
Complete-Tree Space Favors Data-Efficient Link Prediction

Chi Gao 1 Lukai Li 1 Yancheng Zhou 2 Shangqi Guo 1

Abstract
Link prediction is a fundamental problem for
network-structured data. However, the prevalent
research paradigm tends to assume abundant ob-
served links, overlooking more challenging sce-
narios with a scarcity of observed links, which
results in insufficient sample sizes. In real-world
networks, hierarchical modularity, characterized
by structured and nested connections, remains
robust even with sparsely observed links. To
address the challenge of limited link samples,
we propose leveraging hierarchical modularity
as a prior structure. We introduce complete-tree
(CT) space, a discrete metric space with latent
complete-tree structures, to formalize hierarchical
modularity with an emphasis on its hierarchical
permutation symmetry. Utilizing the group the-
ory to quantize and compare permutation sym-
metries of different spaces, we prove that the
CT space provides a significantly lower bound
on sample complexity than the commonly used
Euclidean space. We develop leaf matching, a
data-efficient network embedding that maps nodes
onto the CT space and conducts discrete opti-
mization by reducing it to decentralized search.
Experiments verify the data efficiency of CT
space over other spaces. Moreover, leaf match-
ing outperforms the state-of-the-art graph trans-
former in data-scarce scenarios while exhibiting
excellent scalability. The code is available at:
https://github.com/KevinGao7/LeafMatching.

1. Introduction
Link prediction is a long-standing and crucial problem in
both graph representation learning and network science
(Liben-Nowell & Kleinberg, 2003; Kumar et al., 2020).

1Center for Brain-Inspired Computing Research, Department
of Precision Instrument, Tsinghua University, Beijing, China
2Weixian College, Tsinghua University, Beijing, China. Correspon-
dence to: Shangqi Guo <shangqi guo@mail.tsinghua.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Its goal is to infer missing links in a network based on the
observed ones, as real-world networks are often incomplete.
Despite its significance, there exists a substantial gap be-
tween prevalent research settings and real-world demands:
most models operate under the assumption that less than
15% of existing links are unobserved (Cen et al., 2023;
Xiong et al., 2024), yet in numerous real-world networks,
such as biological, informational, and social networks, the
proportion of unobserved links can exceed by far that of
observed links (Amaral, 2008; Olesen et al., 2011; Wei et al.,
2016; Hohwald et al., 2009; Adafre & de Rijke, 2005). For
instance, it is estimated that around 89% − 98% human
binary protein interactomes are still not verified (Dunham
& Ganapathiraju, 2021). Our work aims to fill this gap by
investigating data-scarce regimes and tackling the challenge
of insufficient sample sizes.

Figure 1. Hierarchical modularity exists regardless of link observ-
ability: the two distance matrices with different link observability
both indicate that a and b, as well as c and d, each form a module,
while the two formed modules together constitute a larger module.

Insufficient sample sizes call for strong priors, leading us
to focus on hierarchical modularity, a general property in
many important real-world networks, including but not lim-

1

Complete-Tree Space Favors Data-Efficient Link Prediction

ited to social, scientific collaboration, gene interaction, and
brain networks (Chen & Li, 2015; Radicchi et al., 2004;
Ryan et al., 2012; Meunier et al., 2010). In these networks,
permuting nodes within modules of each layer preserves the
overall distance matrix. Our key insight is that the hierar-
chically modular structure can still be detected even with
low link observability, as shown in Figure 1. This prop-
erty allows hierarchical modularity to serve as an effective
structural prior, narrowing the hypothesis space of joint link
distributions and reducing the sample complexity.

Hierarchical modularity inherently suggests hierarchical
permutation symmetries in a network’s latent space. For
example, permuting nodes as (a, b) → (b, a), (c, d) →
(d, c), (a, b, c, d) → (c, d, a, b) and their compositions does
not alter the distance matrices in Figure 1. To formalize this,
we introduce complete-tree (CT) space, a discrete metric
space with latent complete-tree structures. In this space,
the leaf nodes form the point set and the minimum height
of common ancestor root nodes defines distances. The CT
space fully captures the hierarchical permutation symmetry
of hierarchical modularity in real-world networks, allowing
it to intrinsically embed this prior and address the challenge
of limited sample sizes. The upcoming challenge lies in the
inherent discreteness of the CT space, which restricts the
use of conventional mathematical tools commonly applied
to continuous manifolds.

We solve this challenge by utilizing group theory. We define
the submetry group by making an analogy with the classical
concept of the isometry group, which captures the local per-
mutation symmetries in a metric space. This group enables
us to quantitatively calculate the hypothesize space size of
joint link distributions. We can then derive a lower bound
on the sample complexity for link prediction in any finite
metric space of node representations. We prove that the CT
space offers a significantly lower sample complexity than
the commonly used Euclidean space while maintaining ex-
pressivity for networks with an arbitrary latent tree structure.
Building on this, we develop leaf matching, a data-efficient
network embedding that directly maps nodes onto the CT
space. We further solve the discrete optimization challenge
of leaf matching by converting it to an averaged version of
greedy navigation over a generated computation graph that
ensures scalable decentralized search.

Experiments among network embeddings verify the sample-
efficiency of CT space compared to Euclidean, hyperbolic,
and Hilbert space. Meanwhile, leaf matching outperforms
the state-of-the-art graph transformer in data-scarce scenar-
ios on real-world networks, while maintaining scalability.
The contributions are listed below:

1. Theory. We provide a sample complexity lower bound
for link prediction with nodes represented in an arbitrary
finite metric space. We prove that the CT space offers a

significantly lower bound on sample complexity than the Eu-
clidean space while maintaining expressivity for networks
with an arbitrary latent tree structure.

2. Algorithm. We develop leaf matching, a data-efficient
network embedding that maps nodes onto the discrete CT
space, and construct its optimization algorithm.

3. Experiment. We verify the data efficiency of the CT
space over Euclidean, hyperbolic, and Hilbert space and
demonstrate the practicality and scalability of leaf matching.

2. Related Work
Despite the abundance of existing work on link prediction,
both our problem focus and method innovations are unique.

2.1. Data-Efficient Graph Learning

Few-shot link prediction (Bose et al., 2019) aims to predict
missing edges across multiple graphs using a small sample
of known edges. This task targets applications where multi-
ple graphs from a single domain are available. In contrast,
our work focuses on a more challenging scenario where
only one graph is known to the models. One-shot relation
learning for knowledge graphs (Xiong et al., 2018) empha-
sizes leveraging the semantic knowledge extracted by the
embedding models for relation generalization, while our
method utilizes the general topological structure for data-
efficient link prediction on complex networks. The work of
(Kitsak et al., 2023) deals with the similar setting of large,
substantially incomplete networks but targets at the shortest
path node finding problem rather than link prediction.

2.2. Metric Space for Network Embeddings

The work of (Menand & Seshadhri, 2024) proves that low-
dimensional vectors in Euclidean space cannot effectively
capture the sparse ground truth of link distributions. In
contrast, embeddings in hyperbolic space (Nickel & Kiela,
2017) demonstrate competitive performance regarding rep-
resentation capacity and generalization ability for link pre-
diction. Meanwhile, node2ket (Xiong et al., 2024), which
operates in quantum Hilbert space, also exhibits excellent
performance in both generalization capability and represen-
tation efficiency. Our CT space is comparable to hyperbolic
space in terms of the exponentially expanded neighbors but
differs due to its unique hierarchical permutation symme-
tries that theoretically ensures low sample complexity.

2.3. Tree-based Link Prediction

HBDM (Nakis et al., 2023) is a hierarchical block distance
model that combines the clustered tree structure with Eu-
clidean space vectors. The work of (Clauset et al., 2008)
also employs the leaves of tree ensembles to represent each

2

Complete-Tree Space Favors Data-Efficient Link Prediction

node for link prediction. A fundamental difference between
leaf matching and these existing works is that the complete-
tree structure is pre-determined instead of data-driven in
leaf matching. Therefore, no search is needed in selecting
the optimal tree, and the hypothesis space size is greatly
reduced to enable data-efficient link prediction.

3. Preliminaries
In this section, we will first formalize the link prediction
problem in a supervised learning context and second de-
scribe the node representation framework on which our
theory is built. We will then introduce the probably approx-
imately correct (PAC) learning theory, which clarifies the
main focus of our theory.

