [Zhu et al., 2024} Maity et al., 2024)), aligning with
classical domain adaptation theory (Kouw & Loog| 2019) and joint alignment approaches

2013).

Heuristically guided by the decomposition Pyxy = PPy, current SFDA research often focuses
on learning more robust representations or designing stronger supervisory signals for target adapta-
tion (Liang et al. [2020), implicitly relying on two assumptions: (1) Similarity of feature extractors:
the source-trained feature extractor produces semantically meaningful representations for target

inputs (Yang et al., [2022b}; |Liang et al., 2020)); (2) Proximity of conditional distributions: P%_ and
p g g y ylx

PT‘ are assumed to be different but not too far apart, which facilitates the use of output uncertainty

for sample selection (Zhang et al.} [2022b}, Xu et al ,[2024).

Our method is developed under the above assumptions, with experiments conducted under a mixture
of relaxed covariate (input) shift and label shift. To illustrate the range and distribution of the label
space, Figures [D.T] and [D.2] present histograms of the ground-truth regression values across four
datasets. These results demonstrate the diversity of label space distributions in the selected datasets,
underscoring both the variety of experimental settings and the generalizability of the proposed
method.

Male
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Figure D.1: Histograms of Regression Labels for Different Domains Across Three Datasets
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Figure D.2: Histograms of Regression Labels for Different Domains on Biwi-Kinect Dataset

Importance and potential application scenarios of SFDAR. Here, we aim to highlight the impor-
tance and practical relevance of the SFDAR problem. In fact, Regression is a fundamental problem
in machine learning and is closely related to numerous real-world applications, including object
localization, image registration, and human pose estimation (Lathuiliére et al., 2019).

While SFDA has been widely studied in classification and segmentation tasks, extending this paradigm
to regression is both natural and necessary. For example, (1) in healthcare, tasks like predicting
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patient risk scores or tumor progression from imaging data often involve continuous outcomes. In a
new hospital setting, source data may be inaccessible due to privacy concerns, and acquiring target
labels requires expert annotations or follow-up exams, making SFDAR particularly relevant. (2)In
industrial applications, estimating the Remaining Useful Life (RUL) of machinery is a regression
task where source data is often unavailable due to commercial confidentiality, and collecting target
labels is costly or impractical, as it requires observing actual failure events.

The limited prior work underscores the methodological difficulty of this setting, which makes it both
challenging and valuable to investigate. By formally defining the SFDAR setting and proposing
concrete solutions, we aim to encourage broader interest and further exploration in this important yet
underexplored domain.

D.3 EVALUATION METRICS

In this subsection, we introduce the detailed calculation of four most widely utilized regression
evaluation metrics as follows:

MAE measures the average magnitude of absolute errors between predictions ¥; prea and ground
truth y; rue:

1 n
MAE = E z; |yi,true - yi,pred|
1=
It provides an intuitive and direct estimate of the typical prediction error.
Compared to MAE, RMSE penalizes larger errors more heavily by squaring the residuals before
averaging and more sensitive to outliers:

n

1
RMSE = ﬁ Z(yi,true - yi,pred>2'

=1

The coefficient of determination, R2, evaluates the proportion of variance in the target variable that is
explained by the model’s predictions:

R2 —1— Z;L:l(yi,true - yi,pred)2
Z?:l(yi,true - gtrUe)z

where ;e 1S the mean of the ground-truth values. A larger value means better performance and 1
indicates a perfect fit.

Finally, the Pearson correlation coefficient, R, measures the linear correlation between the predicted
and true values:

R ZZL:l (yi,true - ytrue)(yi,pred - gpred)

B \/Z?;l(yi,true - gtrue)2\/2?:1(yi,pred - ypred)2

Values of R range from -1 (perfect negative correlation) to 1 (perfect positive correlation), with 0
indicating no linear relationship.

MAE and RMSE are error-based metrics, while R? and R are correlation-based metrics. Together,
these metrics provide a comprehensive assessment of both prediction accuracy and model reliability.

D.4 IMPLEMENTATION DETAILS

We use ResNet-26 (He et al.,[2016)) as the backbone for the Digits dataset, ResNet-50 for UTKFace
and Biwi-Kinect, and a Multi-Layer Perceptron (MLP) for California Housing. A linear layer is
used as the regression head, while MERCI adopts a bottleneck classification neural network with a
512-dimensional hidden layer for histogram learning (Liang et al., [2020). Following prior protocols,
we train the source model for 100 epochs in both data-free and source-free settings. During adaptation,
except for SSA, we perform full-parameter training for 30 epochs with a batch size of 64 using
Adam. A smaller learning rate (0.0005) is applied to the feature extractor, and a larger one (0.005)
to the regressor and classifier. In our method, loss coefficients are treated as learnable parameters
and optimized using Adam with a learning rate of 0.005. All experiments are conducted using three
random seeds on a single NVIDIA A100 GPU.
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D.5 DETAILS OF BASELINE METHODS

We introduce the implementation details of different baselines as follows:

DANN (Ganin et al., 2016) is one of the most classical domain adaptation method, designed for
classification task but can be directly transferred into regression. By introducing a domain classifier
and the adversarial training strategy, it encourage domain-invariant feature learning, thereby aligning
source and target distributions in the latent space. It jointly optimizes a label predictor and a domain
discriminator through a gradient reversal layer.

