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Abstract
To understand feature learning dynamics in neural networks, recent theoretical works have focused
on gradient-based learning of Gaussian single-index models, where the label is a function of a latent
one-dimensional projection of the input. While the sample complexity of online SGD is determined
by the information exponent of the link function, recently proposed variants of SGD that introduce
non-correlational updates are instead limited by the generative exponent. However, this picture
is only valid for sufficiently large learning rate. In this paper, we characterize the relationship
between learning rate and sample complexity for a general class of gradient-based algorithms, and
demonstrate a phase transition from an “information exponent regime” with small learning rate to
a “generative exponent regime” with large learning rate. Our framework covers prior analyses of
online SGD and SGD with batch reuse, while also introducing a new layer-wise training algorithm.
Our theoretical study demonstrates that the choice of learning rate is as important as the design of
the algorithm in achieving statistical and computational efficiency.

1. Introduction

A key aspect of deep learning theory is to understand how neural networks can adapt to underlying
data structure and achieve desirable statistical and computational complexity through their opti-
mization dynamics. Towards this goal, several works have focused on learning target functions that
depend on low-dimensional projections of data, such as single- and multi-index models. For Gaus-
sian data and online SGD on the squared loss, the number of training samples/iterations needed to
learn a single-index model depends on the information exponent of the target function [9].

Variants of SGD that reuse batches [4, 23, 27] can have sample complexity controlled by the
generative exponent [20] of the target, which is at most as large as the information exponent, and can
be significantly smaller. However, a puzzling observation around reusing batches is that the sample
complexity of full-batch gradient flow on the squared loss, through the best known upper bounds,
still depends on the information exponent [10, 30]. This suggests that the role of the learning rate,
while ignored in the current literature, is also crucial in determining sample complexity.

In this work, we characterize the regimes of complexity emerging from the choice of learn-
ing rate. In Section 3, we introduce our general framework and provide a careful learning-rate-
dependent analysis of the sample complexity of learning single-index models, resulting in bounds
that explicitly demonstrate phase transitions induced by the choice of learning rate. We show that
our framework is expressive enough to capture both vanilla online SGD (Appendix D.1) and algo-
rithms with non-correlational update rules such as SGD with batch reuse (Section 4.2). Additionally,
we introduce a new layer-wise training algorithm that uses a different scaling of learning rate for the
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first and second layers of the network, thus using a two-timescales dynamics. We demonstrate that
the performance of this algorithm also depends critically on the learning rate of the second layer.

Figure 1: Test MSE of alternating SGD for differ-
ent choices of (η, n) in the setting σ∗ = σ = He3,
d = 50. See Appendix E for complete details.

Notation. For k ∈ N, we use [k] to denote the
set {1, . . . , k}. All asymptotic notation is with
respect to the input dimension d. We use Õ(·)
and Θ̃(·) to denote O(·) and Θ(·) up to poly-
logarithmic factors, respectively. Similarly, the
relations ≲ and ≳ denote bounds up to poly-
logarithmic factors. We write a ≍ b when
a ≲ b and a ≳ b. An event is said to oc-
cur with high probability if its probability is at
least 1 − od(1). For any g ∈ L2(N (0, 1)),
we write its Hermite expansion as g(z) =∑∞

k=0 uk(g)Hek(z), where Hek denotes the k-
th probabilist’s Hermite polynomial [33] and
uk(g) = Ez∼N (0,1)[g(z)Hek(z)] is the k-th
Hermite coefficient of g.

2. Problem Setup

We consider a supervised regression setting where the inputs are drawn from the Gaussian distribu-
tion and the labels are generated according to the single-index model, i.e.

yi = σ∗(⟨xi,θ∗⟩) + ζi, xi
i.i.d.∼ N (0, Id), (2.1)

where θ∗ ∈ Sd−1 is the ground truth direction, σ∗ : R → R is a (nonlinear) link function, and ζi is
i.i.d. symmetric sub-Weibull [40] label noise.

We learn the above model with a two-layer neural network f with N hidden neurons, first-layer
weights wj ∈ Sd−1, biases bj ∈ R, second layer weights aj ∈ R, and polynomial activations
σj : R→ R as in [27]. The network outputs a weighted average of the hidden layer activations:

f(x;W ,a, b) =
1

N

N∑
j=1

ajσj
(
⟨x,wj⟩+ bj

)
. (2.2)

Our objective is to characterize the number of iterations/samples required for weak recovery of
θ∗ as a function of the learning rate for online iterative algorithms. That is, starting from an initial-
ization w

(0)
j with ⟨θ,w(0)

j ⟩ ≍ d−
1
2 — which occurs with high probability for w(0)

j ∼ Unif(Sd−1)

— we seek T such that ⟨θ∗,w(T )
j ⟩ ≳

1
polylog d with high probability. Once this is achieved, strong

recovery (i.e., recovery of ⟨θ∗,w⟩ ≥ 1 − ε for some ε > 0) and approximation of the target via
ridge regression on a proceed with smaller sample complexity (see Appendices C.6, C.7).

We introduce two properties of σ∗ that are known to control the complexity of gradient-based
learning.

Definition 1 (Information Exponent [9]) For any g ∈ L2(N (0, 1)), let uk(g) denote the kth co-
efficient in its Hermite expansion. The information exponent of g is defined as

IE(g) := min{k > 0 : uk(g) ̸= 0}. (2.3)
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Throughout this paper, we denote the information exponent of the link function σ∗ in (2.1) by p,
and we use the notation pi := IE(σi∗) for i ≥ 2. Ben Arous et al. [9] show that online SGD with the
square loss has sample complexity n = Θ̃(d(p−1)∨1).

Definition 2 (Generative Exponent [20]) For any g ∈ L2(N (0, 1)), the generative exponent is
defined as the smallest information exponent over all L2 transformations of g, i.e.,

GE(g) = inf
T ∈L2(g#N (0,1))

IE(T g). (2.4)

Note that GE(g) ≤ IE(g) for all g. Throughout this paper, we denote the generative exponent
of σ∗ in (2.1) by p∗. Arnaboldi et al. [4], Lee et al. [27] show that SGD has sample complexity
n ≳ d(p∗−1)∨1 when going over each sample twice.

3. Sample Complexity of a Generic Online Algorithm

To generalize several notions of gradient-based learning of single-index models, we consider up-
dates to a first-layer weight w of the form

w(t+1) ← w(t) + γψη(y
(t), ⟨x(t),w(t)⟩)P⊥

w(t)x
(t), w(t+1) ← w(t+1)

||w(t+1)||
, (3.1)

where (x(t), y(t)) is an i.i.d. draw from the target single-index model (2.1), γ > 0, η ≥ 0, P⊥
w(t) =

Id −ww⊤, and ψη is an update function based on a “general gradient oracle”. This formulation is
similar to that of Chen et al. [16], who also use generalized gradients, but additionally incorporate
weight perturbation and averaging.

Importantly, our framework contains the batch-reuse SGD of [4, 27], in which η > 0 has the
interpretation of a second learning rate. This hyperparameter will dictate the phase transition of
interest by controlling the scale of non-correlational terms in the oracle and placing a constraint on
the largest possible learning rate γ. The key quantities elucidating the effect of η on the sample
complexity are the Hermite coefficients

µi(η) := ui
(
a 7→ ui−1

(
b 7→ ψη(σ∗(a), b)

))
, i ∈ [r]. (3.2)

We make two key assumptions. The first ensures all noise terms are sub-Weibull, which allows
us to make concentration arguments. The second provides some degree of alignment between σ and
σ∗, without which the model misspecification is so severe that weak recovery may not be achieved
(see e.g., [16, Assumption 4.1(b)]).