3.1. Link Prediction as Supervised Learning

Consider a graph G = (V,E), with node set V = {1, ..., v}
and edge set E ⊂ V × V . Formulating link prediction in
a supervised learning context, we can see that the input set
comprises node pairs X = V × V , and the target set Y =
[0, 1] provides a continual quantification of link existence.
Therefore, link prediction is exactly a regression problem.
We restrict this study to undirected graphs.

The hypothesis space H is then h : X → Y . Let L
be a loss function, the generalization error of h is thus
LD(h) = Ex,y∼D(X,Y)[l(h(x), y)], where D(X,Y) is un-
known. The empirical error LS(h) =

1
s

∑s
i=1[l(h(xi), yi)],

where S = {(xi, yi)}si=1 is the training set for link predic-
tion, comprising positive samples of observable links and
generated negative samples.

3.2. Link Prediction in the Finite Metric Space

Consider a finite metric space (M,d), with point set M =
{1, ...,m} of finite elements and the corresponding metric
d : M ×M → R. Suppose the metric space has dimension
n. In that case, we denote that an n dimensional coordinate
can represent each point in the point set, and that m =
mn

1 , where m,m1 respectively correspond to the number of
points in the n, 1 dimensional metric space.

Our theory is built upon the node representation framework,
where each node of a graph is represented by a point in
the metric space (e.g., a coordinate vector in the Euclidean
space), denoted by the mapping function f : V → M . The
link probability of each two nodes is negatively correlated
with the distance of two node representations, denoted by
the probability function g : R → [0, 1], a strictly decreasing
function with additional parameters related to the two nodes.
Therefore, we can denote h : X → Y as a composition
function: h = g ◦ d ◦ (f × f). This formulation is general
for link prediction, regardless of whether an embedding or

neural network is used for deriving node representations.

3.3. PAC learning for Link Prediction

Since link prediction can be formalized as a supervised
learning problem, the probably approximately correct (PAC)
learning theory can be applied to calculate the sample com-
plexity lower bound. Here we give the main result of PAC
learning on which our theory is built (Shalev-Shwartz &
Ben-David, 2014):

Lemma 3.1. Suppose the hypothesis space H is finite, the
range of the loss function l ∈ [0, 1], and that the training
links S are sampled i.i.d. from an arbitrary D, for any ϵ, δ ∈
(0, 1), the sample complexity satisfies that if s ≥ log(2|H|/δ)

2ϵ2 ,
then with probability of at least 1 − δ, the generalization
gap |LS(h)− LD(h)| ≤ ϵ for all h ∈ H .

By Lemma 3.1, a smaller hypothesis space size leads to
lower sample complexity for a given generalization gap.
Therefore, the key is to effectively reduce the size of the
hypothesis space to constrain the sample error while main-
taining expressiveness to ensure low approximation error.

4. Theoretical Bounds for the Complete-Tree
Space and Others

In Section 4.1, we will first define the concept of the sub-
metry group and, secondly, introduce the general sample
complexity bound for an arbitrary finite metric space. In
Section 4.2, we will formalize hierarchical modularity by
a complete-tree-based metric space before calculating its
sample complexity bound and comparing it with that of the
Euclidean space. These two subsections focus on the sample
error. In Section 4.3, we will discuss terms related to the
approximation error by proving that the complete-tree space
is sufficient to represent networks whose latent space has an
arbitrary tree structure. All the proofs are in Appendix A.

4.1. Bound for Finite Metric Space

By Lemma 3.1, the key for estimating the sample complexity
bound lies in calculating the size of the hypothesis space H .
We can see from Figure 2 that the symmetry of the metric
space directly constrains the hypothesis space size: the more
symmetric the metric space is, the larger number of node
placements will correspond to the same joint connection
probabilities, and therefore the smaller hypothesize space
size. Therefore, the challenge lies in giving a countable
description of the symmetry of the metric space, which we
solve by utilizing concepts in group theory, as shown below.

Since the nodes in V will generally occupy only a subset
of the whole point set M instead of the whole set, the local
symmetric properties of the metric space will more precisely
constrain the hypothesis space size than the global ones.

3

Complete-Tree Space Favors Data-Efficient Link Prediction

Figure 2. Since the distances of the three points in the metric space
form an isosceles triangle, we can see that the local symmetry of
the metric space constrains the size of the hypothesis space: the
size is reduced to two despite the six situations of node placements.

However, no concepts in the mathematical literature, as far
as we know, can directly describe such local symmetries.
Therefore, before introducing the main theory, we will first
define the submetry group by making an analogy with the
existing concept of isometry group.

Definition 4.1. Submetry Group. The submetry group is
defined to measure the local permutation symmetries of a
finite metric space. Specifically, consider a subset of points
Ms ⊂ M in a metric space (M,d) with n dimensions,
where Ms satisfies that the coordinates of each point in Ms

do not overlap in each dimension. Denoting σ as maps from
Ms to M , we define submetry group as the set of σ that
maintains all pair-wise distances:

Sub(Ms,M) ≜ {σ|d(i, j) = d(σ(i), σ(j)),∀i, j ∈ Ms}.
(1)

We denote the isometry group of M as Iso(M). Note that
submetry group is a natural extension of the isometry group:
when Ms = M and σ is restricted to a bijection, the subme-
try group becomes exactly the isometry group.

Different Ms may have different orders of submetry groups,
but we focus on boundary situations where the order of
the submetry group is relevant only to the number of ele-
ments in the subset Ms. Thus, we define MinSub(l,M) =
min

|Ms|=l
(|Sub(Ms,M)|) to represent the minimal local sym-

metry of a metric space.

With the definitions above, we can now provide an exact es-
timation of the hypothesis size |H| in the most general sense.
Taking such an estimation into Lemma 3.1 of PAC learning,
we can derive the sample complexity lower bound for an

arbitrary finite metric space as below.
Theorem 4.2. Suppose the v nodes of a graph are repre-
sented by v points non-overlapping in each dimension of an
n dimensional finite metric space M with m points, where
m = mn

1 . Suppose the link probability of each two nodes
can be expressed by a strictly decreasing function with the
distance of two node representations. Suppose the loss func-
tion l ∈ [0, 1], and the training links S are sampled i.i.d.
from an arbitrary D. For any ϵ, δ ∈ (0, 1), the sample
complexity of link prediction satisfies that if

s ≥ slb =
log

(
2
⌈

[A(m1,v)]
n

MinSub(v,M)

⌉
/δ
)

2ϵ2
, (2)

then with probability of at least 1 − δ, the generalization
gap |LS(h)− LD(h)| ≤ ϵ for all h ∈ H . Here we denote
slb as the sample complexity lower bound, and A(m1, v) as
the permutation number: choosing v ordered elements from
m1 distinct elements.

4.2. Bounds for the Complete-Tree and Euclidean Space

From Theorem 4.2, we can see that the sample complexity
lower bound for link prediction is directly constrained
by the MinSub (v,M) of the metric space from which
to represent the nodes. We will start from the property of
hierarchical modularity and see if it could lead to a metric
space with a large order of the submetry group, and therefore
constraining the sample complexity.

A module means that the nodes inside the module have a
more significant connection probability than those outside.
Therefore, module implies the symmetry of an arbitrary
permutation of nodes inside the module. Hierarchical modu-
larity thus implies that the latent metric space of the network
has a hierarchical permutation symmetry, which is naturally
satisfied by a tree. Accordingly, we formally define the
complete-tree space below, visualized by Figure 3.
Definition 4.3. Complete-Tree (CT) Space. Consider a
complete b-ary tree with k layers. We define the distance be-
tween any two leaf nodes i, j as lca(i,j)

k−1 , where lca(i, j) de-
notes the height of the lowest common ancestor node of i, j.
Note that lca(i, i) = 0. Now consider the n-dimensional
case: let the point set be the concatenation of leaf nodes:
MCT = {l : (l1, l2, ..., ln)} and metric dCT (l

(a), l(b)) =
1

n(k−1)

∑n
i=1 lca(l

(a)
i , l

(b)
i) for arbitrary l(a), l(b) ∈ M . We

can easily verify that dCT : MCT ×MCT → R is a metric
and dCT ∈ [0, 1]. A CT space is exactly (MCT , dCT) with
parameters b, k, n.

Given the definition of CT space, we can prove:
Theorem 4.4. For a CT space with parameters b, k, n,
suppose l ≤ bk−1 = m

1
n , then MinSubCT (l,MCT) >

m
l−1

(k−1)(b−1) .

4

Complete-Tree Space Favors Data-Efficient Link Prediction

Figure 3. The complete-tree space has hierarchical permutation
symmetries implied by the property of hierarchical modularity.
For example, the permutation of (a, b) → (b, a),(a, b, c, d) →
(c, d, a, b),(a, b, c, d, e, f, g, h) → (e, f, g, h, a, b, c, d) or their
compositions does not change the distance matrix.

