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Abstract

Entanglement is a key property of quantum states that acts as a resource for a wide range
of tasks in quantum computing. Entanglement detection is a key conceptual and practical
challenge. Without adaptive or joint measurements, entanglement detection is constrained
by no-go theorems (Lu_ef-all, 2016), necessitating full state tomography. Batch entangle-
ment detection refers to the problem of identifying all entangled states from amongst a set of
K unknown states, which finds applications in quantum information processing. We devise
a method for performing batch entanglement detection by measuring a single-parameter
family of entanglement witnesses, as proposed by Zhn et all (2010), followed by a threshold-
ing bandit algorithm on the measurement data. The proposed method can perform batch
entanglement detection conclusively when the unknown states are drawn from a practically
well-motivated class of two-qubit states F, which includes Depolarised Bell states, Bell diag-
onal states, etc. Our key novelty lies in drawing a connection between batch entanglement
detection and a Thresholding Bandit problem in classical Multi-Armed Bandits (MAB). The
connection to the MAB problem also enables us to derive theoretical guarantees on the mea-
surement /sample complexity of the proposed technique. We demonstrate the performance of
the proposed method through numerical simulations and an experimental implementation.
More broadly, this paper highlights the potential for employing classical machine learning
techniques for quantum entanglement detection.

1 Introduction

Quantum information theory has redefined quantum entanglement from a descriptive property of quantum
states to a fundamental non-classical resource. As the basis for applications such as quantum communica-
tion, teleportation, and information processing (Bennetf ef all, 1993; Buhrman ef all, 2001; Horodecki ef all,
pO09), entanglement detection and verification are central problems in quantum information science. Tradi-
tionally, this involves performing quantum measurements that yield probabilistic data, enabling techniques
like full-state tomography (FST) for state reconstruction. However, this faces two challenges: theoretically,
even after FST, determining entanglement remains computationally intractable, and this limitation is even
more pronounced in scenarios involving many qubits; practically, real-world noise and imperfections limit
the accuracy of state reconstruction. Modern multi-qubit compute systems may generate a bunch of en-
tangled states across different sets of qubits through quantum gate operations; however, gate noise (e.g.,
phase flip errors, depolarization) can compromise their entanglement, requiring precise verification to ensure
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their reliability before use in applications such as quantum computation and communication (Hong et all,
p010). In such contexts, FST can be employed for entanglement detection. However, it comes with a high
computational burden, which may be unnecessary. We propose an alternative approach for simultaneously
verifying or detecting entanglement among a given set of quantum states, dubbed batch entanglement de-
tection. Instead of relying on FST, learning algorithms utilize statistical patterns to simultaneously analyze
measurement data from a batch of quantum states and provide high probability guarantees on what they
learn, i.e., whether or not the states are entangled.

Conventional techniques for learning quantum states include extensive research on FST (see Kueng ef a

(2017); Wang (2019); O"Donnell & Wrighfl (2015a;0); Banaszek ef all (2013); Flammia ef all (20012) and
references therein and also see Giifaefall (2020); Morlaiefall (201R); Quek et all (201R); (2022);
Schmale ef all (2022); (2021) for machine learning-based approaches). Measurements required
for FST scale exponentially with the number of qubits. While entangled measurements enable near-optimal
copy complexity for FST (O’Donnell & Wright], POT5H; Haah ef all, DII17), practical implementations rely
on single-copy measurements, utilizing reconstruction methods such as linear inversion, maximum likelihood
estimation, and maximum a posteriori estimation (Teaef all, 2011; Siddhu, 2009). These reconstructed states
can be tested for entanglement using well-known criteria (some are outlined in Sec . IZ:[I) Alternatively,
entanglement can be detected by measuring entanglement witnesses (Horodecki et all, [996a); [Terhal,
Cewenstein_et all, ; Chruciski & Sarbicki, P014), observables that detect some entangled states. No
single witness can detect all entangled states, but in the worst case, combining information obtained from
measuring different witnesses aids in state reconstruction via FST. This is explored in Zhu efall (20110),

where measurement operators from a family of six witnesses are used for bipartite qubit systems. The
proposed approach for entanglement detection involves measuring a witness and formulating a separability
criterion based on the frequencies of measurement outcomes. A negative value of the criterion indicates
entanglement; otherwise, the process is repeated with another witness. If the state remains undetected by
all witnesses, a tomographic reconstruction is performed (see Section 2 for further details).

