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Abstract

Despite the growing success of transform-based tensor models such as the t-product,
their underlying geometric principles remain poorly understood. Classical differ-
ential geometry, built on real-valued function spaces, is not well suited to capture
the algebraic and spectral structure induced by transform-based tensor operations.
In this work, we take an initial step toward a geometric framework for tensors
equipped with tube-wise multiplication via orthogonal transforms. We introduce
the notion of smooth t-manifolds, defined as topological spaces locally modeled
on structured tensor modules over a commutative t-scalar ring. This formulation
enables transform-consistent definitions of geometric objects, including metrics,
gradients, Laplacians, and geodesics, thereby bridging discrete and continuous
tensor settings within a unified algebraic-geometric perspective. On this basis,
we develop a statistical procedure for testing whether tensor data lie near a low-
dimensional t-manifold, and provide nonasymptotic guarantees for manifold fitting
under noise. We further establish approximation bounds for tensor neural networks
that learn smooth functions over t-manifolds, with generalization rates determined
by intrinsic geometric complexity. This framework offers a theoretical founda-
tion for geometry-aware learning in structured tensor spaces and supports the
development of models that align with transform-based tensor representations.

1 Introduction

Tensor-based modeling has emerged as a powerful paradigm for representing and analyzing structured
data, with widespread applications in machine learning, computer vision, signal processing, and
quantum AI [63, 64, 77, 53, 23, 39, 61, 62, 82]. Among these, the t-SVD framework [33, 32]
introduces a unique t-scalar representation, where each mode-3 fiber (tube) is treated as an indivisible
algebraic unit called a t-scalar, following a transform-based multiplication rule (see Section 2.1 for
details). Built on this foundation, a 2D image can be viewed as a t-vector whose entries are t-scalars,
while a 3D video can be interpreted as a t-matrix [78, 41, 33]. This representation enables low-rank
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Figure 1: Overview of the proposed t-product geometric framework. (A, B) Discrete and continuous
t-scalars in Kc and K8 form high-dimensional t-vectors (C, D) as elements of Kd

c or Kd
8. (E) A

t-module is a t-linear space spanned by t-vectors with coefficients in t-scalars. (F) A t-manifold
is defined as a smooth space locally homeomorphic to a (finitely generated free) t-module (G),
generalizing classical manifolds to the transform-based tensor setting. (I) In the transform domain, the
t-manifold decomposes into multiple frequency-wise manifolds, which support spectral smoothness.
(H) These constructions support the development of learning theory over t-manifolds, including
hypothesis testing, fitting from noisy data, and smooth function learning with tensor neural networks.

modeling in the transform domain, effectively capturing structured dependencies such as spatial,
spectral, and channel-wise correlations [32, 31, 82, 67, 27, 70].

A central concept in many t-SVD-based methods, such as Tensor Robust PCA [41] and Tensor Low-
Rank Representation (TLRR) [82], is the structure that can be viewed as a t-module (see Section 2.1
and Fig. 1-E), which serves as an analog of a linear space defined over the t-product algebra [30, 6].
For instance, TLRR models utilize t-modules to express the self-representation property of tensor
data [82, 67, 68, 30]. While effective, such linear structures are inherently limited in their ability
to capture nonlinear interactions or encode higher-order geometric properties. Moreover, existing
approaches are primarily formulated based on discrete tube structures [82, 67, 68, 30], typically
corresponding to time-indexed sequences with finite sampling, such as video frames [82]. These
methods lack a unified perspective that bridges discrete-time tubes [82] and continuous-time tube
representations [66, 47, 65] within a coherent geometric framework.

Recent work has begun to explore geometric aspects of the t-product, including Grassmannian and
Stiefel manifolds defined over t-scalars [45, 19]. However, these developments remain narrowly
focused and lack a unified theoretical framework. In particular, a general theory of differential
geometry that is compatible with the t-product and capable of defining smooth structures, Riemannian
metrics, geodesics, and other geometric objects in a transform-consistent manner has yet to be
established. At the same time, t-SVD-based models have demonstrated strong empirical performance
in graph-structured learning tasks [13, 51, 24, 69], where graphs may be viewed as discrete samples
from an underlying manifold. Yet, the intrinsic geometric structure of such tensorized data remains
largely unexplored.

These observations point to an important yet underdeveloped direction: developing a geometric
framework for tensor learning that extends differential geometry to the algebra induced by the t-
product. Such a framework is essential not only for unifying discrete and continuous tensor modeling,
but more importantly, for establishing a principled theoretical foundation for structure-aware learning
in tensor settings. In this work, we make an initial attempt toward this goal by posing the following
theoretical questions:

• Q1: Can we construct a rigorous differential geometric framework over t-scalars that system-
atically unifies discrete and continuous tensor representations, and gives rise to well-defined
geometric objects such as t-manifolds?

• Q2: Can such a framework support the theoretical analysis of smooth function learning on
low-dimensional t-manifolds from high-dimensional tensor data?
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To address these questions, we propose a theoretical framework of t-product geometry (see Fig. 1)
with the following contributions:

• Geometry. We introduce the concept of t-manifolds, a new class of smooth manifolds defined over
the t-scalar ring, formalized via a sheaf-theoretic construction. This lays a principled foundation
for defining transform-consistent geometric structures such as tangent spaces and Riemannian
metrics (Section 2), directly addressing Q1.

• Learning theory. We develop hypothesis testing and fitting methods for identifying low-
dimensional t-manifold structures from high-dimensional tensor data, and establish theoretical
guarantees for learning smooth functions defined on such manifolds using tensor neural networks.
These results offer a rigorous theoretical foundation for geometry-aware learning in the tensor
setting (Sections 3.1–3.2), thereby addressing Q2.