Now move on to the case of the Euclidean space, which
is a default choice in graph representations. Consider an
n + 1 dimensional Euclidean space with the commonly
used cosine similarity as the metric. The point set in this
space can be restricted to an n dimensional sphere. When
considering a discrete version of this space, reasonable due
to the finite precision of real numbers in computers, such as
float 64, there exist finite and countable points on the sphere.
It is straightforward to prove that

Theorem 4.5. For a discrete Euclidean space with cosine
similarity as the distance, MinSubEu(l,MEu) = 2m

n+1
2 ,

where n is the dimension of the sphere and m is the number
of points in the metric space.

Figure 4. This figure shows that the CT space has a much larger
order of isometry group than the Euclidean space in the one-
dimensional case. The comparison of submetry groups in multi-
dimensional cases is more complex, but maintains the conclusion.

Comparing Theorem 4.4 with Theorem 4.5, and being aware
that the number of nodes is generally much higher than the
dimension of the metric space, we can see that

Proposition 4.6. The Complete-Tree Space is more sample-
efficient than the Euclidean Space for node presentation in
link prediction.

To understand intuitively why Proposition 4.6 holds, we can
refer to the visual representation in Figure 4.

4.3. Expressivity of the Complete-Tree Space

While the previous subsections focus on the sample error,
this subsection emphasizes the approximation error. Con-
sider real-world networks with an arbitrary latent tree struc-
ture. Their latent space can be formalized by the arbitrary-
tree space, which resembles the complete-tree space but
allows for varying bifurcation numbers. In Theorem 4.7, we
will demonstrate that a subspace within the complete-tree
space can effectively approximate the arbitrary-tree space,
as illustrated in Figure 5.

Figure 5. Subspace approximation: by increasing the number of
layers, there exists a mapping σM : MAT → MCT from points in
the arbitrary-tree space to the complete-tree space so that (1) the
distance order is preserved; (2) the distance gap is constrained.

Theorem 4.7. Subspace approximation. Consider an
arbitrary-tree space with dimension n, with the tree struc-
ture in each dimension including ka layers. The bifurca-
tion number to the ith layer ranges from b

(i)
l to b

(i)
h , where

i = 0, 1, , ka − 2, and denote r =
max

i
(
⌈
logb b

(i)
h

⌉
)

min
i

(
⌈
logb b

(i)
h

⌉
)
,

r1 = max
i

(
⌈
logb b

(i)
h

⌉
). Then there exists a map σM :

MAT → MCT from the arbitrary-tree space to a complete-
tree space with dimension n, bifurcation number b and kc

layers, where kc = 1 +
∑ka−2

i=0

⌈
logb b

(i)
h

⌉
, so that (1)

the distance order is loosely preserved; (2) the distance
gap is constrained: g = dCT (σM (a),σM (b))

dAT (a,b) satisfies that
g ∈ [min(1

r1
, 1
r), r]. Loose order preservation: for an

arbitrary three points a, b, c in the arbitrary-tree space,
if the distances in the arbitrary-tree space satisfies that

5

Complete-Tree Space Favors Data-Efficient Link Prediction

dAT (a, b) < dAT (a, c), then in the complete-tree space, we
have dCT (σM (a), σM (b)) < dCT (σM (a), σM (c)).

Theorem 4.7 establishes that the complete-tree space is suf-
ficient to represent a network with a latent space of arbi-
trary tree structures. This ensures that the approximation
error will be low. Note that this conclusion is general
for real-world complex networks because hierarchy is
a central organizing principle of complex networks as
demonstrated in (Clauset et al., 2008).

5. Leaf Matching
Leaf matching is an embedding that maps the nodes in graph
G to points in the CT space as defined in 4.3 with parameters
(b, k, n), denoted as f : V → MCT . We generally set b = 2
and k for bk−1 to approach the number of nodes in G.

5.1. Loss Function

The loss function of each node i in graph G is defined below:

loss(i) = −

∑
j∈P

log(p(i, j)) + λ
∑
k∈N

log(1− p(i, k))

 ,

(3)
where P includes all the other endpoints of observable links
that are connected to an endpoint of i. The negative nodes
k ∈ N are randomly selected deg(i) times from V to serve
as negative samples; λ balances positive and negative losses.
The probability p(i, j) that each two nodes i, j in graph G
has a link in the CT space is computed as below:

p(i, j;α, γ) =
1

1 + α ·
(

dCT (f(i),f(j))
log [deg(i) deg(j)]

)γ , (4)

where deg(i) denotes the degree of the i th node, and
dCT (f(i), f(j)) denotes the distance of the two points in
the CT space that represent nodes i, j. This formula is mod-
ified from (Krioukov et al., 2009; Jankowski et al., 2023),
with an additional log term to match the exponentially grow-
ing neighborhood size of points in the CT space. Here
γ = 1, 2, 3, ... implies the clustering coefficient or inverse
of temperature, which is unique to each type of complex net-
work. α > 0 is simply selected so that the loss is balanced
between positive and negative samples, analytically calcula-
ble (Allard et al., 2024) when the network is scale-free.

5.2. Optimization Method

Since the CT Space is discrete, defining neighborhoods
and gradients poses challenges. This limitation prevents
the application of standard optimization methods used in
continuous manifolds, such as stochastic gradient descent.

Figure 6. Leaf matching. The left side represents the latent tree
structure and the distance matrix of the CT space. The right side
shows the generated computation graph and the discrete optimiza-
tion process. Specifically, the computation graph is derived from
the CT space, and optimization occurs by moving to a neighbor
node (arrowed) on the computation graph that has the lowest loss.

Consequently, we shift our focus to decentralized search
techniques, which operate effectively in discrete domains
and rely solely on local information.

Jon Kleinberg (2001; 2006) demonstrates that a specific sub-
set of small-world networks can guarantee polylogarithmic
time complexity for navigation between arbitrary pairs of
nodes using a greedy strategy. This phenomenon suggests
that the neighboring nodes in such networks can naturally
define the neighborhoods within the discrete CT Space, fa-
cilitating scalable convergence. Building on this insight,
the optimization algorithm for leaf matching is developed,
reducing the network embedding optimization problem to
an averaged version of greedy navigation.

Specifically, for each dimension of the complete-tree space,
a computation graph Gc is generated where the points
(leaves) in the 1-dimensional CT space form the node set
of Gc. Each node has a constant degree kd = c log2b(nl),
where nl = bk−1 denotes the number of nodes in Gc (se-
lected to approach |V | in G), and c is a constant. The
probability that arbitrary two nodes x, y are connected in
Gc is given by the following expression

pc(x, y) ∝
1

bdCT (x,y)
. (5)

The optimization procedure is shown in Algorithm 1:

Scalability. The three loops in Algorithm 1 can all be

6

Complete-Tree Space Favors Data-Efficient Link Prediction

Algorithm 1 Greedy-Navigation-based Optimization
Input: an graph to be embedded G : (V,E) with v nodes
and mv edges; d computation graphs Gc : (Vc, Ec).
Initiate: Randomly map each node i in G to a node in
each computation graphs Gc; the output is f(i) with d
dimensions.
repeat

Add randomness. If the current epoch is below a
given ratio re of the maximum epoch, randomly adjust
all edges of a node to connect to a single random edge
in the graph G with a given probability.
for i = 1 to v do

for j = 1 to kd do
for k = 1 to d do

Loss calculation. Compute loss(i) with the
representation of i in the kth computation graph
now changed to be the jth neighbor node in Gc.

end for
Greedy navigation. Map the representation of i
in the kth computation graph to the neighbor node
(including the current node) with the lowest loss.

end for
end for

until The training epoch reaches a given value.

parallelized through vector computations, resulting in a par-
allelizable time complexity of O(mv log

2
b(nl)d), where d is

the dimension of the CT space. It’s important to note that
we use d here instead of n to prevent any misunderstandings
in the representation of time complexity; in other places of
this paper, n corresponds to the dimension.

Since integers can represent the leaf nodes, each point in the
d dimensional CT space can be represented by an integer
vector. We generally choose b = 2 for leaf matching, so that
both distance computations and edge samplings for the com-
putation graphs can be accelerated through bit operations.