Recently, the authors of Lumbreras et all (2022) proposed using multi-armed bandit (MAB) frameworks for
learning quantum states. The MAB algorithm repeatedly chooses from several options ("arms"), with the
goal of finding the arm with the best outcome (the "best arm"). The algorithm balances between exploiting
the known best options and exploring others to ensure no better option is missed (more details on MAB
and policies can be found in Sec. 22). In Lombreras_ef-all (2022), the inherent linearity in the quantum
mechanical description of states is capitalized and a well-known classical learning algorithm that prescribes
a sequential order of choosing measurements is employed. The MAB algorithms that are used provide
guarantees on the quality of the estimate of the unknown quantum state. This MAB model in Cumbreras
Bf—all (2022) does not directly apply to batch entanglement detection. Instead, it focuses on learning one
entire quantum state, which may be unnecessary for entanglement detection.

Our first contribution builds on the witness-based separability criterion in Zhwef all (20010) and uses suitable
MAB policies for learning the same. We establish a formal connection between batch entanglement detection
and the thresholding bandit problem (TBP) (Kano ef all, POI8), enabling accurate and quick identification
of m entangled states from a batch of K candidate states through adaptive measurement allocation. This
formulation, which we refer to as the (m, K)-quantum MAB framework, differs structurally from the setting
in Cumbreras_ef all (2022) (see Remark M) and focuses on learning entanglement-specific metrics without
requiring full state reconstruction. Our second contribution uses classical MAB policies for adaptive mea-
surement allocation and provides explicit measurement/copy complexity guarantees for batch entanglement
detection—guarantees absent in FST and repeated witness testing Zhu ef all (200). Using statistically guided
confidence bounds, these policies are sample-efficient since they prioritise measurement effort only on un-
certain states. Finally, we demonstrate the complete MAB-based pipeline for batch entanglement detection
across multiple IBM Quantum backends, validate the framework under realistic noise and benchmark our
results with non-adaptive tomographic approaches.

The rest of this paper is organized as follows: In Sec. B, we provide a brief recap of some preliminary
concepts in entanglement theory and multi-armed bandits. Readers interested in our connection between
the two can move directly to Sec. B, where we describe the (m, K)-quantum Multi-Armed Bandit framework
for entanglement detection. We define a class of parameterized two-qubit states F and identify measurement
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operators that conclusively detect entanglement in F, detailed in Sections B, B2, and B=3. In Section B, we
demonstrate two TBP policies for entanglement detection. Section B analyzes the MAB policy performance
on IBMQ backends and on an ibm-brisbane device for a family of states in F and details the quantum circuits
used for simulation. Section @ highlights measurement scheme limitations for entanglement detection in
arbitrary states through numeric examples. In Section B, we contextualize the numerical performance gains
and discuss the practical advantages of the proposed MAB approach in comparison to existing state-of-
the-art methods for entanglement detection like FST and fixed-witness testing (Zhu ef"all, 2010). Finally,
Section B concludes the paper. Details on the non-adaptive tomography baseline and proofs of the results
are presented in the paper and in Appendix [Al

2 Preliminaries

Let H be a finite-dimensional Hilbert space with dimension d. A pure quantum state is represented by a
unit norm vector [¢p) € H. Let L£(#H) be the space of linear operators on H, the Frobenius inner product
for any A, B € L(H), (A,B) = Tr(ATB) where | represents conjugate transpose. A Hermitian operator
satisfies H = Hf. A density operator p € £(#) is Hermitian, positive semi-definite, p > 0, and has unit
trace, Tr(p) = 1; it can represent both pure and mixed states. A positive operator value measure (POVM)
is a collection of positive operators {£; > 0} that sum to the identity, >, E; = I. A POVM represents a
measurement where F; corresponds to measurement outcome ¢, but sometimes we compress this and just
say F; is a measurement outcome.

