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Abstract

Entanglement is a key property of quantum states that acts as a resource for a wide range
of tasks in quantum computing. Entanglement detection is a key conceptual and practical
challenge. Without adaptive or joint measurements, entanglement detection is constrained
by no-go theorems (Lu et al., 2016), necessitating full state tomography. Batch entangle-
ment detection refers to the problem of identifying all entangled states from amongst a set of
K unknown states which finds applications in quantum information processing. We devise a
method to perform batch entanglement detection by performing measurements derived from
a single-parameter family of entanglement witnesses from Zhu et al. (2010), followed by a
thresholding bandit algorithm on the measurement data. The proposed method can per-
form batch entanglement detection conclusively, when the unknown states are drawn from
practically well-motivated class of two qubit states F that include Depolarised Bell states,
Bell diagonal states etc. Our key novelty lies in drawing a connection between batch en-
tanglement detection, and a Thresholding Bandit problem in classical Multi-Armed Bandits
(MAB). The connection to the MAB problem also enables us to derive theoretical guaran-
tees on the measurement/sample complexity of the proposed technique. We demonstrate the
performance of the proposed method through numerical simulations and an experimental
implementation. More broadly, this paper highlights the potential for employing classical
machine learning techniques for quantum entanglement detection.

1 Introduction

Quantum information theory has redefined quantum entanglement from a descriptive property of quantum
states to a fundamental non-classical resource. As the basis for applications such as quantum communication,
teleportation, and information processing (Bennett et al., 1993; Buhrman et al., 2001; Horodecki et al.,
2009), entanglement detection and verification is a central problem. Traditionally, this involves performing
quantum measurements that yield probabilistic data, enabling techniques like full-state tomography (FST)
for state reconstruction. However, this faces two challenges: theoretically, even after FST, determining
entanglement remains computationally intractable, and even more so in scenarios involving many qubits;
practically, real-world noise and imperfections limit the accuracy of state reconstruction. Modern multi-
qubit compute systems may generate a bunch of entangled states across different sets of qubits through
quantum gate operations; however, gate noise (e.g., phase flip errors, depolarization) can compromise their
entanglement, requiring precise verification to ensure their reliability before use in applications such as
quantum computation and communication (Hong et al., 2010). In such contexts, FST can be employed for
entanglement detection. However, it comes with a high computational burden which may be unnecessary.
We propose an alternative approach for simultaneous real-time verification or detection of entanglement
among a given set of quantum states, dubbed batch entanglement detection. Instead of relying on FST,
learning algorithms utilize statistical patterns to simultaneously analyze measurement data from a batch of
quantum states and provide high probability guarantees on what they learn, i.e., whether or not the states
are entangled.

Conventional techniques for learning quantum states include extensive research on FST (see Kueng et al.
(2017); Wang et al. (2019); O’Donnell & Wright (2015a;b); Banaszek et al. (2013); Flammia et al. (2012)
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and references therein and also see Guta et al. (2020); Torlai et al. (2018); Quek et al. (2018); Koutný et al.
(2022); Schmale et al. (2022); França et al. (2021) for machine learning-based approaches). Measurements
required for FST scale exponentially with the number of qubits. While entangled measurements enable near-
optimal copy complexity for FST (O’Donnell & Wright, 2015b; Haah et al., 2017), practical implementations
rely on single-copy measurements with reconstruction methods like linear inversion, maximum likelihood
estimation, and maximum a posteriori estimation (Teo et al., 2011; Siddhu, 2019). These reconstructed states
can be tested for entanglement using well-known criterion (some are outlined in Sec. 2.2). Alternatively,
entanglement can be detected by measuring entanglement witnesses (Horodecki et al., 1996a; Terhal, 2000;
Lewenstein et al., 2000a; Chruciski & Sarbicki, 2014), observables that detect some entangled states. No
single witness can detect all entangled states, but in the worst case, combining information obtained from
measuring different witnesses aids in state reconstruction via FST. This is explored in Zhu et al. (2010),
where for bipartite qubit systems, measurement operators from a family of six witnesses are used. The
proposed approach for entanglement detection involves measuring a witness and formulating a separability
criterion based on the frequencies of measurement outcomes. A negative value of the criterion indicates
entanglement; otherwise, the process is repeated with another witness. If the state remains undetected by
all witnesses, a tomographic reconstruction is performed (see Sections 2.1 and 2.2 for further details).

Recently, the authors of Lumbreras et al. (2022) proposed using multi-armed bandit (MAB) frameworks for
learning quantum states. The MAB algorithm repeatedly chooses from several options ("arms"), with the
goal of finding the arm with the best outcome (the "best arm"). The algorithm balances between exploiting
the known best options and exploring others to ensure no better option is missed (more details on MAB
and policies can be found in Sec. 2.3). In Lumbreras et al. (2022), the inherent linearity in the quantum
mechanical description of states is capitalized and a well-known classical learning algorithm that prescribes
a sequential order of choosing measurements is employed. The MAB algorithms that are used provide
guarantees on the quality of the estimate of the unknown quantum state. This MAB model in Lumbreras
et al. (2022) does not directly apply to batch entanglement detection. Instead, it focuses on learning one
entire quantum state, which may be unnecessary for entanglement detection.

Our first contribution is building on the separability criteria in Zhu et al. (2010) and using suitable MAB
policies for learning the same. We find connection between batch entanglement detection and the threshold-
ing bandit problem (TBP) (Kano et al., 2018), which is structurally different from the setting in Lumbreras
et al. (2022) (see Remark 1). For a given witness, the objective is to quickly and accurately estimate the
m states whose separability criteria values fall below the threshold 0, dubbed the "(m,K)-quantum Multi-
Armed Bandit" framework. For a given witness, accurately estimating the separability criterion requires
measurements on numerous copies of each of the K unknown states. FST does not provide an obvious guar-
antee on measurement/sample complexity for entanglement detection. Our second contribution addresses
this, i.e., for a given error margin, the MAB policies identify specific ‘winning’ trends dictated by parame-
ter estimates. On a high level, the trends specify which state to measure and provides sample complexity
guarantees with high probability.

The rest of this paper is organized as follows: In Section 2, we provide a brief recap of some preliminary
concepts. In Section 3, we describe the (m,K)-quantum Multi-Armed Bandit framework for entanglement
detection. We define a class of parameterized two-qubit states F and identify measurement operators that
conclusively detect entanglement in F , detailed in Sections 3.1, 3.2, and 3.3. In Section 4, we demonstrate
two TBP policies for entanglement detection. Section 5 analyzes the MAB policy performance on IBMQ
backends and on an ibm-brisbane device for a family of states in F and details the quantum circuits used
for simulation. Section 6 highlights measurement scheme limitations for entanglement detection in arbitrary
states through numeric examples. Finally, Section 8 conludes the paper. Detailed proofs for the results
presented in the paper can be found in Appendix A.

2 Preliminaries

Let H be a finite dimensional Hilbert space with dimension d. A pure quantum state is represented by a
unit norm vector |ψ〉 ∈ H. Let L(H) be the space of linear operators on H, the Frobenius inner product
for any A,B ∈ L(H), 〈A,B〉 := Tr

(
A†B

)
where † represents conjugate transpose. A Hermitian operator
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satisfies H = H†. A density operator ρ ∈ L(H) is Hermitian, positive semi-definite, ρ ≥ 0, and has unit
trace, Tr(ρ) = 1; it can represents both pure and mixed states. A positive operator value measure (POVM)
is collection of positive operators {Ei ≥ 0} that sum to the identity,

∑
i Ei = I. A POVM represents a

measurement where Ei corresponds to measurement outcome i, but sometimes we compress this and just
say Ei is a measurement outcome.

Let Ha and Hb be finite-dimensional Hilbert spaces with dimensions da and db, respectively, and Hab :=
Ha ⊗ Hb, where ⊗ represents tensor product, be a bipartite Hilbert space with dimension d = dadb. A
density operator ρab ∈ L(Hab) is called separable if it can be written as a convex combination of product
states, that is,

ρab =
∑

i

pi

∣∣ϕi
a, χ

i
b

〉 〈
ϕi

a, χ
i
b

∣∣ , (1)

where pi ≥ 0 such that
∑

i pi = 1 and
∣∣ϕi

a, χ
i
b

〉
:= |ϕ〉ia ⊗ |χ〉

i
b is a product of two pure states. We denote

the set of all separable density operators by Sab. Conversely, ρab is entangled if it can not be written in the
form equation 1.

We discuss some preliminaries on entanglement witnesses and witness-based measurements in Section 2.1,
the various separability criteria for entanglement detection in Section 2.2 and the framework and background
on stochastic multi-armed problems in Section 2.3.

2.1 Entanglement Witnesses and Witness Operators Measurements

Entanglement can be detected by measuring entanglement witnesses and can be defined as follows:

Definition 1 (Entanglement Witness) An entanglement witness, denoted as W ∈ L(Hab), is a Hermi-
tian operator that detects some entangled state ρent ∈ Hab such that,

〈ρent,W 〉 = Tr(ρentW ) < 0, (2)
〈ρ,W 〉 = Tr(ρW ) ≥ 0, ∀ρ ∈ Sab. (3)

Conceptually, a witness W defines a hyperplane that delineates a set of entangled states it can detect
(DW = {ρ s.t. Tr(ρW ) < 0}) from all other states. When comparing two arbitrary witnesses W1 and W2, if
DW1 is contained within DW2 , then W2 is considered finer than W1. Further insights into this topology are
detailed in Lewenstein et al. (2000b, Lemma 1). A witness is said to be optimal when no other witness is
finer, suggesting that it touches the boundary of the convex set of separable states (Bengtsson & Zyczkowski,
2006).