Since the greedy navigation for decentralized search has a
guaranteed time complexity O(logb(nl)) (Kleinberg, 2001),
the number of convergence epochs for leaf matching is
also O(logb(nl)), which is demonstrated in the scalability
experiment 6.3.2. Consequently, the total time complexity
for leaf matching becomes O(mv log

3
b(nl)d). Note that nl

is set to approach the number of nodes in G. Therefore, the
discrete optimization algorithm is fast and scalable.

6. Experiment
We will outline experimental settings in Section 6.1, com-
pare network embeddings across metric spaces to demon-
strate the data efficiency of the CT space in Section 6.2,
showcase the practicality and scalability of leaf matching in
Section 6.3, and present ablation results in Section 6.4.

6.1. Settings

6.1.1. DATASETS

We experiment on six datasets, including the classic Cora,
Pubmed, Citeseer (Yang et al., 2016; Li et al., 2024), the
large-scale ogbl-collab, ogbl-ppa (Hu et al., 2020), and the
temporal ICEWS18 (Liu et al., 2022). These six typical
benchmark datasets, which vary in size, include real-world
citation, collaboration, political event, and protein interac-
tion networks. Detailed data statistics are in Appendix B.

6.1.2. EVALUATIONS

For Cora, Pubmed, Citeseer, and ICEWS18 we utilize ROC-
AUC, PR-AUC, and F1 score as the evaluation metrics. For
the large-scale ogbl-collab and ogbl-ppa, we adopt the de-
fault evaluation metrics of Hits@100 and Hits@50. We
define link observability as the ratio µ between observ-
able (training) edges and ground truth (total) edges. In the
space comparison experiment, we vary µ from 0.9 to 0.1.
In the practicality experiment, we set µ = 0.02 to simulate
practical scenarios. For data splitting and the negative ratio
in testing, we adhere to the settings established by CogDL
(Cen et al., 2023). Note that certain nodes from the test set
are excluded if they lack links in the filtered training set.

6.1.3. MODELS

There are twelve baselines. Three are representative net-
work embeddings: node2vec (Grover & Leskovec, 2016),
Poincaré (Nickel & Kiela, 2017), and node2ket (Xiong et al.,
2024), respectively applying the Euclidean, hyperbolic, and
quantum Hilbert space. Three are representative neural
networks, including the state-of-the-art (SOTA) LPformer
(Shomer et al., 2024) and two GNN baselines: SEAL (Zhang
& Chen, 2018) and GAE (Kipf & Welling, 2016). The re-
maining six are heuristic algorithms: Adamic Adar (AA)
(Adamic & Adar, 2003), Common Neighbors (CN) (New-
man, 2001), Jaccard’s Coefficient (JC) (Jaccard, 1901), Katz
Index (KI) (Katz, 1953), Resource Allocation (RA) (Zhou
et al., 2009), and Preferential Attachment (PA) (Barabási
et al., 1999). All parameter settings are in Appendix B.

6.2. Data Efficiency of the Complete-Tree Space

In this experiment, we compare leaf matching using the
complete-tree (CT) space with classic network embeddings
from other spaces. Since all the models being compared
are network embeddings, we anticipate that this experiment
will effectively reveal the sample complexity of different
spaces for node representation in link prediction. For fair
comparisons, we set the dimension size to 16.

As shown in Figure 7, leaf matching generally outperforms
all baselines across various link observability levels on repre-
sentative datasets. Notably, as link observability µ decreases,

7

Complete-Tree Space Favors Data-Efficient Link Prediction

0.10.20.30.40.50.60.70.80.9
Link Observability

55

60

65

70

75

80

85

90

95

R
O

C
-A

U
C

 (%
)

PUBMED

node2vec (Euclidean)
node2ket (Hilbert)
poincare (Hyperbolic)
ours (Complete-Tree)

0.10.20.30.40.50.60.70.80.9
Link Observability

70

75

80

85

90

95

100

R
O

C
-A

U
C

 (%
)

ICEWS18

0.10.20.30.40.50.60.70.80.9
Link Observability

10

20

30

40

50

H
its

@
50

 (%
)

OGBL_COLLAB

Figure 7. The performance of the four network embeddings across three representative datasets is presented, with link observability µ
decreasing from 0.9 to 0.1. Experiments were repeated 5 times. The curves show the mean values, and the shaded areas represent the
standard deviation. The full results (such as Cora, Citeseer and PR-AUC, F1 Score) can be found in Appendix B.

the advantage of leaf matching over node2vec increases,
confirming the sample efficiency of the CT space compared
to the Euclidean space, as established in Proposition 4.6.

Furthermore, the strong performance of leaf matching even
at high link observability highlights the effectiveness of
the CT space in representing complex networks, as demon-
strated in Theorem 4.7. It is worth noting that the Poincaré
embedding in hyperbolic space exhibits relatively low per-
formance. We attribute this phenomenon to the fact that
the Poincaré space has only one central point with exponen-
tially expanded neighbors, which limits its effectiveness to
tree-structured data. In contrast, the CT space allows every
point to have exponentially expanded neighbors, enabling it
to effectively represent real-world complex networks.

(normalized)
Shortest-path distance

(degree corrected)
CT space distance

Figure 8. Distance matrices of Citeseer are presented for nodes
with the maximal degree. Additional visualization results can be
found in Appendix B.

We can also see from Figure 8 that the hierarchically modu-

lar structures are generally detected and preserved by the CT
space. At low link observability (µ = 0.2), the structures
are even sharpened, qualitatively demonstrating how and
why the CT space is data-efficient.

6.3. Practicality and Scalability of Leaf Matching

6.3.1. PRACTICALITY

Table 1. The link observability is set to µ = 0.02 for simulating
an extremely difficult setting with practical meanings, as around
89%−98% human binary protein interactomes are still not verified
(Dunham & Ganapathiraju, 2021). Hit@50 and Hit@100 are
reported, respectively, for the ogbl-collab and ogbl-ppa datasets.

MODEL FEATURE COLLAB(%) PPA(%)

LPFORMER ✓ 15.55 ± 1.63 0.27 ± 0.03
LPFORMER × 8.43 ± 3.05 0.19 ± 0.07
SEAL ✓ 5.26 ± 1.46 OOM
SEAL × 1.03 ± 0.38 OOM
GAE ✓ 0.04 ± 0.00 0.00 ± 0.00
GAE × 0.21 ± 0.10 0.00 ± 0.00
AA × 3.52 0.12
CN × 3.52 0.08
JC × 3.52 0.02
KI × 6.76 0.03
RA × 3.52 0.11
PA × 2.02 0.06
OURS × 15.60 ± 0.24 0.55 ± 0.04

Table 1 shows that leaf matching outperforms all baselines,
including the SOTA neural network (LPformer) even with
the additional information on node features. Leaf matching
is thus practical for link prediction in real-world low-data
scenarios. Here we highlight some key applications where
sparse link prediction is crucial: (1) scientific collaboration
recommendation (Guo & Chen, 2013; Barabâsi et al., 2002);

8

Complete-Tree Space Favors Data-Efficient Link Prediction

(2) prediction of human protein interactomes (Dunham &
Ganapathiraju, 2021); and (3) other important real-world
networks such as mutualistic (Olesen et al., 2011), large so-
cial (Hohwald et al., 2009), and Wikipedia networks (Adafre
& de Rijke, 2005), which have also demonstrated a higher
prevalence of unobserved links compared to observed ones.

6.3.2. SCALABILITY

We conduct scaling tests using both synthetic (Erdős-Rényi
random networks) and real-world (ogbl-collab) networks to
verify the scalability of leaf matching.

103 104 105 106

number of nodes

60

80

100

120

140

nu
m

be
r o

f e
po

ch
s

ER Random Networks (Synthetic)
Ogbl-Collab (Real)

Figure 9. The convergence epoch is shown regarding the number
of nodes in the networks.

Figure 9 shows that the convergence epoch of leaf matching
is linearly (or even sub-linearly) related to the logarithm
of the number of nodes in the graph, representing excellent
scalability. This is because leaf matching is optimized on
a specific computation graph guaranteeing polylogarithmic
time complexity for navigation between arbitrary pairs of
nodes using a greedy strategy, as described in Section 5.2.

ogbl-collab ogbl-ppa

100

101

102

103

ru
nt

im
e

(s
/e

po
ch

)

1.43

35.76

16.35

505.22

26.42

224.33

1.1

OOM

Runtime per epoch with fixed batch size (512)
ours
LPFormer
GAE
SEAL

Figure 10. Runtime comparison between leaf matching and neural
network baselines.