Beyond the theoretical developments, we further illustrate the modeling potential of the proposed
framework through a conceptual example in image modeling, where bidirectional structures based on
the t-product formulation are utilized to enhance clustering and tensor recovery2 (Section 4). To our
knowledge, this is the first framework that formulates tensor learning within a differential-geometric
space defined by the t-product algebra, bridging transform-based tensor analysis and smooth manifold
theory. The appendix provides detailed related work, proofs, algorithms, and experiments.

2 Differential Geometry over the t-Product Algebra

To address Q1, we develop a rigorous differential geometric framework over the t-product algebra
by introducing a new class of smooth manifolds, which we refer to as t-manifolds. These manifolds
are constructed over the t-scalar ring and support transform-consistent notions of smoothness and
locality. We begin by establishing the algebraic foundations necessary for this formulation.

2.1 Preliminaries on t-Scalar-Based Representation

Discrete t-scalars and the ring Kc. A discrete t-scalar is a third-order tensor a P R1ˆ1ˆc, which
may represent a row in a 2D image (with c columns, see Fig. 1-A) [82, 67] or the RGB channels of a
pixel (when c “ 3) [41]. We define the t-product between t-scalars as a multiplication on R1ˆ1ˆc

via an orthogonal transform M P Rcˆc (e.g., DCT) [61, 62], letting a ˚ b :“ M´1pMpaq d Mpbqq,
where d is the Hadamard product. This turns the space into a commutative ring [6], denoted
Kc :“ pR1ˆ1ˆc,`, ˚q, with identity element e :“ M´1p1q where 1 P Rc is the all-ones vector.

Continuous t-scalars and the ring K8. In the continuous setting, a continuous t-scalar is a smooth
function f P C8pRq, representing, e.g., a continuous-time signal (see Fig. 1-B) [66]. Let M be a
unitary operator on C8pRq (e.g., a multiplication or translation operator). Then multiplication is
defined as f ˚ g :“ M´1ppMfqpMgqq, and the ring3. For simplicity, we assume the existence of a
unit element e “ M´1p1q.

T-vectors and t-module. A t-vector is a tuple of d t-scalars (see Figs. 1-C and D). In the discrete case,
p “ pp1, . . . ,pdq P Kd

c with each pi P R1ˆ1ˆc; in the continuous case, f “ pf1, . . . , fdq P Kd
8.

This allows us to represent structured objects such as image rows, multichannel signals, or time-
varying slices [61, 82, 66]. The set Kd forms a free right module over the t-scalar ring K P tKc,K8u,
supporting addition and scalar multiplication defined componentwise [6]. We refer to such a space as
a t-module, which can be regarded as a natural generalization of a linear subspace, where the scalar
field (e.g., R or C) is replaced by the t-product algebra K (see Fig. 1-E). This t-module structure
serves as the model space for defining local charts in our construction of t-manifolds (Definition 1).

2This example is intended to demonstrate the modeling perspective inspired by the t-product framework
rather than to serve as an empirical benchmark.

3Alternatively, one may define K8 over CpRq rather than C8
pRq, provided that the transform M preserves

continuity and ensures closure of the induced multiplication in CpRq, and that the unit element e “ M´1
p1q

exists. For instance, when M is a translation or a smooth multiplication operator, e is smooth and lies in C8
pRq.

In contrast, if M is the Fourier transform, then e “ δptq is a tempered distribution lying outside CpRq; this can
be addressed by extending the scalar ring to the space of distributions D1

pRq or by adjoining a formal identity.
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2.2 Smooth t-Manifolds with Intrinsic Dimension p

We propose the notion of t-manifolds as a generalization of classical smooth manifolds (see Fig. 1-
F), in which real-valued coordinates are replaced by structured t-scalars from a commutative ring
K P tKc,K8u, and the local structure is modeled by a t-module (see Fig. 1-G). This provides a
unified algebraic-geometric view of discrete and continuous tensor data.

Definition 1 (Smooth t-Manifold of Dimension p). Let β P Ně1. A topological space M is called a
Cβ-smooth t-manifold of intrinsic dimension p over K if the following conditions are satisfied:

(1) Topological structure. M is a Hausdorff and paracompact topological space.

(2) Local charts. There exists a locally finite atlas pUα, φαqαPA such that each Uα is open in M, and
each φα is a homeomorphism onto an open subset Vα Ď Kp, where Kp denotes the free K-module
of rank p (with K P tKc,K8u). The manifold M can be regarded as embedded in a higher-rank free
K-module Kd (d ě p), equipped with the product topology—Euclidean if K “ Kc and Fréchet if
K “ K8.

(3) Component-wise smoothness and independence. For any overlapping charts φα and φβ with
Uα X Uβ ‰ H, the transition map φα ˝ φ´1

β is Cβ-smooth in the transform domain, and acts
independently4 across frequency components. Specifically:

• (Discrete case) K “ Kc: For each frequency index k “ 1, . . . , c, the k-th slice

rM ˝ φα ˝ φ´1
β ˝ M´1sk : Rp Ñ Rp

is a Cβ-smooth diffeomorphism, and different slices are mutually independent. Consequently,
MpMq – Mp1q ˆ ¨ ¨ ¨ ˆ Mpcq, where each Mpkq is a Cβ-smooth p-dimensional manifold.

• (Continuous case) K “ K8: For each frequency parameter t P R,

rM ˝ φα ˝ φ´1
β ˝ M´1sptq : Rp Ñ Rp

is Cβ-smooth, and the map t ÞÑ rM ˝ φα ˝ φ´1
β ˝ M´1sptq is continuous in the Cβ-topology.