Assumption 3 The link function σ∗ is a polynomial of degree q = Θ(1), and the update function
ψη is a polynomial of degree at most r = Θ(1) in each of its arguments with O(1) coefficients.

Assumption 4 For any i∗ ∈ argmin 1≤i≤r:µi ̸=0 |µi(η)|−1(d
i−2
2

∨0), we have µi∗(η) > 0.

Below, we state our main result for a generic gradient-based algorithm (proof in Appendix C).

Theorem 5 Suppose Assumptions 3 and 4 hold. Let w(0) ∈ Sd−1 such that ⟨θ∗,w(0)⟩ ≍ d−
1
2 and

γ ≲ max1≤i≤r µi(η)d
−( i

2
∨1). Then, with high probability,

T (η) = min
1≤i≤r
µi>0

Θ̃
(
γ−1(µi(η))

−1d
i−2
2

∨0) (3.3)

iterations of (3.1) are necessary and sufficient to achieve ⟨θ∗,w⟩ ≳ 1
polylog d .
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Algorithm 1: Alternating SGD
Input: Learning rates η, γ > 0, sample size T
Initialize w(0) ∼ Unif(Sd−1), a = 1
for t = 0 to t = T − 1 do

Draw i.i.d. sample (x,y)
Update ã(t+1) ← a+ ηyσ(⟨x,w(t)⟩)
Update w(t+1) ←
w(t) + γyã(t+1)σ′(⟨x,w(t)⟩)P⊥

w(t)x

Normalize w(t+1) ← w(t+1)/||w(t+1)||
end
Output w(T )

Figure 2: Illustration of the sample complex-
ity of Algorithm 1 as a function of η in the
case p2 = 2.

4. Applications

We illustrate the applicability of Theorem 5 with two algorithms that incorporate non-correlational
updates: a layer-wise algorithm we term alternating SGD and batch reuse SGD. In this work, we
focus on gradients of the correlation loss ℓ(y, y′) = 1− yy′.

4.1. Alternating SGD

Algorithm 1, which we call alternating SGD, employs a two-step process to update a weight w.
First, it computes a gradient update for a with learning rate η. Then, it uses the updated value ã in
a gradient update on w with learning rate γ. Concretely, in the notation of our framework, we show
in Appendix D.2 that

ψ(y, z) = yaσ′(z) + ηy2σ(z)σ′(z). (4.1)

The first term corresponds to a vanilla SGD update, while the second term is the non-correlational
term that arises from using the updated second layer parameter. Intuitively, if η is sufficiently large
and p2 < p, this term will speed up training. The following makes this rigorous.

Corollary 6 Assume µp, µp2 > 0, η ≲ 1, γ ≍ max{d−( p
2
∨1), ηd−(

p2
2
∨1)}, and w(0) ∈ Sd−1 such

that ⟨θ∗,w(0)⟩ ≍ d−
1
2 . Then, with high probability,

T (η) = Θ̃
(
d(p−1)∨1) ∧ Θ̃

(
η−2d(p2−1)∨1). (4.2)

iterations of Algorithm 1 are necessary and sufficient to achieve weak recovery.

The assumption µp, µp2 > 0 is derived from our more general Assumption 4 and holds with Θ(1)
probability if σ follows the randomized construction in [27, Appendix B.1]. The sample complexity
result implies a phase transition between the regime where the correlational term dominates and one
where the non-correlational term dominates, occurring at (when p ≥ 2)

dp−1 ≍ η−2d(p2−1)∨1 ⇐⇒ η ≍ d−
1
2
[(p−p2)∨(p−2)]. (4.3)

For example, if σ∗ = He3, then p = 3 and p2 = 2. The phase transition occurs at η ≍ d−
1
2 . At

or below this threshold, alternating SGD has quadratic complexity, while η ≳ 1
polylog d gives Θ̃(d)

complexity. Intermediate values of η interpolate between these two regimes. We illustrate this in
Figure 1.
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Algorithm 2: Batch Reuse SGD
Input: Learning rates η, γ > 0, sample size T
Initialize w(0) ∼ Unif(Sd−1)
for t = 0 to T − 1 do

Draw i.i.d. sample (x,y)
w̃(t) ← w(t) + ηyσ′(⟨x,w(t)⟩)P⊥

w(t)x

w(t+1) ← w(t) + γyσ′(⟨x, w̃(t)⟩)P⊥
w(t)x

Normalize w(t+1) ← w(t+1)/∥w(t+1)∥
end
Output w(T )

Figure 3: Sample complexity of Algorithm 2
in the case of two phase transitions and p3 ≤
2.

4.2. Batch Reuse SGD

The analysis of the batch reuse SGD algorithm (Algorithm 2) proceeds similarly to the previous
subsection, with the key difference being that it can exhibit up to r phase transitions. By a Taylor
expansion argument (Appendix D.4), we see that the algorithm implements monomial transforma-
tions of the label up to degree r.

Corollary 7 Suppose Assumptions 3 and 4 hold, η ≲ d−1, γ ≲ max1≤i≤r(ηd)
i−1d−(

pi
2
∨1), and

w(0) ∼ Sd−1 such that ⟨θ∗,w(0)⟩ ≍ d−
1
2 . Then, with high probability,

T (η) = min
1≤i≤r

Θ̃
(
(ηd)−2(i−1)d(pi−1)∨1). (4.4)

iterations of Algorithm 2 are necessary and sufficient to achieve weak recovery.

For any two distinct i, j with µi, µj > 0, η induces the phase transition:

(ηd)−2(i−1)d(pi−1)∨1 ≤ (ηd)−2(j−1)d(pj−1)∨1 ⇐⇒ η ≤ d
[(pj−1)∨1]−[(pi−1)∨1]

2(j−i)
−1
. (4.5)

In particular, suppose that up∗−1(σ
(I)(σ′)I−1)up∗(σ

I
∗) > 0 and up(σ∗)up(σ) > 0 hold, which can

be achieved with Θ(1) probability by a randomized activation agnostic to σ∗ as in [27]. Taking
η ≲ d−

p+1
2 gives the sample complexity T = Θ(d(p−1)∨1), which matches the online SGD bound

[9]. On the other hand, when r ≥ I , taking η ≳ 1
d as in [27] matches their sample complexity

bound T = Θ̃(d). Appendix E details an experiment with batch reuse SGD exhibiting this phase
transition.

5. Conclusion

This work demonstrates that learning rate is a fundamental factor in determining the sample com-
plexity of gradient-based algorithms for learning single-index models with neural networks. We
show that algorithms that employ a combination of correlational and non-correlational update terms
(with distinct learning rates) exhibit phase transitions between two or more sample complexity
regimes as a function of the relative scaling of the non-correlational term. Natural directions for
future work include an extension of our framework to multi-index models, more general input dis-
tributions, non-polynomial activation functions, and non-constant learning rates.
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Appendix A. Related Work

Feature Learning and Single-Index Models. There is a vast body of literature on algorithms for
learning Gaussian single-index models, see e.g. [15, 24]. Here, we focus on more recent works that
use gradient-based training. Ben Arous et al. [9] studied online SGD for learning high-dimensional
single-index models with known non-linearity, where they introduced the information exponent
as the quantity controlling the number of samples needed to learn the model. The representation
learned by a network on single-index models with information exponent 1 was studied in [5, 30],
while Bietti et al. [10] considered gradient flow for learning functions with higher information ex-
ponent. On multi-index models, Damian et al. [21] considered one gradient step for learning poly-
nomials, and Abbe et al. [1] studied learning general multi-index models where a saddle-to-saddle
dynamics can emerge. General multi-index models remain difficult to analyze [11, 22, 32]. How-
ever, several works have studied the simpler case of additive models [34–37].

