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Abstract

In preference-based Reinforcement Learning
(RL), obtaining a large number of preference la-
bels are both time-consuming and costly. Further-
more, the queried human preferences cannot be
utilized for the new tasks. In this paper, we pro-
pose Zero-shot Cross-task Preference Alignment
and Robust Reward Learning (PEARL), which
learns policies from cross-task preference transfer
without any human labels of the target task. Our
contributions include two novel components that
facilitate the transfer and learning process. The
first is Cross-task Preference Alignment (CPA),
which transfers the preferences between tasks via
optimal transport. The key idea of CPA is to
use Gromov-Wasserstein distance to align the tra-
jectories between tasks, and the solved optimal
transport matrix serves as the correspondence be-
tween trajectories. The target task preferences
are computed as the weighted sum of source
task preference labels with the correspondence
as weights. Moreover, to ensure robust learning
from these transferred labels, we introduce Robust
Reward Learning (RRL), which considers both re-
ward mean and uncertainty by modeling rewards
as Gaussian distributions. Empirical results on
robotic manipulation tasks from Meta-World and
Robomimic demonstrate that our method is capa-
ble of transferring preference labels across tasks
accurately and then learns well-behaved policies.
Notably, our approach significantly exceeds ex-
isting methods when there are few human pref-
erences. The code and videos of our method
are available at: https://sites.google.
com/view/pearl-preference.
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1. Introduction
In recent years, great achievements have been made in Re-
inforcement Learning, particularly in solving sequential
decision-making problems given a well-defined reward func-
tion (Mnih et al., 2013; Silver et al., 2016; Vinyals et al.,
2019; Berner et al., 2019; Bai et al., 2023). However, the
practical deployment of RL algorithms is often hindered
by the extensive effort and time required for reward engi-
neering. Additionally, there are risks of reward hacking,
where RL agents exploit reward functions in unanticipated
ways, leading to unexpected and potentially unsafe out-
comes. Moreover, the challenge of aligning RL agents with
human values, particularly sensorimotor skills as discussed
in this paper, through crafted reward functions remains sub-
stantial in real-world applications.

As a promising alternative, preference-based RL (Chris-
tiano et al., 2017) introduces a paradigm different from
traditional RL by learning reward functions via human pref-
erences between trajectories rather than manually designed
reward functions. By directly capturing human intentions,
preference-based RL has demonstrated an ability to teach
agents novel behaviors that align more closely with human
values. However, while the strides made in preference-based
RL are significant (Park et al., 2022; Liang et al., 2022; Liu
et al., 2022), current algorithms come with their own set of
challenges. First, they are heavily reliant on a vast number
of online queries to human experts for preference labels
for reward and policy learning. This dependency not only
increases the time and cost associated with training but also
results in data that cannot be recycled or repurposed for new
tasks. Each new task encountered demands its own set of
human preference labels, creating a cycle of labeling that is
both resource-intensive and inefficient. While Hejna III &
Sadigh (2023) leverage prior data to pre-train reward func-
tions via meta-learning and adapts quickly with new task
preference data, the need for millions of pre-collected pref-
erence labels and further online queries makes this approach
impractical in many scenarios.

Recently, Gromov-Wasserstein (GW) distance (Mémoli,
2011) has shown effectiveness in a variety of structured
data matching problems, such as graphs (Xu et al., 2019)
and point clouds (Peyré et al., 2016). Gromov-Wasserstein
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Figure 1: Framework of PEARL. Given unlabeled target task trajectories and source task trajectories and their preference
labels, the trajectories between tasks are first aligned via Gromov-Wasserstein distance. Then the target task preference
labels are computed by the solved optimal transport matrix and source task preference labels. The reward model is learned
robustly and finally offline RL algorithm is applied to obtain the policy.

distance measures the relational distance and finds the opti-
mal transport plan across different domains. Inspired by this,
we consider using Gromov-Wasserstein distance as an align-
ment tool between the trajectories of source and target tasks.
Given two sets of trajectories from source and target tasks
respectively, we can identify the corresponding trajectory
pairs between tasks based on the solved optimal transport
matrix. Hence, a zero-shot cross-task preference-based RL
algorithm can be developed that utilizes previously anno-
tated preference data to transfer the preferences across tasks.

In this work, we aim to leverage data collected from ex-
isting source tasks to reduce the human labeling cost for
unseen target tasks. We propose to use Gromov-Wasserstein
distance to find the correspondence between trajectories
from source tasks and target tasks and compute preference
labels according to trajectory alignment. Our method only
requires a small number of preference labels from source
tasks, then obtaining abundant preference labels for the
target task. However, the transferred labels may contain
a proportion of incorrect labels, which significantly affect
reward and policy learning. To learn robustly from CPA
labels, we introduce a novel distributional reward modeling
approach, which not only captures the average reward but
also measures the reward uncertainty. The framework of our
method is shown in Figure 1.

In summary, our contributions are three-fold. First, we in-
troduce Cross-task Preference Alignment (CPA), the first
zero-shot cross-task preference-based RL approach that uti-
lizes small amount of preference data from previous tasks
to infer pseudo labels via optimal transport. Second, we

propose Robust Reward Learning (RRL), to ensure robust
learning from CPA labels. Last, we validate the effective-
ness of our approach through experiments on several robotic
manipulation tasks of Meta-World (Yu et al., 2020) and
Robomimic (Mandlekar et al., 2022). The empirical re-
sults show the strong abilities of our method in zero-shot
preference transfer. Moreover, it is shown that our method
significantly outperforms current methods when there is a
lack of human preference labels.