To improve the efficacy of identifying entangled states, Zhu et al. (2010) proposes a method to construct
a set of measurements called Witness Operator Measurements (WOM), which we briefly discuss here. Let
us consider the rank-one projector onto a pure entangled state |ψ〉 ∈ Hab denoted by ρ(α) = |ψ〉 〈ψ|, where
|ψ〉 = cosα |00〉 + sinα |11〉. Here, the Schmidt coefficients cosα and sinα are arranged in non-increasing
order as 1 > cos2 α ≥ sinα2 > 0. Consequently, α ∈ [0, π/4] is chosen to adhere to this order.

In this paper, we consider the specific form of the witnesses from Zhu et al. (2010), namely, W = ρw(α) =
cos2 αI − ρ(α)>b where >b represents partial transpose with respect to Hb. That is, consider a rank-one
POVM

∑
i wiρi = I with outcomes wiρi such that wi > 0 and ρi’s are projectors onto pure states. We can

construct a WOM with outcomes wiρiw where ρiw = λmaxI − ρ>b
i .

2.2 Separability criteria for entanglement detection

Using FST techniques, briefly outlined earlier, one can do a tomographic reconstruction of the state and
subsequently determine its entanglement status using well-known separability criteria (Horodecki et al.,
2009). For bipartite qubit systems, the Peres-Horodecki criterion (Horodecki et al., 1996b; Peres, 1996)
establishes that a density operator ρab is separable if and only if the eigenvalues of its partial transpose
ρ>b

ab are non-negative. This criterion remains necessary and sufficient even when da = 2 and db = 3 but is
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violated in higher dimensions by a class of entangled states with non-negative partial transposition. Other
criteria include the range criterion (Horodecki, 1997), the matrix realignment criterion (Rudolph, 2000), the
covariance matrix (CM) criterion (Gühne et al., 2007), and additional methods discussed in Gurvits (2003);
Doherty et al. (2004).

Another criterion for separability is obtained from the Witness Operator Measurements (WOMs) described
in Section 2.1, which are highly efficient for entanglement detection. We review this criterion from Zhu et al.
(2010) next. Specifically, let us consider two-qubit witnesses of the form:

ρw(α) = cos2 αI − (|ψ〉 〈ψ|)>b , (4)

where (|ψ〉 〈ψ|)>b is equal to,
1 + cos 2α

2
|00〉 〈00|+ 1− cos 2α

2
|11〉 〈11|+ sin 2α

2
(∣∣Ψ+〉 〈

Ψ+∣∣− ∣∣Ψ−〉 〈
Ψ−∣∣) .

Here, |ψ〉 = cosα |00〉 + sinα |11〉 such that α ∈ [0, π/4] and |Ψ±〉 = (|01〉 ± |10〉) /
√

2. We denote the pro-
jectors onto the set of eigenstates of ρ(α) = (|ψ〉 〈ψ|)>b by E = {|00〉 〈00| , |11〉 〈11| , |Ψ+〉 〈Ψ+| , |Ψ−〉 〈Ψ−|}.
This collection of projectors E form a POVM and we refer to them as a Witness Basis Measurement (WBM).

Let us consider a quantum state ρ. Let fi := Tr{Eiρ} be the probability of obtaining outcome i when
the state ρ is measured using WBM E . The expected value of the witness Tr(ρw(α)ρ) can be expressed in
terms of fi. If this expected value is less than a certain threshold (in our case, 0), we can conclude that ρ
is entangled else, this test is inconclusive. When this test is inconclusive, we pick the witnesses in Table 1
sequentially. These subsequent witnesses are obtained by applying unitary transformations U1 and U2 on
each of the qubits to change in the eigenbasis of the underlying state as shown in equation 5.

ρw(α) −→ (U1 ⊗ U2)†ρw(α)(U1 ⊗ U2). (5)

Witness U1 U2
1 I I
2 I X
3 C† C
4 C† XC
5 C C†

6 C XC†

Table 1: Changing the eigenbasis of equation 4

In Table 1, the operator C permutes between Pauli operators X, Y and Z, satisfying that CX = Y C,
CY = ZC and CZ = XC. Expressing the eigenstates of the first witeness equation 4 in terms of Pauli
operators yields three observables: ZI + IZ, ZZ, and XX + Y Y .

Estimates for these three observables come from measuring the first witness. Similarly, the second witness
listed in Table 1 yields estimates for ZI − IZ, ZZ, and XX + Y Y . Thus, for a pair of witnesses, we
obtain estimates for five observables by applying suitable unitary transformations, and each of the other
two witness pairs provides another five expectation values. In total, we obtain estimates for 15 expectation
values, providing sufficient information about the two-qubit state. This, reduction of the number of witnesses
from sixteen to six offers significant practical benefits. Instead of relying solely on comparing the expected
value of the witness ρw(α) against a threshold, the authors in Zhu et al. (2010) suggest adopting a more
stringent criterion:

min
α

Tr
{
ρsep

(
cos2 αI − ρw(α)

)}
≥ 0, ∀ρsep ∈ Sab. (6)

which holds for all separable states and is violated by set of entangled states that can be detected by this
family of witnesses. The above optimisation leads to the following quadratic WBM criterion,

S = 4f1f2 − (f3 − f4)2 ≥ 0, ∀ρsep ∈ Sab. (7)
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In essence, the process of measuring the linear entanglement witnesses ρw(α) corresponds to measuring the
projectors onto the eigenstate basis. The value of S equation 7 depends on the underlying WBM. Thus, for
a WBM E and state ρ, we denote equation 7 as SE(ρ). We note that most two-qubit entangled states can
be detected under the six witnesses listed in Table 1.

2.3 Stochastic Multi-Armed Bandits

The stochastic Multi-Armed Bandit (MAB) framework is an archetype for many sequential decision-making
problems. Within this framework, a bandit instance (problem instance) encompasses K arms (or actions)
situated in an environment where stochastic rewards are yielded upon selecting an arm (termed pulling).
Each arm i ∈ [K] = {1, 2, . . . ,K} is described by a probability distribution νi over R, with known support
and an unknown expectation µi. We denote the problem instance by µ = (µ1, µ2, . . . µK). Arm selection
occurs iteratively in rounds, where during each round t, a learner (or agent) selects an arm Xt ∈ [K] according
to a specified policy. Subsequently, the learner receives a stochastic reward Zt ∼ νXt

corresponding to the
selected arm. Upon receiving the reward, the learner can terminate the process or continue by updating its
policy to pursue a specific objective.

In MAB literature, two objectives have been focal points of the study: (i) Maximizing the cumulative reward
accumulated over multiple game rounds, necessitating a tradeoff between exploration(discovering arms with
potentially higher rewards) and exploitation (repeatedly pulling the arm with the highest observed reward).
(ii) The best arm identification (BAI) problem which focuses on pure exploration, where the learner aims to
identify the arm with the highest expected reward, i.e., i⋆ = arg maxi µi (known as the best arm). A BAI
policy (or algorithm) consists of a sampling rule for arm selection, a stopping rule to determine the end of
exploration, and a recommendation rule to output the best arm. The BAI problem has been explored in
fixed confidence and fixed budget settings. In the fixed confidence setting, the goal is to quickly identify the
best arm with a probability of at least 1− δ for a fixed error probability δ. In the fixed-budget setting, the
number of arm pulls (budget) N ∈ N is fixed, and the goal is to minimize the misidentification probability
of the best arm within N arm pulls. Section 2.3.1 outlines BAI, and Section 2.3.2 addresses its Good Arm
Identification (GAI) variant, both in the fixed confidence setting.

2.3.1 Fixed Confidence Best Arm Identification

Consider a problem instance denoted by µ. Without loss of generality, we enumerate the arms based on
their expected rewards, such that µ1 > µ2 ≥ µ3 . . . ≥ µK . We assume a unique best arm exists, denoted as
i⋆ = 1. The sub-optimal gaps between the arms are ∆i = µi⋆ − µi. The objective is to accurately identify
the best arm i⋆ while minimizing the number of samples used. Policies that achieve this task are classified
as δ-PC policies. These policies ensure that the likelihood of the exact correctness of the outcome is at least
1 − δ, where δ is the correctness threshold. If the outcome is approximately correct with probability 1 − δ,
then the policy is called δ-PAC.