Assuming component-wise independence across t, the transform-domain representation satisfies
MpMq –

ş‘

R Mptq dt, where tMptqutPR forms a continuously parameterized family of Cβ-
smooth manifolds.

This definition generalizes classical smooth manifolds: when K “ R and M “ Id, a t-manifold
reduces to an ordinary Cβ-smooth manifold modeled on Rp, with standard smooth transition maps.
More generally, when K P tKc,K8u and the product topology is imposed, the free module Kp

becomes a trivial Cβ-smooth t-manifold and serves as the local model space for general t-manifolds.
Definition 1 thus extends the notion of smooth manifolds to the algebraic setting induced by the
t-product, where smoothness is enforced in the transform domain to ensure compatibility with
underlying tensor operations. This definition strictly adheres to the core philosophy of the t-SVD
[33, 32, 6]: by treating tubes as algebraic units and operating in the transform domain, it captures
low-rank structures and coherent variations along spectral modes while ensuring frequency-wise
independence among transform components.

In data modeling, the intrinsic dimension p quantifies the local degrees of freedom required to
parametrize the manifold M, while the ambient dimension d corresponds to the number of t-vector
coordinates (e.g., image rows or spatial locations). In most applications, we expect d " p, consistent
with the manifold hypothesis–the assumption that structured tensor data concentrate near a low-
dimensional t-manifold embedded in a high-dimensional t-vector space. This hypothesis will be
theoretically examined in Section 3.1.

4Throughout this work, t-manifolds are defined under the assumption of frequency-wise independence in the
transform domain, meaning that local smooth structures are specified separately for each frequency component.
This assumption simplifies the definition of differential and geometric objects but rules out cross-frequency
interactions that could model spectral coupling. Relaxing this independence assumption would allow for more
expressive geometric structures and constitutes an interesting direction for future research.
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2.3 Differential Geometry on t-Manifolds

To develop a coherent geometric framework on t-manifolds, classical differential geometry needs to
be extended in a manner that respects the algebraic structure induced by the t-product. Traditional
geometric objects such as vector fields, differential forms, and Riemannian metrics are defined
over real-valued functions. In contrast, t-manifolds are locally modeled on t-scalars drawn from
a transform-based commutative ring K (e.g., Kc or K8), rather than R. This shift presents a
basic problem: since t-scalars are structured entities (e.g., discrete tubes or smooth functions),
basic operations such as directional derivatives and linear functionals cannot be defined purely
componentwise—they must remain consistent with the underlying transform algebra.

To address this, we adopt a sheaf-theoretic formulation rooted in commutative algebra [7, 22,
20], which provides a unified language for organizing frequency-wise smooth functions and their
differential relations. In this setting, all geometric objects are defined with respect to the structure sheaf
OM of K-smooth functions, ensuring transform-consistent local definitions even under frequency-
wise independence. Tangent vector fields are realized as K-linear derivations on OM, generalizing
directional derivatives to the setting of structured scalars, while differential 1-forms are defined as
elements of the Kähler differential module [22] over OM, satisfying the Leibniz rule and serving as
duals to vector fields under evaluation.

We now introduce the algebraic structures underlying differential geometry on t-manifolds.

Algebraic structures for geometry on t-manifolds. We generalize classical differential constructions
to the setting of K-smooth functions using a sheaf-theoretic approach that is compatible with the
transform-based algebra underlying the t-product.
Definition 2 (K-Smooth Function). Let U be an open subset of a t-manifold M and M be the
transform defining the t-product. A function f : U Ñ K is called K-smooth if its transform-domain
components are Cβ-smooth, i.e.,

rMf sk P CβprMpUqskq for K “ Kc, rMf sptq P CβprMpUqsptqq for K “ K8.

This notion extends classical smoothness to the structured t-scalar algebra by enforcing frequency-
wise regularity consistent with the t-product5.
Definition 3 (Structure Sheaf). Let M be a Cβ-smooth t-manifold over K. The structure sheaf OM
assigns to each open set U Ă M the set of all K-smooth functions f : U Ñ K:

OMpUq :“ t f : U Ñ K | f is K-smooth u.

This generalizes the classical ring of smooth real-valued functions to structured scalars in K and
serves as the algebraic base for all geometric constructions. Elements of OMpUq can be viewed as
generalized smooth scalar fields that take values in the t-product algebra K, respecting smoothness
in the transform domain. Having defined the structure sheaf OM, we now introduce the tangent
space, which captures infinitesimal variations of K-smooth functions on t-manifolds via K-linear
derivations.
Definition 4 (Tangent Space). The tangent space TMpUq over U Ă M is the space of K-linear
derivations acting on OMpUq:

TMpUq :“

"

D : OMpUq Ñ OMpUq

ˇ

ˇ

ˇ

ˇ

Dpf ˚ gq “ Dpfq ˚ g ` f ˚ Dpgq,

Dpa ˚ f ` b ˚ gq “ a ˚ Dpfq ` b ˚ Dpgq, @a, b P K

*

.

Each D generalizes a directional derivative in the K-valued setting and plays the role of a vector field.
Definition 5 (Differential 1-Forms). The module of 1-forms Ω1

MpUq is defined as the Kähler
differential module over OMpUq, generated by formal symbols df subject to the Leibniz rule:

dpf ˚ gq “ f ˚ dg ` g ˚ df.