2. Related Work
Preference-based Reinforcement Learning. Preference-
based RL algorithms have achieved great success by align-
ing with human feedback (Christiano et al., 2017; Ibarz et al.,
2018; Lee et al., 2021a; Ouyang et al., 2022; Bai et al., 2022).
The main challenge of preference-based RL is feedback ef-
ficiency and many recent preference-based RL works have
contributed to tackle this problem. To improve feedback
efficiency, PEBBLE (Lee et al., 2021b) proposes to use un-
supervised exploration for policy pre-training. SURF (Park
et al., 2022) infers pseudo labels based on reward confidence
to take advantage of unlabeled data, while RUNE (Liang
et al., 2022) facilitates exploration guided by reward uncer-
tainty. Meta-Reward-Net (Liu et al., 2022) further improves
the efficiency by incorporating the performance of the Q-
function during reward learning. SEER (Bai et al., 2024)
proposes to utilize label smoothing and policy regularization
via conservatism to tackle this issue. However, most current
preference-based RL methods still requires a large number
of human preference labels for training new tasks, and the
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data cannot be utilized for learning other tasks. To leverage
preference data on source tasks and reducing the amount of
human feedback, Hejna III & Sadigh (2023) leverage meta
learning to pre-train the reward function, achieving fast
adaptation on new tasks with few human preferences. De-
spite the success of Hejna III & Sadigh (2023) in reducing
human cost, it still needs 1.5 million labels for pre-training
and further online querying for the new task. Recently, of-
fline preference-based RL draws more attention with the
increasing interests in offline RL (Kostrikov et al., 2022;
Lyu et al., 2024). Preference Transformer (PT) (Kim et al.,
2023) proposes to use Transformer architecture to model
non-Markovian rewards and outperforms previous methods
that model Markovian rewards. IPL (Hejna & Sadigh, 2023)
learns policies without reward functions. Nonetheless, PT
and IPL still require hundreds of human labels. Our method
differs from prior methods that we only need a small number
of human labels from source tasks and can obtain extensive
preference labels for the new task.

Optimal Transport. Optimal Transport (OT) has been
widely studied in domain adaptation (Damodaran et al.,
2018; Shen et al., 2018), graph matching (Titouan et al.,
2019; Xu et al., 2019), recommender systems (Li et al.,
2022), and imitation learning (Fickinger et al., 2022). For
example, GWL (Xu et al., 2019) is proposed to jointly learn
node embeddings and perform graph matching. Li et al.
(2022) transfer the knowledge from the source domain to
the target domain by using Gromov-Wasserstein distance
to align the representation distributions. In the context of
RL, there are several imitation learning methods that utilize
OT to align the agent’s and expert’s state-action distribu-
tions (Dadashi et al., 2021; Cohen et al., 2021; Haldar et al.,
2023a; Luo et al., 2023; Haldar et al., 2023b). For cross-task
imitation learning method, GWIL (Fickinger et al., 2022)
aligns agent states between source and target tasks and com-
putes pseudo rewards based on the solved optimal transport
plan. PEARL is the first preference-based RL algorithm
that leverages optimal transport for cross-task alignment.
PEARL does not perform representation space alignment,
which requires additional gradient computation. It directly
uses Gromov-Wasserstein distance to align trajectory dis-
tributions between tasks and compute preference labels for
the target tasks according to the transport matrix.

Distributional Modeling for Robust Learning from Noisy
Samples. Traditional representation learning techniques
extract features as fixed points. However, such modeling
fails to adequately capture data uncertainty, leading to subop-
timal performance with noisy data. A series of studies have
proposed modeling features as distributions to enhance ro-
bustness, seen in person Re-ID (Yu et al., 2019), face recog-
nition (Chang et al., 2020), scene graph generation (Yang
et al., 2021), Vision-Language Pre-training (VLP) (Ji et al.,

2022). Specifically, these methods utilize Gaussian distribu-
tions rather than fixed points to model features, interpreting
variance as uncertainty. In preference-based RL, Xue et al.
(2023) proposes an encoder-decoder architecture for reward
modeling, which encodes state-action features as Gaussian
distributions. Consequently, the features can be manipulated
in a latent space and they are constrained to be close to a
prior distribution to stabilize reward learning process. In our
work, we model reward distributions rather than feature dis-
tributions and we are the first to model reward distribution
in preference-based RL to the best of our knowledge.

3. Problem Setting & Preliminaries
Problem Setting. In this paper, we consider preference
transfer between tasks share the same action space. We as-
sume there exists a task distribution p(T ), with each task T
corresponding to a distinct Markov Decision Process (MDP).
MDP is defined by the tuple (S,A,P,R, γ) consisting of
a state space S, an action space A, a transition function
P : S ×A → S , a reward functionR : S ×A → R, and a
discount factor γ ∈ [0, 1). While the action space A remain
identical across these MDPs, the state space S , the transition
function P , the reward functionR, and the discount factor
γ can differ.

In this context, our paper introduces the problem of zero-
shot preference transfer. We consider a source task Tsrc ∼
p(T ) and a target task Ttgt ∼ p(T ). Assume we have M
trajectories xi of task Tsrc, i = 1, · · · ,M , along with prefer-
ence labels of all combinations of trajectory pairs (xi, xi′)
where i, i′ = 1, · · · ,M, i < i′. For task Ttgt, there are N
trajectories yj , j = 1, · · · , N . The goal of our method is to
learn a policy π(a | s) for task Ttgt with preference labels
transferred from task Tsrc.

Preference-based Reinforcement Learning. Preference-
based RL is assumed to have no access to the ground-truth
reward function and learns a reward function r̂ψ from hu-
man preferences. A trajectory segment of length H is rep-
resented as x = {s1,a1, · · · , sH ,aH}. Given a pair of
segments (x0, x1), a human provides a preference label
z ∈ {0, 1, 0.5}, where 0 indicates that x0 is preferred over
x1 (denoted as x0 ≻ x1), 1 denotes the reverse preference,
and 0.5 indicates the two segments are equally preferable.
The preference predictor formulated via the Bradley-Terry
model (Bradley & Terry, 1952) is:

Pψ[x
0 ≻ x1] = exp

∑
t r̂ψ(s

0
t ,a

0
t )

exp
∑
t r̂ψ(s

0
t ,a

0
t ) + exp

∑
t r̂ψ(s

1
t ,a

1
t )
.

(1)
With a dataset containing trajectory pairs and their labels
D = {(x0, x1, z)}, the parameters of the reward function
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Figure 2: Diagram of cross-task preference alignment. The circle⃝ represents a trajectory segment in each task. (a) CPA
uses Gromov-Wasserstein distance as a relational distance metric to align trajectory distributions between source and target
tasks. (b) The optimal transport matrix is solved by optimal transport, with each element representing the correspondence
between trajectories of two tasks. (c) The preference labels of trajectory pairs of the target task are computed based on
trajectory correspondence by Equation 6. z(y1, y3) = 1 indicates that y3 is better than y1 and 0 indicates y1 is preferred.

can be optimized using the following cross-entropy loss:

Lce(ψ) = − E
(x0,x1,z)∼D

[
(1− z) logPψ[x0 ≻ x1]

+ z logPψ[x
1 ≻ x0]

]
.