RSD (Chen et al.,2021) and DARE-GRAM (Nejjar et al.| [2023)) are two unsupervised domain adap-
tation methods for regression that rely on representation space alignment and require simultaneous
access to both source and target data.

SSA (Adachi et all 2024)) is a recently proposed test-time adaptation method based on feature
alignment. Although SSA does not require access to raw source data during adaptation, it still relies
on source data statistics (e.g., feature covariance matrices), which deviates from our source-free
setting. We refer to this setting as a data-free domain adaptation task. Comparing the results in our
setting with those reported in SSA (Adachi et al., [2024)), we observe that SSA performs substantially
better under covariate-shift scenarios and in shift-aware application settings. However, when facing
mixed distribution shifts and changes in prediction scale, its performance tends to become less stable.

TASFAR (He et al.|[2024) is another recently proposed data-free domain adaptation method designed
for regression. It estimates sample-wise uncertainty through random sampling and refines regression
labels accordingly. However, the method relies on the assumption of a specific distribution (e.g.,
Gaussian), and requires training an uncertainty predictor on source data. While TASFAR does not
access raw source samples during adaptation, it still depends on source-trained components, making
it incompatible with the strict source-free setting. One of its main limitations is the TASFAR’s strong
dependence on the quality of pseudo-labels, which may lead to performance instability, especially
when the initial label estimation is inaccurate.

BN-adapt (Benz et al.,[2021) is a widely used and effective source-free or test-time adaptation method.
It is lightweight and well-suited for domain-adaptive regression tasks. It updates only the Batch
Normalization layers’ running statistics and does not require any backpropagation. Our experimental
results confirm its strong performance while also revealing that BN-adapt can be sensitive to the scale
of the target response space.

To further validate the effectiveness of our approach, we propose two additional data augmentation-
based SFDAR methods, VM and AugSelfTr. Inspired by prior works (Adachi et al., [2024} |[Zhang
et al., [2022a)), both methods aim to minimize the variance of model outputs under data augmentation.
Specifically, we apply pre-generated augmentations (AugMix (Hendrycks et al.;2019)) in AugSelfTr,
and on-the-fly augmentations in VM (Chen et al., 2020).

Implementation Details of Baseline Models. For UDA and DF methods, we conduct experiments
using their officially released code. For UDA methods, we perform adaptation training for 50
epochs. We briefly tune the hyperparameters for each method and report the best-performing
results. Specifically, we adjust rsd_coef and bmp_coef for RSD, and threshold, scale_coef
and angle_coef for DARE-GRAM. For the test-time adaptation method SSA, we follow the original
protocol by forwarding the entire dataset once and updating only the BatchNorm layers, which yields
optimal performance. For TASFAR, VM, and AugSelfTr, we train all parameters for 30 epochs to
ensure a fair comparison.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ADDITIONAL REGRESSION RESULTS

Due to space limitations in the main text, we present the results of four regression metrics on
the SVHN—MNIST and MNIST—SVHN adaptation tasks from the Digits dataset in Figure
Additionally, the RMSE and R scores on the Biwi-Kinect dataset are reported in Tables[E.3|and
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Table E.2: Results on Digits datasets. Best non-Oracle SF results are bolded, best non-Oracle results

are underlined.

MNIST — SVHN

SVHN — MNIST

Method | Type | MAE| RMSE| R27 R{? |MAE| RMSE| R?t R?
DANN (Ganin et al.| 2016} UDA | 22290 28487 -0.1330 0.1974 | 1.0980 17586  0.6308 0.8025
RSD (Chen et al.][2021} UDA | 22054 28162 -0.1067 02329 | 1.0528 17917  0.6157 0.7950
DARE-GRAM (Nejjar et al.|[2023) | UDA | 2.1480  2.7968 -0.0914 0.2680 | 1.1707  1.8072  0.6105 0.7853
SSA (Adachi et al.|[2024) DF | 26255 3.5262 -0.7360 0.1364 | 13734  2.1633 04395 0.6911
TASFAR (He et al.|[2024} DF | 2.8918 37616 -0.9969 0.0845 | 1.6768 22270 04024 0.6426
Source SF | 29124 37935 -1.0305 0.1043 | 1.7155 23422 03419 0.5951
BN-adapt (Benz et al.|[2021} SF | 2.5836 34625 -0.6732 0.1335 | 14787 22426  0.3955 0.6465
VM SF | 2.8228 37007 -0.9343 0.1213 | 1.6513 22604  0.3849 0.6246
AugSelfTr SF | 2.8423 37073 09436 0.1178 | 1.5995  2.1078  0.4632 0.6897
MERCI SF | 24378 32164 -0.4590 0.1623 | 14770 19750  0.5290 0.7665
MERCI w. FN SF | 24593 32423  -04830 0.1814 | 14971 19982 05183 0.7481
MERCI-R SF | 24808 32591 -0.4952 0.1411 | 1.5090 19852 0.5172 0.7376
MERCI-R w. FN SF | 25207 33101 -0.5447 0.1698 | 1.5159  2.0138  0.5100 0.7534
Oracle | - 0350 10320 08514 09235| 0.0631 03251 09874 0.9937

