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Fig. 1: Generalizable Imitation Learning using 3D Semantic Fields. (a) In daily life, the semantics of object parts are important for
task completion. For instance, when using a knife, the robot needs to identify the knife handle and grasp it. When flipping a soda can
without spilling out liquids, the robot must locate the soda can tab to put it upright. If not, the soda can might be upside down. Semantic
understanding of the environment is essential for task completion and helps to generalize to novel instances. (b) We use 3D semantic
fields to build our generalizable imitation learning framework. Our 3D semantic fields could highlight semantically meaningful parts, as
shown in the heatmap example. The two columns on the right show our policy’s predicted actions and their actual execution results,
demonstrating our policy’s capability to attend to the right semantic features and accomplish tasks.

Abstract— Imitation learning has shown remarkable capabil-
ity in executing complex robotic manipulation tasks. However,
existing frameworks often fall short in structured modeling of
the environment, lacking explicit characterization of geometry
and semantics, which limits their ability to generalize to
unseen objects and layouts. To enhance the generalization
capabilities of imitation learning agents, we introduce a novel
framework in this work, incorporating explicit spatial and
semantic information via 3D semantic fields. We begin by
generating 3D descriptor fields from multi-view RGBD ob-
servations with the help of large foundational vision models.
These high-dimensional descriptor fields are then converted
into low-dimensional semantic fields, which aids in the efficient
training of a diffusion-based imitation learning policy. The
proposed method offers explicit consideration of geometry and
semantics, enabling strong generalization capabilities in tasks
that require category-level generalization, resolving geometric
ambiguities, and attention to subtle geometric details. We
evaluate our method across eight tasks involving articulated
objects and instances with varying shapes and textures from
multiple object categories. Our method proves its effectiveness
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by outperforming state-of-the-art imitation learning baselines
on unseen testing instances by 57%. Additionally, we provide
a detailed analysis and visualization to interpret the sources of
performance gain and explain how our method can generalize
to novel instances.

I. INTRODUCTION

Imitation learning has recently shown promising results
in real robot deployment for complex robotic manipulation
tasks [4, 49]. However, most of the existing end-to-end
imitation learning frameworks are brittle to environment
variances, such as novel object instances, camera viewpoints,
and background changes. When the aforementioned factors
change, they often need to collect new demonstrations and
train the policy, which is sample inefficient. Previous efforts
to tackle these challenges involve extracting geometric in-
formation from high-dimensional RGBD observation [51].
Although they are sample-efficient, their sole reliance on
geometric information is insufficient. For instance, as illus-
trated in Figure 1b, a marker’s head and tail are geometrically
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Fig. 2: Method Overview. The top row shows a sequence of real policy rollouts in the aligning shoe task. At one time step, we take in
multi-view RGBD observations first and then extract the 3D descriptor field, with each point possessing a corresponding high-dimensional
descriptor. We then select reference features from 2D reference images. By computing the cosine similarity between the descriptor field
and 2D reference semantic features, we could obtain several similarity fields. These similarity fields, concatenated with the point cloud,
are then input into PointNet++ and the diffusion policy to output predicted actions.

ambiguous despite their functional and semantic differences.

Therefore, an ideal representation should not only ex-
tract geometric information from raw observation ensuring
sample efficiency while also retaining semantic information
for better and more robust generalization. In this work,
we introduce a novel imitation learning framework that
uses a scene representation in the form of 3D semantic
fields. Our framework consists of three main modules: a
3D descriptor fields encoder, a semantic fields constructor,
and an action policy. The 3D descriptor encoder takes in
multi-view RGBD observations. For arbitrary 3D points, it
evaluates the associated high-dimensional descriptor using
large foundational vision models like DINOv2 [27]. These
descriptors are then fed into the semantic fields constructor
and converted into low-dimensional semantic fields. Finally,
the policy takes in the semantic fields along with the point
cloud and predicts actions.

This framework offers three benefits: (1) Category-level
generalization: As semantic fields contain both 3D and
semantic information, it guides our policy to focus on
semantically meaningful parts essential for task completion,
allowing generalization across instances within a category.