(2)

By aligning the reward function with human preferences,
the policy can be learned from labeled transitions by r̂ψ via
RL algorithms.

Optimal Transport. Optimal Transport (OT) aims to find
the optimal coupling of transporting one distribution into
another with minimum cost. Unlike Wasserstein distance,
which measures absolute distance, Gromov-Wasserstein dis-
tance is a relational distance metric incorporating the metric
structures of the underlying spaces (Mémoli, 2011; Peyré
et al., 2016). Besides, Gromov-Wasserstein distance mea-
sures the distance across different domains, which is benefi-
cial for cross-domain learning. The mathematical definition
of Gromov-Wasserstein distance is as follows:
Definition 3.1. (Gromov-Wasserstein Distance (Peyré et al.,
2016)) Let (X , dX , µX ) and (Y, dY , µY) denote two metric
measure spaces, where dX and dY represent distance met-
rics measuring similarity within each task, and µX and µY
are Borel probability measures on X and Y , respectively.
For p ∈ [1,∞), the Gromov-Wasserstein distance is defined
as:

inf
γ∈Π(µX ,µY)

∫∫
X×Y,X×Y

L(x, x′, y, y′)pdγ(x, y)dγ(x′, y′),

(3)
where L(x, x′, y, y′) = |dX (x, x′)− dY(y, y′)| denotes the
relational distance function, and Π(µX , µY) is the set of
joint probability distributions with marginal distributions
µX and µY . p is assumed to be 2 in the paper.

4. Method
In this section, we present PEARL, a zero-shot cross-task
preference-based RL algorithm that transfers preferences
between tasks and learns robustly without any human labels.
First, we propose Cross-task Preference Alignment to align
the trajectories of source and target tasks using optimal
transport and computes preference labels according to the
solved optimal alignment matrix. Second, we introduce
Robust Reward Learning, which additionally incorporates
the reward uncertainty by modeling the rewards from a
distributional perspective, enabling robust learning from
noisy labels.

4.1. Cross-task Preference Alignment

Gromov-Wasserstein distance shows great abilities in align-
ing structural information, such as correspondence of edges
between two graphs. Therefore, we consider using Gromov-
Wasserstein distance as an alignment metric between the
trajectories of source and target tasks, finding the alignment
of paired trajectories between tasks, and inferring preference
labels based on the correspondence and preference labels of
the source trajectory pairs. The diagram of CPA is shown in
Figure 2.

CPA aims to identify the correspondence between two sets
of trajectories and transfer the preferences accordingly. In
this paper, we consider preference transfer problem from
a source task S to a target task T , with their distributions
denoted as µ and ν, respectively. Assume we have M
segments with pairwise preference labels {xi}Mi=1 from the
source task and N segments {yj}Nj=1 from the target task.
The trajectories can be represented by the probability mea-
sures µ =

∑M
i=1 uiδxi

and ν =
∑N
j=1 vjδyj , where δx de-

notes the Dirac function centered on x. The weight vectors
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Figure 3: Different types of reward modeling. (a) Scalar reward modeling, which only considers scalar rewards. This
modeling type is widely used in preference-based RL algorithms (Christiano et al., 2017; Lee et al., 2021b; Kim et al., 2023).
(b) Distributional reward modeling, which adds a branch for modeling reward uncertainty in addition to reward mean.

{ui}Mi=1 and {vj}Nj=1 satisfy
∑M
i=1 ui = 1 and

∑N
j=1 vj =

1, respectively. The empirical Gromov-Wasserstein distance
for aligning trajectories between source and target tasks is
expressed as:

min
T∈Π(µ,ν)

∑
i,i′,j,j′

|ds(xi, xi′)− dt(yj , yj′)|2 TijTi′j′ , (4)

where the optimal transport matrix is T = [Tij ], Π(µ,ν)
denotes the set of all couplings between µ and ν, Π(µ,ν) =
{T ∈ RM×N | T1N = µ,T⊤1M = ν}, 1M denotes a
M -dimensional vector with all elements equal to one, and
ds, dt represent the distance function in each task, such as
Euclidean function or Cosine function.

Upon solving Equation 4, we obtain the optimal transport
matrix T representing the correspondence between the tra-
jectories of the two tasks. Each element, Tij , indicates
the probability that trajectory xi matches trajectory yj , and
the j-th column represents the correspondence between yj
and all source trajectories. Therefore, for a pair of trajecto-
ries (yj , y′j), we can identify the paired relations based on
the optimal transport matrix. We define the trajectory pair
matching matrix Ajj′ for each (yj , y

′
j) by multiplying the

j-th column T·j and the transpose of j′-th column T⊤
·j′ :

Ajj′ = T·jT
⊤
·j′ , (5)

where Ajj′ ∈ RN×N , and each element Ajj
′

ii′ of the ma-
trix represents the correspondence of trajectory pair (yj , y′j)
with trajectory pair (xi, x′i) from the source task. If we de-
note the preference label of (xi, x′i) as z(xi, xi′), then the
PEARL label of (yi, yi′) is computed as follows:

z(yj , yj′) =
∑
i

∑
i′ ̸=i

Ajj
′

ii′ z(xi, xi′), (6)

where i′ ̸= i is due to the same segments are equally prefer-
able. In Equation 6, the preference labels of source task
trajectory pairs are weighted by the trajectory pair corre-
spondence. This means that the preference labels of matched
trajectory pairs contribute more to the preference transfer.
The full procedures for computing CPA labels are shown in
Algorithm 1 in Appendix A.

4.2. Robust Reward Learning

Obtaining preferences labels transferred according to the
optimal transport matrix, we can utilize preference-based
RL approaches, such as the offline preference-based RL
algorithm PT (Kim et al., 2023), to learn reward functions.
However, the labels may include some noise and learning
from such data using previous methods will influence the
accuracy of the rewards and eventually the performance of
the policy.