Going beyond unstructured isotropic Gaussian data, many works considered the existence of
additional input structure or modifications of the single-index model, such as a spiked covariance [6,
7, 12, 26, 30, 42], sparsity in the input [41], or a perturbation of the target [19]. The recovery of the
low-dimensional multi-index subspace has been used to go beyond standard learning frameworks,
e.g. to obtain better theoretical guarantees for adversarial robustness [31].

On the other hand, CSQ and SQ lower bounds for learning single-index models where developed
in [21] and [20] respectively, where the former depends on the information and the latter depends on
the generative exponent. Similar lower bounds were derived in [1] for multi-index models, where a
leap exponent controls the complexity, and Troiani et al. [38] studied approximate message passing
as a proxy for computational lower bounds.

Learning Rate and Generalization. Numerous works have studied the effect of learning rate
on optimization and generalization in deep learning. Notably, deep networks with large learning
rate can operate near the “edge of stability” [18], where it has been empirically observed that such
large learning rates improve generalization by preferring flat minima [8, 25, 28, 29, and references
therein], learning sparse features [2], or obtaining larger margin [13]. Closer to our setting, Arn-
aboldi et al. [3] study the optimal choice of learning rate for online SGD. However, while their
algorithm always remains in a correlational regime, we consider a wide range of learning rates to
understand the effect of non-optimal choices in practice, and demonstrate phase transitions in the
behavior of the SGD depending on stepsize, going from correlational regimes dominated by infor-
mation exponent to full statistical query regimes dominated by generative exponent.

Appendix B. Key Lemmas

Lemma 8 (Discrete Grönwall Inequality [17]) Let {mt}∞t=0 be a sequence such thatm0 = a and
mt ≤ a+ c

∑t−1
j=0mj for all t ≥ 1, where a, c > 0. Then, for all t ≥ 0,

mt ≤ a(1 + c)t ≤ aect. (B.1)

Moreover, if instead mt ≥ a+ c
∑t−1

j=0mj for all t ≥ 1, then mt ≥ a(1 + c)t for all t ≥ 0.
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Proof The result easily follows by induction. The statement is trivial for t = 0. Suppose now that
it holds for some t ≥ 0. Then,

mt+1 ≤ a+ c

t∑
j=0

mj ≤ a+ c

t∑
j=0

a(1 + c)j = a+ ca

(
(1 + c)t+1 − 1

(1 + c)− 1

)
= a(1 + c)t+1. (B.2)

The same argument can be used for the reversed inequality.

Lemma 9 (Discrete Bihari-LaSalle Inequality [9, Appendix C]; [27, Lemma 18]) Let {mt}∞t=0

be a sequence such that m0 = a and mt ≤ a + c
∑t−1

j=0m
k−1
j for all t ≥ 1, where a, c > 0, and

k ≥ 3. Then,

mt ≤
a

(1− (k − 2)cak−2t)
1

k−2

, ∀ 0 ≤ t ≤ 1

c(k − 2)ak−2
. (B.3)

Moreover, if instead mt ≥ a+ c
∑t−1

j=0m
k−1
j , then

mt ≥
a

(1− c
2a

k−2t)
1

k−2

, ∀ 0 ≤ t ≤ 2
c (a

−(k−2) − c). (B.4)

Proof
Let {at}∞t=0 be such that a0 = a and at = a+ c

∑t−1
j=0 a

k−1
j .

Upper Bound. Define {bt}∞t=0 by b0 = a and bt = a +
∑t−1

j=0 c(mj)
k−1. Then, mt ≤ bt by

definition. We prove that bt ≤ at by induction. Clearly, b0 = a0. Now,

bt+1 = a+

t∑
j=0

c(mj)
k−1 = bt + c(mt)

k−1 ≤ bt + c(bt)
k−1 ≤ at + c(at)

k−1 = at+1, (B.5)

where the last inequality follows from the induction hypothesis. Hence, mt ≤ bt ≤ at for all t ≥ 0.
Notice for all t ≥ 1 that

c =
at+1 − at
ak−1
t

=

∫ at+1

at

1

ak−1
t

dx ≥
∫ at+1

at

1

xk−1
dx =

1

k − 2

(
1

ak−2
t

− 1

ak−2
t+1

)
. (B.6)

Rearranging the above, we have

a
−(k−2)
t+1 ≥ a−(k−2)

t − c(k − 2). (B.7)

Unrolling the recurrence, we obtain

a
−(k−2)
t ≥ a−(k−2)

0 − c(k − 2)t. (B.8)

So long as a−(k−2) − c(k − 2)t > 0, we can rearrange to obtain the desired upper bound

at ≤
1(

a
−(k−2)
0 − c(k − 2)t

) 1
k−2

=
a(

1− (k − 2)cak−2t
) 1

k−2

. (B.9)

11



FROM INFORMATION TO GENERATIVE EXPONENT

The condition a(k−2) − c(k − 2)t > 0 holds so long as

t <
1

c(k − 2)ak−2
= Θ(a−(k−2)), (B.10)

matching the condition in (B.3).
Lower Bound. A similar induction argument to the one in the upper bound proof shows that

mt ≥ at for all t ≥ 0.
For each t ≥ 0, let bt = a

−(k−2)
t . Rewriting a step of the recurrence as

at+1 = at

(
1 +

c

a
−(k−2)
t

)
(B.11)

allows us to write a recurrence for {bt}∞t=0:

bt+1 = bt

(
1 +

c

bt

)−(k−2)

≤ bt
(

1

1 + c
bt

)
=

bt
bt+c
bt

=
b2t

bt + c
= bt −

cbt
bt + c

. (B.12)

Now, so long as bt ≥ c, we have bt+1 ≤ bt − c
2 . Unrolling the recurrence and rewriting in terms of

the at gives

bt ≤ b0 − c
2 t

⇒ a
−(k−2)
t ≤ a−(k−2)

0 − c
2 t

⇒ at ≥
1

(a
−(k−2)
0 − c

2 t)
1

k−2

=
a

(1− c
2a

k−2t)
1

k−2

.

(B.13)

It remains to characterize t for which bt ≥ c holds. Notice

b0 −
c

2
t ≥ c ⇐⇒ t ≤ 2

c
(b0 − c) = Θ(a−(k−2)), (B.14)

which matches the condition on t in (B.4).

Appendix C. Proof of Main Result

We follow a very similar line of reasoning to the proofs of other sample complexity bounds involving
the information and generative exponent in the literature, e.g., [9, 27]. Given a sample (x, y) from
the target single-index model (2.1), recall from Section 3 that the update equation for w is

w(t+1) =
w(t) + γψη(y, ⟨x,w(t)⟩)P⊥

w(t)x

||w(t) + γψη(y, ⟨x,w(t)⟩)P⊥
w(t)x||

, (C.1)

where P⊥
w = Id − ww⊤. Throughout this section, we adopt the notation κ(t) = ⟨θ∗,w(t)⟩ and

g(w;x, y) = ψη(y, ⟨x,w⟩)P⊥
wx. We are interested in the dynamics of the alignment with the

ground truth

κ(t+1) =
κ(t) + γ⟨θ∗, g(t)⟩
||w(t) + γg(t)||

. (C.2)

12
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In Section C.1, using standard Gaussian tail bounds and tools from high-dimensional proba-
bility, we characterize the concentration of the initial alignment κ(0) about d−

1
2 . Next, in Section

C.2, we describe the “slowdown” in the alignment dynamics due to normalization. In Section C.3,
we lower bound the expected update after one step. In Section C.4, we expand the expected dy-
namics over t steps and employ a standard martingale bound to control the noise, leading to a high
probability upper bound on sample complexity when the initial alignment is of order d−

1
2 . This is

complemented by a matching lower bound proven in the same way in Section C.5. The upper and
lower bound immediately imply Theorem 5, our main result. Subsequently, we discuss how weak
recovery leads to strong recovery (Section C.6) and approximation of the target to arbitrary accuracy
(Section C.7). This will elucidate the fact that achieving weak recovery is the sample complexity
bottleneck for any generic online algorithm satisfying our formalism in Section 3.