Definition 2 (δ-PC) Let îτ be the estimate of the best arm at stoppage τ . Then, an algorithm is said to
be δ-PAC if it satisfies

Pµ(̂iτ 6= i⋆) ≤ δ, and Pµ(τ <∞) = 1. (8)

The primary objective is to characterize the expected stopping time Eµ[τ ] of the policy. Several works
have attempted to provide upper and lower bounds for this objective. The successive elimination algorithm
achieves a sample complexity of O(∆−2 log

(
n∆−2)

) (Even-Dar et al., 2002), while LUCB1 improves this
to O(∆−2 log ∆−2) (Kalyanakrishnan et al., 2012). The exponential-gap elimination algorithm further re-
duces this to O(∆−2 log

(
log

(
∆−2))

), the best-known complexity for elimination-style policies under fixed
confidence (Karnin et al., 2013). These results approach the theoretical lower bound of O(∆−2) (Mannor &
Tsitsiklis, 2004), differing only by log or log log factors. Notably, Farrell (1964) bridges this gap, proving that
O(∆−2 log log ∆−2) samples suffice to identify the best arm with error probability δ. Building upon this,
lil’UCB Jamieson et al. (2014) uses finite-sample LIL-based concentration bounds to achieve near-optimal
sample complexity, achieving order optimality in sample complexity akin to exponential-gap elimination.
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Table 2: Stochastic-Quantum MAB

Attributes Stochastic MAB Quantum MAB
Arms Probability distributions (p1, p2, . . . pK) Density operators {ρ1, ρ2, . . . , ρK}

Measurement − WBM E
Measurement Data j w.p. pi(j),∀i ∈ [K] j w.p. Tr(Ej ρi), ∀j ∈ [4],∀i ∈ [K]

Parameters to estimate µ = (µ1, µ2, . . . µK) SE = (SE(ρ1), SE(ρ2), . . . , SE(ρK))
Objective Identify GC = {i ∈ [K] such that µi ≤ ζ} Identify Aent = {i ∈ [K] such that SE(ρi) < 0}

2.3.2 Fixed Confidence Good Arm Identification

Consider a problem instance µ. Alongside the acceptance error δ described in Section 2.3.1, we introduce
a threshold ζ ∈ (0, 1) and define the set of “good" arms as G = {i ∈ [K] such that µi ≥ ζ}. In simpler
terms, the good arms are those whose means are greater than or equal to ζ. The number of good arms
|G| = m remains unknown to the agent, leading to what we term as the (m,K)-GAI problem. Notably, the
(1,K)-GAI reduces to the BAI problem discussed earlier. Without loss of generality, we enumerate the arms
based on their expected rewards: µ1 > µ2 ≥ . . . ≥ µm ≥ ζ ≥ µm+1 . . . ≥ µK . Importantly, the agent is
unaware of this indexing. For i ∈ [K], ∆i := |µi− ζ| and ∆i,j = µi−µj . The sample complexity is expressed
in terms of ∆ = min(mini∈[K] ∆i,minj∈[K−1] ∆j,j+1/2).

At each time instant t, the learner samples an arm Xt ∈ [K] and receives a corresponding (random) reward
Zt ∼ νXt

. The agent either outputs an arm that identifies as “good" or stops when no good arms remain. We
denote the stopping time of the GAI policy as τstop. Specifically, the agent outputs X̂1, X̂2, . . . X̂m̂ as good
arms at rounds τ1, τ2, . . . τm̂ respectively, where m̂ denotes the estimate of the number of arms identified
as good ones and τk denotes the number of rounds to identify the kth good arm. The learner’s objective
is to accurately and rapidly identify these good arms while minimizing the number of samples used. As
elaborated below, this is achieved through policies falling within the class of (λ, δ)-PAC policies.

Definition 3 ((λ, δ)-PAC) Let m̂ denote the number of good arms identified by the agent. A (λ, δ)-PAC
algorithm satisfies the following conditions:

1. If there are at least λ good arms, then

Pµ

{m̂ < λ} ∪
⋃

i∈{X̂1,X̂2,...X̂λ}

{µi < ζ}

 ≤ δ,
2. If there are fewer than λ good arms,

Pµ [m̂ ≥ λ] ≤ δ,

An algorithm is called δ-PAC if it is (λ, δ)-PAC for all λ ∈ [K].

Just like in the BAI context (refer to Section 2.3.1), the objective in GAI is to determine the expected stopping
time Eµ[τstop]. The GAI algorithm consists of two key components: a sampling rule and an identification
rule. The former dictates the arm selection process, while the latter guides the agent in distinguishing
between good and bad arms. GAI confronts a novel challenge called the exploration-exploitation dilemma of
confidence. Here, exploration involves the agent pulling arms other than the empirical best arm to identify
potentially ‘good’ arms with fewer pulls. At the same time, exploitation entails pulling the empirical best
arm to increase confidence in its classification as a good arm. To address this challenge, Kano et al. (2018)
proposed a hybrid algorithm for the dilemma of confidence (HDoC). In HDoC, the sampling rule is derived
from the UCB algorithm for cumulative regret minimization (Auer et al., 2002), while the identification
rule is based on the LUCB algorithm for BAI (Kalyanakrishnan et al., 2012) and the APT algorithm
for the thresholding bandits problem (Locatelli et al., 2016). The proposed HDoC algorithm (LUCB-G)
requires O

(
∆−2 (

K log 1
δ +K logK +K log 1

∆
))

samples. However, a drawback of the LUCB-G algorithm
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is its impracticality when ∆ is very small. To address this issue and achieve faster convergence in the
identification phase, Tsai et al. (2024) propose utilizing confidence widths derived from the finite LIL bound,
akin to the approach in the lil’UCB algorithm (Jamieson et al., 2014). They demonstrate a reduction in the
required number of samples, achieving a sample complexity of O

(
∆−2 (

K log 1
δ +K logK +K log log 1

∆
))

.
The specific connections between BAI/GAI and entanglement detection are elaborated in Section 3 and 4.

3 The Quantum MAB Framework For Entanglement Detection

In this section, we introduce the quantum Multi-Armed Bandit (MAB) framework for batch entanglement
detection. First, we highlight the structural similarity between this framework and the stochastic MAB
model. In stochastic MAB, pulling an arm i corresponds to sampling from a probability distribution pi(·) with
known support and unknown mean µi. When arm i is pulled, a reward j is obtained with probability (w.p.)
pi(j). In each round, different arms can be pulled, yielding independent and identically distributed (i.i.d.)
rewards. Analogously, in the quantum setting, each arm represents an unknown quantum state ρ. When
ρ is measured, the underlying probability distribution of the rewards is determined by the measurement E .
Specifically, if a Witness Basis Measurement (WBM) E is chosen, measuring a state ρ with E will result in a
reward j ∈ {1, 2, 3, 4} with probability Tr(ρEj). Once the measurement is fixed, the rewards obtained from
measuring ρ are i.i.d. The subtle difference between the two models lies in the source of the rewards. In the
stochastic MAB model, rewards are obtained by sampling from i.i.d. distributions, whereas in the quantum
MAB model, the rewards depend on the chosen WBM.

The proposed MAB framework is as follows: A WBM E is chosen by the learner. Given this WBM E , the
MAB routine is applied to the (m,K) instance of quantum states (arms) with the objective of minimizing the
number of measurements (arm pulls) required to detect the m entangled states. It is important to note that
there is no guarantee that all the m entangled states are detectable under a given WBM. Given this, along
with the fact that m is unknown necessitates the repetition of the MAB routine for all WBMs. Thus, during
each MAB iteration, we do not use the measurement data (rewards) to decide the choice of the subsequent
WBM.

In the Best Arm Identification (BAI) setting of stochastic MAB, the primary parameters of interest are the
means of the rewards. Similarly, in the quantum analogue, SE(ρ) is the parameter of interest. As discussed
in Section 2.2, for a given state ρ and WBM E , the value of SE(ρ) determines whether the state is entangled.
The specific problem we consider involves K arms (states), of which m are bad (entangled), and our goal is
to identify these entangled states. We summarize this correspondence concisely in Table 2.

More formally, the objective of the learner is to accurately identify Aent = {i ∈ [K] such that SE(ρi) <
0}, while minimizing the number of measurements. This aligns with the goal of the (m,K)-Bad Arm
identification which aims to identify all those arms GC = {i ∈ [K] such that µi ≤ ζ} whose means µi

fall below a specified threshold ζ. In essence, solving the (m,K)-Bad Arm identification is tantamount to
addressing the (m,K)-quantum MAB problem. We define the (m,K)-quantum MAB setting as follows,

Definition 4 The (m,K)-quantum Multi-Armed Bandit (MAB) setting for entanglement detection is fully
characterized by the tuple (A, E). Here, A denotes a finite action set with |A| = K, consisting of (K −m)
two-qubit separable states and m two-qubit entangled states. The term E corresponds to a suitable Witness
Basis Measurement (WBM).

Remark 1 The d-dimensional discrete multi-armed quantum bandit model (Lumbreras et al., 2022) is dif-
ferent from our formulation. The authors consider arms to be a finite set of observables and the environ-
ment, an unknown quantum state ρ. The objective is to learn the unknown quantum state ρ through an
exploration-exploitation tradeoff. Given sequential oracle access to copies of ρ, each round involves selecting
an observable to maximize its expectation value (reward). The information from previous rounds (history)
aids in refining the action choice, thereby minimizing the regret, which is the difference between the obtained
and maximal rewards. The authors also exploit the inherent linear structure in measurement outcomes and
map it to the linear bandit setting. Specifically, let {σ}d2

i=1 be a set of orthogonal Hermitian matrices. The
unknown environment ρ =

∑d2

i=1 Tr(ρσi)σi =
∑d2

i=1 θiσi and arm Ot =
∑d2

i=1 Tr(Otσi)σi =
∑d2

i=1 At,iσi.
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Then, Tr(ρOt) = θ>At where θ = (θ1, θ2, . . . θd2) and At = (At,1, At,2, . . . At,d2). In round t, pulling arm
Ot provides a reward Xt = θ>At + ηt, where ηt is 1-subgaussian.

To demonstrate the functionality of MAB policies, we identify suitable WBMs for families of parameterized
two-qubit states denoted by F . We denote the first two witnesses in Table 1 as E1 and E2, respectively. Here,
E1 := {|00〉 〈00| , |11〉 〈11| , |Ψ+〉 〈Ψ+| , |Ψ−〉 〈Ψ−|} and E2 := {|01〉 〈01| , |10〉 〈10| , |Φ+〉 〈Φ+| , |Φ−〉 〈Φ−|}.