(2) Resolve geometric ambiguity: Geometric information
can be ambiguous. For example, the knife blade and knife
handle are geometrically similar despite functional and se-
mantical differences. Our semantic fields can localize space
semantically close to parts that are important for task comple-
tion, such as knife blades, to disambiguate vague geometric
information. (3) Attention to subtle geometric information:
Geometric details might be lost due to real-world observation
noise, such as toothbrush head and soda can tab. Without
sufficient details, some tasks are impossible to accomplish,
such as spreading toothpaste on a toothbrush and flipping a
lying soda can upwards, as shown in Figure 1. Because our
semantic fields highlight semantically distinct regions, our
method can pay attention to nuanced geometric details for
task completion.

We systematically evaluate our method across eight tasks.
Our task settings involve novel instances, ambiguous object
geometry, and inconspicuous geometric information. The
results demonstrate that our approach not only general-
izes effectively to new instances but also clarifies geomet-
ric ambiguities and enhances subtle geometric information.
Compared with baseline methods, which frequently fail to
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Fig. 3: Policy Rollout in Real World. The figure illustrates the policy rollout results in the real-world scenario. On the left, the blue
block displays the demonstration examples and corresponding training instances. On the right, the orange block presents the example of
policy rollout results. From left to right, they are, respectively, initial configurations, diffusion policy, diffusion policy with RGBD, ours
without semantics, and our method. We summarize four common failure modes. Early failure and grasping failure could happen when the
novel instance is presented. Diffusion policy may also lead to unsafe behavior when encountering novel instances. Ours without semantics
might identify wrong directions due to geometric ambiguity and nuanced geometric details.

generalize to novel instances because they lack both 3D and
semantic information in their representation, our approach
demonstrates significant advantages. Furthermore, methods
based on 3D representations usually fail when the geometric
information contains ambiguity or subtle details, which could
lead to undesired robot behavior.

In this work, our contributions are threefold: (1) We
propose an imitation learning framework that uses seman-
tic fields, which encode the environment’s geometric and
semantic information. (2) We conduct comprehensive ex-
periments and suggest that our method can generalize to
novel instances, resolve geometric ambiguity, and amplify
inconspicuous geometric information. Our method surpasses
the best baseline method by 57%. (3) We provide a detailed
analysis of how well and why our method can generalize to
novel instances.

II. METHOD

This section first presents our problem formulation in Sec-
tion IV-B.1. We then describe how to extract descriptor fields
from raw observations in Section IV-B.2, as illustrated in the
bottom left of Figure 2. Next, we explain the construction of
semantic fields, as displayed in the bottom right of Figure 2,
in Section IV-B.3. Finally, we discuss how to learn the policy
to predict actions given our representation in Section IV-B.4.

III. EXPERIMENTS

In this section, we evaluate our method on eight diverse
tasks. We aim to answer the following three questions
through experiments. 1) How does the performance of our
method compare to that of the state-of-the-art methods? 2)
How well can our method generalize to different configura-
tions and different instances? 3) What enabled our method
to generalize to novel instances?
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IV. SUPPLEMENTARY

A. Related Works

1) Imitation Learning for Robotic Manipulation: There
are mainly three types of imitation learning policies for
robotic manipulation. The first one is the explicit policy,
which takes observations as inputs and outputs actions and
outputs actions directly [6, 8, 11, 19, 33, 38–40, 48–50]. The
supervision signal is usually from the demonstration actions.
However, this approach often struggles with modeling the
multi-modal distribution of demonstrations, which are com-
monly seen in the real world.

To tackle the challenge of modeling multi-modal demon-
strations, another approach models the policy as an implicit
function [5, 7, 9, 24, 34, 44]. Instead of predicting actions
directly, they build the Energy-Based Models (EBMs) and as-
sign actions with energy values. During testing, an optimizer
is used to find the optimal actions. This approach enables the
modeling of multi-modal distributions of the demonstration
actions due to the nature of the energy model.

Prior diffusion-based policy learning studies argue that
implicit policy training can be unstable [4, 26, 29]. Unlike
implicit policy, diffusion-based policy predicts the noise
given current observations and noisy actions. Prior works
demonstrate their ability to handle multi-modal distributions
of demonstrations and accomplish complicated tasks in the
real world. Thus, we model our policy as a diffusion model
conditioned on current observation.

However, the majority of aforementioned works rely on
2D observations, which are not robust to environmental
changes, such as lighting conditions, camera viewpoints,
background changes, and new instances. In contrast to
previous works, our method leverages explicit spatial and
semantic information with the help of a large foundation
model, DINOv2 [27], to generalize over unseen objects.