C.1. Initial Alignment

We follow [27] in showing a high-probability lower bound for the alignment between a hidden
neuron’s weight vector w and the ground truth direction θ∗. We make a small modification to
remove the dependence on step size from the bound.

Lemma 10 Let w(0) ∼ Unif(Sd−1). Then, P(κ(0) ≥ C0d
− 1

2 ) = Ω(1) for any constant C0 > 0.
Moreover, for any δ′ > 0 there exists C̃0 ≥ r such that P(κ(0) ≥ C̃0d

1
2 ) ≤ δ′.

Proof We may write

κ(0) = ⟨θ∗,w(0)⟩ d
=
⟨e1, g⟩
||g||

, (C.3)

where e1 ∈ Rd is the first standard basis vector and g ∼ N (0, Id).
To proceed, as in [27], we require the following lemma.

Lemma 11 (Theorem 2 in [14]) For any β > 1 and s ∈ R, we have√
2e(β − 1)

2β
√
π

e−
βs2

2 ≤
∫ ∞

s

1√
2π
e−

t2

2 dt. (C.4)

Then,

P
(
κ(0) ≥ C0d

− 1
2
)
≥ P

(
⟨e1, g⟩ ≥ 2C0 ∧ ||g|| ≤ C0d

1
2
)

≥ P(⟨e1, g⟩ ≥ 2C0)− P(||g|| ≥ C0d
− 1

2 )

≥
√
2e(β − 1)

2β
√
π

e−2C2
0β − e−Ω(d),

(C.5)

where the second term follows from Gaussian concentration of the norm. Taking β = 2, we see that
the above is Θ(1).

We can derive a high probability bound using Lipschitz concentration [39, Theorem 5.1.4] to
obtain

P
(
|κ(0)| ≥ C̃0d

1
2
)
≤ 2 exp(−c̃C̃2

0 ). (C.6)

for some c̃ > 0. Arguing by symmetry and taking C̃0 sufficiently large gives the second part of the
result.

13
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C.2. Normalization Error

Lemma 12 Suppose κ(t) ≥ 0. The update (C.2) satisfies the lower bound

κ(t+1) ≥ κ(t) + γ⟨θ∗, g(t)⟩ − γ2κ(t)||g(t)||2 − γ3
∣∣⟨θ∗, g(t)⟩|||g(t)||2. (C.7)

Proof When κ(t) + γ⟨θ∗, g(t)⟩ ≥ 0, we have

κ(t+1) =
κ(t) + γ⟨θ∗, g(t)⟩
||w(t) + γg(t)||

=
κ(t) + γ⟨θ∗, g(t)⟩√

1 + γ2||g(t)||2

≥ (κ(t) + γ⟨θ∗, g(t)⟩)(1− γ2||g(t)||2)
≥ κ(t) + γ⟨θ∗, g(t)⟩ − κ(t)γ2||g(t)||22 − γ3|⟨θ∗, g(t)⟩| ||g(t)||22.

(C.8)

The second line follows from the facts ⟨w(t), g(t)⟩ = 0 (due to P⊥
w ) and w(t) ∈ Sd−1. The third

line is trivial if γ2||g(t)||2 ≥ 1. Otherwise, observe that when γ2||g(t)||2 < 1,

1− γ2||g(t)||2 ≤ 1√
1 + γ2||g(t)||2

⇐⇒
(
1− γ2||g(t)||2

)2(
1 + γ2||g(t)||2

)
≤ 1

⇐⇒
(
1− γ4||g(t)||2

)
(1− γ2||g(t)||2) ≤ 1,

(C.9)

where the last line clearly holds. Now, when κ(t) + γ⟨θ∗, g(t)⟩ < 0, the same lower bound can be
shown via

κ(t) + γ⟨θ∗, g(t)⟩ − κ(t)γ2||g(t)||22 − γ3|⟨θ∗, g(t)⟩| ||g(t)||22 ≤ κ(t) + γ⟨θ∗, g(t)⟩

≤ κ(t) + γ⟨θ∗, g(t)⟩
(1 + γ2||g(t)||2)1/2

.
(C.10)

C.3. One-Step Population Dynamics

We extend the definition of the coefficients µi from (3.2) to handle label noise. Define

µi := Eζ [µ̂i(ζ)] := Eζ

[
ui

(
a 7→ ui−1

(
b 7→ ψη(σ∗(a) + ζ, b)

))]
, i ∈ [r]. (C.11)

Lemma 13 Assume that for some t ≥ 0 we have d−
1
2 ≤ κ(t) ≲ 1

polylog d . Moreover, suppose that

Assumption 4 holds. Then, there exists C > 0 such that taking γ ≤ Cmax1≤i≤r µid
−( i

2
∨1) yields

the following lower bound for the one-step dynamics of the alignment κ(t) := ⟨θ∗,w(t)⟩:

κ(t+1) ≥ κ(t) + γC1

r∑
i=1

µi(κ
(t))i−1(1− (κ(t))2) + γν(t), (C.12)

where ν(t) is a mean-zero sub-Weibull random variable with Θ(1) tail parameter and C1 > 0 is a
constant.

14
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Proof Omitting the superscript t, the expected update to the alignment with the ground truth θ∗
(given the previous iterate) is

E[⟨θ∗, g⟩] = θ⊤
∗ P

⊥
wEx,y

[
ψη

(
y, ⟨x,w⟩)x

)]
= θ⊤P⊥

wEx,y

[ r∑
j=0

uj
(
bj 7→ ψη(y, b)

)
Hej(⟨x,w⟩)x

]

= θ⊤P⊥
wEx,ζ

[ r∑
j=0

qr∑
i=0

ui

(
a 7→ uj

(
b 7→ ψη(σ∗(a) + ζ, b)

))
Hei(⟨x,θ∗⟩)Hej(⟨x,w⟩)x

]

=

qr∑
i=1

r∑
j=0

Ex,ζ

[
ui

(
a 7→ uj

(
b 7→ ψη

(
σ∗(a) + ζ, b

)))
iHei−1(⟨x,w⟩)Hej(⟨x,θ∗⟩)

]
⟨θ∗,P⊥

wθ∗⟩

=

r∑
i=1

µi⟨θ∗,w⟩i−1
(
1− ⟨θ∗,w⟩2

)
,

(C.13)

where the fourth line uses Stein’s Lemma and the fact P⊥
ww = 0. Thus, the size of the update will

be dictated by the first index i∗ such that |µi|⟨θ∗,w⟩i−1 is largest. Moreover, the centred random
variable ⟨θ∗, g⟩ − E[⟨θ∗, g⟩] is sub-Weibull with constant order tail parameter since Gaussian ran-
dom variables are sub-Weibull and the latter class is closed under polynomial transformation. (See
[40] for more details on sub-Weibull random variables).

We must also control the normalization error from Lemma 12:

γ2κ(t)||g||2 + γ3|⟨θ∗, g⟩| ||g||2. (C.14)

Note that

||g||2 = ||P⊥
wx||2

∣∣ψη(y, ⟨x,w⟩)
∣∣2

=

( r∑
j=0

uj
(
b 7→ ψη(y, b)

)
Hej(⟨x,w⟩)

)
(||x||2 − ⟨x,w⟩2),

(C.15)

and therefore,

E
[
||g||2

]
= Ex

[( r∑
j=0

uj
(
b 7→ ψη(y, b)

)
Hej(⟨x,w⟩)

)
(d− ⟨x,w⟩2)

]
≲ d. (C.16)

By the same token, we use our derivation in (C.13) to argue E[|⟨θ∗, g⟩|||g||2] ≲ d. The error (C.15)
is a sub-Weibull random variable with tail parameter proportional to γ2d.