Prior preference-based RL methods represent the rewards as
fixed scalar values (Christiano et al., 2017; Lee et al., 2021b;
Kim et al., 2023). However, this type of reward modeling
is vulnerable to noisy labels. Given a preference dataset
comprising trajectory pairs and their preference labels, al-
tering one preference label z of a pair (x0, x1) into 1 − z
will dramatically change the optimization direction of the
reward function on the pair. Thus, if we respectively learn
two reward models from the clean dataset and the data with
an inverse label, the two reward models will predict distinct
values for that trajectory pair. Subsequent, the inaccurate
rewards will affect the performance of the policy. Therefore,
a robust preference-based RL algorithm capable of learning
from noisy labels is necessary.
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Distributional Reward Modeling. To improve the robust-
ness of preference-based RL in the presence of noisy labels,
we incorporate reward uncertainty and model the rewards
from a distributional perspective. Specifically, the rewards
are modeled as Gaussian distributions, where the mean rep-
resents the estimated reward and the variance signifies the
reward uncertainty.

As shown in Figure 3, we design two branches for modeling
reward mean and variance concurrently. Given the extracted
embedding {xt}Ht=1 of a trajectory segment of length H ,
we split {xt} into two tensors of the same shape along the
embedding dimension. These split tensors are separately
processed by the mean and variance branches, ultimately
yielding reward mean {r̂t} and variance {σ2

t }. With reward
mean and variance, we then construct the preference predic-
tor Pψ and derive the loss function for distributional reward
learning based on Equation 2:

Lce = E
(x0,x1,z)∼D

[
CE

(
Pψ({r̂0t }, {r̂1t }), z

)
+ λ · Eβ0

t∼p(β0
t ),β

1
t∼p(β1

t )
CE

(
Pψ({β0

t }, {β1
t }), z

)]
,

(7)
where λ balances the reward mean {r̂t} and the stochastic
term {βt}, {r̂0t } and {β0

t } respectively denote the reward
mean and reward samples of trajectory segment x0 (and
{r̂1t } and {β1

t } for x1), preference predictor Pψ in the first
term takes the reward mean of two segments as inputs while
the second Pψ uses sampled rewards of two segments as
inputs, and CE denotes the cross-entropy loss. In practical,
the second expectation in Equation 7 is approximated by the
mean of K samples from the distribution of β.

Regularization Loss. The sampled rewards with large
variance will make the second term of Equation 7 a large
value. If we directly optimize Equation 7, the variance
of all samples will decrease, and eventually close to zero.
Therefore, to avoid the variance collapse, we introduce a
regularization loss to force the uncertainty level to maintain
a level η:

Lreg = max(0, η − h(N (r̂, σ2))), (8)

where h(N (r̂, σ2)) = 1
2 log(2πeσ

2) computes the entropy
of the Gaussian distribution. Combing the cross-entropy
loss in Equation 7 and regularization loss in Equation 8, the
total loss for RPT training is as follows:

L(ψ) = Lce + α · Lreg, (9)

where α is a trade-off factor between the two terms.

Reparameterization Trick. Directly sampling β from
N (r̂, σ2) will make the back propagation process in-
tractable. Hence, we use the reparameterization trick to

first sample a noise ϵ from standard Gaussian distribution
N (0, 1), and computes the sample by:

β = r̂ + σ · ϵ. (10)

Therefore, the reward mean and variance can be learned
without the influences of sampling operation.

4.3. Practical Algorithm

The entire algorithm mainly comprises three stages. First,
our approach computes CPA labels based on Gromov-
Wasserstein distance alignment and the procedures are
shown in Algorithm 1 in Appendix A. In Algorithm 1, we
use Sinkhorn algorithm (Peyré et al., 2016) to solve the op-
timal transport matrix, which is implemented by Python Op-
timal Transport (Flamary et al., 2021). For post-processing,
we apply min-max normalization to CPA labels computed
by Equation 6, as the numerical values of the labels are
relatively small after being weighted by A. Additionally,
we binarize the normalized labels, transforming them from
continuous values into standard discrete preference labels
by Equation 11:

z(yj , yj′) =

{
1 if z(yj , yj′) > 0.5,

0 otherwise
(11)

Second, we implement the distributional reward modeling
based on PT (Kim et al., 2023) and name it Robust Pref-
erence Transformer (RPT). RPT is trained by CPA labels
obtained from the first step. Last, we relabel the transitions
in the offline dataset using the trained reward function and
train offline RL algorithms, such as Implicit Q-Learning
(IQL) (Kostrikov et al., 2022). The full procedures are
shown in Algorithm 2 in Appendix A.

5. Experiments
In this section, we first conduct experiments to evalu-
ate our proposed method on several pairs of robotic ma-
nipulation tasks from Meta-World (Yu et al., 2020) and
Robomimic (Mandlekar et al., 2022) in zero-shot setting.
Then we demonstrate our approach significantly surpasses
existing methods in limited-data scenarios. Last, we evalu-
ate our algorithm with different choice of cost functions and
noise levels.

5.1. Compared Methods and Training Details

The following methods are included for experimental evalu-
ation:

• PT (Kim et al., 2023): The original PT algorithm
trained from the preference labels computed by the
ground-truth rewards.
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Table 1: Success rate of our method against the baselines on robotic manipulations tasks of Meta-World and Robomimic
benchmark. The results are reported with mean and standard deviation across five random seeds. The results of PEARL
are bolded and the last column denotes the accuracy of computing CPA labels. The results demonstrate that our method
exceeds PT+Sim and is comparable to PT with ground-truth scripted labels.

Source Task Target Task PbRL with Scripted Labels PbRL with Transferred Labels CPA
Acc.PT PT+Semi IPL PT+Sim PT+CPA RPT+CPA IPL+CPA

Button Press

Window Open 89.2 ± 5.4 86.4 ± 3.0 91.6 ± 6.2 44.0 ± 26.3 85.6 ± 17.1 88.0 ± 11.6 91.2 ± 5.9 87.0
Door Close 94.8 ± 4.8 94.8 ± 7.6 75.6 ± 32.6 63.6 ± 24.5 59.6 ± 49.1 78.4 ± 29.5 46.8 ± 30.7 78.0
Drawer Open 96.6 ± 6.1 96.8 ± 3.3 91.2 ± 4.1 18.0 ± 33.0 80.8 ± 21.0 84.0 ± 16.0 76.8 ± 10.4 76.6
Sweep Into 86.0 ± 8.7 88.4 ± 5.2 73.2 ± 6.4 48.8 ± 34.9 77.2 ± 11.0 80.0 ± 6.8 76.8 ± 7.6 69.5