3.1 Two-qubit Depolarized Bell States

For w ∈ R,−1/3 ≤ w ≤ 1, a two-qubit Depolarized Bell state ρ(w) is given by,

ρ(w) = w |Υ〉 〈Υ|+ (1− w)I
4
. (9)

Here, |Υ〉 represents any one of the four Bell states |Ψ±〉 = (|01〉 ± |10〉) /
√

2, |Φ±〉 = (|00〉 ± |11〉) /
√

2. When
Υ = |Ψ−〉, equation 9 is called a Werner state, and when Υ = |Φ+〉, equation 9 is called an Isotropic state.
The Peres-Horodecki criterion guarantees that ρ(w) is separable when −1/3 ≤ w ≤ 1/3 and is entangled
when 1/3 < w ≤ 1. Table 3 outlines the specific choices of WBM for the combination of the maximally
mixed state with each of the four Bell states. When measured with these corresponding WBMs, the entangled
depolarized Bell states are conclusively detected, determined by the value of S = (w − 1)2/4− w2 which is
strictly positive for −1 ≤ w ≤ 1/3 and negative for w > 1/3.

Table 3: WBM for Depolarized Bell States

Depolarized State Pauli Basis WBM
w |Φ+〉 〈Φ+|+ (1− w)I/4

[
I + α(XX − Y Y + ZZ)

]
/4 E2

w |Ψ+〉 〈Ψ+|+ (1− w)I/4
[
I + α(XX + Y Y − ZZ)

]
/4 E1

w |Ψ−〉 〈Ψ−|+ (1− w)I/4
[
I + α(−XX − Y Y − ZZ)

]
/4 E1

w |Φ−〉 〈Φ−|+ (1− w)I/4
[
I + α(−XX + Y Y + ZZ)

]
/4 E2

3.2 Two-qubit Bell diagonal States

Bell diagonal states are a probabilistic mixture of the four Bell states. These states are more general than
the ones in equation 9. Given parameters p1, p2, p3 and p4 such that pi ≥ 0,

∑
i pi = 1, the Bell diagonal

state is defined,
ρBell = p1 |Φ+〉 〈Φ+|+ p2 |Ψ+〉 〈Ψ+|+ p3 |Ψ−〉 〈Ψ−|+ p4 |Φ−〉 〈Φ−| . (10)

The eigenvalues of ρ>b

Bell are calculated to be 1/2− p1, 1/2− p2, 1/2− p3 and 1/2− p4. Consequently, a Bell
diagonal state is entangled if any one of these probabilities exceeds 1/2, while the sum of the other three
probabilities is less than 1/2. Conversely, a Bell diagonal state is separable if all probabilities are less than
or equal to 1/2. Expressing equation 10 in the Pauli basis yields,

ρBell = 1
4

[I + aXX + bY Y + cZZ] ,

where a = p1 + p2 − p3 − p4, b = −p1 + p2 − p3 + p4 and c = p1 − p2 − p3 + p4.

When ρBell is entangled, the index for which pi > 1/2 determines the sign of a, b, and c, see Table 4. It is
notable that the signs of a, b and c follow a similar pattern to the Pauli basis expansion of various Depolarized
Bell states listed in Table 3. We observe that, for suitable combinations of a, b, and c ∈ {+1,−1}, the Bell
diagonal state reduces to one of the Depolarized Bell states and states can be detected using the same WBMs,
as in Table 3. Specifically, the value of S under the two WBMs in Table 4 is equal to (1−p1−p4)2−4(p1−p4)2

and (1−p2−p3)2−4(p2−p3)2, respectively. Depending on the probabilistic mixture, one of the two WBMs
will conclusively result in S < 0.

8
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Table 4: WBM for Bell Diagonal States

Probabilistic mixture a b c WBM
p1 > 0.5, p2 + p3 + p4 < 0.5 + − + E2
p2 > 0.5, p1 + p3 + p4 < 0.5 + + − E1
p3 > 0.5, p1 + p2 + p4 < 0.5 − − − E1
p4 > 0.5, p1 + p2 + p3 < 0.5 − + − E2

3.3 Two-qubit Amplitude Damping on Depolarized Bell States

A qubit amplitude damping channel is a source of noise in superconducting circuit-based quantum computing
and thus, serves as a realistic channel model for simulating lossy processes in these systems. Mathematically,
it can be obtained from an isometry J ,

J : Ha 7→ Hb ⊗Hc; J†J = Ia (11)

where Ha denotes the Hilbert space for the channel’s input, and Hb and Hc represent the Hilbert spaces for
the direct and complementary channel outputs, respectively. An isometry of the form,

J1 |0〉a = |0〉b |1〉c ,
J1 |1〉a =

√
1− r |1〉b |1〉c +

√
r |0〉b |0〉c , (12)

where 0 ≤ r ≤ 1 defines a pair of channels, B(A) = Trc(JAJ†) and C(A) = Trb(JAJ†). Here, B is an
amplitude damping channel with damping probability r for the state |1〉a to decay to output state |0〉b. The
isometry J1 = K0⊗ |0〉+K1⊗ |1〉 where K0 and K1 (Kraus) damping operators such that K0 = [0,

√
r; 0, 0]

and K1 = [1, 0; 0,
√

1− r]. For a single qubit represented by state ρ, the amplitude damped output is given
by,

B(ρ) = K0ρK
†
0 +K1ρK

†
1 . (13)

We can extend equation 13 for two qubit states with damping probabilities r and q for the first and second
qubit respectively. Assuming that r = q, we consider Depolarized Bell states equation 9 with amplitude
damping.

Proposition 5 For any damping probability r > 0, a Depolarized Bell state with amplitude damping can
not be expressed as a Bell diagonal state equation 10.

This fact can be readily demonstrated through a straightforward calculation. Consider the Isotropic state
ρ(w) = w |Φ+〉 〈Φ+|+ (1−w) I

4 , which can be represented by the Bell diagonal state formed with probability
distribution (p1, p2, p3, p4) = ((3w + 1)/4, (1− w)/4, (1− w)/4, (1− w)/4). In a Bell diagonal state, the
diagonal elements corresponding to |00〉 〈00| and |11〉 〈11| are identical. In the case of an amplitude damped
Isotropic state, we observe that,

p2 = p3 = 1− r
4

(w − wr − r − 1) .

However, obtaining closed-form expressions for p1 and p4 when r > 0 is cumbersome. Specifically, the values
on the diagonal corresponding to |00〉 〈00| and |11〉 〈11| is given by w(r2 + 1)/2 − (w − 1)4(r + 1)2/4 and
w(r − 1)2/2− (w − 1)(r − 1)2/4, respectively. These expressions are equal only when r = 0.

Proposition 6 For every w ∈ [ 1
3 , 1], there exists r̃ ⊂ [0, 1] such that an amplitude damped Depolarized Bell

state becomes separable.

The PPT criterion asserts that a two-qubit state is entangled if and only if its partial transpose contains
atleast one negative eigenvalue. For Bell states that are both amplitude damped and depolarized, we evaluate
the eigenvalues and observe that one of them can exhibit either positive or negative values contingent upon
the range of r. Detailed findings are presented in Table 5 and depicted graphically in Fig. 1a and Fig. 1b.
Furthermore, the WBM for amplitude damped and Depolarized Bell states aligns with that of depolarized
Bell states, as outlined in Table 3.

9
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Table 5: The four eigenvalues of amplitude damped Depolarized Bell states

State with |Φ〉± State with |Ψ〉± Sign of eigenvalue
(w+1)(1−r2)

4
(1−r)(1+r+w−wr)

4 Always positive
(w+1)(1−r)2

4
(1−r)(1+r+w−wr)

4 Always positive
w(r−1)2+(r+1)2

4
r2+1−w(1−r)2+2

√
w2(1−r)2+r2

4 Always positive
−r2(w−1)+wr+(1−3w)

4
r2+1−w(1−r)2−2

√
w2(1−r)2+r2

4 Positive and Negative

0.4 0.6 0.8

0.2

0.4

0.6

0.8

1
Positive eigenvalues

Negative eigenvalues

(a) Range of r for eigenvalue corresponding to
∣∣Φ±〉

0.4 0.6 0.8

0.2

0.4

0.6

0.8

1
Positive eigenvalues

Negative eigenvalues

(b) Range of r for eigenvalue corresponding to
∣∣Ψ±〉

Figure 1: A phase diagram representing the region of damping and depolarizing parameters, r and w,
respectively, where the dampeddepolarized Bell state has negative or positive partial transpose.

4 Stochastic MAB policies for Entanglement Detection

We apply stochastic MAB algorithms for entanglement detection in the parameterized states F from Section
3. The terminology follows the alignment with classical counterparts, as outlined in Table 2. Consider a set
of K unknown states, denoted by A = {ρ1, ρ2, . . . , ρK} ∈ F . To perform measurements on the arms, the
learner must know the underlying WBM. Thus, we assume knowledge of the specific forms of the arms in A.
For instance, A could represent the set of isotropic states detectable under the WBM E2, where each state
is of the form ρi = wi |Φ+〉 〈Φ+|+ (1− wi) I

4 , with wi being unknown for all i ∈ [K]. With this assumption,
we describe the MAB routine as follows: In each round t ∈ N,

• The learner selects a state ρi ∈ A.