Table E.3: RMSE on Biwi-Kinect dataset (Fanelli et al., [2013)). Best non-Oracle SF results are

bolded, best non-Oracle results are underlined.

Female — Male

Male — Female

Method | Type | Pitch Roll Yaw | Mean | Pitch Roll Yaw | Mean
DANN (Ganin et al.|2016) UDA | 6.2469 6.7258 4.4961 | 5.8229 | 10.0889 7.7898 8.6000 | 8.8262
RSD (Chen et al.{[2021} UDA | 6.2309 6.6824 4.4833 | 5.7989 | 10.4134 7.6194 8.2568 | 8.7632
DARE-GRAM (Nejjar et al.||2023) | UDA | 6.3410 6.8664 4.5956 | 5.9343 10.0607 7.7526 7.6536 | 8.4890
SSA (Adachi et al.[[2024) DF | 6.7116 7.0266 4.6490 | 6.1291 10.1474  8.0121 8.5636 | 8.9077
TASFAR (He et al.}[2024) DF 6.8092 7.3885 4.7654 | 6.3210 12.5730 8.5134 8.8511 | 9.9792
Source SF 6.7130 7.1649 4.6409 | 6.1729 12.2213  8.4473 8.7855 | 9.8180
BN-adapt (Benz et al.|[2021) SF 6.7960 7.1436 4.6135 | 6.1843 | 11.5047 8.1348 8.3536 | 9.3310
VM SF 6.5037 7.0540 4.4677 | 6.0085 | 11.9837 8.1452 8.5477 | 9.5589
AugSelfTr SF 6.6517 7.0615 4.4441 | 6.0524 11.4350 7.9532  7.8298 | 9.0726
MERCI SF 6.2487 7.0180 4.4659 | 5.9108 109115 7.9664 7.0137 | 8.6306
MERCI w. FN SF 62111 6.9568 4.4298 | 5.8659 | 10.6790 7.8997 6.5044 | 8.3610
MERCI-R SF 6.1018 6.9321 4.3859 | 5.8066 | 11.1503 7.9469 7.1924 | 8.7632
MERCI-R w. FN SF 6.1992 6.9554 4.3939 | 5.8495 10.7193  7.8149 6.2131 | 8.2491
Oracle | - [ 11479 14720 L1462 | 1.2554 | 16862 19784 15135 | 1.7260

Table E.4: R on Biwi-Kinect dataset (Fanelli et al., 2013)). Best non-Oracle SF results are bolded,

best non-Oracle results are underlined.

Female — Male

Male — Female

Method | Type | Pitch Roll Yaw | Mean | Pitch Roll Yaw | Mean
DANN (Ganin et al.|[2016) UDA | 0.9642 0.7939 0.9882 | 0.9154 | 0.9445 0.8236 0.9796 | 0.9159
RSD (Chen et al.{[2021) UDA | 0.9641 0.7948 0.9884 | 0.9158 | 0.9368 0.8333 0.9803 | 0.9168
DARE-GRAM (Nejjar et al.||2023) | UDA | 0.9624 0.7730 0.9879 | 0.9078 | 0.9420 0.8121 0.9782 | 0.9108
SSA (Adachi et al.|[2024) DF | 09612 0.7908 0.9879 | 0.9133 | 0.9529 0.8201 0.9826 | 0.9185
TASFAR (He et al.[[2024) DF | 09601 0.7390 0.9850 | 0.8947 | 0.9277 0.7857 0.9600 | 0.8911
Source SF 0.9608 0.7658 0.9878 | 0.9048 | 0.9229 0.7906 0.9789 | 0.8975
BN-adapt (Benz et al.|[2021) SF 0.9615 0.7792  0.9876 | 0.9094 | 0.9304 0.8139 0.9809 | 0.9084
VM SF 0.9634 0.7728 0.9884 | 0.9082 | 0.9240 0.8101 0.9791 | 0.9044
AugSelfTr SF 0.9621 0.7651 0.9888 | 0.9053 | 0.9264 0.8178 0.9788 | 0.9077
MERCI SF 0.9646 0.7639 0.9886 | 0.9057 | 0.9273 0.8181 0.9804 | 0.9086
MERCI w. FN SF 0.9640 0.7723 0.9886 | 0.9083 | 0.9319 0.8255 0.9814 | 0.9129
MERCI-R SF | 0.9640 0.7695 0.9890 | 0.9075 | 0.9283 0.8189 0.9814 | 0.9095
MERCI-R w. FN SF 0.9645 0.7675 0.9892 | 0.9071 | 0.9316 0.8288 0.9830 | 0.9144
Oracle - ‘ 0.9988 0.9911 0.9993 ‘ 0.9964 ‘ 0.9982 0.9888 0.9989 ‘ 0.9953

