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ARTEMIS: Detecting Airdrop Hunters in NFT Markets with a
Graph Learning System

Anonymous Author(s)

ABSTRACT
As Web3 projects leverage airdrops to incentivize participation,
airdrop hunters tactically amass wallet addresses to capitalize on
token giveaways. This poses challenges to the decentralization goal.
Current detection approaches tailored for cryptocurrencies over-
look non-fungible tokens (NFTs) nuances. We introduce ARTEMIS,
an optimized graph neural network system for identifying air-
drop hunters in NFT transactions. ARTEMIS captures NFT airdrop
hunters through: (1) a multimodal module extracting visual and
textual insights from NFT metadata using Transformer models;
(2) a tailored node aggregation function chaining NFT transaction
sequences, retaining behavioral insights; (3) engineered features
based on market manipulation theories detecting anomalous trad-
ing. Evaluated on decentralized exchange Blur’s data, ARTEMIS
significantly outperforms baselines in pinpointing hunters. This
pioneering computational solution for an emergent Web3 phenom-
enon has broad applicability for blockchain anomaly detection.
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1 INTRODUCTION
The practice of airdrops has become commonplace amongst Web3
business operations, with Decentralized Applications (DApps) seek-
ing to incentivize widespread user participation in their interactions
and activities through targeted dispensation of tokens, governed
by predetermined rules in smart contracts [22]. However, a corre-
sponding cohort rising in the Web3 realm are “airdrop hunters’,’
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who actively amass swathes of wallet addresses to interact with
relevant smart contracts and capitalize on these bountiful token
giveaways [8]. As DApps increasingly utilize airdrops as rewards
for early adopters, the hunters’ strategies could net them hefty
surging gains, though simultaneously pose challenges to DApps’
decentralization ambitions. Specifically, with intricate on-chain
behaviors involving self-trading across their manifold holdings
to mimic organic transactions, airdrop hunters cunningly exploit
DApps’ largesse towards ostensibly active participants, which has
been critiqued due to threaten ecosystem vital for DApps’ function-
ing [20]. Correspondingly, the onus falls on the team behind the
DApps to institute checks against siphoning of incentives by those
airdrop hunters, without penalizing genuinely engaged users.

Although airdrops and the corresponding hunters represent an
emerging business model and community, relevant research re-
mains scarce. Fan et al. [8]’s research demonstrates identifiable
and observable patterns among airdrop hunters’ address activities.
The simplest example is “transaction loops” cycling assets between
their wallets to mimic exchanges. But such straightforward tech-
niques often get flagged by DApps’ monitoring systems, prompting
airdrop hunters to evolve more sophisticated strategies [1]. This il-
luminates the limitations of visualizing wallet interactions to detect
increasingly complex fraud, falling short of required responsive-
ness. Moreover, current studies mostly focus on cryptocurrency
and ignore the airdrop hunter issue in the NFT context.

Currently, there have been some attempts based on machine
learning to detect fraud behaviors on the blockchain. Among these
works, graph-based modeling of wallet interactions is a very intu-
itive approach and has produced many effective detection frame-
works for phishing scams [31], money laundering [21], and bot
arbitrage [13]. Consequently, constructing airdrop hunter detection
models using machine learning based explicitly on a graphic way
is logical. These works offer valuable references for developing our
airdrop hunter detection system, but directly adopting them has
limitations. Specifically,

(i) Existing GNN modeling methods cannot accurately charac-
terize transaction paths. Merging multiple edges between the same
node pairs in the graph discards critical sequencing data for current
airdrop hunter detection. (ii) Related works lack the utilization of
intrinsic NFT features. Current practices only consider homoge-
neous cryptocurrency transactions, not accounting for additional
information tied to NFTs as traded assets. (iii) Absence of tailored
feature engineering. With a focus on tracing airdrop hunters in
NFT transactions, factors like NFT heterogeneity introduce more
noise. More sophisticated feature extraction could bolster modeling
effectiveness amidst such intricacies.

Our primary focus revolves around tracking Airdrop Hunters in
NFT transactions, a prevalent trading scenario in Web3. Address-
ing this, we introduce ARTEMIS: AiRdrop hunTErs detection via a
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MultImodal and graph learning System. In response to the afore-
mentioned limitations, this system presents three tailored solutions:

(i) We devise a tailored neighbor sampling method and aggre-
gator that chains together multi-hop NFT transaction sequences,
incorporating crucial behavioral information. (ii) We design multi-
modal feature extraction modules, leveraging Transformer-based
pre-trained models to extract visual and textual insights from NFTs.
(iii)We engineer common NFT price representations and advanced
hunter-oriented features based on market manipulation theories
and domain knowledge.

In summary, the contributions of this work are:
• We formalize the problem definition of airdrop hunter de-

tection in the NFT market context, and label hunters within
Blur marketplace data as a dataset.

• We propose the ARTEMIS, the first work attempting sys-
tematic airdrop hunter detection using the machine learn-
ing method. Our system significantly outperforms existing
models for hunter identification. We also introduce tailored
strategies during ARTEMIS training to address associated
challenges effectively.