2) Scene Representation for Vision-Based Manipulation:
Scene representation has been one of the essential compo-
nents of robotics systems. There exist several types of typical
scene representation for robotic manipulation.

One common scene representation will be RGB informa-
tion, on which a majority of previous work in imitation
learning has solely relied [4, 14, 26, 28, 29, 31, 34, 49].
RGB information includes all information from environ-
ments, which is sufficient for downstream decision-making.
However, this information is vulnerable to environmental
changes. By contrast, our framework encodes 3D and se-
mantic information, enabling our policy to better generalize
to novel instances.

Another research direction represents the scene using point
clouds [1, 3, 10, 11, 13, 25, 30, 46, 51]. Using point clouds
as the representation enables robots to focus on geometry,
facilitating generalization across different environments. Yet,
this often results in the loss of critical RGB data, limiting
the understanding of an object’s semantic properties. Un-
like these approaches, our approach retains both semantic
and geometric information enhancing downstream decision-
making.

Keypoints are another commonly used representation in
robotic manipulation [2, 17, 20, 23, 36, 37, 42]. They
have shown impressive generalization capabilities. However,
they are often sparse and lack rich geometric information,
especially for geometric details, limiting the range of tasks
that can be effectively addressed. In contrast, our framework
employs a representation that encompasses rich geometric
information and enables a wide range of tasks.

A recent line of research proposed leveraging neural
implicit models such as Occupancy Networks [21] or
NeRFs [22] to encode semantic features [15, 16, 18, 25,
32, 35, 41, 43, 47]. Among these, we selected D3Fields due
to its computation efficiency to meet imitation learning’s
real-time needs. [43] introduces a descriptor field that
segments the objects and maps DINOv2 features onto a 3D
field, employing model predictive control for action output.
However, our methodology differs by embracing an imitation
learning policy that greatly benefits from the integration of
semantic information.

B. Method

This section first presents our problem formulation in Sec-
tion IV-B.1. We then describe how to extract descriptor fields
from raw observations in Section IV-B.2, as illustrated in the
bottom left of Figure 2. Next, we explain the construction of
semantic fields, as displayed in the bottom right of Figure 2,
in Section IV-B.3. Finally, we discuss how to learn the policy
to predict actions given our representation in Section IV-B.4.



(a) Robot Setup

(b) Objects
Fig. 4: Real Experiment Setup. (a) We use four RealSense
cameras to capture RGBD observations and ALOHA robots to
execute policy. (b) We test on a diverse set of objects, including
shoes, soda cans, marker pens, knives, spoons, toothbrushes, and
toothpaste, with diverse geometry and appearance.

1) Problem Statement: We define our system as a Markov
Decision Process (MDP) consisting of state s ∈ S and action
a ∈ A. The system transition is defined through the dynamics
model st+1 = f(st, at). The goal is to find an optimal policy
at = π(st) that can maximize the task reward. Given a set
of human demonstrations D = {τ0, τ1, ..., τN}, where τi
represents a trajectory comprising {s0, a0, s1, ..., aT }. Here,
the state s consists of a sequence of multi-view RGBD
observations, while the action a involves a sequence of 3D
robot end-effector poses and gripper status.

2) 3D Descriptor Fields: We use an off-the-shelf large
foundational vision model, DINOv2, to obtain semantic
features from multi-view RGBD observations [27]. Given its
ability to extract consistent semantic features from the RGB
images across context and instance variances, we selected it
as the backbone network.

We provide pseudocode for building 3D descriptor fields
in Algorithm 1. We denote single-view RGBD observation
as oi = (Ii,Ri), with i ∈ {1, 2, ..., N} representing the

camera index, consisting of an RGB image Ii ∈ RH×W×3

and a depth image Ri ∈ RH×W . We first use DINOv2 to
extract dense 2D feature maps Wi corresponding to the RGB
image Ii [27]. For an arbitrary 3D point p, we project it onto
the image space to find its corresponding pixel location ui

and the distance to camera ri. We then interpolate to derive
features fi from the feature map and the depth r′i from Ri.

The depth difference ∆ri = r′i − ri reflects how distant p
is from the surface. When p is closer to the surface in view i,
greater weight is given to fi. We fuse features from multiple
viewpoints by applying a weighted sum, thus obtaining the
descriptor f corresponding to p. In practice, we follow the
implementation details in [43] to extract point cloud P ∈
RK×3 and associated features F ∈ RK×F , where K is the
point cloud’s size. We refer readers to [43] for details.