5The definition of K-smooth functions is motivated by the notions of tubal functions [49] and t-functions
[43]. Throughout this work, all K-smooth functions and related geometric objects are assumed to satisfy
frequency-wise smoothness in the transform domain. This assumption is considerably stronger than that of
general vector-valued smooth functions, which may allow inter-frequency dependencies. While it simplifies
both definitions and theoretical analysis, it also limits the expressiveness of the framework for modeling more
complex cross-frequency behaviors. Relaxing the frequency-wise smoothness assumption therefore represents a
promising direction for future research.
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It satisfies dfpXq :“ Xpfq for all X P TMpUq and f P OMpUq, where TMpUq denotes the module
of K-linear derivations on OMpUq.

These definitions establish the algebraic foundation for Riemannian geometry on t-manifolds, includ-
ing Riemannian metric, gradients, Laplacians, and geodesics, which we develop next.

Riemannian geometry on t-manifolds. We equip each tangent space with a Riemannian metric that
respects the t-scalar algebra K P tKc,K8u and transform-domain smoothness, enabling computation
of distances, angles, and gradients.

Definition 6 (Riemannian Metric on t-Manifolds). A Riemannian metric on a smooth t-manifold M
is a symmetric, K-positive-definite, and K-bilinear form

g : TMpUq ˆ TMpUq Ñ OMpUq

defined on each open set U Ă M, satisfying the following conditions:

(1) Symmetry: For all X,Y P TMpUq and every x P U , the metric satisfies gxpX,Y q “ gxpY,Xq,
where gxpX,Y q :“ gpX,Y qpxq P K denotes the value of the K-valued function gpX,Y q at x.

(2) K-positive-definite: For every x P U and nonzero X P TMpUq, the element gxpX,Xq P K is
pointwise positive in the transform domain. That is, rMgxpX,Xqsk ą 0 for all k when K “ Kc, and
rMgxpX,Xqsptq ą 0 for all t when K “ K8.

(3) Smoothness: For all X,Y P TMpUq, gpX,Y q P OMpUq, i.e., it is K-smooth.

Intuitively, a Riemannian metric on a t-manifold assigns an inner product between vector fields, but
with values in the t-scalar ring K. In the transform domain, this corresponds to a family of classical
real-valued inner products computed slice-wise—one for each frequency index k (in the discrete
case) or each parameter t (in the continuous case)—thus preserving compatibility with the algebraic
structure of the t-product [32, 33].

The Riemannian metric enables the definition of gradients, which are essential for optimization tasks
on t-manifolds. Since functions on M are K-valued, the gradient must be defined in a way that
respects both the algebraic structure of the t-product and the underlying transform.

Definition 7 (Gradient). Let M be a t-manifold with Riemannian metric g. The gradient ∇f
of a function f P OMpUq is the vector field in TMpUq satisfying gp∇f,Xq “ dfpXq for all
X P TMpUq.

While defined abstractly, the gradient operates slice-wise in the transform domain, preserving the
structure of t-scalars and enabling differentiable learning in frequency-aligned tensor spaces.

Definition 8 (Divergence and Laplacian). Let X P TMpUq. The divergence divpXq is defined via
the Lie derivative of the volume form induced by g. The Laplacian of a function f is defined as
∆f :“ divp∇fq.

The Laplacian governs harmonicity and diffusion on t-manifolds and reduces to classical Laplace
operators slice-by-slice in the transformed domain. This structure enables geometric regularization
and smoothing in tensor spaces. In particular, it provides a principled generalization of spectral
methods used in t-SVD-based graph models [13, 51], where our construction now endows such
models with intrinsic manifold-aware Laplacians.

Definition 9 (Levi-Civita Connection and Geodesics). A connection ∇ on TM is called the Levi-
Civita connection if it is torsion-free and metric-compatible: ∇XY ´ ∇Y X “ rX,Y s and
XgpY,Zq “ gp∇XY,Zq ` gpY,∇XZq. A curve γ : I Ñ M is a geodesic if it satisfies ∇ 9γ 9γ “ 0.

This generalizes shortest-path and constant-velocity flows to the t-manifold setting. In practice,
geodesics respect the transform structure and can be computed slice-wise, providing a bridge to
structure-aware modeling in tensor dynamics.

These constructions establish a differential geometric framework for t-manifolds, addressing Q1 by
unifying discrete and continuous tensor data with transform-consistent metrics, operators, and flows.
This foundation enables learning theory explored in Q2 (Section 3).
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3 Learning Theory on t-Manifolds: Testing, Fitting, and Function Learning

Leveraging the t-manifold geometry framework, we tackle Q2 by testing and fitting a low-dimensional
t-manifold, then modeling its functions with tensor neural networks.

3.1 Theory of t-Manifold Hypothesis Testing and Fitting

We begin our study of Q2 by examining the geometric structure underlying tensor data. Motivated
by the manifold hypothesis [18], we ask: can t-vector data in Kd

c be well approximated by a
low-dimensional smooth t-manifold?

When tensor-valued data concentrate around a low-dimensional t-manifold M, learning can be
performed in a reduced, structure-aligned space, which enhances generalization and interpretability.
To model such structure, we exploit the algebraic property of Kc “ pR1ˆ1ˆc,`, ˚q, where the
t-product is defined through an orthogonal transform M P Rcˆc that decouples tensor operations
into frequency-wise matrix multiplications. This yields a natural frequency-domain representation:
a t-manifold M Ă Kd

c is characterized by its frequency slices Mk :“ trMxsk : x P Mu Ă Rd,
which jointly describe the global tensor geometry.

Specifically, we extend the manifold hypothesis framework [18] to the t-product setting. Given sam-
ples txiu

n
i“1 Ă Kd

c , we test whether, for each frequency index k, the transformed slice trMxiskuni“1
lies near a p-dimensional manifold Mk. The global t-manifold candidate is then defined as the
inverse transform of the slice manifold collection tMkuck“1. To quantify data concentration, we
aggregate the per-slice deviations

řc
k“1 distprMxisk,Mkq2 and test whether their average remains

below a given resolution ϵ.