• The learner performs a measurement E and obtains outcome j with probability fj = Tr{ρiEj},
where j ∈ {1, 2, 3, 4}.

• The learner updates the values of ŜE and identifies the entangled arm(s) or continues.

For a given WBM E , the values of SE are bounded in [−1, 1]. We use concentration inequalities applicable
to 1-subgaussian1 random variables—specifically, the law of iterated logarithm (Jamieson et al., 2014) for a
finite sum of 1-subgaussian random variables:

1A 1-subgaussian random variable is a real, centered random variable X that satisfies E[esX ] ≤ es2/2 for any s ∈ R.

10
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Algorithm 1 Successive Elimination Algorithm
Input: ζ = 0, δ, A, WBM E
Output: Ω

Initialize active set Ω← A
Set initial estimates: Ŝi,Ni(t) = 0, ∀i ∈ Ω
for t = 1, 2, 3, . . . do

for ρi ∈ Ω do
Perform measurement E on ρi

Update Ŝi,Ni(t) based on outcome j ∈ {1, 2, 3, 4}
Update confidence width U

(
Ni(t), δ

cεK

)
(see Lemma 7)

Compute lower confidence bound: LCBi(t)← Ŝi,Ni(t) − U
(
Ni(t), δ

cεK

)
end for
if LCBi(t) > 0 for i ∈ Ω then

Update active set: Ω← Ω− {i}
end
if |Ω| = 1 then

Return Ω
end

end for

Lemma 7 Let X1, X2, . . . Xt be i.i.d. sub-gaussian random variables with scale parameter σ = 1. For any
ε ∈ (0, 1), δ ∈

(
0, log(1+ε)

e

)
, one has with probability at least 1− cεδ

(1+ε) for all t ≥ 1,

1
t

t∑
s=1

Xs ≤ U(t, δ), (14)

where U(t, δ) = (1 +
√
ε)

√
2(1+ε)

t log
(

log((1+ε)t)
δ

)
is the confidence width and cε = 2+ε

ε

(
1

log(1+ε)

)1+ε

.

Proof: Readers can refer in Jamieson et al. (2014, Lemma 1). □
In the subsequent sections, we discuss two MAB policies: successive elimination, which is applicable when
there is a guarantee of one entangled arm among K arms, and the HDoC policy, designed for scenarios where
there are m entangled arms among K, with m being unknown.

4.1 Successive Elimination Algorithm

Consider the set of states A = {ρ1, ρ2, . . . , ρK} detectable under WBM E , with the guarantee that exactly one
arm in the set is entangled. The underlying problem instance SE satisfies the condition SE(ρ1) ≥ SE(ρ2) ≥
· · · > SE(ρK−1) > 0 > SE(ρK). To address this, we adapt the Successive Elimination algorithm (Even-Dar
et al., 2002), as outlined in Algorithm 1. This modified algorithm takes as input the set A, the threshold
ζ = 0, WBM E and the error probability δ, and it outputs the entangled state i⋆ = arg mini∈[K] SE(ρi). Let
Ni(t) denote the number of times ρi has been measured in t rounds and Ŝi,Ni(t) is the estimate of SE(ρi)
obtained on measuring ρi until time t. The algorithm maintains an active set Ω and measures every state
in it. In order to identify i⋆, the policy eliminates states states Lower Confidence Bound (LCB) exceeds the
threshold and halts when only one state remains in the active set.

Lemma 8 Algorithm 1 is δ-PC.

Proof: The proof is presented in Appendix A.1.1. □
The correctness of Algorithm 1 and the copy complexity of identifying the entangled arm is presented below.

11
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Theorem 9 With probability at least 1− δ, the entangled state i⋆ = K = arg mini∈[K] SE(ρi) remains in the
active set Ω till termination.

Proof: The proof is presented in Appendix A.1.2. □

Theorem 10 With probability at least 1 − δ, Algorithm 1 identifies the entangled state i⋆, requiring∑
i∈[K]O

(
∆−2

i log
(

K log ∆−2
i

δ

))
copies. Here, ∆i = |SE(ρi) − ζ| denotes the sub-optimality gap with re-

spect to the threshold ζ.

Proof: The proof is presented in Appendix A.1.3. □ We
observe that the sample complexity derived in Theorem 10 is within a log(K) factor of the optimal bound,
as demonstrated in Theorem 1 of Jamieson et al. (2014). This result follows from the concentration bound
established in Lemma 7, which forms the basis for the MAB policy described in the following section.

4.2 lil’HDoC Algorithm

The lil’HDoC algorithm (Tsai et al., 2024) builds on the HDoC algorithm (Kano et al., 2018) by leveraging
finite LIL concentration bounds (Lemma 7) instead of the LCB-based identification rule (Kalyanakrishnan
et al., 2012). To explore among promising arms, lil’HDoC adopts the sampling rule from Kano et al. (2018),
derived from the UCB algorithm for regret minimization (Auer et al., 2002). It improves sample complexity
over HDoC by utilizing the LIL bound, where the

√
log log t/t factor has a higher growth rate than the√

log t/t factor in the LCB bound. In other words, there exists a value T such that for all t > T , c1, c2 ∈ R+,

c1

√
log t
t

> c2

√
log log t

t
.

The confidence bound for HDoC grows as α(t) =
√

ln
( 4Kt2

δ

)
/2t. Through straightforward calculations, the

smallest integer T such that the confidence bound U (T, δ/cεK) is greater than α(T ) is,

T ≥ 1
4

log(K + 1) log
(

max
(

1
δ
, 2

))
c3/2

ε . (15)

Thus, if each state is measured T times initially, lil’HDoC achieves comparable identification capabilities to
HDoC with O (log(K + 1) log (max (1/δ, 2))) copies of each state.

Consider K states such that SE(ρ1) ≥ SE(ρ2) . . . > SE(ρK−m) > 0 > SE(ρK−m+1) . . . > SE(ρK), with m
being unknown. The algorithm takes as input, the set of states A, threshold ζ = 0, WBM E and the error
probability δ and outputs Aent = {i ∈ [K] such that SE(ρi) < 0}. The algorithm maintains an active set Ω
and terminates when the set Ω = ∅

To demonstrate the correctness of Algorithm 2, we first show that the algorithm is (λ, δ)-PAC for all λ ∈ [K]
and then characterize the copy complexity of identifying m entangled states.

Lemma 11 Algorithm 2 is δ-PAC.

Proof: The proof is presented in Appendix A.2.1. □

Theorem 12 With probability at least 1− δ, the algorithm identifies all the states in Aent.

Proof: The proof is presented in Appendix A.2.2. □
With T = 1 in equation 15, it can be seen from Theorem 10 that the number of samples required to identify
an entangled state ρi ∈ A is O

(
∆−2

i log
(

K log ∆−2
i

δ

))
. However, in practice, T is chosen to be larger than 1,

and the total sample complexity is expressed in terms of ∆ = mini∈[K] ∆i.

12
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Algorithm 2 lil’HdoC Algorithm
Input: ζ = 0, δ, A, WBM E
Output: Aent

Initialize active set Ω← A, Aent ← ∅
Set initial estimates: Ŝi,Ni(t) = 0, ∀i ∈ Ω
for ρi ∈ Ω do

Perform measurement E on ρi for T times
Ni(t)← T
Update Ŝi,T based on outcome j ∈ {1, 2, 3, 4}

end for
while Ω 6= ∅ do

Find ht = arg maxi∈A Ŝi,Ni(t) +
√

log t
2Ni(t)

Perform measurement E on ρht

t← t+ 1
Update Ŝi,Ni(t) based on outcome j ∈ {1, 2, 3, 4}
Update confidence width U

(
Ni(t), δ

cεK

)
if Ŝht,Nht (t) − U

(
Nht

(t), δ
cεK

)
≥ ζ then

Remove ht from Ω
else if Ŝht,Nht (t) + U

(
Nht

(t), δ
cεK

)
< ζ then

Add ht to Aent
Remove ht from Ω

end
end while

Theorem 13 With probability 1− δ and an initialization of T measurements, Algorithm 2 identifies the en-
tangled states using O

(
∆−2 (

K log 1
δ +K logK +K log log 1

∆
))

+O
(
K log(K + 1) log

(
max

( 1
δ , e

)))
copies.

Proof: The first term in the sample complexity is derived in Appendix A.1.3 and the second term follows
from equation 15. □

5 Implementation and Simulations

This section presents an experimental workflow for detecting entangled states from an ensemble of Bell
Diagonal states. Sections 5.1 and 5.2 describe the procedures for generating Bell Diagonal states (BDS) and
their corresponding WBMs, respectively. The performance of the MAB policies (see Section 4) are presented
through numerical findings in Sections 5.4.

5.1 Generating Bell Diagonal States

Bell Diagonal States (BDS) are constructed as convex combinations of the four Bell states equation 10,
forming a geometric tetrahedron T and are represented by:

ρBell =
4∑

j=1
pj |Υ〉 〈Υ| =

1
4

I +
3∑

j=1
tjσ

A
j ⊗ σB

j

 . (16)

Here, σj ’s are the Pauli operators and (t1, t2, t3) are the coordinates within the tetrahedron T .