E.2 ADDITIONAL ABLATION RESULTS AND DISCUSSIONS

Ablation Results. Similar to the ablation study of the histogram head presented in the main paper, we
conduct experiments on the Biwi-Kinect dataset under the Male — Female, as shown in Figure [E.3a]

Discussion about L. Inspired by prior work (Chen et all [2021), we note that feature scale is
important in regression tasks and may affect adaptation performance. In the Source-Free Domain
Adaptive Regression setting, the source model already yields informative predictions on the target
domain. To continue benefiting from the source model while ensuring stable and robust adaptation,
we introduce the FN term to regularize the feature scale. In practice, we find that while the FN
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Figure E.3: Ablation and hyperparameter sensitivity analysis on the Biwi-Kinect dataset (Male —
Female, Yaw)

Table E.5: Ablation Study on Moving Average Coefficient () Sensitivity (UTKFace).

Moving Average Coef.a | 001 | 01 | 03 | 05 | 07 | 09 | 099

SOURCE (MAE), female—male | 6.5494 | 6.5494 | 6.5494 | 6.5494 | 6.5494 | 6.5494 | 6.5494
MERCI-R (MAE), female—male | 6.1334 | 6.0969 | 5.9316 | 5.8263 | 5.8590 | 5.9473 | 6.0270
SOURCE (MAE), male—female | 7.9390 | 7.9390 | 7.9390 | 7.9390 | 7.9390 | 7.9390 | 7.9390
MERCI-R (MAE), male—female | 7.2304 | 7.1785 | 7.1577 | 7.0802 | 7.0740 | 7.0157 | 7.0780

loss helps maintain a consistent feature scale, it can also restrict the extent of updates to the target
model, potentially limiting performance. In cases where the target model can substantially outperform
the source model after adaptation (e.g., UTKFace), the gain from FN is marginal. In contrast, for
more challenging adaptation tasks (e.g., California Housing), the FN loss offers more noticeable
improvements, as shown in Table|2| in the main paper. Additionally, our overall framework, MERCI,
already improves adaptation robustness, which reduces the relative importance and observable benefit
of the FN term in some scenarios.

E.3 ADDIIONAL HYPERPARAMETERS SENSITIVITY ANALYSIS

7, k and Dropout Configuration. Similar to the hyperparameter sensitivity analysis presented in the
main paper, we conduct experiments on the Biwi-Kinect dataset under the Male — Female, as shown
in Figure [E3b} [E:3d]

Moving Average Coefficient .. Following previous work (Qiu et al., [2021), we adopt a moving
average strategy to update the empirical discrete distribution, p?, in the Histogram Information
Set, which stabilizes the adaptation process and preserves useful information from the source model
predictions.

In our implementation, we fix the update ratio to 0.5. To further validate the effect of the moving
average strategy on histogram head training and the resulting discrete distribution, we conduct
additional ablation studies, as shown in Table When « is small, the histogram used to generate
pseudo-labels for the regressor is primarily influenced by the current epoch’s output. As « increases,
the histogram incorporates more information from the original partial-label set and the prior. Within a
broad range of values (0.3-0.9), the experimental results demonstrate stable performance, confirming
the both the practicality and robustness of the moving average mechanism.

Loss Coefficients. In our experiments, the weighting coefficients are treated as learnable parameters.
This design choice aligns the source-free domain adaptation setting, where tuning or selecting
hyperparameters manually is often impractical in real-world applications.

To avoid the trivial solution such that A — 0, we follow the well-established uncertainty-based
multi-task weighting formulation (Kendall et al., [2018) and take the following steps. First, each
weight is parameterized as A\ = exp(— log 0%), and the total loss contains the regularization term
% >, log o2, which increases when \ becomes too small, thereby preventing collapse. Second, we
clamp log o? € [—10, 10] to keep all weights within a stable, non-zero range. Third, NaN/Inf values
revert to uniform weighting for numerical safety. The learning weight is reset at the beginning of
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Table E.6: Optimized A Values for Each Dataset and Shift Setting.