To formally characterize the complexity of a t-manifold M, we define its volume and reach via its
transform-domain components:

Definition 10 (Spectral Volume and Reach). Let M Ă Kd
c be a p-dimensional t-manifold, and let

Mk :“ trMxsk : x P Mu Ă Rd denote its k-th frequency slice. We define the spectral volume and
spectral reach of M as Volspec :“

řc
k“1 H

p
RdpMkq and reachspec :“ min1ďkďc reachRdpMkq,

where Hp
Rd denotes the p-dimensional Hausdorff measure in Rd, and reachRd is the reach measured

in the Euclidean metric.

Theorem 1 (t-Manifold Hypothesis Testing). Let txiu
n
i“1 Ă BKd

c
be i.i.d. samples normalized to the

unit ball.6 Fix intrinsic dimension p, upper bound V on the spectral volume, lower bound τ on the
spectral reach, resolution ϵ ą 0, and confidence level δ P p0, 1q. Then there exists a statistical test
that, for sufficiently large n, distinguishes with probability at least 1 ´ δ between the following two
situations:

(I) (Near case) There exists M P Gpp, CV, τ{Cq such that 1
n

řn
i“1 dist

2
pxi,Mq ď Cϵ.

(II) (Far case) For all M P Gpp, V {C,Cτq, 1
n

řn
i“1 dist

2
pxi,Mq ą ϵ{C.

Here, Gpp, V, τq denotes the class of C2 t-manifolds with spectral volume at most V and spectral
reach at least τ , and C is a positive constant depending only on p and c.

This result suggests that low-dimensional t-manifold structures can, in principle, be detected from
high-dimensional tensor data, even when the underlying geometry is implicit and embedded in a
structured transform-based representation.

While Theorem 1 confirms the presence of t-manifold structure, addressing Q2 further requires
reconstructing the manifold itself. We now consider the fitting problem: given noisy samples
txiu

n
i“1 Ă Kd

c near a p-dimensional smooth t-manifold, can we recover a smooth estimator that
approximates it up to geometric accuracy?

Theorem 2 (t-Manifold Fitting). Let xi “ zi ` ξi P Kd
c , where zi „ UnifpMq with M P Gpp, V, τq,

and ξi „ N p0, σ2Icq is Gaussian noise. Assume p and σ are known. If n “ Opσ´pp`3qq and σ is
sufficiently small, then with probability at least 1 ´ C1 expp´C2σ

´c1q, the following hold:

6Rescaling so that }xi}Kd
c

ď 1 does not affect the generality of the result, since both spectral reach and
volume scale homogeneously under dilation.
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(I) The Hausdorff distance satisfies dHpM, xMq ď Cσ2 logp1{σq, where dH is computed under the
norm }x}Kd

c
:“

`
řc

k“1

řd
j“1 |rMxs

pjq

k |2
˘1{2

;

(II) The estimator xM is a p-dimensional C2 t-manifold with spectral reach at least c2στ .

Here, the constants C, c1, c2, C1, C2 depend only on p, V , and τ .

This result shows that the underlying t-manifold M can be reliably recovered from noisy data, with
provable guarantees on geometric accuracy. It demonstrates that consistent t-manifold estimation is
achievable under additive Gaussian noise.

3.2 Function Learning Theory on t-Manifolds

To further address Q2, we consider the problem of learning functions defined on a p-dimensional
t-manifold M Ă Kd

c , which may be a suitable model in structured prediction tasks such as image
or video analysis. The goal is to approximate an unknown Kc-smooth function f0 : M Ñ Kc that
maps high-dimensional t-vector inputs to structured t-scalar outputs, such as pixel intensities or
compressed features. While the low-dimensional geometry of M enables efficient representation,
the algebraic complexity of the t-scalar ring Kc, defined via transform-based multiplication, poses
unique challenges. In particular, any approximation architecture must respect both the non-Euclidean
geometry of M and the algebraic structure of Kc.

To address this, we adopt tensor neural networks (TNNs) specifically designed to operate over
t-product spaces [44, 61, 48]. A TNN approximator is constructed as a composition of L layers:

hl “ σ̂pWl ˚ hl´1q, l “ 1, . . . , L, (1)

where h0 “ xi P Kd
c is the input tensor, Wl P Rmlˆml´1ˆc are learnable weight tensors, and the

activation function is defined as σ̂pxq “ σpxqˆ3M , where σ denotes the elementwise ReLU function.
This transform-domain activation design follows [44], and M P Rcˆc is a fixed orthogonal transform,
such as the DCT.

The network outputs a function f̂pxi; θq :“ hL P Kc, where θ “ tW1, . . . ,WLu denotes all model
parameters. Training is performed via empirical risk minimization under the observation model:

yi “ f0pxiq ` ϵi, i “ 1, . . . , n, (2)

where yi P Kc is the response and ϵi denotes zero-mean Gaussian noise with covariance σ2Ic. The
empirical objective is defined directly in the transform domain:

f̂n P arg min
fPFn

1

n

n
ÿ

i“1

}yi ´ fpxiq}2Kc
:“

1

n

n
ÿ

i“1

c
ÿ

k“1

|rMpyi ´ fpxiqqsk|
2
. (3)

This formulation preserves transform consistency and ensures compatibility with the t-product struc-
ture of Kc. It also reveals the core challenge of t-manifold learning: designing neural architectures
capable of approximating Kc-valued functions over domains that are both geometrically curved and
algebraically structured.