• We design multimodal feature extraction, transaction path-
based multi-hop neighbor sampling and aggregation, and
advanced feature representation modules. Experiments val-
idate each component’s utility. This modular system is
transferable to other downstream tasks, with each mod-
ule broadly applicable to other NFT or on-chain anomaly
detections.

2 BACKGROUND AND RELATEDWORKS
2.1 Blur and Airdrop Hunters
Unlike the read-only Web1 and platform-controlled Web2, Web3
leverages blockchain technologies like smart contracts and cryp-
tocurrencies to put asset ownership back into users’ hands [27].
As a vital Web3 application, non-fungible tokens (NFTs) are a new
form of digital asset, each representing a unique artwork, certifi-
cate, etc., unlike traditional cryptocurrencies such as Bitcoin and
Ethereum [11]. Attributing to these traits, the NFT market exploded
in 2021, with total market value surging to around $10 billion by
early 2023 [25]. In the NFT landscape, decentralized exchanges
operating via smart contracts are crucial for bolstering market liq-
uidity and ecosystem growth, which has long been dominated by
OpenSea1 through first-mover advantage. Blur2 entered the NFT
market as an aggregator platform in Oct. 2022, relatively late but
empowered by three rounds of token airdrops to incentivize par-
ticipants. During Blur’s second airdrop on Feb. 15th, 2023, over
300 million tokens were distributed (over 10% of the total supply),
drawing 115,834 users to surpass OpenSea [32].

Airdrops are a common token distribution approach utilized by
numerous Web3 projects like Convex and AAVE, whereby tokens
are allocated to users at launch per set criteria to foster long-term
holdings or activity [2]. Post-airdrop, Blur’s daily active users ex-
ploded and then steadily climbed, affirming the immense potential
of this Web 3 growth strategy (Fig. 1). However, this incentive struc-
ture predictably attracted copious airdrop hunters. Analysts reveal
1https://opensea.io/
2https://blur.io/
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(a) Oct.19 Blur announced the airdrop plan. (b) Feb. 15 Blur started its airdrop.

Figure 1: As a late entrant to the market, Blur announced on
Oct. 19, 2022, that it would adopt an airdrop strategy, subse-
quently attracting users and transactions. On Feb. 15, 2023,
Blur commenced its airdrop distribution, spurring a surge in
daily active users and trade volumes eclipsed OpenSea’s.

that 50% of Blur’s NFT trading volume derives from less than 300
wallets, while 1% of “whales” hold 84% of total value locked in Blur’s
bid pools [23]. This implies rampant wash trading on Blur, where a
traded NFT’s buyer and seller are the same airdrop hunter. Such
behavior stifles platform growth and triggers market contagion
amidst NFTs, jeopardizing overall market health.

2.2 Graph Representation Learning on
Blockchain

Recently, the integration of blockchain and machine learning has
garnered a plethora of notable research. This convergence becomes
especially pivotal in scenarios such as anti-money laundering, phish-
ing scam detection, and de-anonymization. Given that wallet inter-
actions on the blockchain inherently form a network structure, it
offers an ideal landscape for graph representation learning.

In the randomwalk-based sequence generation, thoughDeepWalk[24]
stands as a hallmark, several advancements have also emerged. Wu
et al. devised Trans2Vec[30], integrating transaction timestamps
and amounts into a biased random walk process, aiming to capture
transaction relationships between nodes more authentically. In a
similar vein, Lin et al. embarked on a time-weighted random walk
approach[17, 18]. Venturing further, Hu et al. considered the hetero-
geneity of nodes and introduced a “Jump-Stay” temporal-weighted
biased walking method[12] for heterogeneous multi-graph model-
ing, balancing the distribution of diverse node types.

In the domain of GNN, the Graph Convolutional Network (GCN)
is a prominent representative [16]. Shen et al., for example, success-
fully applied GCN to phishing detection tasks in the blockchain
context[26]. Pushing the envelope, Zhou et al. incorporated atten-
tion mechanisms, proposing a Hierarchical Graph Attention Net-
work for account de-anonymization challenges[33]. Moreover, Lo
et al. unveiled Inspection-L[21], an innovative self-supervised GNN
node embedding framework, which achieved state-of-the-art results
on the Elliptic money laundering detection dataset. Kanezashi et
al., focusing on the heterogeneity of nodes, adopted heterogeneous
modeling and conducted an exhaustive evaluation of multiple GNN
performances[14].

2
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Figure 2: (a) The overview of our dataset. (b) The comparison of airdrop hunters and normal users.

2.3 Transformer Pre-trained Models
Over the past few years, pre-trained models have made significant
strides, particularly in the fields of Computer Vision (CV) and Nat-
ural Language Processing (NLP). Many pivotal advancements in
these domains have been achieved through the construction and
optimization of pre-trained Transformer models. In the CV arena,
the Vision Transformer (ViT) proposed by Dosovitskiy and col-
leagues leverages the self-attention mechanism of Transformers,
demonstrating performance on par with or even surpassing tradi-
tional Convolutional Neural Networks[7]. Following closely, Caron
and team introduced DINO[3], which is capable of learning vi-
sual representations without labels, further propelling the progress
in self-supervised learning. Concurrently, in the NLP sphere, the
BERT model[5], introduced by Devlin and associates in 2019, uti-
lizes bidirectional Transformers to pre-train extensive text data,
offering robust representational learning for downstream tasks.
The RoBERTa[19] model is a robustly optimized version of BERT
that enhances performance and universality by tweaking BERT’s
training strategy and data processing workflow. The emergence
of these models has enriched the pre-trained resources available
for research in the CV and NLP fields, facilitating the evolution of
various applications.