By Lemma 12, this implies that the one step dynamics take the form

κ(t+1) ≥ κ(t) + γE[⟨θ(t)
∗ , g(t)⟩] + γν(t) − C2γ

2κ(t)(d+ ξ(t)). (C.17)

for some positive constant C2 and sub-Weibull random variables (with constant order parameter)
ν(t), ξ(t) that are independent of previous iterations. Now, choosing γ ≤ Cmax1≤i≤r µid

−( i
2
∨1)

and recalling κ(t) ≥ d−
1
2 leads to

C2γ
2κ(t)d ≤ C2Cγκ

(t) max
1≤i≤r

µid
−( i−2

2
∨0) ≤ C2Cγ max

1≤i≤r
µi(κ

(t))(i−1)∨1, (C.18)
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which can be made a sufficiently small constant multiple of γmax1≤i≤r µi(κ
(t))i−1 with an ap-

propriate choice of C. Hence, the expected one-step normalization error can be absorbed into the
expected one-step population dynamics (C.13). Furthermore, since the constraint on γ also implies
γd ≲ 1, we may absorb the noise γ2dξ(t) into the γν(t) noise term.

This leaves us with the alignment dynamics

κ(t+1) ≥ κ(t) + γC1

r∑
i=1

µi(κ
(t))i−1

(
1− (κ(t))2

)
+ γν(t). (C.19)

C.4. Sample Complexity Upper Bound

Proposition 14 (Generic Sample Complexity Upper Bound) Fix c ≳ 1
polylog d . Suppose ⟨θ∗,w(0)⟩ ≥

C0d
− 1

2 for some C0 > 0. Then, there exists C ≳ 1
polylog d such that for any δ ∈ (0, 1), setting

γ ≤ Cδmax1≤i≤r µid
−( i

2
∨1) gives ⟨θ∗,w(t)⟩ ≳ 1

polylog d within

T (η) = min
1≤i≤r
µi>0

Θ̃
(
γ−1

(
µi(η)

)−1
d

i−2
2

∨0) (C.20)

iterations with probability at least 1− δ.

Proof Unrolling the recurrence from Lemma 13,

κ(t) ≥ κ(0) + γC1

r∑
i=1

t−1∑
s=0

µi(κ
(s))i−1

(
1− (κ(s))2

)
− γ

∣∣∣∣ t−1∑
s=0

ν(s)
∣∣∣∣. (C.21)

Let T denote the weak recovery time in Theorem 5. Since ν(t) is sub-Weibull, we have, for some
constant C3 > 0,

E
[∣∣∣∣ T−1∑

s=0

ν2s
∣∣∣∣2] =

T−1∑
s=0

E
[
|ν2s|2

]
≤ C3T. (C.22)

Moreover,

P
(

max
0≤t≤T−1

∣∣∣∣ t∑
s=0

ν2s
∣∣∣∣2 ≥ 4C3δ

−1T

)
≤ δ

4C3T
E
[

max
0≤t≤T−1

∣∣∣∣ t∑
s=0

ν2s
∣∣∣∣2] by Markov’s inequality

≤ δ

C3T
E
[∣∣∣∣ T−1∑

s=0

ν2s
∣∣∣∣2] by Doob’s maximal inequality.

(C.23)

Assume without loss of generality that κ ≥ 2d−
1
2 . Our bound on the dynamics after t updates

becomes, with high probability,

κ(t) ≥ 2d−
1
2 + γC1

r∑
i=1

t−1∑
s=0

µi(κ
(s))i−1(1− (κ(s))2)− 2γC

1
2
3 δ

− 1
2T

1
2

= 2d−
1
2 + γC1

r∑
i=1

t−1∑
s=0

µi(κ
(s))i−1(1− (κ(s))2)− γ

1
2C4δ

− 1
2 min
1≤i≤r
µi>0

µ
− 1

2
i d−( i−2

4
∨0).

(C.24)
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for some C4 = Θ̃(1). Now, recalling that γ ≤ Cδmax1≤i≤r µid
−( i

2
∨1), we have

γ
1
2C4δ

− 1
2 min
1≤i≤r
µi>0

µ
−( i−2

4
∨0)

i ≤ C
1
2

(
min
1≤i≤r
µi>0

µ
− 1

2
i d−( i−2

4
∨0)

)
max
1≤i≤r

µ
1
2
i d

−( i
4
∨ 1

2
)

≤ C
1
2C4d

− 1
2 ,

(C.25)

which can be made less than d−
1
2 by choosing C sufficiently small. Hence, our final (high proba-

bility) upper bound for the multi-step dynamics is

κ(t) ≥ d−
1
2 + γC1

r∑
i=1

t−1∑
s=0

µi(κ
(s))i−1

(
1− (κ(s))2

)
. (C.26)

Now, we unroll each of the r terms in the expected dynamics and determine how quickly each
one reaches c ≍ 1

polylog d . Consider terms where µi > 0. Since κ(t) ≲ 1
polylog d by assumption, we

may absorb the factor (1− (κ(t))2) into the constant C1 (abusing notation). On the other hand, the
contributions of terms with µi ≤ 0 will be negligible by Assumption 4.

For the i = 1 term, the noiseless dynamics give

d−
1
2 + γC1µit ≥ 2c

⇐⇒ t ≥ γ−1C−1
1 µ−1

i (2c− d−
1
2 ) = Θ(γ−1µ−1

i ).
(C.27)

When i = 2, we have, by Grönwall’s Inequality (Lemma 8)

d−
1
2 + γC1µi

t−1∑
s=0

κ(s) ≥ d−
1
2
(
1 + γC1µi

)t ≥ 2c

⇐⇒ t log
(
1 + γC1µi

)
≥ log 2c+

1

2
log d

⇐⇒ t ≥
log 2c+ 1

2 log d

log(1 + γC1µi)
= Θ̃(γ−1µ−1

i ),

(C.28)

where the final equality follows from the fact x− x2

2 ≤ log(1 + x) ≤ x for x ∈ (0, 1).
Lastly, for i ≥ 3, we have, from the Bihari-LaSalle inequality (Lemma 9),

d−
1
2 + γC1µi

t−1∑
s=0

(κ(s))i−1 ≥ d−
1
2

(1− 1
2γC1µid

− i−2
2 t)

1
i−2

≥ 2c

⇐⇒ d−
i−2
2 ≥ (2c)i−2 − 1

2(2c)
i−2γC1µid

− i−2
2 t

⇐⇒ t ≥ 2γ−1C−1
1 µ−1

i d
i−2
2 ((2c)i−2 − d−

i−2
2 ) = Θ(γ−1µ−1

i d
i−2
2 ).

(C.29)

Thus, the maximum weak recovery time is indeed

T = min
1≤i≤r
µi>0

Θ(γ−1µ−1
i d

i−2
2

∨0). (C.30)
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C.5. Sample Complexity Lower Bound

The proof of the matching sample complexity lower bound proceeds much in the same way as that
of the upper bound.

Proposition 15 (Generic Sample Complexity Lower Bound) Fix c ≳ 1
polylog d . Suppose that

⟨θ∗,w(0)⟩ ≤ C̃0d
− 1

2 for some C̃0 > 0. Then, there exists a constant C̃ ≳ 1
polylog d such that for

all δ ∈ (0, 1), setting γ ≤ C̃δmax1≤i≤r µid
−( i

2
∨1) gives ⟨θ∗,w(t)⟩ < c for all iterations t ≤ T of

(3.1), where
T (η) = min

1≤i≤r
µi>0

Θ̃
(
γ−1

(
µi(η)

)−1
d

i−2
2

∨0), (C.31)

with probability at least 1− δ.