We introduce regularity assumptions under which TNNs admit provable generalization guarantees.
Assumption 1 (Modeling Assumptions). The following conditions hold:

(A1) Data distribution regularity: The data points txiu Ă Kd
c lie within a compact p-dimensional

Cβ t-manifold M with spectral reach at least τ and spectral volume at most V . The sampling
distribution ν is supported on a compact subset of M and is absolutely continuous with respect
to the spectral volume measure.

(A2) Target function smoothness: The function f0 : M Ñ Kc is Cβ-Kc-smooth with bounded norm:

}f0}CβpMq :“ sup
α,k,}α}1ďβ

sup
xPφαpUαq

|BαrMpf0 ˝ φ´1
α qskpxq| ď B0.

(A3) Model class constraint: The hypothesis class Fn consists of TNNs with width N0, depth L0,
total parameter count S, and output norm bound B, using the t-product defined via a fixed
orthogonal transform M .

8



Remark 1. Assumption 1 reflects natural and interpretable conditions adapted to the spectral
geometry of t-manifolds: Specifically, (A1) extends the classical manifold hypothesis to the t-product
setting via spectral volume and reach [29]; (A2) requires frequency-slice smoothness of f0, a t-product
variant of a standard assumption in geometric deep learning [35]; (A3) reflects practical TNN design
and enforces algebraic compatibility with Kc [44, 61].

We are now ready to state the convergence guarantee for TNNs trained via empirical risk minimization
on t-manifolds.
Theorem 3 (TNN Approximation on t-Manifolds). Define peff :“ Opp logpcdqq as the effective
dimension determined by the intrinsic complexity of M. Under Assumption 1, there exists a TNN
class Fn such that the empirical risk minimizer f̂n of Problem (3) satisfies

E}f̂n ´ f0}2L2pνq ď Cn
´

2β
peff`2β ,

where C depends on pp,B0, V, τ, σ, c, d, log nq. Here, E}f̂n ´ f0}2L2pνq
represents the expected

squared L2-error between the TNN estimator f̂n and the true target function f0, measured with
respect to the sampling distribution ν on M.

This result shows that TNNs can approximate smooth functions on t-manifolds with rates determined
by the effective dimension Opp logpcdqq. The sample-dependent term benefits from the low effective
complexity of the t-manifold, achieving a near-optimal nonparametric regression rate under strict
manifold support. The bound scales polynomially with ambient and spectral parameters, aligning
with classical manifold approximation theory [29, 35] and extending it to the t-product manifold
settings.

4 Modeling Implications of t-Product Geometry

This section considers how the framework of t-product geometry can inspire new modeling perspec-
tives, complementing the theoretical developments presented earlier. The focus is conceptual rather
than empirical: we aim to understand how the algebraic constructs of the t-scalar, t-module, and
t-manifold translate into modeling principles for high-dimensional tensor data.

At the foundational level, the t-scalar serves as a basic modeling unit—such as a row or column of
an image—while preserving its internal spectral structure. Building upon this, the t-module defines
a flat t-linear space formed by linear combinations of t-scalars. Extending further, the t-manifold
introduces curvature or twisting over the t-module, providing a natural geometric mechanism to
represent structured deformations in the transform domain. In essence, the core modeling viewpoint
of t-product geometry lies in describing curvature within the space of t-scalar representations.

Building on this understanding, we explore how t-product geometry can inform model construction.
Section F.1 introduces the Bidirectional Tensor Representation (BTR) formulation, which incorpo-
rates dual t-module constraints for structured learning tasks such as clustering and tensor recovery.
Preliminary evaluations across several data modalities—including images, videos, hyperspectral and
multispectral images, point clouds, and thermal sequences—suggest that BTR provides a coherent
and flexible modeling perspective. Broader extensions and conceptual discussions are provided in
Section F.2.

Example: Bidirectional Tensor Representation (BTR). Images naturally exhibit row–column
symmetry, which aligns with the dual-module structure implied by the t-product: a two-dimensional
image can be regarded as a t-vector in either Kh

w (row-wise) or Kw
h (column-wise). The BTR

formulation leverages this bidirectional structure by applying low-rank regularization in both modules
through tensor nuclear norm surrogates, thereby promoting coherence from both perspectives.

Although Kh
w and Kw

h are each flat (linear) modules, enforcing low-rankness jointly in both induces a
coupling that geometrically twists the representation space. This coupling introduces an effective
curvature in the ambient tensor manifold, capturing nonlinearity and improving generalization. The
objective formulation and optimization details are presented in Appendix F.1.

We evaluate BTR on image clustering and video denoising tasks. As shown in Table 1, BTR achieves
consistent gains across clustering metrics (ACC, NMI, PUR) and yields the highest PSNR values in
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YUV video denoising under 20% noise (Figure F.2). More experiments on Poisson tensor completion
are provided in Appendix F.1.3. These results illustrate how incorporating geometric principles from
the t-product perspective can enhance structured tensor modeling.

Table 1: Clustering performance comparison on five benchmark datasets using accuracy (ACC),
normalized mutual information (NMI), and purity (PUR).