Innovative works have pioneered the application of pre-trained
models to blockchain-centric tasks, achieving some breakthroughs.
For instance, the BERT4ETH[13] model aims to utilize a pre-trained
Transformer to detect fraudulent activities on Ethereum, show-
ing significant advantages. In predicting the selling price of NFT,
the MERLIN framework[4], employing multimodal deep learning,
exhibits remarkable predictive performance. Furthermore, in the
realm of smart contract security auditing, research indicates that
large language models like GPT-4 and Claude can identify contract
vulnerabilities to a certain extent, albeit manual auditors are still
required to mitigate false positive rates. These studies unveil the
potential of pre-trained models in blockchain applications.

3 DATASET
We first elucidate the construction and processing of our dataset.
After defining airdrop hunter detection as our initial research ob-
jective, we successfully compiled transaction data from the NFT
marketplace, Blur, over a designated period and annotated associ-
ated addresses.

Data Collection. We utilized the Etherscan API3 to compile
all NFT transaction data and airdrop records related to Blur from
Oct. 19, 2022, to Apr. 1, 2023. For traded NFTs, we thoroughly col-
lected metadata, including NFT images, descriptions, and attributes.
Adopting previous works’ methodology, we leveraged clustering
techniques to process transaction information. Through subsequent
labeling, we compared airdrop records to identify airdrop hunters
meticulously. Subsequently, we sampled varying hunter scales and
visualized microscopic transaction paths to validate data reliability.

Data Description. Across the Blur marketplace, we acquired
2,453,280 NFT transactions encompassing 203,370 unique user wal-
let addresses. Total airdrops from Blur’s official address4 were
123,815. Of all receiving wallets, 4,808 (about 4% of total address)
were labeled airdrop hunters, the rest regular traders. We logged
timestamps, type (buy or sell), value (based on ETH token), send-
ing/receiving addresses, NFT collection, and relevant NFT ID for
each transaction. For every wallet, we compiled entire historical
transaction and smart contract interaction records. For NFTs them-
selves, we gathered full metadata for 1,155,947 traded tokens. Fig. 2a
shows the overview of our dataset. Simultaneously, we display two
simplified real-world examples: In transaction loop 1, two addresses
traded the same NFT back and forth 64 times. In loop 2, three ad-
dresses reciprocally exchanged a single NFT 10 times.

Statistical Analysis. We statistically analyzed several character-
istic features between the labeled airdrop hunter (in the following
work, we describe them with the label of “True”) and normal node

3https://etherscan.io/
40xf2d15c0a89428c9251d71a0e29b39ff1e86bce25
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(comparatively, labeled with “False”) groups. Fig. 2b shows some
features between these two user clusters. 1. While both populations
contained outliers with high NFT purchases, hunter’s extremes
were more pronounced. The hunter distribution also clearly ex-
ceeded regular users. Against information asymmetry in NFT mar-
kets, this purchase significance implies hunters are not motivated
by specific NFTs. 2. For average hold times post-purchase, hunters
were shorter (36 days) than regulars (53 days), fitting profit-driven
aims to maximize airdrops via trading. 3. Hunter’s interactions with
the smart contract also had higher extremes and means than regular
users. 4. Finally, we describe the distribution of unique addresses
for each address transacted within these two clusters, another met-
ric where hunters significantly diverged from regular users. These
observations reinforce our hypothesis that airdrop hunters exhibit
apparent behavioral differences from normal participants, which
provide solid foundations for a GNN to learn and detect hunters’
multidimensional feature patterns.

Brief Conclusion. With Blur’s initial lenient airdrop rules and
lack of hunter detection mechanisms, we observed hunters rou-
tinely employ transaction loops to inflate activity for airdrop el-
igibility artificially. However, as Blur refined its airdrop policies
and instituted logic to deter these basic tactics, hunters had to
adopt more intricate strategies. Similarly to other Web3 projects,
comprehensive detection via conventional means (e.g., rules-based
filtering on structural features) becomes very challenging in this
situation [8]. Nonetheless, given hunters’ consistent underlying
motivation to maximize their airdrop acquisition, we posit that
multi-dimensional analysis of address attributes, transaction pat-
terns, and traded asset (in our study, the NFT) characteristics using
GNNs may uncover unique collective on-chain behavior to identify
hunters amidst complexity effectively.