A complementary experiment comparing the detailed run-
time per epoch is also conducted as shown in Figure 10,
demonstrating the time efficiency of leaf matching. We at-
tribute such a good property to the fact that each point in the
n dimensional CT space can be represented by an integer
vector: we generally choose b = 2 for leaf matching, so
that bit operations can be implemented to accelerate both
distance computations in the CT space and edge samplings
for the computation graphs.

6.4. Ablation Studies

The ablation experiments are conducted on Cora, Pubmed,
and Citeseer, regarding α and γ with µ = 0.1. It can be seen
from Figure 17 in Appendix B that leaf matching remains
robust with varying hyperparameters.

7. Conclusion and Discussion
We systematically investigate data-efficient link prediction
in metric spaces. We develop sample complexity theories
from the perspective of permutation symmetry, introduce
the data-efficient complete-tree space, construct a network
embedding leaf matching with a scalable optimization algo-
rithm, and validate our findings experimentally.

Table 2. Efficiency comparison between metric spaces. Specifi-
cally, data efficiency depends on the size of the hypothesis space,
time efficiency depends on whether there exists a sub-quadratic op-
timization algorithm, and space efficiency depends on the typical
vector dimension.

Efficiency Type Data Time Space

Complete-Tree Space ✓ ✓ ✓
Hilbert Space ✓ ✓
Hyperbolic Space ✓
Euclidean Space ✓

We highlight above an efficiency comparison between com-
monly used metric spaces. It can be seen that the CT space
is generally efficient. Furthermore, its ability to efficiently
express arbitrary hierarchical structures suggests broader
datatype extensions to enable data-efficient natural language
processing (Tifrea et al., 2018), visual modeling (Zhuang
et al., 2019), and hierarchical planning (LeCun, 2022).

In terms of insights for neuroscience, the CT space may
also facilitate the functional understanding of hierarchically
arranged grid cells in the entorhinal cortex (Zhang et al.,
2023; Shpektor et al., 2024). Additionally, the proposed
optimization method on the multi-dimensional CT space
may reveal what the natural gradient in the brain is for,
particularly in contexts where brain networks are greedily
navigable (Seguin et al., 2018; Heszberger et al., 2021).

9

Complete-Tree Space Favors Data-Efficient Link Prediction

Acknowledgements
We sincerely thank Luping Shi, Rong Zhao, Dahu Feng,
Yihan Lin, Hao Zheng, Likai Tang, Sen Song, Huan Luo,
Songhai Shi, and Ila Fiete for their valuable comments and
encouragements. This work was supported by the National
Natural Science Foundation of China (Grant 62206151) and
China National Postdoctoral Program for Innovative Talents
(Grant BX20220167).

Impact Statement
This paper aims to advance the field of Representation Learn-
ing, with the positive social impact of facilitating a deeper
understanding of critical networks, such as human protein
interactomes, mammalian brain connectomes, and genetic
interactions, even in the face of technological or funding
constraints. However, there is a potential negative social
impact when these techniques are applied to social networks,
particularly regarding privacy concerns. It is essential to
balance the benefits of enhanced understanding with the
ethical implications of data usage in sensitive contexts.

References
Adafre, S. F. and de Rijke, M. Discovering missing links

in wikipedia. In Proceedings of the 3rd international
workshop on Link discovery, pp. 90–97, 2005.

Adamic, L. A. and Adar, E. Friends and neighbors on the
web. Social networks, 25(3):211–230, 2003.

Allard, A., Serrano, M. Á., and Boguñá, M. Geometric
description of clustering in directed networks. Nature
Physics, 20(1):150–156, 2024.

Amaral, L. A. N. A truer measure of our ignorance. Pro-
ceedings of the National Academy of Sciences, 105(19):
6795–6796, 2008.

Barabási, A.-L., Albert, R., and Jeong, H. Mean-field theory
for scale-free random networks. Physica A: Statistical
Mechanics and its Applications, 272(1-2):173–187, 1999.

Barabâsi, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert,
A., and Vicsek, T. Evolution of the social network of
scientific collaborations. Physica A: Statistical mechanics
and its applications, 311(3-4):590–614, 2002.

Bose, A. J., Jain, A., Molino, P., and Hamilton, W. L. Meta-
graph: Few shot link prediction via meta learning. arXiv
preprint arXiv:1912.09867, 2019.

Cen, Y., Hou, Z., Wang, Y., Chen, Q., Luo, Y., Yu, Z.,
Zhang, H., Yao, X., Zeng, A., Guo, S., et al. Cogdl:
A comprehensive library for graph deep learning. In
Proceedings of the ACM Web Conference 2023, pp. 747–
758, 2023.

Chen, F. and Li, K. Detecting hierarchical structure of
community members in social networks. Knowledge-
based systems, 87:3–15, 2015.

Clauset, A., Moore, C., and Newman, M. E. Hierarchical
structure and the prediction of missing links in networks.
Nature, 453(7191):98–101, 2008.

Dunham, B. and Ganapathiraju, M. K. Benchmark evalua-
tion of protein–protein interaction prediction algorithms.
Molecules, 27(1):41, 2021.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 855–864, 2016.

Guo, Y. and Chen, X. Cross-domain scientific collaborations
prediction using citation. In 2013 IEEE/ACM interna-
tional conference on advances in social networks analysis
and mining (ASONAM 2013), pp. 765–770. IEEE, 2013.

Heszberger, Z., Majdán, A., Biró, A., Gulyás, A., Balázs, L.,
Németh, V., and Bı́ró, J. Greedy navigational cores in the
human brain. In Advances in Parallel & Distributed Pro-
cessing, and Applications: Proceedings from PDPTA’20,
CSC’20, MSV’20, and GCC’20, pp. 337–346. Springer,
2021.

Hohwald, H., Cebrián, M., Canales, A., Lara, R., and Oliver,
N. Inferring unobservable inter-community links in large
social networks. In 2009 International Conference on
Computational Science and Engineering, volume 4, pp.
375–380. IEEE, 2009.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133,
2020.

Jaccard, P. Étude comparative de la distribution florale dans
une portion des alpes et des jura. Bull Soc Vaudoise Sci
Nat, 37:547–579, 1901.

Jankowski, R., Allard, A., Boguñá, M., and Serrano, M. Á.
The d-mercator method for the multidimensional hyper-
bolic embedding of real networks. Nature Communica-
tions, 14(1):7585, 2023.

Katz, L. A new status index derived from sociometric anal-
ysis. Psychometrika, 18(1):39–43, 1953.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016.

10

Complete-Tree Space Favors Data-Efficient Link Prediction

Kitsak, M., Ganin, A., Elmokashfi, A., Cui, H., Eisenberg,
D. A., Alderson, D. L., Korkin, D., and Linkov, I. Find-
ing shortest and nearly shortest path nodes in large sub-
stantially incomplete networks by hyperbolic mapping.
Nature Communications, 14(1):186, 2023.

Kleinberg, J. Small-world phenomena and the dynamics of
information. Advances in neural information processing
systems, 14, 2001.

Kleinberg, J. Complex networks and decentralized search al-
gorithms. In Proceedings of the International Congress of
Mathematicians (ICM), volume 3, pp. 1019–1044. Cite-
seer, 2006.

Krioukov, D., Papadopoulos, F., Vahdat, A., and Boguná, M.
Curvature and temperature of complex networks. Phys-
ical Review E—Statistical, Nonlinear, and Soft Matter
Physics, 80(3):035101, 2009.

Kumar, A., Singh, S. S., Singh, K., and Biswas, B. Link
prediction techniques, applications, and performance: A
survey. Physica A: Statistical Mechanics and its Applica-
tions, 553:124289, 2020.

LeCun, Y. A path towards autonomous machine intelligence
version 0.9. 2, 2022-06-27. Open Review, 62(1):1–62,
2022.

Li, J., Shomer, H., Mao, H., Zeng, S., Ma, Y., Shah, N.,
Tang, J., and Yin, D. Evaluating graph neural networks for
link prediction: Current pitfalls and new benchmarking.
Advances in Neural Information Processing Systems, 36:
3853–3866, 2023.

Li, J., Shomer, H., Mao, H., Zeng, S., Ma, Y., Shah, N.,
Tang, J., and Yin, D. Evaluating graph neural networks for
link prediction: Current pitfalls and new benchmarking.
Advances in Neural Information Processing Systems, 36,
2024.

Liben-Nowell, D. and Kleinberg, J. The link prediction
problem for social networks. In Proceedings of the twelfth
international conference on Information and knowledge
management, pp. 556–559, 2003.