13
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The mapping {pj}4
j=1 → (t1, t2, t3) equation 17 is implemented through the quantum circuit proposed by

Pozzobom & Maziero (2019); Riedel Gårding et al. (2021) and is shown in Fig. 2.
√
p1 = cos(ψ)
√
p2 = sin(ψ) cos(θ)
√
p3 = sin(ψ) sin(θ) cos(φ)
√
p4 = sin(ψ) sin(θ) sin(φ) (17)

The sub-circuit G encodes the probabilities {pj}4
j=1 into canonical coordinates (ψ, θ, φ) on the unit 3-sphere,

and sub-circuit B entangles the states in the Bell basis. Finally, BDS ρBell = ρcd is obtained by taking a
partial trace on qubits a and b.

|0〉a
G

•

|0〉b •

|0〉c H •

|0〉d

|ψ〉ab

} ρcd

} unread (env.)

B

|0〉a Ry(2θ) •

|0〉b Ry(2ψ) • Ry(−2φ)

G

}|ψ〉ab

Figure 2: Four-qubit circuit for generating BDS with canonical encoder G shown below.

5.2 Implementing Witness Basis Measurements

As outlined in Table 4, BDS are detectable under WBMs E1 and E2. To measure in the Pauli-Z basis, we
apply appropriate unitary transformations to E1 and E2. The corresponding transformations are realized
through circuits CIRCE1 and CIRCE2 shown in Fig. 3 and applied to qubits c and d (see Fig. 2) before
measurement.

• H 




• 



{ρcd

• H 




X • 



{ρcd

Figure 3: Circuits CIRCE1 (top) and CIRCE2 (bottom) perform the unitary transformations required to map
E1 and E2 into the Pauli-Z basis.

5.3 Workflow for entanglement detection

We propose a workflow for detecting entanglement in BDS without assuming prior knowledge of the specific
WBM. Instead, WBMs are sequentially adapted using suitable unitary transformations, as detailed in Ta-
ble 1. To generate set A = {ρ1, ρ2, . . . , ρK} of BDS, we construct K sets of probabilities for combining the
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four Bell states. Specifically, m states are generated with maxj pj >
1
2 , while the remaining K −m states

satisfy maxj pj ≤ 1
2 . These probabilities are encoded following the procedure outlined in Fig. 2, where the

BDS circuit for state ρi is denoted as BDSi. Subsequently, one of two WBM circuits, CIRCE1 or CIRCE2 , is
appended to the respective BDS circuit. Algorithm 3 outlines this workflow for BDS and takes the following
inputs: threshold ζ = 0, error δ, BDS circuits {BDSi}, WBM circuits CIRCE1 and CIRCE2 and the initial
choice of WBM. Notably, the initial WBM selection is arbitrary, as the sequence of WBM adaptations does
not rely on prior state estimation.

Algorithm 3 Workflow for Entanglement Detection in BDS
Input: ζ = 0, δ, {BDSi}, CIRCE , WBM choice = 1
Output: Aent, Stopping time τ

Run Algorithm 2 on {BDSi} with circuit CIRCE1 on K states
Return entangled states |Aent,1| = m̃ and stopping time τ1.
if (m̃ = K) then
Aent,2 ← ∅, τ2 ← 0.

else if m̃ < K then
Run Algorithm 2 on {BDSi} with circuit CIRCE2 on K − m̃ states
Return entangled states Aent,2 and stopping time τ2.

end
Aent ← Aent,1 +Aent,2, τ ← τ1 + τ2

The learner does not initially know under which WBM the BDS are detectable. Consequently, at least
one iteration of Algorithm 2 must be executed. In the first iteration, the algorithm processes circuits
corresponding to K states with WBM E1 (or E2) and identifies a subset of entangled states, m̃, where
0 ≤ m̃ ≤ K. In the second iteration, Algorithm 2 is applied to the K − m̃ states that remain undetected
by using circuits with WBM E2 (or E1) as inputs. Let us define ∆1 := min |SE1 |, ∆2 := min |SE2 | and
∆min = min{∆1,∆2}, then

Corollary 14 With probability 1 − δ and T = 1, Algorithm 3 identifies entangled BDS using
2O

(
∆−2

min

(
K log 1

δ +K logK +K log log 1
∆min

))
copies.

5.4 Qiskit Experiment

The workflow presented in Algorithm 3 is simulated on IBM’s Qiskit. The implementation is available in
Bharati (2025). We present numerical results on the achievable copy complexity for entanglement detection
in BDS. The experimental setup is given as follows:

• Simulation Environments: The workflow is executed across three computational setups: (i) AerSim-
ulator for idealized, noiseless simulations, (ii) FakeBrisbane backend to simulate noisy quantum
environments, and (iii) ibm-brisbane for real quantum processing unit (QPU) computations.

• Problem Instance: We consider K = 5 states of which m = 3 are entangled. The probabilities are
suitably generated and the true corresponding parameters under E1 and E2 are,

SE1 = [0.6306,−0.2688, 0.5232, 0.1796, 0.0695]

SE2 = [−0.0749, 0.5963,−0.1735, 0.2801, 0.3768]

.

• Each state was measured 106 times on backends (i, ii) and 105 times on (iii). Algorithm 3 was
run 20 times on (i, ii) and 5 times on (iii) for δ ∈ (0, 1). We plot the average number of copies
measured until stoppage on the y-axis and log(1/δ) on the x-axis, as shown in Fig.4. Here, we note
that the large standard deviation for the trend in backend (iii) arises due to the limited number of
experiment iterations, constrained by available compute resources.
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Figure 4: Copy complexity for entanglement detection in BDS v/s log(1/δ)

From Corollary 14, we observe that the factor log(1/δ) has a multiplicative effect on the sample complexity,
while the average copy complexity is primarily determined by ∆min. The values of SE are governed by the
four frequencies f1, f2, f3, and f4, as defined in equation 7. While the true values of the fi’s are calculated
using Tr{ρBellEi}, the values of fi obtained from register countsbased on simulations performed on different
backendsdiffer from the true values upto O(10−2). Due to measurement noise and decoherence, the goalpost
for SE varies across different backends and these differences influence ∆min. One option is to mitigate the
measurement noise (see details in the appendix, Sec. A.3)

6 Entanglement Detection in Arbitrary Quantum States

This section outlines a routine for detecting entanglement in arbitrary two-qubit quantum states. Specifically,
we consider K arbitrary states, one of which is entangled, and describe an MAB routine along with numerical
results.

6.1 Numerical Experiment

The workflow outlined in Algorithm 4 is implemented in MATLAB. The algorithm takes the following inputs:
a threshold ζ, an error parameter δ, a set of K states A (with the promise that one state is entangled), and
a permutation of {1, 2, 3, 4, 5, 6} that specifies the order in which the WBMs should be adapted. As this is
a promise problem, the algorithm terminates as soon as it identifies an entangled state, without needing to
measure with all six WBMs. The different modules in the software are described below:

• Generating arbitrary quantum states: To generate random density matrices, we follow the method
described in Zyczkowski & Sommers (2001). Specifically, we start by generating a complex matrix
A ∈ C4×4, where the real and imaginary parts of each element are independently sampled from
a normal distribution. We then compute the density matrix ρ by normalizing AA†, resulting in
ρ = AA†/Tr(AA†). This procedure ensures that ρ is a valid density matrix.

• Experiment Setup: In this experiment, we generate 1000 distinct instances of K = 5 full rank
arbitrary states, ensuring that each instance contains exactly one entangled state. These instances
are validated using the PPT criterion to confirm their validity.
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Algorithm 4 Entanglement detection for arbitrary states
Input: ζ = 0, δ, A ← {ρ1, ρ2 . . . ρK}, WBM Order P
Output: Aent

flag ← 1, I ← 1
while flag do

With E ← EP (I), run Algorithm 2 for K arms
Return entangled arm A

(I)
ent

if |A(I)
ent| = 1 then

flag ← 0
else
I ← I + 1

end
end while
Aent ← A

(I)
ent

• We test the efficacy of using the single parameter family of witnesses equation 4 to detect entangle-
ment in arbitrary states. For δ ∈ (0, 1), we report the detection ratio which is the fraction of times
the entangled state is accurately identified by the MAB policy. This result is shown in Fig. 5. We
observe that the detection ratio diminishes with larger error margins.
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Figure 5: Entanglement Detection ratio v/s δ for arbitrary quantum states

• For a random order of WBM, we analyze how many measurements from the witness family are
required to detect a single valid entangled state among a set of K states. For δ ∈ (0, 1), we present
the frequency distribution of the number of WBMs used, displayed as a cumulative histogram in
Fig. 6. For significantly larger values of δ, the lower detection ratios indicate that the algorithm
terminates upon identifying the wrong state, preventing further adaptation and primarily (around
85%) relying on up to three witnesses.
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Figure 6: The cumulative histograms compare between the number of WBMs used to detect one valid
entangled state across different values of δ.

Table 6: Examples of arbitrary pure entangled states detected by the family of witnesses equation 4

Pure entangled states |ψ1〉 , |ψ2〉 and |ψ3〉 Values under (SEi)6
i=1

[0.2687 + 0.0375i; 0.2406 + 0.4090i; 0.0502 + 0.6162i; 0.2413 + 0.5107i] (−0.1851, 0.3160, 0.1598,−0.0058, 0.2177,−0.1947)
[0.0565 + 0.3355i; 0.0508 + 0.0686i; 0.4885 + 0.5191i; 0.5689 + 0.2125i] (0.1562,−0.0280,−0.1135, 0.1832,−0.0779, 0.1373)
[0.1953 + 0.4438i; 0.4958 + 0.4009i; 0.0069 + 0.3495i; 0.0322 + 0.4848i] (−0.1851, 0.3160, 0.1598,−0.0058, 0.2177,−0.1947)

In this experiment, we encountered edge cases, i.e., instances of pure states ρ with value of SE(ρ) = 0.
For such edge cases, the algorithm took a significantly long time to converge and, despite this, incorrectly
estimated the value of SE(ρ). Consequently, we adjusted the threshold to −1×10−3 and imposed a cutoff on
the sample complexity at 1× 1012 to better reflect the real-time performance of this policy. This experiment
can be extended to the scenario where there are m entangled states. However, since m is unknown and the
states may be detectable under any of the WBMs, the routine would necessitate measuring under all WBMs
to reliably identify the entangled states.