Faucet Close

Window Open 89.2 ± 5.4 86.4 ± 3.0 91.6 ± 6.2 21.2 ± 17.2 84.8 ± 10.9 88.8 ± 6.7 88.4 ± 11.5 87.0
Door Close 94.8 ± 4.8 94.8 ± 7.6 75.6 ± 32.6 38.8 ± 44.8 72.8 ± 40.9 86.4 ± 8.2 41.6 ± 31.5 72.0
Drawer Open 96.6 ± 6.1 96.8 ± 3.3 91.2 ± 4.1 56.4 ± 23.4 79.2 ± 8.8 90.8 ± 12.0 70.4 ± 11.6 77.0
Sweep Into 86.0 ± 8.7 88.4 ± 5.2 73.2 ± 6.4 14.0 ± 20.0 71.6 ± 17.4 75.2 ± 6.6 81.6 ± 7.1 68.4

Square-MH Can-MH 35.6 ± 11.6 30.8 ± 12.7 50.8 ± 12.2 - 32.8 ± 5.9 34.8 ± 12.1 45.6 ± 8.2 70.0
Lift-MH 68.8 ± 19.2 60.8 ± 7.3 92.4 ± 3.3 - 62.0 ± 19.1 74.4 ± 23.1 81.6 ± 6.1 63.2

Average (w/o Robomimic) 91.7 91.6 82.9 38.1 76.5 84.0 71.7 76.9
Average (all settings) 83.8 82.4 80.6 - 71.2 78.1 70.1 74.9

• PT+Semi: This baseline combines PT with semi-
supervised learning, which is proposed in the on-
line feedback-efficient preference-based RL algorithm
SURF (Park et al., 2022). The method infers pseudo
preference labels of unlabeled data based on the reward
confidence.

• IPL (Hejna & Sadigh, 2023): An offline preference-
based RL algorithm that learns policies without model-
ing reward functions.

• PT+Sim: This baseline is a cross-task preference-based
RL algorithm that calculates transferred preference
labels simply based on the trajectory similarity between
tasks.

• PT+CPA (Ours): The method is a zero-shot preference-
based RL algorithm that learns PT from preference
labels transferred by CPA.

• RPT+CPA (Ours): The method robustly learns RPT
from CPA labels by modeling reward distribution.

• IPL+CPA (Ours): The method learns from CPA labels
without reward functions.

Implementation Details. All methods are implemented
based on the officially released code of PT 1 and IPL 2.
RPT is implemented by replacing the preference attention
layer of PT with two branches, each comprising a two-layer
Multi-layer Perceptrons (MLPs), with the other settings
identical to PT. Both PT and PT+Semi utilize scripted la-
bels computed according to ground-truth rewards, which is
a common way for the evaluation of preference-based RL

1https://github.com/csmile-1006/PreferenceTransformer
2https://github.com/jhejna/inverse-preference-learning

algorithms (Lee et al., 2021b; Liu et al., 2022; Kim et al.,
2023). PT+CPA, RPT+CPA and IPL+CPA are trained with
computed CPA labels (zero-shot) or a mixture of CPA la-
bels and scripted labels (few-shot). All PT-based methods
initially train reward models using the preference data, and
the offline RL algorithm IQL (Kostrikov et al., 2022) is used
for policy learning following PT. For IPL-based method,
policies are directly learned from preferences.

For the Meta-World benchmark, Button Press and Faucet
Close serve as source tasks, while Window Open, Door
Close, Drawer Open, and Sweep Into are evaluated as target
tasks. For Robomimic, we set Square-MH as the source task,
and Can-MH and Lift-MH as target tasks. The used tasks
and datasets are detailed in Appendix C. We set the segment
length as 50 for Meta-World tasks and 100 for Robomimic
tasks. For the number of target task preference labels, we
provide 100 for Window Open and Door Close, 500 for
Drawer Open, Can-MH and Lift-MH, and 1000 for Sweep
Into. The Euclidean function is employed as the cost func-
tion in the Gromov-Wasserstein distance alignment, with
different cost functions discussed in Section 5.4. Regarding
RPT learning, the margin η in Equation 8 is set to 100 for
all experiments, with different margin effects evaluated in
Appendix D. The number of samples K in Equation 7 is
consistently set to 5. The weight λ in Equation 7 is 0.3 for
Door Close with Button Press as the source task, and 0.1
for the other task pairs. The trade-off α in Equation 9 is set
to 0.02 for Drawer Open with Button Press as the source
task, and 0.01 for all other experiments. Detailed network
architectures and hyperparameters of all methods and IQL
are presented in Appendix C.
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Figure 4: Success rate of Door Close, Window Open and Lift-MH with different scripted preference labels.

Table 2: Success rates on three pairs of source and target tasks with different cost functions. The results are reported with
mean and standard deviation of success rate across five runs.

Source Task Target Task Euclidean Cosine

RPT+CPA CPA Acc. RPT+CPA CPA Acc.

Button Press Sweep Into 80.0 ± 6.8 69.5 79.2 ± 5.4 65.0
Faucet Close Window Open 88.8 ± 6.7 87.0 92.4 ± 3.6 91.0
Square-MH Lift-MH 74.4 ± 23.1 63.2 69.3 ± 9.5 66.0

Average 81.1 73.2 80.3 74.0

The tasks of Meta-World and Robomimic are evaluated
through success rate. Each task is conducted with five ran-
dom seeds, with the mean and standard deviation of success
rates reported. Each run evaluates the policy by rolling
out 50 episodes at every evaluation step, calculating perfor-
mance as the mean success rate over these 50 episodes. All
experiments are run on NVIDIA GeForce RTX 3080 and
NVIDIA Tesla V100 GPUs with 8 CPU cores.

5.2. Results of Zero-shot Preference Learning

Table 1 shows the results on robotic manipulation tasks of
Meta-World and Robomimic with different pairs of source
and target tasks 34. For the baselines that use scripted prefer-
ence labels, PT, PT+Semi and IPL yield outstanding perfor-
mance on the majority of tasks, where PT achieves a mean
success rate of 91.7% on Meta-World Tasks and 83.8%
across all tasks. The performance of PT+Semi is almost
the same with that of PT on Meta-World tasks, but has a
drop on Robomimic tasks. For IPL, it outperforms PT and
PT+Semi on Robomimic, while its performance on Meta-
World is worse than that of them. By transferring preference
via OT, CPA attains a mean accuracy of 74.9% in comput-

3PT, PT+Semi and IPL do not require preference data from
source tasks, so the their results are solely depend on the target
tasks.