Proof [Proof of Proposition 15] The projection error is trivial to handle, as we obtain

κ(t+1) =
κ(t) + γ⟨θ∗, g(t)⟩
||w(t) + γg(t)||

≤ κ(t) + γ⟨θ∗, g(t)⟩, (C.32)

since ⟨w(t), g(t)⟩ = 0 and ||w|| = 1. Moreover, from Section C.3, the expected one-step update to
the alignment is given by

E[⟨θ∗, g⟩] =
r∑

k=1

µk⟨θ∗,w⟩k−1
(
1− ⟨θ∗,w⟩2

)
. (C.33)

Therefore, the full dynamics are

κ(t+1) ≤ κ(t) + γ
r∑

i=1

µi(κ
(t))i−1(1− (κ(t))2) + γν(t)

≤ κ(0) + γ
r∑

i=1

t−1∑
s=0

µi(κ
(s))i−1(1− (κ(s))2) + γ

∣∣∣∣ t−1∑
s=0

ν(s)
∣∣∣∣

≤ C̃0d
− 1

2 + γ
r∑

i=1

t−1∑
s=0

µi(κ
(s))i−1(1− (κ(s))2) + γC

1
2
3 δ

− 1
2T

1
2

≤ 2C̃0d
− 1

2 + γ

r∑
i=1

t−1∑
s=0

µi(κ
(s))i−1(1− (κ(s))2),

(C.34)

where the third line follows from the martingale bound in the previous subsection, and the last
line follows from the constraint γ ≤ C̃δmax1≤i≤r µid

−( i
2
∨1) with C̃ taken sufficiently small.

Then, finding the minimum weak recovery time proceeds exactly as in the previous section, us-
ing Grönwall’s inequality for i = 2 and the Bihari-LaSalle inequality for i ≥ 3, once again giving

T = min
1≤i≤r
µi>0

Θ̃
(
γ−1µ−1

i d
i−2
2

∨0). (C.35)

Together, the sample complexity upper and lower bounds imply Theorem 5.
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C.6. Strong Recovery

Now, starting with w that has achieved weak recovery, we characterize the maximum number T ′ of
subsequent updates of the form (3.1) required to achieve strong recovery with high probability.

Proposition 16 (Strong Recovery Given Weak Recovery) Let ε > 0. Suppose that ⟨θ∗,w(0)⟩ ≥
2c for some c ≳ 1

polylog d . Then, there exists a constant C > 0 such that for all δ ∈ (0, 1), setting
γ ≤ Cδd−1εmax1≤i≤r µic

i−1 implies that the update rule (3.1) achieves ⟨θ∗,w⟩ ≥ 1− ε within

T ′ = min
1≤i≤r
µi>0

Θ̃(γ−1ε−1µ−1
i ) (C.36)

iterations with probability at least 1− δ.

Remark 17 If ε = Θ̃(1), then T ′ ≲ T . That is, achieving weak recovery is the bottleneck during
training.

Remark 18 In the algorithms we consider in Section 4, we have max1≤i≤r µi = Θ(1). Therefore,
given that weak recovery has already been achieved, then strong recovery for ε = Θ̃(1) proceeds
after at most Θ̃(d) additional iterations with high probability when γ ≍ d−1.

Proof Similarly to Section C.3, we have a lower bound on the one-step dynamics:

κ(t+1) ≥ κ(t) + γ
r∑

i=1

µi(κ
(t))i−1

(
1− (κ(t))2

)
+ γν(t) − C2γ

2d. (C.37)

Since ⟨θ,w(t)⟩ ≤ 1− ε and Assumption 4 holds, we can re-write this as

κ(t+1) ≥ κ(t) + γC1ε
r∑

i=1

µi(κ
(t))i−1 + γν(t) − C2γ

2d (C.38)

for some constant C1 > 0. Setting γ ≤ Cδd−1ε leads to

C2γ
2κ(t)d ≤ C2Cδεγ max

1≤i≤r
µic

i−1 ≤ C2Cγδε max
1≤i≤r

µi(κ
(t))i−1. (C.39)

Thus, takingC sufficiently small ensures that this is a fraction of the dominant term in the population
update.

Unrolling this over t steps, we obtain

κ(t) ≥ 2c+ γC1ε

r∑
i=1

t−1∑
s=0

µi(κ
(s))i−1 − γ

∣∣∣∣ t−1∑
s=0

ν(s)
∣∣∣∣

≥ 2c+ γC1ε

r∑
i=1

t−1∑
s=0

µi(κ
(s))i−1 − γC

1
2
3 δ

− 1
2T ′

= 2c+ γC1ε

r∑
i=1

t−1∑
s=0

µi(κ
(s))i−1 − γ

1
2C4δ

− 1
2 ε−

1
2 min
1≤i≤r
µi>0

µ
− 1

2
i

(C.40)
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using the same martingale bound as in C.4. Now recalling γ ≤ Cδd−1εmax1≤i≤r µic
i−1, we have

γ
1
2C4δ

− 1
2 ε−

1
2 min
1≤i≤r
µi>0

µ
− 1

2
i ≤ C

1
2C4d

− 1
2 , (C.41)

which is of lower order than c. Hence, our final (high probability) upper bound for the multi-step
dynamics is

κ(t) ≥ c+ γC1ε

r∑
i=1

t−1∑
s=0

µi(κ
(s))i−1. (C.42)

We analyze how quickly this exceeds 1− ε. For the i = 1 term, we obtain

κ(t) ≥ c+ γC1εµ1t ≥ 1− ε
⇐⇒ t ≥ (1− ε− c)C−1

1 γ−1ε−1µ−1
1 = Θ(γ−1ε−1µ−1

1 ).
(C.43)

For the i = 2 term, we have, by Grönwall’s inequality

κ(t) ≥ c+ γC1εµ2

t−1∑
s=0

κ(s) ≥ c(1 + γC1εµ2)
t ≥ 1− ε

⇐⇒ t ≥ log(1− ε)− log c

log(1 + γC1εµ2)
= Θ̃(γ−1ε−1µ−1

2 ).

(C.44)

For the i ≥ 3 terms, we have, by the Bihari-LaSalle inequality,

κ(t) ≥ c+ γC1εµi

t−1∑
s=0

(
κ(s)

)i−1 ≥ c

(1− 1
2γC1εµici−2t)

1
i−2

≥ 1− ε

⇐⇒ t ≥ 2
(
1− ( c

1−ε)
i−2

)
γ−1C−1

1 ε−1µ−1
i c−(i−2) = Θ(γ−1ε−1µ−1

i ).

(C.45)

Hence, the (high probability) maximum strong recovery time given weak recovery is indeed

T ′ = min
1≤i≤r
µi>0

Θ(γ−1ε−1µ−1
i ). (C.46)

C.7. Ridge Regression on the Second Layer

For completeness, we state the following result from [27] that outlines the sample complexity of
proceeding from strong recovery to approximation of the target to arbitrary accuracy via ridge
regression. In particular, if the error tolerance is of constant order, then the sample complexity
obtaining strong recovery (from weak recovery) is strictly larger.

Proposition 19 (Second Layer Training, [27, Lemma 20]) Let ε > 0 and N = Θ̃(ε−1). Suppose
that Θ̃(N) neurons in (2.2) satisfy ⟨θ∗,wj⟩ ≥ 1 − ε. Let bj ∼ Unif([−Cb, Cb]) such that Cb =
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Õ(1). Then, there exists a choice of penalty parameter λ = Θ̃(1) such that the solution â =
(â1, . . . , âN ) of ridge regression with Θ̃(N−4 + ε−4) samples satisfies

Ex∼N (0,Id)

[∣∣∣∣ 1N
N∑
j=1

âjσj(⟨x,wj⟩+ bj)− σ∗(⟨x,θ∗⟩)
∣∣∣∣2] ≲ ε2. (C.47)

with high probability.