Algorithm 1 3D Descriptor Fields Computation

1: Infer feature map Wi from single RGB image Ii
2: procedure EVALUATE(p)
3: Project p to camera i and compute projected pixel

ui and distance to camera ri
4: Obtain interpolated features fi = Wi[ui]
5: Obtain depth r′i = Ri[ui]
6: Compute depth difference ∆ri = r′i − ri
7: Fuse features f = h(fi,∆ri), i ∈ {1, 2, ..., N}

3) 3D Sematic Fields: A simplistic approach to building
representations by concatenating descriptors to raw point
clouds has two main issues. Firstly, the storage and computa-
tion of high-dimensional descriptors become computationally
intensive. For instance, the smallest DINOv2 model variant
encodes one image into a feature map with 384 dimen-
sions, resulting in a size increase by more than 100 times
compared to the raw point cloud. Secondly, because of the
high-dimensional descriptor space, it requires more data to
sufficiently cover the descriptor space to reach the desired
generalization capabilities.

Instead of directly concatenating descriptors, we use se-
mantic fields to encode semantic information efficiently.
First, we select a set of reference descriptors Fref ∈ RM×F

from 2D images for one object category. The 2D images
could be arbitrary images containing the target object cate-
gory, and each descriptor could represent a part of the object,
such as shoe head and shoe tail.

Given the set of reference descriptors, the semantic fields
C ∈ RK×M are defined as the similarity between the
descriptor fields and reference descriptors:

Cij =
Fi · Fref,j

||Fi||||Fref,j ||
. (1)

By computing the similarity scores, we convert high-
dimensional descriptor fields into M -dimensional semantic
fields, where M is typically less than 5. We then concatenate
semantic fields C and raw point cloud P together, which are
then inputted into the policy.



Task Category Task Name Instances Ours Ours w/o Semantics Diffusion Policy Diffusion Policy w/ RGBD

Simulation
Hang Mug Seen 95% (19/20) 75% (15/20) 80% (16/20) 0% (0/20)

Unseen 85% (17/20) 75% (15/20) 10% (2/20) 0% (0/20)

Insert Pencil Seen 90% (18/20) 40% (8/20) 95% (19/20) 100% (20/20)
Unseen 80% (16/20) 35% (7/20) 10% (2/20) 30% (6/20)

Geometry Ambiguity Collect Knife Seen 100% (10/10) 40% (4/10) 50% (5/10) 0% (0/10)
Unseen 100% (10/10) 80% (8/10) 20% (2/10) 10% (1/10)

Open Pen Unseen 80% (8/10) 40% (4/10) 10% (1/10) 0% (0/10)

Geometry Insignificant Place Can Unseen 100% (10/10) 30% (3/10) 10% (1/10) 20% (2/10)
Use Toothbrush Unseen 100% (10/10) 50% (5/10) 0% (0/10) 0% (0/10)

Category Generalization Align Shoes Unseen 100% (10/10) 70% (7/10) 30% (3/10) 0% (0/10)
Use Spoon Unseen 100% (10/10) 90% (9/10) 70% (7/10) 0% (0/10)

Total (Unseen) 91% (91/100) 58% (58/100) 23% (23/100) 9% (9/100)

TABLE I: Success Rate. The method was evaluated across eight tasks. Our method consistently outperforms the best
baseline, except for the pencil insertion task for the seen instances being marginally worse. We observe that ours without
semantics performs significantly worse in the presence of ambiguous geometry and subtle geometric details. Furthermore,
the diffusion policy performs similarly to our method in the seen environments but shows markedly worse performance
in unseen instances. These results underscore our policy’s capability to achieve category-level generalization and encode
semantic information.
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Fig. 5: Predicted Action Comparisons. We compare different
policies’ responses under the same state. For diffusion policy, we
observe that its outputs change with knife direction accordingly, but
could lead to nonsmooth actions for novel instances. For diffusion
policy with RGBD, it might learn to rely on color information more.
Therefore, it failed to predict a successful trajectory toward the knife
handle. Since geometric information is ambiguous here, our method
without semantics fails to distinguish between two knife directions,
resulting in similar actions being predicted. When encountering a
novel knife, though the predicted action appears reasonable, it still
fails to identify the knife handle correctly. In contrast, our method
consistently identifies the correct position for the knife handle,
regardless of whether the instances are seen or unseen.