4PT+Sim cannot work by transferring preferences from Square-
MH to Lift-MH because the state dimension of these two tasks are
different.

ing preference labels across all tasks. PT trained with CPA
labels realizes a 71.2% success rate, equating to 85.0% of
oracle performance (i.e., the performance of PT trained with
scripted labels). RPT, incorporating reward uncertainty in
reward modeling, enhances performance to 78.1% across all
tasks when trained with CPA labels, equivalent to 93.2% or-
acle performance. Also, IPL+CPA achieves 70.1% success
rate across all tasks, which is equal to 87.0% oracle perfor-
mance. We can conclude that RPT+CPA can achieve com-
petitive performance compared with baselines trained with
scripted preference labels. Both PT+CPA and RPT+CPA
outperforms PT+Sim by a large margin, and RPT+CPA even
exceeds PT on the Lift-MH task, demonstrating the pow-
erful capabilities of CPA and RPT in zero-shot preference
transfer and robust learning.

5.3. Results of Few-shot Preference Learning

The results in Table 1 have shown strong zero-shot transfer
ability of CPA. To further balance the human labeling cost
and algorithm performance, we are interested in how well
does RPT+CPA perform when there are a small number
of preference labels. For fair comparison, we evaluate our
method and PT with the same number of scripted preference
labels of the target task, across Foracle ∈ {0, 5, 10, 15, 20}.
Our method additionally obtains CPA labels with the size of
FCPA = 100− Foracle by transferring from the source task.
The results in Figure 4 show that RPT+CPA significantly
outperforms PT when lacking oracle preference labeling,

8
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Figure 5: Success rate of Sweep Into, Window Open and Lift-MH under different noise levels.

and the advantage becomes more obvious when the number
of labels is smaller. Moreover, RPT+CPA even exceeds the
Oracle PT (i.e., PT with 100 scripted labels) on Window
Open task when Foracle ∈ {5, 10, 15, 20}, and Lift-MH task
when Foracle ∈ {0, 5, 10, 15, 20}. The results demonstrate
the excellent performance of our method when oracle labels
are hard to obtain, and CPA can be used to significantly to
reduce extensive human labeling.

5.4. Ablation Study

Different Cost Functions. The sensitivity of CPA to
the cost function is examined by evaluating PT+CPA and
RPT+CPA performance with varying cost functions, includ-
ing the Euclidean and Cosine functions. Table 2 demon-
strates that CPA performs robustly with either cost func-
tion. Notably, CPA with the Cosine function even attains
91.0% accuracy in computing CPA labels on the Window
Open task, with its success rate (92.4%) surpassing PT with
scripted labels on this task (89.2%).

Different Noise Levels. To evaluate the performance of
PT and RPT under different noise levels, we conduct experi-
ments with 10%, 20%, 30% noisy labels induced by flipping
scripted labels. The results in Figure 5 reveal the enhanced
robustness of RPT to label noise, with RPT significantly
outperforming PT at higher noise levels.

6. Conclusion
In this paper, we present PEARL, a novel zero-shot
cross-task preference-based RL algorithm, which leverages
Gromov-Wasserstein distance for aligning trajectory distri-
butions across different tasks and transfers preference labels
through optimal transport matrix. CPA only needs small
amount of preference data from prior tasks, eliminating
the need for a substantial amount pre-collected preference
data or extensive human queries. Furthermore, we propose
RRL, which models reward uncertainty rather than scalar
rewards to learn reward models robustly. Empirical results

on various robotic manipulation tasks of Meta-World and
Robomimic demonstrate the effectiveness of our method
in zero-shot transferring accurate preference labels and im-
proves the robustness of learning from noisy labels. Ad-
ditionally, our method significantly surpasses the current
method when there are a few preference labels. By minimiz-
ing human labeling costs to a great extent, PEARL paves
the way for the practical applications of preference-based
RL algorithms.

Limitations. Our method does present certain limitations.
Firstly, our method is not well-suited for high-dimensional
inputs due to the potential for slower processing speeds
when working with high-dimensional inputs in optimal
transport. Secondly, the efficiency of our algorithm re-
lies on the same action space between source and target
tasks. Therefore, our method is not suitable for the tasks
like those have completely different state and action spaces.
A potential solution may be utilizing representation learn-
ing methods to obtain trajectory representations and using
Gromov-Wasserstein distance to align in the representation
space (Chen et al., 2020; Li et al., 2022). Please refer to Ap-
pendix E.1 for detailed discussion on how the task similarity
influences PEARL. We recognize these limitations and view
the mitigation of these issues as important directions for
future exploration and development.
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Appendix

A. Algorithm
The algorithm of computing CPA labels and the full algorithm of our approach is shown in Algorithm 1 and Algorithm 2,
respectively.

Algorithm 1 Computing CPA Labels

Input: source trajectory set {xi}Mi=1, target trajectory set {yj}Nj=1, regularization parameter ω
1: Initialize T ← 1

MN 1M1⊤
N , p← 1

M 1M , q← 1
N 1N

2: Compute Cs, Ct with [Cs]ij = |xi − xj |2 and [Ct]ij = |yi − yj |2
3: Compute Cst with Cst ← C2

sp1
⊤
Tt

+ 1Ts
q⊤(C2

t )
⊤

4: for each step do
5: Compute C ← Cst − 2CsT (Ct)

⊤

6: Set u← 1
M 1M , v← 1

N 1N , K ← exp(−C/ω)
7: for k = 1, 2, · · · do
8: u← p

Kv , v← q
K⊤u

9: end for
10: T ← diag(u)K diag(v)
11: end for
12: for each j do
13: for each j′ ̸= j do
14: Compute trajectory pair matching matrix A with Equation 5
15: Compute transferred preference label of (yj , yj′) with Equation 6
16: end for
17: end for
18: Post-process CPA labels by min-max normalization and binaryzation
Output: CPA labels

Algorithm 2 PEARL Algorithm

Input: Source task preference dataset Ds, target task dataset B, reward model learning rate of ρ, robust term’s weight
coefficient λ, regularization weight coefficient α, RPT margin η, number of reward samples K

1: Initialize reward model r̂ψ , policy πϕ, preference dataset of target task Dt ← ∅
2: Perform K-means clustering and group the trajectories of the target dataset into 2 clusters
3: for each step do
4: Sample N