6.2 Numeric Examples

We present an example of a PPT-verified entangled state that yields positive values for SE(ρ) under all six
WBMs. Consider the pure entangled states and their corresponding SE values, as shown in Table 6. The
state ρ =

∑3
i=1 pi |ψi〉 〈ψi|, where |ψi〉 are defined in Table 6, and (pi)3

i=1 = (0.2936, 0.0655, 0.6409), has
a negative eigenvalue of −0.029 after applying the partial transpose, thus confirming it as a PPT-verified
entangled state. However, the values of (SE) = (0.0732, 0.1727, 0.1257, 0.1139, 0.0736, 0.0296) under the six
WBMs are all non-negative. This indicates that the state cannot be detected by the witness family described
in equation 4.

We derive an observation on the nature of such states, focusing specifically on the eigenstate |λ〉max =
[0.3773 − 0.1445i, 0.4768 − 0.3244i, 0.4598 + 0.0809i, 0.5351], which corresponds to the largest eigenvalue of
ρ. This eigenstate has a Schmidt coefficient close to, but not exactly equal to 1, suggesting that it lies near
the boundary of separable states while still remaining entangled. The pure state |λ〉max 〈λ|max produces the
following values for (SE) = (0.0380, 0.1269, 0.0401, 0.1054, 0.0221, 0.0074). This highlights that both pure
and mixed entangled states can yield inconclusive results when measured using this specific witness family.
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In these cases, it is crucial to measure all six witnesses a sufficient number of times to accurately obtain the
expected values of the corresponding observables. Additionally, performing FST can assist in determining
the entanglement of these states through other separability criteria.

7 Discussions

7.1 Does the MAB routine optimize WBM ordering?

As outlined in Dai et al. (2014), there are WBM optimization strategies that prescribe an optimal WBM
ordering for efficiently detecting whether a single arbitrary two-qubit quantum state is entangled. One such
adaptive strategy uses the maximum-likelihood maximum-entropy (MLME) estimate of the unknown state,
based on causal measurement data. Using this estimate, the subsequent WBM is identified to be the one
minimizing the quadratic separability criterion. This leads to partial estimation of the quantum state.

In the context of batch entanglement detection, where an unknown number m of entangled states out of
a set of K states may be detectable under different witnesses, implementing the WBM adaptive strategies
from Dai et al. (2014) would be both time-consuming and complex. This is because each of the K states may
require a unique permutation of the WBM ordering. Furthermore, the goal of the proposed MAB framework
is to minimize the number of measurements needed for detecting entanglement in a given set of quantum
states under a specific WBM. Notably, this framework does not optimize the WBM ordering across multiple
MAB runs.

The closest comparison is with Fig. 6, which depicts the cumulative frequency of WBMs used. This aligns
with the cumulative percentage of states identified under the WBM family, as seen in schemes 1A and 4A of
the recently reported incomplete state estimation techniques (see (Dai et al., 2014, Fig. 1)). However, this
approach does not address the batch entanglement detection problem. The WBM adaptation scheme A in
Dai et al. (2014) successfully detects 98% of random pure states but only 33% of full-rank mixed states. We
specifically analyze the latter category, generating multiple instances of K states to quantify the number
of WBMs required to detect a single entangled state, presenting results for varying δ. Notably, Dai et al.
(2014) lacks numerical insights into the sample complexity and convergence rate of its proposed schemes.

8 Future Work And Conclusion

Batch entanglement detection, as discussed in this paper, is particularly useful for verifying the integrity of
a batch of practically relevant entangled states, before use in applications like secure multi-channel quantum
communication. We established a novel correspondence between the problem of batch entanglement detection
and the Thresholding Bandit problem in stochastic Multi-Armed Bandits. We proposed the (m,K)-quantum
Multi-Armed Bandit framework for entanglement detection. Focus of this framework is on identifying m
entangled states out of K states, where m is potentially unknown. We apply this framework to two-qubit
states using two key ingredients: a specialized set of six measurements for two-qubit states called Witness
Basis Measurements (WBM) E and a separability criterion SE , which is based on the data obtained from these
measurements and serves as the parameter that needs to be estimated. We present theoretical guarantees
and numerical simulations to demonstrate how this parameter can be estimated quickly and accurately using
MAB policies. First, we show that entangled states belonging to a class of parameterised two-qubit states
F can be detected by measuring a subset of the six WBMs. With the knowledge of the WBM, we show that
we can directly apply some suitable MAB policies. Second, for the same parameterised states, we present a
routine for entanglement detection when the WBM is not known by enabling arbitrary sequential adaptation
of the WBMs. We extend this to arbitrary two qubit quantum states and provide numerical results on the
efficacy of using these measurements for detecting entanglement.

An exciting avenue for future research lies in identifying WBMs for higher-dimensional bipartite systems. The
minimalistic tomographic scheme proposed in Zhu et al. (2010) significantly reduces the number of required
witnesses for two-qutrits from 81 to just 11, demonstrating the potential for more efficient entanglement
detection. Meanwhile, recent advancements in data-driven machine learning, particularly the use of SVMs
to construct linear entanglement witnesses from local measurements (Greenwood et al., 2023), open new
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possibilities for tackling the (m,K)-quantum MAB problem. By leveraging these techniques, one could
optimize the number of witnesses needed to reliably detect all m states.

Entanglement detection can be reframed as a membership problem, where a state belongs to a set if it
exhibits a specific propertysuch as entanglement. This perspective aligns with the partition identification
problem (Juneja & Krishnasamy, 2019), where the objective is to determine the partition to which a data
point belongs based on a hyperplane structure. Extending this framework to the (m,K)-quantum MAB
problem could pave the way for groundbreaking approaches to adaptive entanglement detection.
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A Appendix

The following lemma is useful for some calculations.

Lemma 15 For t ≥ 1, c > 0, ε ∈ (0, 1), 0 < w ≤ 1,

1
t

log
(

log ((1 + ε)t)
w

)
≥ c =⇒ t ≤ 1

c
log

2 log
(

(1+ε)
cw

)
w

 . (18)
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A.1 Proof for Section 4.1

A.1.1 Proof of Lemma 8

Proof: Let B denote the "good" event that at any time t > 0 and for all arms i ∈ [K], the true value SE(ρi)
is well concentrated around its estimate Ŝi,Ni(t).

B :=
K⋃

i=1

∞⋃
t=1

{
|Ŝi,Ni(t) − Si| ≤ U

(
Ni(t),

δ

cεK

)}
From Lemma 7 and by applying the union bound, we get that

P [B] ≥ 1− cεK

(
δ

cεK

)1+ε

≥ 1− δ (19)

where Eq. 19 holds because ε ∈ (0, 1) and cε ≥ 1. □

A.1.2 Proof of Theorem 9

Proof: Recall that the threshold ζ = 0 and problem instance SE is such that SE(ρ1) ≥ SE(ρ2) ≥
SE(ρ3) . . . > SE(ρK−1) > 0 > SE(ρK). Let us consider the case that the event B described in Lemma
8 holds. As outlined in Algorithm 1, the arm i⋆ will be dropped from the active set Ω if LCBi⋆(t) > 0. That
is,

Ŝi⋆,Ni⋆ (t) − U
(
Ni⋆(t), δ

cεK

)
> 0

Ŝi⋆,Ni⋆ (t) − |Ŝi⋆,N⋆
i

(t) − Si⋆ | > 0
=⇒ Si⋆ > 0

This contradicts the assumption about the problem instance S because Si⋆ = SE(ρK) < 0 and so, the arm
i⋆ will not be dropped from the active set Ω as long as event B holds. □

A.1.3 Proof of Theorem 10

Proof: Let us consider the case where B holds. By the elimination rule of Algorithm 1, an arm i is removed
from the active set Ω if LCBi(t) > 0. We have that,

Ŝi,Ni(t) − U
(
Ni(t),

δ

cεK

)
≥ ζ

Ŝi,Ni(t) − Si + ∆i ≥ U
(
Ni(t),

δ

cεK

)
=⇒ ∆i ≥ 2U

(
Ni(t),

δ

cεK

)
(20)

Let us denote Ni to be the number of samples of arm i, that is, Ni = inf{t : U
(
Ni(t), δ

cεK

)
≤ ∆i

2 }. The
minimum value of Ni can be obtained by solving,

U

(
Ni,

δ

cεK

)
= ∆i

2

(1 +
√
ε)

√
2(1 + ε)
Ni

log
(

log ((1 + ε)Ni)
δ/cεK

)
= ∆i

2
1
Ni

log
(

log ((1 + ε)Ni)
δ/cεK

)
= ∆2

i

8(1 + ε)(1 +
√
ε)2 (21)
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From Lemma 15, we get that,

Ni = 8(1 + ε)(1 +
√
ε)2

∆2
i

log

2cεK log
(

8cε(1+ε)2(1+
√

ε)2

δ
K
∆2

i

)
δ

 (22)