4 MOTIVATION
Our work is the first to systematically detect airdrop hunters using
graph-based machine learning in NFT trading contexts. Several
critical insights motivated our design:

i. Graph Representations of Blockchain: Previous blockchain
graph modeling traded off between GNNs and random
walks. While GNNs excel at feature representations, they
poorly retain transaction sequence information, conflicting
with our aim to identify hunters via trade paths. In contrast,
earlier randomwalk studies attempted to integrate sequenc-
ing through refined walk algorithms but sacrificed GNNs’
powerful modeling capabilities. For our application, we de-
sire both strengths. Specifically, capitalizing on NFT trace-
ability, we prioritize sequential neighbors during graph
neighbor sampling.

ii. Unique NFT Attributes: NFT heterogeneity presents op-
portunities for more discerning models. Intuitively, high-
quality NFT records are more reliable, while hunters may
manipulate low-quality ones. We posit NFT visual and tex-
tual traits as critical for assessing value and incorporate
NFT feature extraction to combine quality cues with other
signals to evaluate transaction legitimacy.

iii. Advanced Pricing Features: Unlike fungible tokens, each
NFT has unique pricing, complicating pattern detection

from transaction values. Therefore, more sophisticated char-
acteristics are needed to capture market manipulation traits
accurately. We referred to Benford’s law and the roundness
detection of transaction tail numbers, which is widely used
in market manipulation detection [6], to extract higher-
order features from transaction prices to determine whether
a transaction occurred “naturally” or by hunters.

In summary, by holistically synthesizing blockchain technolo-
gies, NFT features, and user behavioral perspectives into a tailored
detection system, we aim to uncover the subtle signals distinguish-
ing sincere participants from airdrop hunters.

Figure 3: Neighbor sampling based on transaction paths. Blue
nodes are randomly sampled 1-hop nodes that have direct
NFT transactions with the center node. Red nodes are 2-hop
nodes that trace the corresponding NFT transaction paths.
This process can be extended to K depth.

5 ARTEMIS
In addressing the task of detecting Airdrop Hunters, we propose
ARTEMIS: AiRdrop hunTErs detection via a MultImodal and graph
learning System. In this section, we will elucidate our design ratio-
nale and introduce the various modules of ARTEMIS.

5.1 Graph Sampling and Aggregation
In this subsection, we describe the core module within ARTEMIS,
which entails an enhancement of the aggregation function in graph
neural networks. We leverage the transaction paths of NFTs as a
guide for neighbor sampling and node information aggregation.
Unlike random sampling, our algorithm prioritizes sampling along
the NFT transaction paths, ensuring that the generated embeddings
can capture the context of transactions, and obtain ample informa-
tion. This sampling algorithm aligns with our design philosophy of
characterizing node embeddings through transaction paths.

4
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5.1.1 Neighbour Sampling. Define a graph 𝐺 = (𝑉 , 𝐸), where
nodes𝑉 represent wallet addresses of transactions, and 𝐸 represents
NFT transactions. Our forward propagation algorithm generates
embeddings for each node. We assume the model has been pre-
trained, with fixed parameters including the aggregation function
and weight matrices. At each depth, nodes aggregate information
from their neighbours. For the first hop, any neighbour can be
sampled. However, for subsequent hops, the sampling is based
on the transaction paths. For instance, if node 𝑉0 (central node)
transacted 𝑁𝐹𝑇𝑎 with node 𝑉1 (one-hop neighbour), then while
sampling two-hop neighbours for 𝑉0, with 𝑉1 as the intermediate
node, only nodes that transacted 𝑁𝐹𝑇𝑎 are sampled. This ensures
that the sampled neighbourhood is not merely a random subset,
but a meaningful set of nodes sharing the same NFT transaction
history. Fig. 6 shows a detailed illustration of the process, which
can be extended to multi-hop neighbors.

5.1.2 Embedding Generation. Upon completing the neighbour
sampling, each node updates its representation not only using its
own current representation but also incorporating information
from its neighbours. To achieve this, we concatenate the current
representation of the node with the aggregated vector from its
neighbourhood. This concatenated vector is then passed through
a weight matrix for a linear transformation, followed by a nonlin-
ear activation function 𝜎 , such as ReLU, to obtain the new node
representation. In our subsequent work, we further incorporate
NFT features into this node representation. These NFT features are
derived from our multimodal feature extraction module, with more
details to be discussed in the next subsection.

5.1.3 Neighbourhood Definition and Computation Strategy.
To ensure computational efficiency and consistency across each

batch processing, we adopt a fixed-size strategy during neighbour-
hood sampling. Our method always samples a fixed-size neigh-
bourhood for each node. Specifically, for any node 𝑣 , its neigh-
bourhood 𝑁 (𝑣) is defined as a fixed-size subset obtained by uni-
formly sampling from the set of nodes connected to it, denoted as
{𝑢 ∈ 𝑉 : (𝑢, 𝑣) ∈ 𝐸}. In each iteration of forward propagation, we
perform such uniform neighbourhood sampling anew for every
node.

5.2 NFT Multimodal Feature Extraction
We introduce theNFTMultimodal Feature Extractionmodulewithin
ARTEMIS. As the transaction targets for Airdrop Hunters, each NFT
carries its unique image and text description. We utilize pre-trained
vision models (ViT) and pre-trained language models (BERT) to
extract visual and textual features from NFTs, respectively. In subse-
quent stages, we fuse these two types of representations to generate
a unified embedding, which then participates in the graph model’s
aggregation module.