Dataset Metric R-TPCA OR-TPCA R-TLRR OR-TLRR BTR (Proposed)
DFT [41] DCT [40] [81] DFT [82] DCT [72] DFT [67] DCT [67] DFT DCT

FRDUE
ACC 0.7613 0.7777 0.7644 0.8429 0.8400 0.8358 0.7386 0.8591 0.8594
NMI 0.9093 0.9140 0.9127 0.9511 0.9510 0.9470 0.9045 0.9578 0.9567
PUR 0.7955 0.8077 0.7990 0.8760 0.8718 0.8643 0.7776 0.8901 0.8890

FRDUE-100
ACC 0.7906 0.7911 0.7974 0.8606 0.8602 0.8657 0.7616 0.8860 0.8769
NMI 0.9133 0.9136 0.9221 0.9529 0.9526 0.9564 0.9055 0.9643 0.9605
PUR 0.8197 0.8200 0.8271 0.8882 0.8881 0.8926 0.7956 0.9128 0.9032

Olivetti
ACC 0.3970 0.3703 0.3965 0.5230 0.6452 0.6162 0.5535 0.5645 0.6670
NMI 0.5990 0.5809 0.5987 0.6920 0.7905 0.7732 0.7395 0.7290 0.8080
PUR 0.4242 0.3983 0.4200 0.5483 0.6755 0.6492 0.5880 0.5960 0.7005

PIE-10
ACC 0.4276 0.4268 0.5401 0.5897 0.5831 0.4594 0.1975 0.6000 0.6110
NMI 0.6674 0.6621 0.7361 0.7562 0.7618 0.7049 0.5150 0.7697 0.7778
PUR 0.4469 0.4462 0.5593 0.6059 0.5999 0.4803 0.2050 0.6187 0.6325

USPS1000
ACC 0.3548 0.3537 0.3369 0.4257 0.4088 0.5191 0.4499 0.5799 0.5339
NMI 0.3066 0.2986 0.2828 0.3834 0.3915 0.5104 0.4490 0.5860 0.5390
PUR 0.4470 0.4542 0.4425 0.5264 0.5076 0.6330 0.5905 0.6862 0.6662

5 Concluding Remarks

We introduce a general framework of t-product geometry that extends differential geometry to the
t-product algebra for tensor learning. Through a sheaf-theoretic formulation, we define metrics,
gradients, Laplacians, and geodesics over both discrete and continuous t-scalars, unifying transform-
domain representations within a coherent geometric structure. To our knowledge, this is the first
systematic development of differential geometry on t-scalars, enabling structured modeling of tensor
data. We also present a theoretical study of learning on t-manifolds, encompassing hypothesis testing,
manifold fitting, and function learning. The potential applicability of this framework is illustrated
through examples in image clustering and video denoising. These results offer a principled foundation
for geometry-aware tensor learning.

Limitations and future work. This work focuses on the theoretical foundations of t-product
geometry, emphasizing conceptual definitions, assumptions, and provable guarantees rather than
empirical evaluations. The authors believe that developing a mature and comprehensive theory in this
direction is a highly nontrivial task. The framework presented here is preliminary and necessarily
incomplete, yet it aims to shed light on what a general theory of t-product geometry might entail and
to provide a foundation for continued theoretical development in this direction.

Despite offering a formal starting point, this work has limitations in scope, idealized assumptions,
and algorithmic development outlined below:

• Scope of study. This paper focuses primarily on the theoretical formulation of t-product geometry
rather than empirical validation. A natural next step lies in extending the framework to richer
modeling paradigms—such as generative modeling, geometric graph networks, temporal dynam-
ics, manifold optimization, manifold learning, and federated tensor learning—where geometric
consistency across spectral modes could offer new algorithmic principles and inductive biases.

• Idealized assumptions. For theoretical clarity, several idealized assumptions were made: (1)
transform-domain smoothness, (2) the existence of a unit element in the t-scalar ring, and (3)
frequency-wise independence among spectral components. These assumptions make analysis
tractable but restrict realism. In particular, relaxing the independence assumption to allow
structured cross-frequency coupling may reveal richer geometric behaviors and better reflect
the complexity of real-world tensor data.

• Algorithmic extensions. Beyond theory, the computational side of t-product geometry remains
largely unexplored. Developing numerically stable and scalable algorithms that leverage the pro-
posed geometric structures—for instance, in optimization over t-manifolds, spectral regularization,
or tensor-valued neural architectures—poses both a challenge and an opportunity. Such progress
would help bridge the gap between abstract geometry and practical tensor learning.

10



Acknowledgments and Disclosure of Funding

The authors sincerely thank the Area Chair and the four anonymous reviewers for their detailed
and constructive feedback. Their suggestions have greatly enhanced the quality and clarity of this
paper. This work was supported in part by the National Natural Science Foundation of China
under Grant Numbers 62203124, 62562065, and the JSPS KAKENHI Grant Numbers JP25K21283,
JP24K20849, JP23K28109, JP24K03005, JP25K21288, and RIKEN Incentive Research Project
100847-202301062011. Yuning Qiu was supported by the RIKEN Special Postdoctoral Researcher
Program.

References
[1] N. Aigerman, K. Gupta, V. G. Kim, S. Chaudhuri, J. Saito, and T. Groueix. Neural jacobian

fields: learning intrinsic mappings of arbitrary meshes. ACM Transactions on Graphics (TOG),
41(4):1–17, 2022.

[2] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge
University Press, Cambridge, 1999.

[3] R. G. Baraniuk and M. B. Wakin. Random projections of smooth manifolds. Found. Comput.
Math., 9(1):51–77, 2009.

[4] P. L. Bartlett, N. Harvey, C. Liaw, and A. Mehrabian. Nearly-tight VC-dimension and pseudodi-
mension bounds for piecewise linear neural networks. J. Mach. Learn. Res., 20:Paper No. 63,
17, 2019.

[5] M. Belkin and P. Niyogi. Semi-supervised learning on riemannian manifolds. Machine learning,
56(1):209–239, 2004.