Dataset | Source — Target | Ay | Aer | Aprior | Aen
UTKface female — male 026 | 0.27 | 2.31 | 0.26
UTKface male — female 0.30 | 0.30 | 1.95 | 0.32

Biwi Kinect female — male (pitch) | 0.37 | 0.36 | 1.15 | 0.38
Biwi Kinect female — male (yaw) | 0.36 | 0.36 | 1.74 | 0.36
Biwi Kinect female — male (roll) | 0.37 | 0.36 | 1.23 | 0.40
Biwi Kinect male — female (pitch) | 0.55 | 0.56 | 1.53 | 0.58
Biwi Kinect male — female (yaw) | 0.56 | 0.56 | 1.64 | 0.56
Biwi Kinect male — female (roll) | 0.56 | 0.56 | 1.78 | 0.75

Digits SVHN — MNIST 1.09 | 035 | 2.87 | 2.99
Digits MNIST — SVHN 226 | 0.08 | 1.31 | 1.45

California House | Near Bay — Far Bay | 1.00 | 1.00 | 1.00 | 1.00
California House | Far Bay — Near Bay | 1.00 | 1.00 | 1.00 | 1.00

each epoch, and the training dynamics on the UTKFace and Biwi-Kinect datasets are illustrated in

Figure[E4]
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Figure E.4: Training trajectories of the learned loss weights on UTKFace and Biwi-Kinect. In both
datasets, the weights evolve smoothly and remain within stable, non-zero ranges, showing that our
uncertainty-based formulation and regularization prevent the trivial collapse A — 0.

To provide further guidance, we report the final optimized values in Table[E.6 Notably, while most
weights remain similar, the A, values vary across datasets. To assess the sensitivity of performance
to this variation, we conducted additional ablation studies on the UTKFace dataset. As shown in
Table our method remains robust to different A, values.

Table E.7: Ablation Study (MAE) on A, Sensitivity (UTKFace).

Setting ((Areg-ApL-Aprior-Arn)) | UTKface (female—male) | UTKface (male—female)

0.3-0.3-0.3-0.3 6.00 7.09
0.3-0.3-0.8-0.3 5.95 7.19
0.3-0.3-1.0-0.3 5.99 7.11
0.3-0.3-2.0-0.3 5.96 7.05
0.3-0.3-3.0-0.3 6.01 7.16
0.3-0.3-4.0-0.3 5.95 7.27
1.0-1.0-1.0-1.0 5.99 7.02

Learnable 5.86 7.18
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Table E.8: Ablation Study (MAE) on Bin Number (UTKFace).

Bin Number | 5 | 25 | 45 | 65 | 85 | 100 | Self-Adaptive

UTKFace (female — male) | 6.55 | 597 | 5.82 | 5.88 | 5.83 | 5.84 5.83
UTKFace (male — female) | 7.94 | 7.05 | 7.06 | 7.08 | 7.33 | 7.00 7.08

Bin Size. In the SFDA setting, selecting an optimal bin size is also challenging due to the absence
of labeled target data. To address this, we propose a self-adaptive discretization strategy that
automatically estimates the number of bins, with results shown in Table [3]in the main paper.

To provide further insight, we conduct an ablation study on various bin numbers using the UTKFace
dataset (Table[E.8). The results show that model performance remains generally stable across a broad
range of bin sizes, but degrades with extremely small bin counts, where coarse discretization renders
the histogram labels less informative.

E.4 ROBUSTNESS OF MERCI UNDER DIFFERENT LEVELS OF DISTRIBUTION SHIFT

Table E.9: Performance of MERCI-R under Shifted UTKFace (MAE).

Severity SOURCE MERCI-R SOURCE MERCI-R
(Female — Male) | (Female — Male) || (Male — Female) | (Male — Female)
N/A 6.549 5.826 7.939 7.080
Light 12.635 9.081 11.374 9.995
Mild 15.667 11.837 15.261 12.137
Severe 19.067 15.554 21.927 14.775
Extremely Severe 22.082 21.396 23.686 20.302

Table E.10: Performance of MERCI-R on Toy Data with Shift Severity (MAE).

Shift Severity | 01 | 015 | 02 | 025 [0375] 05 | 1 | L5
MERCI-R (MAE) 0.168 | 0.304 | 0.625 | 0.882 | 1.265 | 1.716 | 3.279 | 4.704
Source (MAE) 0318 | 0.518 | 0.813 | 1.008 | 1.482 | 1.926 | 3.530 | 4.927

Avg. Partial Label Set Size | 4.083 | 4.101 | 4.133 | 4.190 | 4.285 | 4.670 | 6.102 | 7.565

To evaluate MERCI’s performance under substantial distribution shifts, we consider two settings: (1)
A real-world dataset with Gaussian noise, where larger mean values induce stronger shifts; (2) A 2D
toy dataset with polynomial-based inputs and controllable linear shifts.