Input Data Representation. Consider a series of NFT datasets
D, where each data object 𝜋 ∈ D is composed of a pair: an image
𝐼 and its corresponding text description 𝑇 . Both the image and text
are initially transformed into token sequences, represented as:

𝐼𝜋 = [𝑖1, 𝑖2, . . . , 𝑖𝑛] (1)

𝑇𝜋 = [𝑡1, 𝑡2, . . . , 𝑡𝑛] (2)

Text Learning. For a given NFT 𝜋 , we employ a Transformer-
based Pre-trained Language Model (PLM) – BERT, to perform deep
contextualization of the token sequence of the text part𝑇 , mapping
it to a 𝑑𝑇 -dimensional space:

Embed𝑇 = BERT(𝑇𝜋 ) (3)

where Embed𝑇 ∈ R𝑚×𝑑𝑇 .
5
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Using a pooling function, we obtain an embedding vector repre-
senting the entire text:

ℎ𝑇 = pooling(Embed𝑇 ) (4)

where ℎ𝑇 ∈ R𝑑𝑇 . In this context, the polling function produces a
special token, [CLS], which represents the entirety of the input.
The same is true for the pooling function that follows.

Image Learning. Similarly, for the image part of the NFT, we
utilize a Transformer-based Pre-trained Vision Model (PVM) – ViT,
for processing:

Embed𝐼 = ViT(𝐼𝜋 ) (5)
where Embed𝐼 ∈ R𝑛×𝑑𝐼 .

Using a pooling function, an embedding vector representing the
entire image is obtained:

ℎ𝐼 = pooling(Embed𝐼 ) (6)

where ℎ𝐼 ∈ R𝑑𝐼 .
Feature Fusion. To obtain a fused representation of both text

and image for each NFT, we first pass ℎ𝑇 and ℎ𝐼 through two dif-
ferent fully connected layers for dimensionality reduction:

ℎ′𝑇 = 𝐹𝐶𝑇 (ℎ𝑇 ) (7)

ℎ′𝐼 = 𝐹𝐶𝐼 (ℎ𝐼 ) (8)

where ℎ′
𝑇
∈ R𝑑 ′𝑇 and ℎ′

𝐼
∈ R𝑑 ′𝐼 .

Subsequently, we utilize a self-attention mechanism to compute
the weights of these two embeddings:

𝛼𝑇 = softmax(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ′𝑇 )) (9)

𝛼𝐼 = softmax(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ′𝐼 )) (10)
The final fused representation consists of a concatenation of the

weighted embeddings:

ℎ𝐴 = concat(𝛼𝑇 ⊙ ℎ′𝑇 , 𝛼𝐼 ⊙ ℎ
′
𝐼 ) (11)

where ℎ𝐴 ∈ R𝑑
′
𝑇
+𝑑 ′

𝐼 .
Subsequently, the NFT embeddings are concatenated with the ad-

dress embeddings and are utilized in the downstream graph neural
network training. For the complete embeddings aggregation learn-
ing process, please refer to sections 5.1 and 5.2, and see Algorithm
1 for details.

5.3 Advanced Features
To address the practical task of Airdrop Hunters Detection with
a targeted approach, this section elaborates on the effective fea-
tures we constructed during the modeling process, along with our
insights and some tests regarding these features.

Market Manipulation Price Features.Each NFT carries a unique
value associated with it, posing a challenge for the model to extract
generalizable information, especially from the prices of NFTs as
it’s hard for the model to directly learn potential market patterns,
necessitating more sophisticated feature extraction techniques. We
hypothesize that the activities of Airdrop Hunters are essentially
market manipulation behaviors and validated this using two tests:
Benford’s Law and the rounding test of transaction prices (see
Appendix for test results). Benford’s Law utilizes the leading digit
of price datasets to detect market manipulation. Specifically, the

Algorithm 1 Sampling and Aggregation by Transaction Paths

Require: Graph 𝐺 (𝑉 , 𝐸) with edge attributes for NFTs
Require: Node features {𝑥𝑣,∀𝑣 ∈ 𝑉 }
Require: Depth 𝐾
Ensure: Vector representations 𝑍 = {𝑧𝑣,∀𝑣 ∈ 𝑉 }
1: for 𝑘 = 1 to 𝐾 do
2: for all 𝑣 in 𝑉 do
3: if 𝑘 == 1 then
4: 𝑁𝑘𝑣 ← inverse_frequency_sample(𝐺.neighbors(𝑣))
5: else
6: for all 𝑢 in 𝑁𝑘−1𝑣 do
7: NFT← edge_attribute(𝐺, 𝑣,𝑢)
8: 𝑁𝑘𝑢 ← sample({𝑤 |
9: 𝑤 ∈ 𝐺.neighbors(𝑢)∧
10: edge_attribute(𝐺,𝑢,𝑤) = NFT})
11: end for
12: end if
13: ℎ𝑘𝑣 ← AGGREGATE({ℎ𝑘−1𝑢 ⊕ ℎ𝑁𝐹𝑇 ,∀𝑢 ∈ 𝑁𝑘𝑣 })
14: ℎ𝑘𝑣 ← 𝜎 (𝑊 𝑘 × CONCAT(ℎ𝑘−1𝑣 , ℎ𝑘𝑣 ))
15: end for
16: end for
17: for all 𝑣 in 𝑉 do
18: 𝑧𝑣 ← ℎ𝐾𝑣
19: end for
20: return 𝑍

probability of the leading digit 𝑑 (where 𝑑 ∈ {1, 2, ..., 9}) should be
given by the following formula:

𝑃 (𝑑) = log10 (𝑑 + 1) − log10 (𝑑) (12)

Similarly, under market manipulation, certain trailing digits in
prices may appear more frequently than would be expected in
a random distribution. Inspired by these theories, we extracted
the leading and trailing non-zero digits of prices as features to
characterize the naturalness of transactions.

5.3.1 Asset Turnover Features. Through our observation of
the simplistic strategy "transaction loop" previously, the trading
strategies of Airdrop Hunters imply that their wallets often have
higher asset turnover rates and multiple buyback behaviors. We
extracted the average holding duration of NFT assets for eachwallet,
and those NFTs still held are calculated based on the time from
purchase to the present. Similarly, we counted the average holding
occurrences for each wallet concerning NFT assets.

5.3.2 Wallet Activity Features. The number of interactive ad-
dresses can help us understand the activity level of a wallet and
its connections with other users. The ratio of transaction count
to interactive address count reveals the transaction exclusivity of
the wallet, and often, multiple wallets held by Airdrop Hunters
stand out in this metric. Due to the complex airdrop computation
rules, interactions with contracts without generating transactions
could also lead to airdrops, hence we accounted for the number of
contract calls for each wallet to augment the information.

5.3.3 Acquisition of Airdrop Tokens. This is a crucial post hoc
feature with a direct correlation to whether an address belongs to

6
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Airdrop Hunters. Airdrop Hunters employ a series of strategies
with the explicit aim of acquiring airdrop tokens from events. It’s
imperative to note that our aim is to construct a real-time model for
detecting Airdrop Hunters rather than post hoc inductions, there-
fore, the unannotated ARTEMIS in the subsequent experimental
sections does not encapsulate this feature. We only mention and
analyze this feature in the ablation study subsection, and conduct
relevant analyses.

5.4 Training Strategies
In this subsection, we primarily introduce the training strategies
tailored for ARTEMIS and explain the problems these strategies
essentially address.

Transaction Address Power Law Distribution. The distribu-
tion of blockchain transaction addresses often follows a power-law
distribution, meaning that a small number of high-frequency ac-
counts appear massively in transactions. We tested the address
distribution in the blur market and found it also follows a power-
law distribution, with the results illustrated in fig. ?? (For test results
see Appendix). From a graph construction perspective, this implies
that a portion of nodes act as super-nodes, possessing a multitude
of edges. These super-nodes, during training, can affect the feature
representations of other nodes.

To mitigate this impact during training, we employed the follow-
ing two measures:

Inverse Frequency Sampling. We aim to reduce the probabil-
ity of sampling super-nodes during neighbor sampling to ensure
effective learning. Since the 2-hop and beyond neighbor sampling
is based on NFT transaction paths, here we only consider the initial
neighbor sampling. We calculate the degree for each node’s neigh-
bors: degree(𝑉𝑖 ), rank the neighbor nodes in ascending order based
on their degrees 𝑟 (𝑉𝑖 ), and then compute the sampling probability:

𝑃sample (𝑁𝑖 ) =
exp(−𝛽 · 𝑟 (𝑁𝑖 ))∑
𝑗 exp(−𝛽 · 𝑟 (𝑁 𝑗 ))

(13)

Here, 𝛽 is a hyperparameter, and 𝑗 iterates over all neighbor
nodes.

In this formula, we employ the exponential function to empha-
size the sampling priority of nodes ranked higher (i.e., with smaller
degrees). The hyperparameter 𝛽 determines the extent of this em-
phasis: a larger 𝛽 value will grant significantly higher sampling
probabilities to the few nodes with the smallest degrees, while a
smaller 𝛽 will lead to a smoother distribution. The impact of this
hyperparameter on model performance will be discussed in the
subsequent experimental sections.

Batch Balance.We adopt a fixed quantity of neighbor sampling
for training to ensure a balanced number of positive and negative
samples in each batch. Employing a fixed neighbor count aims to
reduce computational load and alleviate the influence of super-
nodes, while balancing samples between batches aims to mitigate
biases brought about by dataset imbalance.

6 EXPERIMENTS
6.1 Experimental Setup
Task Description. Experiments are conducted on the dataset
described in Section 3 with the objective of detecting Airdrop

Hunters, formulated as a binary classification problem where Air-
drop Hunters are considered as the positive class. For experimental
purposes, the dataset is split into training and validation sets in a
ratio of 8:2. The evaluation metrics adopted are Precision, Recall,
and the F1 score. Briefly, Precision quantifies the proportion cor-
rectly predicted as the positive class, Recall depicts the proportion
of actual positive class correctly predicted, while the F1 score is the
harmonic mean of the two.