4) Policy Learning: In this work, we model our policy as
Denoising Diffusion Probabilistic Models (DDPMs), similar
to Diffusion Policy [4, 12]. Instead of regressing the action
directly, we train a noise predictor network

ϵ̂k = ϵθ(a
k, s, k), (2)

that takes in noisy actions ak, current observations s, and
denoising iterations k and predicts the noise ϵ̂k. During
training, we randomly choose a denoising step k and sample
noise ϵk added to the unmodified sample a0. Our training
objective is to minimize the difference between ϵk and
predicted noise:

L = MSELoss(ϵk, ϵ̂k). (3)

During the inference time, our policy starts from random
actions aK and denoises for K steps to obtain the final action
predictions. At each step, the action is updated following

ak−1 = α
(
ak − γϵθ(a

k, s, k) +N (0, σ2I)
)
, (4)

where α, γ, and σ are hyperparameters. In practice, we
follow [4] for implementation details.

C. Experiments

In this section, we evaluate our method on eight diverse
tasks. We aim to answer the following three questions
through experiments. 1) How does the performance of our
method compare to that of the state-of-the-art methods? 2)
How well can our method generalize to different configura-
tions and different instances? 3) What enabled our method
to generalize to novel instances?

1) Setup: We evaluate our method in both simulation
environments and real environments. We use SAPIEN to
build simulation environments and conduct experiments [45].
In the real world, our experiment setup is shown in Figure 4.
We use ALOHA robot and four RealSense cameras for real-
world data collection and testing [49].
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Fig. 6: Similarity Fields Visualization. We visualize 3D similarity fields in the scene where multiple instances from the same category
are presented. It is observed that the similarity fields exhibit similar patterns for different instances. For example, all book titles are
highlighted, regardless of whether they are different books in different poses. Furthermore, these highlighted areas represent semantically
meaningful parts and are important for various tasks, such as shoelaces, shoe heads, book stands, mug handles, and so on.

We test with various object categories, including shoes,
toothbrushes, soda cans, knives, among others. These objects
present significant challenges for category-level general-
ization due to factors such as large geometric variances,
ambiguous geometric information, and nuanced geometric
details.

2) Tasks: We evaluate various tasks, as shown in Figure 3.
Here is a list of task descriptions:

• Hang Mug (Simulation): Hang a randomly placed mug
on a fixed mug tree.

• Pencil Insertion (Simulation): Pick up a pencil from
the table and insert it into the pencil sharpener.

• Collect Knife: Collect a lying knife into an open
container, and the knife direction is randomly chosen.

• Open Pen: Bimanually grasp the pen and open it.
• Flip Can: Flip a lying soda can and place it upright.
• Use Toothbrush: Grasp the toothbrush and spread the

toothpaste on it.
• Align Shoes: Push shoes towards left.
• Use Spoon: Grasp spoon and scoop materials.

3) Comparison with Prior Works: We compare our
method with the following baselines:

• Ours without Semantics: It takes in the raw point cloud
without additional semantic fields as inputs.

• Diffusion Policy: This is the vanilla diffusion policy.
• Diffusion Policy with RGBD: To compare with the

original diffusion policy with the same modality, we
add depth observation into the original diffusion policy.

We use success rate as the evaluation metric for different
policies. The quantitative result is summarized in Table I.
There are several observations we could notice from this
table.

First, within seen instances, our method shows no sig-
nificant difference from the original diffusion policy in the
simulation. However, when generalizing to unseen instances,
diffusion policy performance degrades obviously. This is be-
cause our framework encodes 3D and semantic information
about the scene to achieve category-level generalization.To
our surprise, the original diffusion policy exhibits signifi-
cantly worse performance in the real world, even in seen
instances. We think that there might be two potential reasons.
First, the diffusion policy might be brittle to unnoticeable
factors during the deployment, which also shows that our
method is robust for real-world deployment. Second, training
diffusion policy based on 3D semantic representation could
be more sample-efficient.

In addition, our method consistently outperforms ours
without semantics, whether for seen instances or unseen
instances. This implies that our 3D semantic fields could
help policy focus on semantically meaningful parts for task
completion.