The key assumption in the above is that a constant proportion (up to polylogarithmic factors)
of the neurons achieve strong recovery. Recall that the initial alignment is sufficiently large with
constant order probability (Section C.1), and that each of weak (Section C.4) and strong (Section
C.6) recovery occur with high probability given such an initialization.

Appendix D. SGD Variants

Recall that, from our proof of Theorem 5 in the previous section, the coefficients

µi := Eζ [µ̂i(ζ)] := Eζ

[
ui

(
a 7→ ui−1

(
b 7→ ψη(σ∗(a) + ζ, b)

))]
, i ∈ [r]. (D.1)

are the key quantities governing the sample complexity of an online algorithm that fits in our frame-
work. We detail the computation of these coefficients for each of the three SGD variants we consider
in this work: online SGD (Section D.1), alternating SGD (Section D.2), and batch reuse SGD (Sec-
tion D.4). This along with Theorem 5 immediately imply the corollaries in Section 4 on the sample
complexity of these algorithms. Additionally, in Section D.3, we investigate how alternating SGD
can be generalized to an online algorithm for a D-layer neural network and calculate the µi.

D.1. Online SGD

Given a fresh data point (x, y), the spherical vanilla online SGD update has the form

w(t+1) ← w(t) + γyσ′(⟨x,w⟩)P⊥
w(t)x, w(t+1) ← w(t+1)

||w(t+1)||
. (D.2)

Therefore, under our general framework introduced in Section 3, the update oracle is

ψη(y, z) = yσ′(z). (D.3)

Hence, for i ∈ [r],

ui−1

(
b 7→ ψη(y, b)

)
= Eb∼N (0,1)[yσ

′(b)Hei−1(b)] = yui−1(σ
′) = yiui(σ), (D.4)

which leads to

µ̂i(ζ) = ui
(
a 7→ (σ∗(a) + ζ)iui(σ)

)
= iui(σ)

(
Ea∼N (0,1)[σ∗(a)Hei(a)] + Ea∼N (0,1)[ζHei(a)]

)
= iui(σ)ui(σ∗).

(D.5)

Note that the second expectation in the second line is zero since Ea∼N (0,1)[Hei(a)] = 0 for all
i ∈ N. Since the above has no dependence on ζ, it is immediate that µi = iui(σ)ui(σ∗).
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D.2. Alternating SGD

The alternating SGD (Algorithm 1) update for a single neuron is

ã(t+1) ← a+ ηyσ(⟨x,w(t)⟩), w(t+1) ← w(t) + γyã(t+1)σ′(⟨x,w(t)⟩)
||w(t) + γyã(t+1)σ′(⟨x,w(t)⟩)||

. (D.6)

Note that we only use the second layer update ã in order to update the first layer parameters w. We
do not replace the second layer parameter with ã at the subsequent iteration, but instead keep a. For
simplicity, assume that we have a = 1. Then,

ψη(y, z) = yσ′(z) + ηy2σ(z)σ′(z). (D.7)

Hence, for i ∈ [r],

ui−1

(
b 7→ ψη(y, b)

)
= yEb∼N (0,1)[σ

′(b)Hei−1(b)] + ηy2Eb∼N (0,1)[σ(b)σ
′(b)Hei−1(b)]

= yiui(σ) + ηy2ui−1(σσ
′),

(D.8)

which leads to (using the result of our calculation in the previous subsection)

µ̂i(ζ) = iui(σ)ui(σ∗) + ui
(
a 7→ η(σ∗(a) + ζ)2ui−1(σσ

′)
)

= iui(σ)ui(σ∗) + ηui−1(σσ
′)
(
Ea∼N (0,1)[σ

2
∗(a)Hei(a)] + 2ζEa∼N (0,1)[σ∗(a)Hei(a)]

)
.

(D.9)

Simplifying and taking expectation with respect to ζ (which is mean-zero) gives

µi = iui(σ)ui(σ∗) + ηui−1(σσ
′)ui(σ

2
∗). (D.10)

D.3. “Deep” Alternating SGD

We describe a natural extension of alternating SGD to neural networks with D > 2 layers. We
define a D-layer neural network student by the recurrence

f(x) = fD−1(x), f0(x) = Wx, fi(x) = Aiσ(fi−1(x)), i ∈ [D − 1], (D.11)

where W0 ∈ RN×d as before and Ai ∈ RNi+1×Ni such that N1 = N and ND = 1. We are
still interested in recovery of the ground truth direction θ by the first-layer weights W . To make
the theoretical analysis tractable, we consider the simplified sparse network where N1 = N2 =
· · · = ND−1 = N , A1 is a N2 × N1 matrix of ones1, and A2 = A3 = · · · = AD−1 = IN with
off-diagonal entries frozen at zero during training (i.e., they do not receive gradients). Hence, the
output of the network is of the form

f(x) =

N∑
j=1

a
(D−1)
j σ

(
◦ · · · ◦ σ(a(1)j σ(⟨x,wj⟩))

)
. (D.12)

Hence, to analyze weak recovery, it suffices to focus on a single summand (where we drop the
subscript j for convenience):

a(D−1)σ
(
◦ · · · ◦ σ(a(1)σ(⟨x,w⟩))

)
, (D.13)

1. Note that we chose the same initialization for our two-layer network in the previous subsection.
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which we express as the recurrence

F (z) = FD−1(z), z = F0(z) = ⟨x,w⟩, Fi(z) = a(i)σ
(
Fi−1(z)

)
, i ∈ [D − 1]. (D.14)

We propose the following update rule inspired by our alternating SGD algorithm:

z(t) ← ⟨x,w(t)⟩

ã(i) ← a(i) + ηy

( D−1∏
j=i+1

a(i)σ′(Fj−1(z
(t)))

)
σ
(
Fi−1(z

(t))
)

w(t+1) ← w(t) + γy

(D−1∏
i=1

ã(i)σ′
(
Fi−1(z

(t))
))

P⊥
w(t)x, w(t+1) ← w(t+1)

||w(t+1)||
.

(D.15)

Expanding the update for w (before normalization) gives

w(t+1) = w + γy

D−1∏
i=1

[(
a(i) + ηy

( D−1∏
j=i+1

a(j)σ′(Fj−1(z))

)
σ(Fi−1(z))

)
σ′(Fi−1(z))

]
P⊥
wx,

(D.16)

where we have omitted the superscript (t) on the right-hand side for readability. This fits into our
framework (3.1) since the a(i) remain constant. In fact, for simplicity, we may fix all ai = 1 for all
i ∈ [D − 1]. Our update oracle is then

ψη(y, z) =

D−1∑
i=0

[
ηiyi+1

∑
S∈Pi([D−1])

(∏
j /∈S

σ′(σ◦(j−1)(z))

)

·
( ∏

k∈S

( D−1∏
l=k+1

σ′(σ◦(l−1)(z))

)
σ◦k(z)σ′(σ◦(k−1)(z))

)]
,

(D.17)

where Pi([D− 1]) denotes the set of all subsets of [D− 1] of cardinality i. Now, assuming that the
Hermite coefficients of the relevant compositions and products of σ and σ′ are positive, this gives

µi ≍
D∑
j=1

ηj−1ui(σ
j
∗). (D.18)