Liu, Y., Ma, Y., Hildebrandt, M., Joblin, M., and Tresp, V.
Tlogic: Temporal logical rules for explainable link fore-
casting on temporal knowledge graphs. In Proceedings of
the AAAI conference on artificial intelligence, volume 36,
pp. 4120–4127, 2022.

Menand, N. and Seshadhri, C. Link prediction using low-
dimensional node embeddings: The measurement prob-
lem. Proceedings of the National Academy of Sciences,
121(8):e2312527121, 2024.

Meunier, D., Lambiotte, R., and Bullmore, E. T. Modu-
lar and hierarchically modular organization of brain net-
works. Frontiers in neuroscience, 4:200, 2010.

Nakis, N., Çelikkanat, A., Lehmann, S., and Mørup,
M. A hierarchical block distance model for ultra low-
dimensional graph representations. IEEE Transactions
on Knowledge and Data Engineering, 2023.

Newman, M. E. Clustering and preferential attachment
in growing networks. Physical review E, 64(2):025102,
2001.

Nickel, M. and Kiela, D. Poincaré embeddings for learning
hierarchical representations. Advances in neural informa-
tion processing systems, 30, 2017.

Olesen, J. M., Bascompte, J., Dupont, Y. L., Elberling,
H., Rasmussen, C., and Jordano, P. Missing and for-
bidden links in mutualistic networks. Proceedings of
the Royal Society B: Biological Sciences, 278(1706):725–
732, 2011.

Quessard, R., Barrett, T., and Clements, W. Learning disen-
tangled representations and group structure of dynamical
environments. Advances in Neural Information Process-
ing Systems, 33:19727–19737, 2020.

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., and
Parisi, D. Defining and identifying communities in net-
works. Proceedings of the national academy of sciences,
101(9):2658–2663, 2004.

Ryan, C. J., Roguev, A., Patrick, K., Xu, J., Jahari, H.,
Tong, Z., Beltrao, P., Shales, M., Qu, H., Collins, S. R.,
et al. Hierarchical modularity and the evolution of genetic
interactomes across species. Molecular cell, 46(5):691–
704, 2012.

Seguin, C., Van Den Heuvel, M. P., and Zalesky, A. Nav-
igation of brain networks. Proceedings of the National
Academy of Sciences, 115(24):6297–6302, 2018.

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-
chine learning: From theory to algorithms. Cambridge
university press, 2014.

Shomer, H., Ma, Y., Mao, H., Li, J., Wu, B., and Tang,
J. Lpformer: An adaptive graph transformer for link
prediction. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pp. 2686–2698, 2024.

Shpektor, A., Bakermans, J. J., Baram, A. B., Sarnthein, J.,
Ledergerber, D., Imbach, L., Müller-Seydlitz, E., Barron,
H. C., and Behrens, T. E. A hierarchical coordinate
system for sequence memory in human entorhinal cortex.
bioRxiv, pp. 2024–10, 2024.

11

Complete-Tree Space Favors Data-Efficient Link Prediction

Tifrea, A., Bécigneul, G., and Ganea, O.-E. Poincaré
glove: Hyperbolic word embeddings. arXiv preprint
arXiv:1810.06546, 2018.

Wei, X., Cao, B., Shao, W., Lu, C.-T., and Philip, S. Y.
Community detection with partially observable links and
node attributes. In 2016 IEEE International Conference
on Big Data (Big Data), pp. 773–782. IEEE, 2016.

Xiong, H., Tang, Y., He, Y., Tan, W., and Yan, J. Node2ket:
Efficient high-dimensional network embedding in quan-
tum hilbert space. In The Twelfth International Confer-
ence on Learning Representations, 2024.

Xiong, W., Yu, M., Chang, S., Guo, X., and Wang, W. Y.
One-shot relational learning for knowledge graphs. arXiv
preprint arXiv:1808.09040, 2018.

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting
semi-supervised learning with graph embeddings. In
International conference on machine learning, pp. 40–48.
PMLR, 2016.

Zhang, H., Rich, P. D., Lee, A. K., and Sharpee, T. O.
Hippocampal spatial representations exhibit a hyperbolic
geometry that expands with experience. Nature Neuro-
science, 26(1):131–139, 2023.

Zhang, M. and Chen, Y. Link prediction based on graph neu-
ral networks. Advances in neural information processing
systems, 31, 2018.

Zhou, T., Lü, L., and Zhang, Y.-C. Predicting missing links
via local information. The European Physical Journal B,
71:623–630, 2009.

Zhuang, C., Zhai, A. L., and Yamins, D. Local aggregation
for unsupervised learning of visual embeddings. In Pro-
ceedings of the IEEE/CVF international conference on
computer vision, pp. 6002–6012, 2019.

12

Complete-Tree Space Favors Data-Efficient Link Prediction

A. Theoretical Proofs
A.1. Theorem 4.2

Since M is a finite metric space, and that graph G has finite nodes, we can see that the hypothesis space is finite. Therefore,
the requirements of lemma 3.1 is satisfied and the sample complexity lower bound is determined by the size of the hypothesis
space |H|.

Since the probability function g : R → [0, 1] is strictly decreasing, |H| equals the total number of the joint pair-wise
distance distributions of the v nodes in the metric space, which we denote as |H| = |J |, and j ∈ J denotes a joint distance
distribution.

By the assumption of non-overlapping mappings from V to M , we know that there are totally [A(m1, v)]
n situations of

node placements F = {f}. We can easily see from Figure 2 that there exists a mapping K : F → J that is a many-to-one
surjective function.

For each f ∈ F , there is a Ms(f), and therefore a Sub(Ms(f),M). By the definition of submetry group, we know that
{σ ◦ f |σ ∈ Sub(Ms(f),M)} is a set of node placements that belongs to the same joint distance distribution. We denote
this set as Set(f). Meanwhile, for an arbitrary f , we have |Set(f)| ≥ MinSub(v,M). Therefore, an arbitrary distance
distribution j has at least MinSub(v,M) node placements.

Since K : F → J is a many-to-one surjective function, we can derive that |H| = |J | ≤ ⌈ [A(m1,v)]
n

MinSub(v,M)⌉, and therefore
theorem 4.2 by lemma 3.1.

A.2. Theorem 4.4

Before bounding the MinSub(l,MCT) for the general n dimensional CT space, we will first give the result of the more
basic one-dimensional case.

For a CT space with parameters b, k, 1, suppose v ≤ bk−1 and denote the order of the isometry group of a one-dimensional

CT Space as I(b, k). Since I(b, 1) = 1 and I(b, k + 1) = I(b, k)bb! for k = 1, 2, 3, ..., we can derive I(b, k) = b!
bk−1
b−1 .

When it comes to the submetry group, its reduction of order from the isometry group happens when some leaves in a
certain subtree are not fully occupied (permutations within these non-occupied leaves will not add to the order of submetry).
Therefore, MinSubCT (l,MCT ; 1) occurs when the leaves are occupied most intensively.

Accordingly, we can derive MinSubCT (l,MCT ; 1) > I(b, 1 + ⌊logb(l)⌋).

Now can we give the lower bound of MinSubCT (l,MCT) for the more general n-dimensional case.

From the one-dimensional case, we know that MinSub(l,MCT ; 1)CT > I(b, 1 + ⌊logb(l)⌋), where I(b, k) = b!
bk−1
b−1

for the 1 dimensional case. Therefore, MinSub(l,MCT ;n) > I(b, 1 + ⌊logb(l)⌋)n = (b!)
b1+⌈logb(l)⌉−1

b−1 n > (b!)
l−1
b−1n =

m
l−1

(k−1)(b−1) [(b− 1)!]
l−1
b−1n ≥ m

l−1
(k−1)(b−1) .

A.3. Theorem 4.5

The cosine similarity suggests that the m points in the point set can be regarded as evenly distributed over a n dimensional
unit sphere, where the isometry group is composed of rotations and reflections.

By (Quessard et al., 2020), we know that rotations in the n+ 1 dimensional space can be parameterized by the product of
(n+1)n

2 unit rotations. Aware that there exists a one-to-one mapping between each rotation and each reflection (with a deter-

minant of 1 and −1, respectively, in matrix representations), we can therefore derive that |IsoEu(MEu)| = 2m
1
n

(n+1)n
2 =

2m
n+1
2 . Meanwhile, since the Euclidean space only has global symmetries and that the points in Ms by definition can not

by covered by an n− 1 dimensional sphere, we can see that MinSubEu(l,MCT) = |IsoEu(MEu) = 2m
n+1
2 .