Baselines. In this experiment, the ARTEMIS model is utilized
and compared against three types of baseline models:

• Methods on structured data such as SVM and LightGBM are
noteworthy. Since these methods are incapable of utilizing
edge information, classification is solely based on node
features.

• Methods based on graph random walks like DeepWalk and
Node2Vec, which take advantage of both the graph struc-
ture and node features.

• Methods based on Graph Neural Networks (GNNs) like
GCN, GraphSAGE, and GAT. For these methods, the same
features as ARTEMIS are used.

Implementation. For the implementation of ARTEMIS, the fol-
lowing settings are employed: The number of layers 𝑘 in the graph
neural network is treated as an experimental variable. The neighbor
sample size is set to 20. The batch size is configured to 256 with a
dropout ratio of 20%. In the NFT feature extraction module, ViT-
base (patch16-224) is used as the pre-trained visual model (PVM)
and BERT-base-uncased is employed as the pre-trained language
model (PLM). A 12-layer Transformer encoder is set up with the
hidden layer size 𝑑𝐼 = 𝑑𝑇 defaulted to 768, and 12 attention-heads
are used.

For the setup of baseline models: For methods based on random
walks (DeepWalk and Node2Vec), the number of walks is set to 10,
the walk length to 20, and the context size to 5. For all methods
based on Graph Neural Networks, the number of GNN layers is set
to 3, the neighbor sample size to 20, the batch size to 256, and the
dropout ratio to 20%.

6.2 Performance Comparison
Each experiment was conducted five times, retaining the result of
the experiment with the best F1 score.

Table 1: Comparison for Airdrop Hunters Detection

Method Precision Recall F1
SVM [28] 0.522 0.471 0.495

LightGBM [15] 0.543 0.501 0.521
DeepWalk [24] 0.481 0.409 0.442
Node2Vec [9] 0.459 0.418 0.443
GCN [16] 0.504 0.480 0.492

GraphSAGE [10] 0.597 0.565 0.580
GAT [29] 0.528 0.494 0.511
ARTEMIS 0.710 0.729 0.719

In Table 1, we present a comprehensive performance comparison
of our method with various baselines. The following observations
can be made: Both DeepWalk and Node2Vec, which are based on
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Table 2: Evaluating Non-real-time Improvement

Method Precision Recall F1
ARTEMIS 0.710 0.729 0.719

w/ airdrop count 0.729 0.737 0.739

Table 3: Impact of Aggregation Depth K on ARTEMIS Perfor-
mance

Method Precision Recall F1
ARTEMIS_1 0.626 0.643 0.634
ARTEMIS_2 0.692 0.704 0.698
ARTEMIS_3 0.710 0.729 0.719
ARTEMIS_4 0.702 0.715 0.709

Table 4: Impact of Frequency Inverse Order Sampling on
Model Performance

Method Precision Recall F1
ARTEMIS(𝛽=1.0) 0.710 0.729 0.719
ARTEMIS(𝛽=0.1) 0.673 0.675 0.674
ARTEMIS(𝛽=0.5) 0.692 0.690 0.691
ARTEMIS(𝛽=2.0) 0.668 0.647 0.657

random walks, exhibit relatively lower performance with F1 scores
of 0.459 and 0.443, respectively. Their performance falls behind
traditional machine learning approaches such as LightGBM and
SVM, suggesting a higher dependency on capturing address-related
features for the task. Among GNN methods, GraphSAGE performs
exceptionally well with an F1 score of 0.580, surpassing other graph-
basedmethods like DeepWalk, Node2Vec, GCN, and GAT. ARTEMIS
significantly outperforms all other methods, achieving the highest
precision, recall, and F1 score. With an F1 score of 0.719, ARTEMIS
outperforms the second-best GraphSAGE by 0.139.

As Table 2, the enhancement to the model imparted by the post-
event feature Airdrop Count. Given that our objective is to devise
a real-time model, this post-event feature is utilized here solely
for comparison. The performance of our current model does not
significantly fall short when juxtaposed with the state attained with
post-event features, thus preliminarily affirming that our model
satisfactorily fulfills the requirement of real-time operation.

Table 3 illustrates the impact of selecting the depth parameter K
for neighbor sampling and aggregation while keeping other param-
eters fixed. Notably, the model’s performance shows an upward
trend as the depth of neighbor aggregation increases from 1 to 3.
However, when the depth reaches 4, there is a slight performance
decrease. This suggests that most valuable information can be dis-
tilled within three layers of neighbor aggregation, and increasing
K beyond 3 starts to introduce more noise into the model.