[6] K. Braman. Third-order tensors as linear operators on a space of matrices. Linear Algebra and
its Applications, 433(7):1241–1253, 2010.

[7] G. E. Bredon. Sheaf Theory, volume 170 of Graduate Texts in Mathematics. Springer, 2nd
edition, 1997.

[8] Y. Cao and Y. Xie. Poisson matrix recovery and completion. IEEE Transactions on Signal
Processing, 64(6):1609–1620, 2015.

[9] M. Chen, H. Jiang, W. Liao, and T. Zhao. Nonparametric regression on low-dimensional
manifolds using deep relu networks. arXiv:1908.01842, 2019.

[10] M. Chen, H. Jiang, and T. Zhao. Efficient approximation of deep relu networks for functions on
low dimensional manifolds. Advances in Neural Information Processing Systems, 2019.

[11] H. Chung, B. Sim, D. Ryu, and J. C. Ye. Improving diffusion models for inverse problems using
manifold constraints. Advances in Neural Information Processing Systems, 35:25683–25696,
2022.

[12] J. W. Davis and V. Sharma. Background-subtraction using contour-based fusion of thermal and
visible imagery. Computer vision and image understanding, 106(2-3):162–182, 2007.

[13] L. Deng, X.-Y. Liu, H. Zheng, X. Feng, and Y. Chen. Graph spectral regularized tensor
completion for traffic data imputation. IEEE Transactions on Intelligent Transportation Systems,
23(8):10996–11010, 2021.

[14] S. Esposito, Q. Xu, K. Kania, C. Hewitt, O. Mariotti, L. Petikam, J. Valentin, A. Onken, and
O. Mac Aodha. Geogen: Geometry-aware generative modeling via signed distance functions.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7479–7488, 2024.

[15] C. Fefferman. Whitney’s extension problem for cm. Annals of Mathematics., 164(1):313–359,
2006.

11



[16] C. Fefferman, S. Ivanov, Y. Kurylev, M. Lassas, and H. Narayanan. Fitting a putative manifold
to noisy data. In Conference On Learning Theory, pages 688–720. PMLR, 2018.

[17] C. Fefferman, S. Ivanov, M. Lassas, and H. Narayanan. Fitting a manifold of large reach to
noisy data. Journal of Topology and Analysis, 17(02):315–396, 2025.

[18] C. Fefferman, S. Mitter, and H. Narayanan. Testing the manifold hypothesis. Journal of the
American Mathematical Society, 29(4):983–1049, 2016.

[19] K. Gilman, D. A. Tarzanagh, and L. Balzano. Grassmannian optimization for online tensor
completion and tracking with the t-svd. IEEE transactions on signal processing, 70:2152–2167,
2022.

[20] A. Grothendieck and J. Dieudonné. Eléments de géométrie algébrique. 1964.
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The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the three main contributions: (1) the
definition of t-manifolds and associated differential geometric structures, (2) a theoretical
framework for t-manifold learning including hypothesis testing and function approximation,
and (3) a conceptual application illustrating empirical implications. These align with the
main technical developments in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper includes a dedicated discussion of limitations in the conclusion, ac-
knowledging its primary focus on theoretical development. It highlights several simplifying
assumptions made for conceptual clarity, such as transform-domain smoothness and the
existence of a unit element. The discussion also notes that complex practical algorithms and
broader model classes are beyond the scope of this initial exploration.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For each theoretical result,including the t-manifold hypothesis testing theorem,
manifold fitting theorem, and the TNN approximation theorem, the paper clearly states all
necessary assumptions and outlines the corresponding results. Full proofs are deferred to
the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The main experimental results, such as the clustering and denoising case study
using BTR, are presented with detailed metrics, dataset names, comparison methods, and
tables. The appendix is indicated to provide further details including objective functions and
optimization procedures, ensuring reproducibility in relation to the conceptual claims.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The authors have made the code publicly available and indicate in the supple-
mental material that it includes all necessary scripts, data links, and instructions to reproduce
the main experimental results such as clustering accuracy and PSNR in denoising, which
supports faithful replication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: While the main paper focuses on theoretical contributions, it refers to the
appendix for algorithm details. The case study involving the proposed models specifies
datasets, metrics, and comparison baselines, and the supplementary material reportedly
includes further information on hyperparameters and optimization, satisfying reproducibility
requirements.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper presents performance metrics (e.g., ACC, NMI, PUR, PSNR)
through tables and figures, focusing on conceptual illustration rather than exhaustive bench-
marking. As the empirical results aim to demonstrate the potential utility of the proposed
framework, statistical uncertainty measures such as error bars or significance tests are not
emphasized.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The supplemental material includes information about the computational setup,
including hardware specifications and memory.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper focuses on theoretical and methodological advancements in tensor
geometry and learning, uses only public datasets for illustrative experiments, and does not
involve sensitive data, human subjects, or deployment risks, thus conforming to the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper is a purely theoretical work focused on foundational geometry and
learning theory for tensor data. As such, it does not raise direct societal concerns or impacts
that would typically require discussion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve the release of models or datasets with high risk for
misuse. It focuses on theoretical frameworks and illustrative experiments using standard
public datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper uses publicly available datasets and baseline models, all of which
are properly cited in the references. There is no indication of license violations, and terms
of use appear to be respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces the geometry-inspired models and associated code, which
is made available with documentation and usage instructions in the supplemental material,
supporting reproducibility and clarity for users.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any crowdsourcing experiments or research with
human subjects, so this question is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The study does not involve human participants, so there are no associated risks
or requirements for IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not use large language models (LLMs) as part of its core
methodology. Any potential use is limited to writing or editing assistance and does not
affect the scientific content or originality of the work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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