13

Complete-Tree Space Favors Data-Efficient Link Prediction

A.4. Proposition 4.6

From Theory 4.2, we know that the sample complexity lower bound is negatively correlated with MinSub(v,M). For the
Euclidean Space with dimension n (here n refers to the dimension of the corresponding sphere), MinSubEu(v,MEu) =

IsoEu(MEu) = 2m
n+1
2 . For the CT space, MinSubCT (v,MCT) > m

v−1
(k−1)(b−1) . Since the number of nodes in a

graph is generally much larger than the dimension used, we can see that MinSubCT (v,MCT) > m
v−1

(k−1)(b−1) ≫
MinSubEu(v,MEu) = 2m

n+1
2 . Therefore, the CT Space is theoretically more sample-efficient than the Euclidean

space for node representation in link prediction.

A.5. Theorem 4.7

We first give the proof of the one-dimensional case.

Denote the coordinate of a point in the arbitrary-tree space as x : (x0, x1, , xka−2), where xi denotes the serial
number of the corresponding node in the bifurcation to the ith layer. For example, the point in the most left side of
a tree has a coordinate of (0, 0, , 0). Similarly, denote the coordinate of a point in the complete-tree space as
y : (y0, y1, , ykc−2).

Construct the map σM : MAT → MCT such that y = σM (x) = concatka−2
i=0 (xi)rb, where (xi)rb denotes the reversed code

of xi in the b-nary code with complementary zeros.

Consider two different points a, b in the arbitrary-tree space, and denote s as the location of the last different element of x(a)

and x(b). We can see that dAT (a, b) =
s+1
ka−1 , where s ∈ [0, ka − 2]. Meanwhile, we can derive that

dCT (σM (a), σM (b)) =


k

kc−1 if s = 0∑s−1
i=0

⌈
logb b

(i)
h

⌉
+k

kc−1 if s > 0
(6)

where k ∈ [1,
⌈
logb b

(s)
h

⌉
] denotes the height of the lowest common ancestor node of the sth coordinate of point a, b,

respectively, in a complete tree with bifurcation number b.

If dAT (a, b) < dAT (a, c), the location s(a, b) < s(a, c). Therefore, dCT (σM (a), σM (b)) < dCT (σM (a), σM (c)), the
loose order preservation is proved.

Meanwhile, since kc = 1 +
∑ka−2

i=0

⌈
logb b

(i)
h

⌉
, we can derive that

dCT (σM (a), σM (b)) ∈

{
[1
(ka−1)r1

, r
ka−1] if s = 0

[s
(ka−1)r ,

(s+1)r
ka−1] if s > 0

(7)

Therefore, we can derive that the distance ratio g = dCT (σM (a),σM (b))
dAT (a,b) satisfies that g ∈ [min(1

r1
, 1
r), r]

For the n dimensional case, we simply give the inequalities and gaps of distance components in each dimension, and since
the average operation preserves the inequalities, the n dimensional case is proved.

B. Experimental Details
We first report some common settings of leaf matching in all experiments. Specifically, the bifurcation number of the
complete tree is selected as b = 2. The epoch ratio to stop adding randomness is 0.8. The probability of edge change in the
randomness-adding process is 0.2. Meanwhile, all the experiment results with variance are tested five times.

B.1. Data Efficiency of the CT space

B.1.1. PARAMETERS

We utilize the official implementation of node2vec, node2ket, and poincare to test their performance. Here’s the hyperpa-
rameter settings for these algorithms in five datasets:

14

Complete-Tree Space Favors Data-Efficient Link Prediction

In general, we perform a grid search to systematically adjust the parameters of all models. The embedding dimensions
are set to 16 for all models for fair comparison (For node2ket, it is the dimension of sub-embeddings that is set to 16).
Other hyperparameters are set as default in their original official implementations except for the following adjustments for
performance improvement:

For node2ket in Cora, Citeseer, Pubmed, and ICEWS18, we increase the number of sub-embeddings C for each node from 8
to 16, the learning rate ρ from 0.1 to 1.25 and decrease the number of iterations from 100M to 50M. For ogbl-collab, C is
increased to 32, ρ is increased to 1.6 and the number of iterations is decreased to 50M.

For poincare in Cora, Citeseer, Pubmed, and ICEWS18, we increase the batch size from 5 to 64 and the learning rate
from 0.001 to 0.01. For ogbl-collab, the batch size is further increased to 256 but the learning rate is set back to 0.001 for
convergence of the loss.

For node2vec, no adjustments were made to the original parameters.

For leaf matching, in Cora, Citeseer and Pubmed, we set h = 12, γ = 3, α = 8, c = 1, λ = 1, re = 0.8, training it with
batch size 256 on 50 epochs. For ICEWS18, we set h = 14, γ = 3, α = 33, c = 3, λ = 1, re = 0.8, training it with batch
size 32 on 50 epochs. For ogbl-collab, we set h = 16, γ = 3, α = 57, c = 3, λ = 1, re = 0.8, training it with batch size
256 on 50 epochs.

B.1.2. DATASETS

We utilize the link prediction data wrapper from CogDL (Cen et al., 2023) to split the training and testing data. Here we
show how the dataset statistics changes with the link observability µ for cora, pubmed, citeseer, ogbl-collab, and icews18:

1000 1500 2000 2500
Number of Nodes

2000

4000

6000

8000

10000

N
um

be
r o

f E
dg

es

CORA

Train Set
Test Pos. Set
Test Neg. Set

5000 7500 10000 12500 15000 17500
Number of Nodes

0

20000

40000

60000

80000

N
um

be
r o

f E
dg

es

PUBMED

Train Set
Test Pos. Set
Test Neg. Set

1000 1500 2000 2500 3000
Number of Nodes

1000

2000

3000

4000

5000

6000

N
um

be
r o

f E
dg

es

CITESEER

Train Set
Test Pos. Set
Test Neg. Set

100000 120000 140000 160000 180000 200000 220000 240000
Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

N
um

be
r o

f E
dg

es

1e6
OGBL_COLLAB

Train Set
Test Pos. Set
Test Neg. Set

10000 12500 15000 17500 20000 22500
Number of Nodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
um

be
r o

f E
dg

es

1e6
ICEWS18

Train Set
Test Pos. Set
Test Neg. Set

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Li
nk

 O
bs

er
va

bi
lit

y

Figure 11. It is shown that the number of test edges has an unimodal distribution when link observability changes. This phenomenon is
caused by the fact that some nodes are removed from the test set if they have no links in the filtered training set.

B.1.3. EXTRA RESULTS

Reults on other metrics (ROC-AUC, PR-AUC, F1) for Cora, Citeseer, Pubmed and ICEWS18 are shown below in Figure 12,
13, 14, 15. The full visualization results are shown in Figure 16.

15

Complete-Tree Space Favors Data-Efficient Link Prediction

0.10.20.30.40.50.60.70.80.9
Link Observability

50

55

60

65

70

75

80

85

90

R
O

C
-A

U
C

 (%
)

node2vec (Euclidean)
node2ket (Hilbert)
poincare (Hyperbolic)
ours (Complete-Tree)

0.10.20.30.40.50.60.70.80.9
Link Observability

20

30

40

50

60

70

80

PR
-A

U
C

 (%
)

CORA

0.10.20.30.40.50.60.70.80.9
Link Observability

20

30

40

50

60

70

F1
 (%

)

Figure 12. ROC-AUC, PR-AUC and F1 score of the network embeddings on Cora are presented, with link observability µ decreasing
from 0.9 to 0.1. Experiments are run 5 times.

0.10.20.30.40.50.60.70.80.9
Link Observability

55

60

65

70

75

80

85

90

R
O

C
-A

U
C

 (%
)

node2vec (Euclidean)
node2ket (Hilbert)
poincare (Hyperbolic)
ours (Complete-Tree)

0.10.20.30.40.50.60.70.80.9
Link Observability

30

40

50

60

70

80

PR
-A

U
C

 (%
)

CITESEER

0.10.20.30.40.50.60.70.80.9
Link Observability

20

30

40

50

60

70

80

F1
 (%

)

Figure 13. ROC-AUC, PR-AUC and F1 score of the network embeddings on Citeseer are presented, with link observability µ decreasing
from 0.9 to 0.1. Experiments are run 5 times.