The corresponding results are reported in Table [E.9] (UTKFace) and Table [E.T0|(Toy Dataset). For
Table [E.9] we introduce Gaussian noise into the target domain at varying severity levels using the
public corruption library imagenet-c. This library controls noise via a severity parameter ranging
from O to 5. A severity of “N/A” indicates no added noise, so only natural domain shift is present;
severity 1 corresponds to a “light” setting, severity 2 to “mild”, severity 3 to “severe”, and severity
5 to “extremely severe”. Each severity level maps to a predefined standard deviation of Gaussian
noise (e.g., 0.08 for severity 1 and 0.38 for severity 5), allowing us to simulate progressively stronger
domain shifts in a controlled manner. As for Table [E.T0] shift severity is quantified by the central
distance between source and target inputs.

The proposed MERCI framework demonstrates overall robustness across different shift magnitudes
and performs well under slight to moderate shifts. In extreme shift scenarios, MERCT’s reliance
on the source model’s predictions for target data limits its performance. Specifically, it struggles to
generate reliable estimates of §j” when the domain gap is too large. This reflects a realistic constraint:
in the absence of source data, adaptation becomes fundamentally challenging when the target domain
diverges significantly from the source. Nevertheless, MERCI provides uncertainty estimates for
pseudo-labels—for instance, the average length of partial label sets (as shown in Table[E.T0), which
can serve as a proxy indicator of shift severity.
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(a) Arto Cl1 (b) Cl to Pr (c) Prto Rw (d) Rw to Ar

Figure E.5: Illustration of cluster feature representations in the SFDA classification task on the Office-
Home dataset (Venkateswara et al., 2017). The plots compare source and target feature distributions
using t-SNE (Van der Maaten & Hinton, [2008) on a general object classification task. In the figures,
points represent source-domain data and crosses represent target-domain data, while different colors
indicate different classes. Both source and target inputs are processed through the pre-trained source
model, which also serves as the initialization for the target model. Dots represent source data, crosses
represent target data, and different colors correspond to five randomly selected classes. In the source
domain, clear clusters and well-separated class boundaries are observed. In contrast, target samples
show clustering tendencies but are more diversely distributed.
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Figure E.6: UMAP visualization of target data feature space on UTKFace dataset

E.5 CLUSTER PROPERTY IN FEATURE SPACE OF CLASSIFICATION PROBLEM

In classification, discrete labels naturally guide deep models to learn clustered feature embeddings,
a phenomenon aligned with the cluster assumption in classification and semi-supervised learn-
ing (Chapelle et al., [2009). In our work, the term “clustered feature space” in the Sec. [T]exactly refers
to this phenomenon. More specifically, feature representations learned by deep models in classifica-
tion tasks are separable by class, i.e., samples from the same class form clusters in embedding space
that are separated by low-density boundaries. This phenomenon has been observed across various
classification tasks and data modalities, including text topic classification 2024)), speech
emotion classification [2017), and animal image classification 20224). It has
also been widely observed in SFDA classification benchmarks (Liang et al.,[2020; Yang et al., [2021).

In contrast, regression involves continuous targets, encouraging smooth feature-to-output mappings
without explicit class separation. As a result, deep regression features typically lie on a continuous

manifold and lack the clustering structure seen in classification (Islam et al.,[2023).

Our observation of clustered structures in the feature space for classification emerged from empirical
experiments (see Figure[E-3)), and was used to highlight the different feature manifolds observed in
regression (see Figures[d|and [E.6), which may not form clearly separable clusters and thus introduce
unique challenges for pseudo-label refinement.

E.6 FEATURE REPRESENTATION LEARNING IN DEEP REGRESSION MODELS

Due to the page limitation of the main paper, we provide additional observation on feature representa-
tions learned by deep regression model in this Appendix.
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In Figures [ and [E.6] we visualize three types of target domain feature representations on both
UTKFace (Male — Female) and Biwi-Kinect (Female — Male, pitch angle prediction) datasets : (a)
direct feature representations of target data passed through the pre-trained source model; (b) adapted
target feature obtained by training with only the conventional regression loss (Lgysg), using initially
collected histogram information as supervision signals; (¢) adapted target feature under our complete
MERCI-R framework.

Comparing (a) with (b) and (c), the adapted features exhibit more locally compact structures, reflecting
the controlled conditional entropy #(Z|Y). However, a closer comparison between (b) and (c) shows
that the complete MERCI-R framework, equipped with the histogram head and classification loss,
achieves both local compactness and global diversity. By contrast, relying solely on MSE or RMSE
loss tend to reduce feature entropy #¢(Z), which limits generalizability and degrades performance.
When the target values are noisy, as in SFDAR settings, the performance of MSE loss becomes
unstable, hindering smooth representation learning (Figure (b)) and showing weakness in handling
extreme values (Figure [E.6[b)).
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Figure E.7: MC-Dropout predictive distributions for samples from the female domain on Biwi-Kinect
dataset. In-domain predictions (blue) exhibit clear unimodality, while out-of-domain predictions
(yellow) deviate from the mean and lack unimodality. These results empirically motivate the use of a
Gaussian prior for the histogram head.