We conducted comparative tests on the impact of the hyperpa-
rameter 𝛽 in Frequency Inverse Order Sampling on model perfor-
mance. The experimental results in Table 4 demonstrate that the
choice of 𝛽 has a significant effect on model performance. When
𝛽 = 0.1, the strategy degenerates into something approximating

Table 5: Ablation Study for Different Modules

Method Precision Recall F1
ARTEMIS 0.710 0.729 0.719

Ablation study of NFT multimodal modules
w/o fine-tuning 0.693 0.680 0.686

w/o Image Embeddings 0.698 0.678 0.688
w/o Text Embeddings 0.702 0.681 0.691
w/o NFT Multimodal 0.685 0.677 0.681

Ablation study of other modules
w/o Adv. Features 0.643 0.610 0.626

w/o Trade Neighb. Aggr. 0.624 0.609 0.616

random sampling. When 𝛽 = 1.0, ARTEMIS achieves the best per-
formance on all metrics. This observation highlights the advantage
of moderate non-linearity in capturing the intrinsic structure of
the data. Further comparison shows that either larger or smaller
values of 𝛽 (such as 𝛽 = 2.0 and 𝛽 = 0.1) lead to a decline in overall
performance. This might suggest that either overly aggressive or
conservative non-linearity is not applicable on this dataset.

6.3 Ablation Study
Table 5 presents the ablation study results. Initially, we observe a
positive contribution from each module to the experimental results,
with a noticeable decline when any of them is removed. Secondly,
we find that the neighbor aggregation based on transactions plays
the most crucial role; the model’s F1 score drops by about 0.1 when
this module is omitted. The advanced features also significantly im-
pact the model’s performance, indicating a successful deep charac-
terization of NFT transactions through these features. Furthermore,
we demonstrate the effectiveness of the NFT feature extraction
module under various conditions. There’s a notable performance
decline in scenarios where BERT and ViT are not fine-tuned. Among
Image and Text Embeddings, the image information proves to be
more critical, aligning with our intuition that images hold more
importance in NFTs.

7 CONCLUSION
This work represents the first step in building a deep learning sys-
tem to detect airdrop hunters, a critical and emerging problem
with implications for Web3 ecosystem health and future research
directions of the WWW community. We formalize the novel task
of airdrop hunter detection and benchmark the performance of
baseline models. Through compiling on-chain data from NFT trad-
ing markets, we propose ARTEMIS, a multimodal graph neural
network system tailored for this task. ARTEMIS contains three pri-
mary design modules and accompanying training strategies to ad-
dress data distribution challenges. Subsequent experiments demon-
strate the model’s superiority, with ablation studies discussing
each component’s importance. Moreover, tracing NFT transaction
paths and extracting multimodal NFT representations and general-
ized advanced features could transfer to other potential NFT-based
machine-learning tasks. We provide one of the first specialized
computational solutions for this frontier domain.
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Figure 5: (a) Distribution of the first digits in NFT transaction
prices on the Blur marketplace. (b) Distribution of the last
digits in NFT transaction prices on the Blur marketplace. (c)
Distribution of the first digits in NFT transaction prices on
the Lookrare marketplace. (d) Distribution of the last digits
in NFT transaction prices on the Lookrare marketplace. (e)
Distribution of the first digits in NFT transaction prices on
the Opensea marketplace. (f) Distribution of the last digits
in NFT transaction prices on the Opensea marketplace. (g)
Distribution of the first digits in NFT transaction prices on
the X2Y2 marketplace. (h) Distribution of the last digits in
NFT transaction prices on the X2Y2 marketplace.

Figure 6: Address Power Law Distribution Test. The x-axis
represents Rank while the y-axis represents Frequency, with
both axes being on a logarithmic scale. When the frequency
of the addresses and their ranks approximate a straight line
on a log-log plot, it suggests that the distribution may follow
a power law.

A APPENDIX
A.1 Market manipulation detection
Benford’s Law predicts the distribution of leading digits in many
sets of numerical data. Instead of all digits (1 through 9) being
equally likely, this law suggests that lower digits like 1, 2, or 3 are
more likely to appear as the leading digit than higher digits like 8 or
9. It’s often employed in forensic accounting and fraud detection, as
significant deviations from the expected distribution may indicate
manipulated numbers.

On the other hand, the Last Digit Rounding Law highlights the
human tendency to round numbers, often leading to a dispropor-
tionate number of figures ending in specific digits, especially 0 or 5.
Similar to Benford’s Law, an unusually high occurrence of numbers
ending in these rounded digits in financial or other data can hint at
potential rounding or data manipulation.

The left half of Figure 5 shows the Benford’s Law test for each
market, while the right half displays the distribution of the last digit.
The image indicates that the market distribution deviates somewhat
from the expected distribution of Benford’s Law. Additionally, the
last digits are not as uniformly rounded as expected, suggesting a
potential for market manipulation to some extent.

A.2 Address frequency power-law detection
In Figure 6, we illustrate an empirical test to ascertain whether the
distribution of addresses in the blockchain follows a power law, a
common characteristic observed in various networked systems. The
axes are plotted on a logarithmic scale to better discern the relation.
The x-axis denotes the rank of addresses, which is determined by
the frequency of their occurrences, while the y-axis represents the
said frequency of occurrences. In a system following a power law
distribution, a linear relationship is expected on a log-log plot, as
exhibited by the data in the figure. This linear trend suggests that
there are a few addresses (the "head" of the distribution) that occur
very frequently, while the majority of addresses (the "tail") occur
much less frequently. This distribution characteristic is crucial as
it highlights the existence of ’hubs’ or highly connected nodes, a
feature common in many real-world networks.
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