Thus, the total number of samples required to identify the arm i⋆ with a probability of at least 1 − δ is
N ≤

∑K
i=1 Ni. □

A.2 Proof for Section 4.2

A.2.1 Proof of Lemma 11

Proof: Firstly, we show that Algorithm 2 is (λ, δ)-PAC for arbitrary λ ∈ [K]. In the case where there are
arms greater than or equal to λ, we show that P

[
{m̂ < λ} ∪

⋃
i∈Aent

{Si < ζ}
]
≤ δ where m̂ is the number

of good arms identified by the agent. Since we are now considering the case when m ≥ λ, the event {m̂ < λ}
implies that at least one good arm j ∈ [m] is identified as a bad arm by the agent. That is, for some j ∈ [m]
and t ∈ N, the upper confidence bound Ŝj,Nj(t) + U

(
Nj(t), δ

cεK

)
< ζ. Thus, we have that,

P [m̂ < λ] ≤
∑

j∈[m]

P

[⋃
t∈N

{Ŝj,Nj(t) + U

(
Nj(t), δ

cεK

)
< ζ}

]

≤
∑

j∈[m]

cε

(
δ

cεK

)1+ε

(By Lemma 7)

≤ mcε

(
δ

cεK

)
(23)

The event
⋃

i∈{X̂1,X̂2,...X̂λ}{µi < ζ} considers all those outcomes where a bad arm is identified to be a good
one. Thus, for some bad arm j ∈ {X̂1, X̂2, . . . X̂m̂} such that j ∈ [K] \ [m], we have,

P

 ⋃
i∈{X̂1,X̂2,...X̂λ}

{Si < ζ}


≤

∑
j∈[K]\[m]

P

[⋃
t∈N

{Ŝj,Nj(t) − U
(
Nj(t), δ

cεK

)
> ζ}

]

≤ (K −m)cε

(
δ

cεK

)
(24)

Thus, putting Eq. 23 and Eq. 24 together, we get that P
[
{m̂ < λ} ∪

⋃
i∈{X̂1,X̂2,...X̂m̂}{µi < ζ}

]
≤ δ. Next,

we consider the case when the number of good arms m is less than λ and show that P [m̂ ≥ λ] ≤ δ. Since
there are at most λ good arms, the event {m̂ > λ} implies that one of the output arms j ∈ {X̂1, X̂2, . . . X̂λ}
is such that there exists some index j such that X̂j is a bad arm. Thus, we have that,

P [m̂ ≥ λ] ≤
∑

j∈[K]\[m]

P[j ∈ {X̂1, X̂2, . . . X̂λ}]

≤ (K −m)cε

(
δ

cεK

)1+ε

≤ K −m
K

cε

(
δ

cε

)
≤ δ (25)
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We see that the algorithm is (λ, δ)-PAC for all such λ ∈ [K], thereby giving us that the algorithm is δ-PAC.
□

A.2.2 Proof of Theorem 12

Proof: Recall that the threshold ζ = 0 and problem instance SE is such that SE(ρ1) ≥ SE(ρ2) . . . >
SE(ρK−m) > 0 > SE(ρK−m+1) . . . > SE(ρK), with m being unknown. Let us consider the case that the
event B described in Lemma 8 holds. As outlined in Algorithm 2, an arm i will be dropped if LCBi(t) > 0.
That is,

Ŝi,Ni(t) − U
(
Ni(t),

δ

cεK

)
> 0

Ŝi,Ni(t) − |Ŝi,Ni(t) − Si| > 0
=⇒ Si > 0

Thus, as long as event B holds, all the arms that have SE < 0 will not dropped. Thus the lil’HDoC algorithm
identifies all the arms correctly. □

A.3 Integrating Error Mitigation in MAB Algorithms for Batch Entanglement Detection

In the MAB-based workflow for entanglement detection described in Section 5, one state is measured at
every time instant as dictated by the sampling rule, and the statisticsnamely, the estimates of f1, f2, f3, and
f4are updated as new measurement outcomes are obtained. These estimates are susceptible to measurement
errors, particularly readout errors, which induce inaccuracies in the measurement counts. To improve the
accuracy of the estimates, we characterize such errors and wish to mitigate them (Qiskit Community, 2024).
To this end, we carry out a preliminary investigation by incorporating a procedure for (a) error mitigation
and (b) including error mitigation in the MAB routine, and study the impact of error mitigation on the
overall copy complexity of batch entanglement detection.

A.3.1 Procedure for Error Mitigation

In Fig. 3, we apply a unitary transformation to WBM E1 and E2 to measure the state of the system ρ in the
computational (Pauli Z) basis. Consequently, we obtain expectation values of the diagonal Pauli operators
ZZ, ZI, and IZ. The estimates of f1, f2, f3, and f4 are linear combinations of these expectation values.

f1 = 0.25 (1 + 〈IZ〉ρ + 〈ZI〉ρ + 〈ZZ〉ρ)
f2 = 0.25 (1− 〈IZ〉ρ + 〈ZI〉ρ − 〈ZZ〉ρ)
f3 = 0.25 (1 + 〈IZ〉ρ − 〈ZI〉ρ − 〈ZZ〉ρ)
f4 = 0.25 (1− 〈IZ〉ρ − 〈ZI〉ρ + 〈ZZ〉ρ) . (26)

Thus, it is essential to obtain precise expectation values for the diagonal Pauli operators to improve the
accuracy of our estimates. To do this, we use a LocalReadOut scheme from IBM’s Qiskit Experiments
library (Bravyi et al., 2021). In this scheme we characterize the readout errors of physical qubits on the
FakeBrisbane backend. These errors are assumed to be local in the sense they are independent across
qubits. Readout error mitigation uses a mitigator object (matrix) computed from an assignment matrix
A, where each element Ai,j represents the probability of observing outcome i when the true outcome is j.
By applying this mitigator to unmitigated measurement counts, we refine our estimates by obtaining more
accurate expectation values for ZZ, ZI, and IZ.

A.3.2 How and where does it fit in the MAB Routine?

In each round of the MAB policy, based on an Upper Confidence Bound (UCB) score, the sampling rule
selects a quantum state to measure. Since only a single-shot measurement is performed per round, the error
mitigation procedure described in Section A.3.1 is applied after a state has been measured several times.
To illustrate this process, consider a specific round t = F , where state ρ1 has previously been measured T ⋆
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times. The unmitigated measurement counts for the four possibrle outcomes are denoted as F um
1 , F um

2 , F um
3 ,

and F um
4 . The empirical frequencies of these outcomes are given by,

f̂um
i (F ) = F um

i

T ⋆
, i ∈ [4]. (27)

At this point, we invoke the error mitigation routine, supplying it with the unmitigated counts {F um
i } as

input. The mitigation routine corrects for readout errors and returns mitigated expectation values of the
diagonal Pauli observables, yielding mitigated estimates f̂m

i (F ). With post-processing adjustments to correct
for decimal rounding errors, the corresponding mitigated measurement counts,

Fm
i = f̂m

i (F )× T ⋆, i ∈ [4]. (28)

We propose a nested mitigative process where the MAB algorithm invokes the error mitigation routine
once every F measurement shots per state and uses the mitigated values in subsequent shots. For instance,
at t = F , the routine produces mitigated estimates f̂m

i (F ) from which we obtain mitigated counts. Future
measurement outcomes update on these mitigated counts. At t = 2F , the routine takes input these new
counts and outputs a new set of mitigated estimates f̂m

i (2F ). This creates a nested-mitigation cycle, where
each round of mitigation refines the previous one.
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Figure 7: Heatmap of percentage error mitigation on FakeBrisbane backend for δ ∈ (0, 1) and various
mitigation frequencies

We conduct an empirical study to assess the impact of error mitigation on the average copy complexity of the
MAB algorithm. Mitigation is invoked once every F rounds, where F ranges from 50 to 10,000 in steps of 50.
Here, smaller F values correspond to high-frequency mitigation and larger values indicate lower-frequency
mitigation. For the problem instance described in Section 5, with δ ∈ (0, 1) and range of F , we execute
Algorithm 3 on FakeBrisbane, averaging the copy complexity at stoppage over 20 runs. The percentage of
error mitigation is quantified as the relative reduction in copy complexity compared to the case without
mitigation. To ensure the algorithm correctly identifies the entangled states, we employ an error indicator
that verifies whether its error remains within the prescribed threshold δ. Using this framework, we generate
the heatmap in Fig. 7, which visualizes the percentage reduction in copy complexity due to error mitigation.
Notably, the white regions indicate cases where the algorithm converged in finite time but failed to correctly
identify the entangled states.

We observe and report the following inferences from Fig. 7. First, the effect of mitigation is δ-dependent.
For larger values of δ, the mitigation effect starts only as early as (F = 600) and stabilizes faster (F ∼ 4000).
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In contrast, for smaller values of δ, the effect of mitigation is prominent only mid-range and stabilizes at
F ∼ 7000. Second, for F < 600 and smaller values of δ, the algorithm fails to detect the correct set of states
under the prescribed δ. This can be attributed to over-mitigation which could potentially lead to random
fluctuations in the estimates. Third, the observed stabilization zone (yellow) across values of δ suggests a
critical threshold for F beyond which reducing mitigation frequency (increasing the value of F ) no longer
reduces errors. It remains an open question to fully understand and optimize for the use of error-mitigation
and integrate them with MAB strategies.
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