E.7 UNIMODAL CONDITIONAL DISTRIBUTION VALIDATION

In this subsection, we explain the unimodality assumption used in MERCI, supported by both
theoretical insights and experimental observations.

Unimodal vs. Multimodal. When the input X contains sufficient information to predict Y, the
uncertainty around the prediction is commonly assumed to be dominated by measurement or anno-
tation noise, such as Gaussian or sub-Gaussian behavior. In this setting, the conditional predictive
distribution tends to concentrate within a single continuous interval, rather than exhibiting genuinely
multimodal structure. Multimodality typically appears when essential information is missing. For
example, predicting age from height alone without sex information may lead to two separated plau-
sible ranges. In contrast, given a clear frontal facial image, we intuitively expect age to fall within
a contiguous region with high probability instead of forming two distinct clusters, such as around
25 or 45. The target tasks in our experiments, including age estimation on UTKFace and head pose
estimation, provide rich visual cues, so the unimodal assumption is a reasonable modeling choice.
We also note that our framework can accommodate multimodal scenarios. Specifically, we can (1)
model each peak with a separate unimodal component, or (2) incorporate richer prior information
describing the multimodal structure and apply it on top of the partial-label set.
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Gaussian prior. In our experiments, we chose a Gaussian prior for two practical reasons. First, the
Gaussian distribution is a standard choice that allows closed-form computation of the likelihood
and KL term. Second, when only partial knowledge of a distribution is available (in SFDA setup),
selecting a Gaussian prior follows the maximum-entropy principle, meaning that the distribution
that best reflects the current state of knowledge is the one with the largest entropy. In particular,
the Gaussian maximizes differential entropy under a fixed variance constraint, so it introduces no
additional structural assumptions beyond the observed scale of label variability 2021). In
our method, dropout sampling together with histogram estimation provides information on the mean
and approximate dispersion of the label distribution, making the Gaussian a suitable default in the
absence of further empirical evidence. More complex priors are only warranted when such empirical
evidence is present. Specifically, if additional structural information about the label distribution
becomes available, other priors can be naturally incorporated into our framework. For instance, a
Laplace prior may be appropriate when residuals are known to exhibit sharp, heavy-tailed behavior,
whereas Gaussian mixtures or non-parametric priors are suitable when multimodality is empirically
observed.

Empirical Evidence. To examine the unimodality assumption of the conditional distribution Py, we
randomly select several samples from the female domain of the Biwi-Kinect dataset and evaluate them
using two models: (1) an in-domain model trained on female-domain data, and (2) an out-of-domain
model trained on the male domain. We estimate and visualize the MC-Dropout distributions for
each sample to enable a direct comparison and more detailed analysis. As shown in Figure
the MC-Dropout outputs of the well-trained in-domain model exhibit a clear unimodal pattern. In
contrast, the out-of-domain model often produces distributions that deviate substantially from the
mean, lack unimodality, and display pronounced skewness. These observations empirically motivate
the adoption of a Gaussian prior when training the histogram head.

E.8 ANALYSIS OF MUTUAL ENHANCEMENT BETWEEN HISTOGRAM AND REGRESSION
HEADS

To examine the directional contributions within MERCI, such a mutual-enhancement framework, we
conducted an additional set of experiments on the UTKFace dataset. In particular, we selectively
disabled two forms of feedback: (1) the feedback from the histogram head to the regression head
after the warm-up stage, and (2) the feedback from the regression head to the histogram head after
initialization. The resulting MAE values are presented in Table [E-TT]

As shown in the table, removing the histogram-to-regression feedback leads to a noticeably larger
performance degradation, suggesting that this direction plays a more critical role in improving
prediction quality. In contrast, removing the regression-to-histogram feedback results in a smaller
degradation; however, the initialization of the histogram head still fundamentally relies on the
regressor. Therefore, this pathway as well as the overall design of the framework remains unified and
mutually consistent.

Table E.11: MAE evaluation for directional ablations within the mutual-enhancement framework.

Model Female — Male Male — Female
Full Model 5.82 7.0802
regression - histogram 6.0492 7.1080
histogram - regression 6.1304 7.1704

Table E.12: Efficiency comparison of MERCI and baseline methods.

Method Init Time (s) Train Time / Epoch (s) Peak GPU Memory
SSA (Adachi et al.|[2024 86.97 190.31 5.33GB
BN-adapt (Benz et al.| 0.00 170.91 0.73 GB
RSD (Chen et al.[[2021} 0.00 202.96 10.66 GB
DAN tal.] 0.00 194.63 10.76 GB
DARE AM (Nejjar et al.|2023 0.00 308.46 10.97 GB
VM 0.00 240.49 21.04 GB
TASFAR - -2024 435.71 180.28 5.51 GB
MERCI-R 305.32 232.94 6.41 GB
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Table E.13: Parameter count of MERCI components.