0.10.20.30.40.50.60.70.80.9
Link Observability

55

60

65

70

75

80

85

90

95

R
O

C
-A

U
C

 (%
)

node2vec (Euclidean)
node2ket (Hilbert)
poincare (Hyperbolic)
ours (Complete-Tree)

0.10.20.30.40.50.60.70.80.9
Link Observability

20

30

40

50

60

70

80

PR
-A

U
C

 (%
)

PUBMED

0.10.20.30.40.50.60.70.80.9
Link Observability

20

30

40

50

60

70

80

F1
 (%

)

Figure 14. ROC-AUC, PR-AUC and F1 score of the network embeddings on Pubmed are presented, with link observability µ decreasing
from 0.9 to 0.1. Experiments are run 5 times.

16

Complete-Tree Space Favors Data-Efficient Link Prediction

0.10.20.30.40.50.60.70.80.9
Link Observability

70

75

80

85

90

95

100

R
O

C
-A

U
C

 (%
)

node2vec (Euclidean)
node2ket (Hilbert)
poincare (Hyperbolic)
ours (Complete-Tree)

0.10.20.30.40.50.60.70.80.9
Link Observability

70

75

80

85

90

95

PR
-A

U
C

 (%
)

ICEWS18

0.10.20.30.40.50.60.70.80.9
Link Observability

60

65

70

75

80

85

90

F1
 (%

)

Figure 15. ROC-AUC, PR-AUC and F1 score of the network embeddings on ICEWS18 are presented, with link observability µ decreasing
from 0.9 to 0.1. Experiments are run 3 times.

Figure 16. Distance matrices of Cora, Citeseer, and Pubmed are presented of nodes with the maximal degree, with link observability µ
decreasing from 0.8 to 0.2.

17

Complete-Tree Space Favors Data-Efficient Link Prediction

B.2. Practicality

B.2.1. MODELS

We utilize the official implementations of LPFormer (Shomer et al., 2024), GAE (Kipf & Welling, 2016), and SEAL (Zhang
& Chen, 2018) provided in HeaRT (Li et al., 2023) to evaluate performance on the ogbl-ppa and ogbl-collab datasets. The
parameter settings for LPFormer are not changed. For SEAL, in addition to the original parameter settings, we set the
number of training epochs to 100 and the evaluation step to 1. For GAE, since there are no official scripts for ogbl-collab
and ogbl-ppa, we adopt the settings used for the PubMed dataset as a default. Similarly, we set the number of epochs to 100
and the evaluation step to 1.

For leaf matching, we set h = 16, γ = 6, α = 2.5, n = 16, c = 3, λ = 4
3 , re = 0.9 in ogbl-collab. In ogbl-ppa, we set

h = 19, γ = 7, α = 85, n = 32, c = 1, λ = 1, re = 1.0. Both of them are trained with a batch size of 512, using 100
epochs for ogbl-collab and 20 epochs for ogbl-ppa.

Because there’s no validation set in the setting of CogDL (Cen et al., 2023), we use the following policy to judge whether a
neural network is converged. After applying Gaussian smoothing to the loss curve, we define the convergence point as the
moment when the current loss Lcur first satisfies:

1

10
(L10% − Lcur) > Lcur − Lmin (8)

In other words, we consider the neural network to have converged when the relative improvement in loss since the 10th
percentile epoch exceeds ten times the gap between the current loss and the minimum loss.

Table 3. Heuristic methods for link prediction. N(x) denotes the set of neighbors of node x. For the Katz index, P (x, y, ℓ) represents the
set of all possible paths between nodes x and y of length ℓ.

Method Scoring Function

Common Neighbors |N(x) ∩N(y)|

Preferential Attachment |N(x)| · |N(y)|

Jaccard’s Coefficient |N(x)∩N(y)|
|N(x)∪N(y)|

Adamic Adar
∑

z∈N(x)∩N(y)
1

log |N(z)|

Resource Allocation
∑

z∈N(x)∩N(y)
1

|N(z)|

Katz index
∑∞

ℓ=1 β
ℓ · |P (x, y, ℓ)|

Heuristic methods predict missing links by first applying scoring functions S(x, y) to pairs of nodes, and then comparing
the scores of different links to make a judgment. As illustrated in Table 3, the six heuristic methods used in this study can be
categorized based on the type of neighbor information they utilize.

1. First-Order Method: Common Neighbors (Newman, 2001), Preferential Attachment (Barabási et al., 1999), and
Jaccard’s Coefficient (Jaccard, 1901) rely solely on first-order neighbor information. These methods evaluate the immediate
neighbors of nodes x and y.

2. Second-Order Method: The Adamic Adar (Adamic & Adar, 2003) and Resource Allocation (Zhou et al., 2009) employ
second-order neighbor information, calculating a weighted sum based on the properties of their common neighbors.

3. Global Structure Method: The Katz Index (Katz, 1953) calculates a weighted sum of all possible paths between two
nodes, which can be exponentially numerous. To manage this complexity, we approximate the Katz Index by limiting
the path length to 3 (essentially making it a ‘third-order’ method), represented as

∑L
ℓ=1 β

ℓ · |P (x, y, ℓ)|, where we set
β = 0.005 and L = 3, consistent with the approach used in HeaRT (Li et al., 2023).

18

Complete-Tree Space Favors Data-Efficient Link Prediction

B.2.2. DATASETS

For the two datasets ogbl-collab and ogbl-ppa, we utilize the link prediction data wrapper from CogDL (Cen et al., 2023) to
split the training and test data. Besides the default setting, we set link observability µ = 0.02. Note that certain nodes from
the test set are excluded if they lack links in the filtered training set. Here’s the information about the two datasets used in
our setting:

Table 4. Dataset statistics for ogbl-ppa and ogbl-collab where the link observability µ = 0.02 over the whole dataset. The number of
negative edges is 5 times over the positive edges in the testing set as a default setting in CogDL.

Statistic ogbl-ppa ogbl-collab

Original Nodes & Edges 576,289 & 30,326,273 235,868 & 1,285,465

Training Nodes & Edges 328,160 & 424,639 31,107 & 19,353

Testing Pos. Edges 14,753,580 117,541

Testing Neg. Edges 73,767,900 587,705

Training Edges / Testing Edges 0.03 0.16

B.3. Scalability

For synthetic data, the ER network is generated randomly with link probability p = 5
|V | , where |V | here denotes the number

of nodes. We use the default setting of leaf matching, and adjust k in each experiment to make nl = 2k−1 equals |V |. The
convergence criterion is set to when the training loss is below 0.89. Such a setting is reasonable because 0.89 is generally
the converging point of leaf matching over the ER networks of varying sizes. We repeatedly run the experiments five times
and report the average converging epoch.

For real-world data, we partition the training edges in ogbl-collab into subsets containing 1, 1/2, ..., 1/64 of the total edges.
For each subset, we conduct five training runs, calculate the mean loss and smoothen the loss curve by the Gaussian Kernel.
Convergence is determined when the relative decrease in loss for all subsequent epochs is no greater than 0.05% compared
to the current epoch. Additionally, the randomness technique used in neighbor selection is always kept (or re = 1.0) to
consistently assess convergence. The fitting curve is log-log curve formulated by y = α log (β log (γx+ c) + b) + a, where
x, y represent the number of nodes and the convergence epoch. Specifically, α = 20.97, β = 22.07, γ = 7.02× 10−4, c =
−5.54, b = −53.10, a = 62.04.

B.4. Run-time Comparison

We evaluate the per-epoch training time of our algorithm and other neural network models on the ogbl-collab and ogbl-ppa
datasets where µ = 0.02, with the batch size fixed at 512. For SEAL on ogbl-collab, the reported runtime excludes the time
required for subgraph dataset construction. On ogbl-ppa, SEAL encounters an out-of-memory (OOM) error, as constructing
the subgraph dataset requires excessive memory (on the order of terabytes).

GAE is typically infeasible for training on the ogbl series datasets due to the need to reconstruct the entire adjacency matrix,
which is prohibitive given the large number of nodes (over hundreds of thousands). To address this, we employ a block-wise
reconstruction strategy for the adjacency matrix, enabling training without affecting the loss. However, this approach results
in increased training time. The block size is set to 2048, meaning that at each step, we reconstruct an adjacency matrix of
size (N, 2048) where N is the number of nodes.

B.5. Ablation Studies

It can be seen from Figure 17 that (1) leaf matching remains robust on the three datasets with varying hyperparameters; (2)
space dimension has no significant influence on the performance of leaf matching, as long as it is not too small (above 8); (3)
leaf matching achieves its best performance when the leaf number (bk−1) approximates the number of nodes in the graph.

19

Complete-Tree Space Favors Data-Efficient Link Prediction

Figure 17. The ROC-AUC score with varying parameters on the three datasets.

20