2 trajectories from each cluster within B
5: Compute CPA labels with Algorithm 1 and store Dt ← Dt ∪ {(yj , yj′ , zj)}Nj=1

6: end for
7: for each gradient step do
8: Sample minibatch preference data from Dt
9: Sample K rewards from the reward distribution computed by the outputs of RPT

10: Update ψ using Equation 9 with learning rate ρ
11: end for
12: Label rewards of the transitions in B using trained r̂ψ
13: for each gradient step do
14: Sample minibatch transitions from B
15: Update policy πϕ through offline RL algorithms
16: end for
Output: policy πϕ
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B. Preference Transformer
Preference Transformer (Kim et al., 2023) applies Transformer architecture to model non-Markovian rewards. For a pair of
trajectory segments (x0, x1), the non-Markovian preference predictor is given by:

Pψ[x
0 ≻ x1] = exp

(∑
t w

0
t · r̂ψ({(s0i ,a0i )}ti=1)

)
exp

(∑
t w

0
t · r̂ψ({(s0i ,a0i )}ti=1)

)
+ exp

(∑
t w

1
t · r̂ψ({(s1i ,a1i )}ti=1)

) , (12)

where wjt = w({(sji ,aji )}Hi=1)t, j ∈ {0, 1} represents the importance weight. PT introduces a preference attention layer
that models the weighted sum of rewards using the self-attention mechanism. Assume the trajectory embedding is xt, xt is
projected into a key kt, query qt and value r̂t. The output zi of self-attention is calculated as:

zi =

H∑
t=1

softmax({⟨qi,kt′⟩}Ht′=1)t · r̂t. (13)

The weighted sum of non-Markovian rewards is computed as:

1

H

H∑
i=1

zi =
1

H

H∑
i=1

H∑
t=1

softmax({⟨qi,kt′⟩}Ht′=1)t · r̂t =
H∑
t=1

wtr̂t. (14)

Obtaining a dataset containing D = {(x0, x1, z)}, the parameters of PT can be optimized by Equation 2.

C. Experimental Details
C.1. Tasks

The used tasks are shown in Figure 6 and the task descriptions are listed as follows:

Meta-World.

• Button Press: The objective is to manipulate a robotic arm to press a button. The button’s initial position is arbitrarily
placed.

• Faucet Close: The goal is to control a robotic arm to close a faucet. The initial faucet location is randomly assigned.

• Window Open: The task entails commanding a robotic arm to open a window. The window’s starting position is
randomly chosen.

• Door Close: The task involves guiding a robotic arm to close a door. The door’s starting position is selected randomly.

• Drawer Open: The objective is to operate a robotic arm to open a drawer. The drawer’s initial placement is arbitrary.

• Sweep Into: The task involves manipulating a robotic arm to propel a ball into a cavity. The ball’s initial position is
random.

Robomimic.

• Square: The goal is to manipulate a robotic arm to lift a square nut and position it on a rod.

• Lift: The task is to operate a robotic arm to elevate a cube to a predefined height.

• Can: The objective is to guide a robotic arm to reposition a can from one container to another.
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(a) Button Press (b) Window Open (c) Drawer Open

(d) Faucet Close (e) Door Close (f) Sweep Into

(g) Square (h) Lift (i) Can

Figure 6: Nine robotic manipulation tasks used for experiments. (a-f) Meta-World tasks. (g-i) Robomimic tasks.

C.2. Datasets

Meta-World. For Meta-World tasks, the source preference datasets are collected by ground-truth policies and random
policies, with the number of trajectories M = 4. For each task, both a ground-truth policy and a random policy are utilized
to roll out and obtain 2 trajectories of length 50.

To generate offline dataset for target tasks, we collect the replay buffer and feedback buffer using the preference-based RL
algorithm PEBBLE (Lee et al., 2021b). For Window Open and Door Close tasks, PEBBLE is run with 120000 steps and
2000 scripted preference labels. For Drawer Open, we run PEBBLE with 400000 steps and 4000 scripted labels, and for
Sweep Into, PEBBLE is run with 400000 steps and 8000 scripted labels.

Robomimic. The source dataset of Robomimic tasks is obtained from the Multi-Human (MH) offline dataset of each task,
with the number of trajectories M = 4. The MH dataset is collected by 6 operators across 3 proficiency levels, with each
level comprising 2 operators. Each operator collect 50 demonstrations, resulting in a total of 300 demonstrations. For each
task, the source dataset consists of the best 2 trajectories from the offline dataset and 2 random trajectories, and trajectory’s
length is 100. The offline dataset also serves as the target dataset.

C.3. Implementation Details

PEARL does not rely on the goal information, so we set partially observable=True to remove the goal infor-
mation in the state vector for Meta-World (Yu et al., 2020) tasks. For all task pairs, we first perform K-means clustering
and categorize trajectories segments in the feedback buffer into 2 categories, setting N = 4. Then we sample 2 trajectories
from each category and employ Algorithm 1 to compute PEARL labels. CPA accuracy in Table 1 is calculated based on
the comparison between the ground-truth preference labels and the labels inferred by the CPA method. Specifically, for
each pair of trajectories, we compare the preference label inferred by CPA with the corresponding ground-truth label. A
prediction is correct if the CPA label matches the ground-truth label. The accuracy is then calculated as the ratio of correctly
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predicted labels to the total number of trajectory pair comparisons, formulated as:

Accuracy =
Ncorrect

Ntotal
× 100%,

where Ncorrect denotes the number of trajectory pairs for which the CPA label accurately matches the ground-truth label, and
Ntotal represents the total number of trajectory pair comparisons made. The detailed hyperparameters of PT and IQL are
presented in Table 3 and Table 4, respectively.

Table 3: Hyperparameters of PT.

Hyperparameter Value

Number of layers 1
Number of attention heads 4
Embedding dimension 256
Batch size 256
Optimizer AdamW
Optimizer betas (0.9, 0.99)
Learning rate 0.0001
Learning rate decay Cosine decay
Weight decay 0.0001
Dropout 0.1

Table 4: Hyperparameters of IQL.