Component Parameters
Backbone + Regressor 120.30M
Histogram Head 0.53M

E.9 EFFICIENCY AND SCALABILITY ANALYSIS

In this section, we provide a detailed efficiency and scalability analysis of our proposed method,
MERCI, including (i) initialization time, (ii) per-epoch training time, (iii) peak GPU memory usage,
and (iv) parameter count on Biwi-Kinect dataset. All experiments were conducted on a single
NVIDIA GPU under the same settings as the main paper for a fair comparison.

Initialization Time. MERCI includes a one-time initialization step that involves stochastic forward
passes and a density estimation. As shown in Table[E:12] the initialization takes about 305 seconds,
of which fewer than 10 seconds correspond to KDE estimation. The total initialization cost is
comparable to that of TASFAR (around 430 seconds).

Per-Epoch Training Time. MERCI’s per-epoch training time (about 230s) is on the same order
as other source-free and unsupervised domain adaptation baselines, such as SSA (190.31 s), RSD
(202.96 s), DANN (194.63 s), DARE-GRAM (308.46 s), VM (240.49 s), and TASFAR (180.28 s).
Despite including an initialization stage, the iterative training cost of MERCI remains competitive.

Peak GPU Memory Usage We also report peak GPU memory usage in Table [E-I2} MERCI requires
only 6.41 GB, which is substantially lower than traditional unsupervised domain adaptative regression
methods such as RSD, DANN, DARE-GRAM, and SFDAR method VM. This demonstrates that
MERCIT is computationally manageable and memory-efficient, enabling scalability to common
backbone architectures.

Parameter Count. Finally, Table[E.13|summarizes the parameter count. The backbone plus regressor
contains about 120.30M parameters, while the proposed histogram head adds only 0.53M (<0.5%
overhead), indicating that MERCI introduces minimal and controllable architectural complexity.

E.10 CALIBRATION ANALYSIS OF SOURCE MODEL ON TARGET DOMAIN

To evaluate how well the uncertainty from the source model transfers to the target domain, we
conduct a calibration analysis using two stochastic prediction mechanisms: MC-Dropout (MC-D)
and Augmentation Ensemble (Aug-Ens). For each target sample, multiple stochastic predictions are
generated. Under a Gaussian approximation of these sampled predictions, we estimate a predictive
mean f; and standard deviation o;, and construct a predictive interval /; at confidence level P as:
Ii = [ i — Zpoi, i + Zpo; |,

where Zp is the standard normal quantile corresponding to confidence level P. This Gaussian-based
interval approximates the range that the model expects to contain the true value with probability P.

To quantify empirical calibration, we use the Prediction Interval Coverage Probability (PICP), defined
as the fraction of target samples whose ground-truth values fall within the predictive interval I;:

N
1 ~
PICP = Zl 1[y; € L.
A well-calibrated estimator should satisfy PICP ~ P.

The results in Table [E.14] show that MC-D is consistently under-calibrated on the target domain,
and Aug-Ens exhibits even stronger under-coverage across all confidence levels and variables. This
indicates that the miscalibration arises not from a specific estimator but from the inherent distribution
shift between source and target domains. These observations also clarify why uncertainty-dependent
SFDA methods such as TASFAR perform poorly, and they motivate MERCI’s use of partial label
sets and a histogram head to mitigate miscalibrated uncertainty and better capture the target-domain
density structure.
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Table E.14: Calibration of MC-Dropout (MC-D) vs. Augmentation Ensemble (Aug-Ens) on Biwi-
Kinect (female — male). Target confidence P denotes the nominal CI level; PICP is the empirical
coverage.

Variable Target P MC-D PICP MC-D |PICP — P| Aug-Ens PICP  Aug-Ens [PICP — P|

pitch 50% 0.3006 0.1994 0.2546 0.2454
pitch 60% 0.3662 0.2338 0.3147 0.2853
pitch 70% 0.4390 0.2610 0.3822 0.3178
pitch 80% 0.5211 0.2789 0.4693 0.3307
pitch 90% 0.6405 0.2595 0.5793 0.3207
roll 50% 0.1938 0.3062 0.1643 0.3357
roll 60% 0.2461 0.3539 0.2070 0.3930
roll 70% 0.2978 0.4022 0.2622 0.4378
roll 80% 0.3657 0.4343 0.3231 0.4769
roll 90% 0.4721 0.4279 0.4273 0.4727
yaw 50% 0.1790 0.3210 0.1382 0.3618
yaw 60% 0.2296 0.3704 0.1711 0.4289
yaw 70% 0.2880 0.4120 0.2078 0.4922
yaw 80% 0.3572 0.4428 0.2545 0.5455
yaw 90% 0.4562 0.4438 0.3188 0.5812
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