Under an optimal choice of γ, Theorem 5 implies a sample complexity of

T = max
1≤i≤D

Θ̃
(
η−2(i−1)d(pi−1)∨1) (D.19)

for deep alternating SGD to attain weak recovery.
Now, the positivity of the relevant Hermite coefficients is a nontrivial assumption. We focus on

a tractable special case where D = 3, and σ(z) = z2. In this case, we have

ψη(y, z) = yσ′(z)σ′
(
σ(z)

)
+ ηy2

(
[σ′

(
σ(z)

)
]2σ(z)σ′(z) + σ′(z)σ

(
σ(z)

)
σ′
(
σ(z)

))
+ η2y3

(
[σ′(σ(z))]2σ(σ(z))σ(z)σ′(z)

)
≍ yz3 + ηy2z7 + η2y3z11

(D.20)
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and therefore

ui−1

(
b 7→ ψη(y, b)

)
= yui−1(b

3) + ηy2ui−1(b
7) + η2y3ui−1(b

11), (D.21)

which leads to

µi ≍ ui−1(b
3)ui(σ∗) + ηui−1(b

7)ui(σ
2
∗) + η2ui−1(b

11)ui(σ
3
∗). (D.22)

It is immediate that weak recovery is achieved with Θ̃(d) complexity if η = Θ̃(1) and at least one
of the following holds: u2(σ∗) > 0, u2(σ2∗) > 0, u2(σ3∗) > 0. This is a strict improvement over
alternating SGD on a two-layer neural network when p and p2 are larger than 2 but p3 = 2 and over
batch reuse SGD under the same conditions and quadratic σ.

Of course, the above has the important limitation that it will not recover in Θ̃(d) time if u2(σk∗ ) =
0 for all k ∈ {1, 2, 3} but u1(σk∗ ) > 0 for at least one such k. This can be partially resolved by con-
sidering the activation σ(z) = z3, in which case u0([σ′(σ(z))]2σ(σ(z))σ(z)σ′(z)) > 0 and targets
satisfying p3 = 1 can be recovered in Θ̃(d) time. However, we cannot assume to know the target a
priori, and a more generally applicable choice of σ is preferable (perhaps a randomized approach as
in [27]). We leave a more thorough examination of potential choices of activation function to future
work.

D.4. Batch Reuse SGD

The update for Batch Reuse SGD (Algorithm 2) takes the form

w̃(t) ← w(t) + ηyσ′(⟨x,w(t)⟩)Pw(t)x, w(t+1) ←
w(t) + γyσ′(⟨x, w̃⟩)P⊥

w(t)x

||w(t) + γyσ′(⟨x, w̃⟩)P⊥
w(t)x||

. (D.23)

Combining the two steps (and disregarding normalization for the time being), we have

w(t+1) = w(t) + γyσ′
(
⟨x,w(t)⟩+ ηyσ′(⟨x,w(t)⟩)⟨x,P⊥

w(t)x⟩
)
P⊥
w(t)x (D.24)

The presence of ||x||2
P⊥

w(t)

in the update prevents us from immediately casting this into our formal-

ism. We handle this as follows. Using a Taylor expansion, we have

w(t+1) = w(t) + γy

r∑
k=1

σ(k)(⟨x,w(t)⟩)yk−1ηk−1σ′(⟨x,w(t)⟩)k−1||x||2(k−1)
P

w(t)

(k − 1)!
. (D.25)

Note that ||x||2P
w(t)
∼ χ2

d−1 and therefore E[||x||2(i−1)
P

w(t)
] = Θ(di−1). This, along with the assump-

tion ηd ≲ 1, allows us to replace ||x||2(i−1)

P (t) in each term of the Taylor expansion with di−1 and add
a sub-Weibull remainder term ξ(t) with O(1) tail parameter:

w(t+1) −w(t) ≍ γy
r∑

k=1

σ(k)(⟨x,w(t)⟩)yk−1(ηd)k−1
(
σ′(⟨x,w(t)⟩)

)k−1
Pw(t)x+ γξ(t)Pw(t)x.

(D.26)
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The ξ(t) term can then be absorbed into the noise that appears in the multi-step analysis in Sections
C.4, C.5, and C.6. Hence, we can take

ψη(y, z) =
r∑

k=1

(ηd)k−1σ(k)(z)
(
σ′(z)

)k−1
yk. (D.27)

Hence, for i ∈ [r],

ui−1

(
b 7→ ψη(y, b)

)
=

r∑
k=1

(ηd)k−1ykEb∼N (0,1)[σ
(k)(b)

(
σ′(b)

)k−1
Hei−1(b)]

=
r∑

k=1

(ηd)k−1ykui−1(σ
(k)(σ′)k−1),

(D.28)

which leads to

µ̂i(ζ) =

r∑
k=1

(ηd)k−1σ(k)(σ′)k−1ui
(
a 7→ (σ∗(a) + ζ)k

)
=

r∑
k=1

(ηd)k−1ui−1

(
σ(k)(σ′)k−1

) k∑
l=0

(
l

k

)
ui
(
a 7→ (σ∗(a))

lζk−l
)

=
r∑

k=1

(ηd)k−1ui−1

(
σ(k)(σ′)k−1

) k∑
l=0

(
l

k

)
ζk−1ui(σ

l
∗).

(D.29)

Then, taking expectation with respect to ζ gives

µi ≍
r∑

k=1

(ηd)k−1ui−1

(
σ(k)(σ′)k−1

)
ui(σ

k
∗ ). (D.30)

Appendix E. Experiment Details

In this section, we provide the details on the experiment that generated Figure 1 in the main text and
discuss an additional experiment on batch reuse SGD in the same setting. Throughout, we consider
a noiseless single-index teacher (2.1) with σ∗ = He3 and a two-layer neural network student (2.2)
with initialization aj = 1 and wj ∼ Unif(Sd−1) for all j ∈ [N ], where d = 50 and N = 1024.
We consider logarithmically spaced meshes of 70 η values between 10−7 and 1 and and 50 n values
between 103 and 105.7 (taking larger n is prohibitively expensive on our single GPU). We train in
a single-pass over the data (i.e., one epoch) with fixed batch size B = 32. In other words, we
perform ⌊n/B⌋ online updates. Subsequently, we solve for the exact ridge regression solution â
with penalty parameter λ = 10−2. We evaluate the resulting two-layer network on a test dataset of
size n′ = 4096 generated by the teacher and compute the test MSE for each combination of (η, n).

For our experiment depicted in Figure 1, we implement alternating SGD as specified in Al-
gorithm 1 with the only change being that we do not implement the projection P⊥

w . We update
each aj to obtain ãj , then update wj and normalize. At each step, we keep aj = 1. We choose
γ = max{d−

3
2 , ηd−1} as per Corollary 6. Collecting the test MSEs for each (η, n) combination
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Figure 4: Test MSE of batch reuse SGD for different choices of η and n. The hyperparameter γ is
chosen according to Corollary 7.

in our mesh gives the colorbar in Figure 1. We apply a threshold so that only combinations that
achieve test MSE below 0.3 are displayed. We then use these points to fit a linear spline with a
single knot (in the log-log scale) to better illustrate the phase transition. From this, we can see that
the sample complexity remains flat for small η before decaying after η reaches a critical value. On
the other hand, if η is too large (beyond 10−1; not shown in the plot), small test MSE is no longer
reliably achieved.

We perform a similar experiment for batch reuse SGD, the result of which is displayed in Figure
4. We implement Algorithm 2, with the only modification being that we omit P⊥

w . We choose
γ = max{d−

3
2 , η} as per Corollary 7. For the purposes of visualization, we apply a more tolerant

threshold of 0.8 to the test MSEs and fit a linear spline using the points with test MSE less than 0.6.
Once again, we observe a “flat” sample complexity for small η, followed by a decay after a critical
value is reached.
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