Hyperparameter Value

Network (Actor, Critic, Value network) (256, 256)
Optimizer (Actor, Critic, Value network) Adam
Learning rate (Actor, Critic, Value network) 0.0003
Discount 0.99
Temperature 3.0 (Meta-World), 0.5 (Robomimic)
Expectile 0.7
Dropout None (Meta-World), 0.1 (Robomimic)
Soft target update rate 0.005

D. Additional Results
In this section, we conduct additional experiments to evaluate the sensitivity of our method to several critical hyperparameters,
which include the robust term’s weight coefficient λ in Lce, the regularization weight coefficient α, and the RPT margin
η. The following experiments use Button Press as the source task for Sweep Into, Faucet Close for Window Open, and
Square-MH for Lift-MH.

Robust Term’s Weight Coefficient λ in Lce. The hyperparameter λ balances the effects of mean and sampled rewards
in Equation 7. To assess the sensitivity of our method to the weight λ, we perform supplementary experiments with different
λ = {0.001, 0.01, 0.1, 1}. The results in Figure 7 demonstrate our method’s robustness against λ variations.

Regularization Weight Coefficient α. To examine the influence of the weight coefficient α in Equation 9, we evaluate
our approach with α = {0.001, 0.01, 0.1, 1}. As Figure 8 shows, our method retains high success rate with small α values.
Conversely, a larger α slightly reduce the performance, as it diminish the contribution of Lce to reward learning, which
further affects the accuracy of the reward function.

RPT Margin η. η serves as a variance constraint in Equation 8. Further experiments are conducted to evaluate this
parameter’s influence. For Sweep Into, η = {50, 100, 200} are used for evaluation, while η = {0.1, 1, 10} are used for
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Figure 7: Success rate of Sweep Into, Window Open and Lift-MH tasks across different λ values.
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Figure 8: Success rate of Sweep Into, Window Open, and Lift-MH tasks across different α values.

Window Open and Lift-MH tasks. The results in Figure 9 demonstrate that our method is not sensitive to the changes of η.
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Figure 9: Success rate of Sweep Into, Window Open, and Lift-MH tasks across different η values.

Number of Source Task Trajectories M . We additionally conduct experiments to evaluate the effect of the number of
source task trajectories to our method, across M ∈ {4, 8, 16}. The results in Table 5 show that our method is not sensitive
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to the number of source trajectories.

Table 5: Success rate and accuracy of CPA labels across different numbers of source task trajectories. The results are
reported with mean and standard deviation of success rate across five runs.

Source Task Target Task M = 4 M = 8 M = 16

RPT+CPA CPA Acc. RPT+CPA CPA Acc. RPT+CPA CPA Acc.

Button Press Drawer Open 84.0 ± 16.0 76.6 82.6 ± 17.7 77.6 85.2 ± 15.8 76.6
Faucet Close Window Open 88.8 ± 6.7 87.0 85.2 ± 9.4 85.0 88.4 ± 11.0 87.0

Average 86.4 81.8 83.9 81.3 86.8 81.8

E. Discussion
E.1. How does the task similarity influence CPA?

We employ two distinct metrics to concretely evaluate task similarity: reconstruction error (Ammar et al., 2014) and
latent distance. The former employs the Jensen-Shannon distance (JSD) to measure task similarity. The latter involves
training a Variational Autoencoder (VAE) (Doersch, 2016) on each task and measuring the Euclidean distance between
the latent vectors of different tasks. The results summarized in Table 6 reveal that tasks with greater similarity (i.e.,
lower reconstruction error) exhibit higher cross-task preference transfer accuracy. The Pearson correlation coefficient
between CPA Accuracy and Reconstruction Error is −0.43, indicating a negative linear relationship. This suggests that
as the Reconstruction Error decreases, the CPA Accuracy tends to increase. Similarly, the Pearson correlation coefficient
between CPA Accuracy and Latent Distance is −0.67, indicating a stronger negative linear relationship compared to the
Reconstruction Error. This means that as the Latent Distance decreases, indicating greater task similarity, the CPA Accuracy
tends to increase more strongly. These correlations support the idea that greater task similarity (as measured by lower
Reconstruction Error and lower Latent Distance) is associated with higher CPA Accuracy. Such findings suggest that task
similarity, as quantified by reconstruction error in this context, is a critical factor in the successful application of PEARL for
preference transfer. Notably, while PEARL shows promising results in scenarios where the source and target tasks share
considerable similarities, its performance diminishes in the face of substantial domain gaps, such as tasks in D4RL Gym
Locomotion (Fu et al., 2020).

Table 6: Reconstruction error and latent distance between evaluated task pairs.

Source Task Target Task Reconstruction Error Latent Distance CPA Acc.

Button Press

Window Open 5437.5 2.19 87.0
Door Close 5446.1 2.66 78.0
Drawer Open 5262.3 2.54 76.6
Sweep Into 5656.1 2.52 69.5

Faucet Close

Window Open 5491.3 2.23 87.0
Door Close 5443.3 2.70 72.0
Drawer Open 5292.0 2.54 77.0
Sweep Into 5691.6 2.55 68.4

Square-MH Can-MH - 3.82 70.0
Lift-MH - 3.37 63.2

E.2. Does CPA work without a full ranking of all trajectory pairs?

CPA does not inherently require a full ranking of all trajectory pairs from the source task. The sparsity of the alignment matrix
Ajj′ is indeed a feature that allows our method to operate effectively even when some pairwise preferences are unavailable.
For instance, in the scenario shown in Figure 1 with j = 1, j′ = 2, where T·1 = (0, 0, 0.25, 0)⊤ and T⊤

·2 = (0, 0, 0, 0.25)⊤.
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the resulting A12 matrix demonstrates significant sparsity:

A12 =


0 0 0 0
0 0 0 0
0 0 0 0.0625
0 0 0 0

 .

This example underscores that our approach can indeed function with sparse and incomplete pairwise preference information.
The presence of non-zero elements in Ajj′ reflects the method’s capability to focus on the most informative trajectory
pairings, thereby mitigating the need for exhaustive preference annotations. In cases where the most similar trajectory pairs
lack explicit preference labels, our method can adapt by checking whether the elements of Ajj′ are all 0.

E.3. Standard Deviation of PEARL.

As shown in Table 1, the standard deviation of PEARL is higher than that of PT and PT+Semi, the reason is that PEARL
achieves excellent results with some random seeds but performs less optimally with other seeds. This variability can indeed
be attributed to the inherent stochasticity of reinforcement learning environments and the zero-shot nature of our approach.
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