Furthermore, in situations involving geometric ambiguity
and subtle geometric details, the advantage of our method
over ours without semantics becomes even more pronounced.
Since raw point clouds do not have sufficient information to
distinguish geometric ambiguity and pay attention to subtle
geometric details, ours without semantics struggles with
these tasks. On the contrary, our method shows the ability to
effectively disambiguate geometric ambiguity and highlight
nuanced geometric information to accomplish the task.

Finally, adding RGBD to the diffusion policy typically
results in worse performance. We think that directly adding
depth observation to the diffusion policy will make the
input space even larger. Therefore, it would require more
demonstrations to have sufficient training data coverage,



which makes it less data efficient.
In Figure 3, we see real-world policy rollout results. We

notice different failure modes for baseline methods. For
diffusion policy and diffusion policy with RGBD, when a
novel instance is presented, they may stop early, failing to
make progress, either fail to grasp objects, or even lead to
unsafe behavior like grasping the blade. Given their reliance
on 2D observations as inputs, consequently, they do not
possess the capabilities for generalization to unseen instances
with varying appearances and geometries.

For ours without semantics, they often fail at objects with
geometric ambiguity, like knives, our method could identify
the right part for manipulation, such as handles, while ours
with raw point fails to differentiate handles and blades.
Our method also shows the capability to focus on subtle
geometric details. In the can flipping task, by leveraging
useful semantic cues, such as the soda can tab, our method
successfully placed the can upwards, while ours without
semantics may place the soda can upside down.

4) Generalization to Novel Configurations and Instances:
We also analyze how well our method can generalize to
novel configurations and instances. Figure 5 illustrates the
predicted actions of different policies under the same ob-
servations. For the seen instances, as shown in the leftmost
column, we can see that the predicted trajectories for all
policies in the first example point towards the knife handle
correctly. However, when the knife blade points towards the
right instead of the left, our method without semantics fails
to recognize the direction changes and responds accordingly,
while the diffusion policy and our method change predicted
actions accordingly. This demonstrates that our method is
able to understand the semantic difference between knife
handle and knife blade, which results in safe robot behaviors.

When the novel instance is presented with similar con-
figurations, our method will predict a successful trajectory
guiding towards the knife handle, while diffusion policy will
predict a nonsmooth trajectory. Since it takes in 2D observa-
tions as inputs instead of 3D and semantic representations,
it is brittle to environment factors and lacks category-level
generalization capabilities. Although our method without
semantics predicts a smooth trajectory, it does not attempt
to grasp the knife handle; instead, it approaches the knife
blade, which might lead to dangerous actions.

5) Generalization Analysis: We visualize the 3D semantic
fields in Figure 6 by overlaying them with the raw point
cloud. In the example of shoes, we observe that similar parts
of different instances are highlighted, such as shoe heads,
shoelaces, and shoe tails. These semantic fields benefit the
policy for two primary reasons: 1) Points that receive high
similarity scores are identified as semantically meaningful
and crucial for task completion. For example, to collect
books on the shelf upright, the robot must know where
the book top is. Geometric information alone is inadequate
for conveying this crucial information for task completion.
2) Semantic fields are consistent across different instances.
The book example shows that the activation on the mark
is consistent across books with various appearances and

Fig. 7: t-SNE for Semantic Features with High Similarity. Points
in similarity fields are selected based on the top k similarity scores.
We compute their corresponding semantic features and project them
into two-dimensional space using t-SNE. It is clearly observed that
all features are clustered and separated from each other. Each cluster
corresponds to a feature that has semantic meaning, such as mug
rings and mug handles.

poses. The category-level consistency enables our method
to achieve category-level generalization.

In addition, we also analyze whether our semantic fields
could carry desired semantic information, as shown in Fig-
ure 7. We initially sample 3D grid points in the workspace
and select the top 100 points with the highest similarity score
for each semantic field. For the example shown in Figure 7,
there will be 500 points in total. Then, we query the descrip-
tor fields and obtain semantic features corresponding to the
selected points. We reduce the high-dimensional semantic
features to the two-dimensional plane using t-distributed
stochastic neighbor embedding (t-SNE). We observe that all
points are distinctly separated, and each blob corresponds to
one object part. This visualization shows that our semantic
fields have a clear semantic meaning for each channel, which
helps the policy to reach category-level generalization.
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