Let H, and H; be finite-dimensional Hilbert spaces with dimensions d, and dj, respectively, and Hp, =
H, ® Hp, where ® represents tensor product, be a bipartite Hilbert space with dimension d = dgd,. A
density operator pap € L(Hap) is called separable if it can be written as a convex combination of product
states, that is,

pab = Y Pi |0k Xb) (D4 X! » (1)
i

where p; > 0 such that ), p; = 1 and |¢fquzi;> = |(;S>fl ® |X>Z is a product of two pure states. We denote

the convex set of all separable states by S,;. Conversely, pqp is entangled if it can not be written in the

form equation M. We discuss some preliminaries on separability criteria for entanglement detection in Section

21 and background on stochastic multi-armed problems in Section 2.

2.1 Separability Criteria for Entanglement Detection
2.1.1 Standard Analytical Separability Tests

Using full state tomography (FST), one can reconstruct any bipartite qubit state p,, and verify its entangle-
ment through standard separability criteria (Horodecki_ef all, 2009). Notably, the Peres-Horodecki criterion
(also called the PPT criterion) (Horodecki_ef all, T996H; [Pered, 1996) establishes that p,, is separable if
and only if the eigenvalues of its partial transpose p;rbb are non-negative. Here, T} is the partial transpose
with respect to H;,. This condition remains necessary and sufficient for (2 x 3) systems but fails in higher
dimensions due to the existence of bound-entangled PPT states. Other separability criteria include the range
criterion (Horodecki, 1997), the matrix realignment criterion (Rudolphl, 2000), the covariance matrix (CM)
criterion (Giithne ef all, 2007), and additional methods discussed in Gurvits (2003); Doherty et all (2004).

2.1.2 Entanglement Witness-based Separability Criterion
Entanglement can be detected by measuring entanglement witnesses, which can be defined as follows:

Definition 1 (Entanglement Witness) An entanglement witness W € L(Hap) is a Hermitian operator
satisfying,

(Pent, W) = Tr(pent W) <0, for some entangled pent, (2)
(p, W) =Tr(pW) >0, Vp € Sap. (3)
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Geometrically, a witness W defines a hyperplane in the state space, delineating the set of detectable entangled
states Dy = {p s.t. Tr(pW) < 0} from all separable states. For two arbitrary witnesses W7 and W, Wy is
said to be finer than Wy if Dy, C Dy,. A witness is said to be optimal when no strictly finer one exists,
implying that it lies tangent to the boundary of the convex set S, (Bengtsson & Zyczkowski, 2006). Further
insights into this topology are detailed in Lewenstein et all (20000, Lemma 1).

Single-parameter witness family: We briefly review the witness-based separability criterion from Zhu
ef all (2010). The authors propose a single-parameter witness family,

pul@) = cos®al — (j) (W)™, (4)

where |¢) = cos @ |00) + sin «|11) such that a € [0,7/4]. We denote £ to be the set of projectors onto the
eigenstates of
_ 1+cos2a

() = (1) ()™ = T2 o) g0 4 2 1) SR2Y (gt ) (w) ),

The set £ = {]00) (00], [11) (11, [®T) (¥F|, @) (¥~ |} forms a POVM and is referred to as a Witness Basis
Measurement (WBM). For the remainder of the paper, we assume that the exact projective forms of the
WBM are fixed and known.

Quadratic WBM criterion: The witness expectation value serves as a detection statistic, that is,
Tr(pW) < 0 certifies entanglement, while non-negativity renders the test inconclusive. If the test is incon-
clusive for the base witness in equation H, that is, Tr(p,(a)p) > 0, then subsequent witnesses are generated
via local unitary transformations U; and Us as,

puw(e) — (U1 @ Ua) ' pu (@) (Ur @ Us). ()

with (Uy,Uz) € {(1,1),(I,X),(CT,C),(CT,XC),(C,C"),(C,XCT)}. Here, the operator C cyclically per-
mutes the Pauli operators X, Y and Z, satisfying that CX=YC, CY=Z2C, CZ=XC'" Instead of performing
a negativity test, the authors in Zhuef-all (2010) adopt a more stringent criterion:

min Tr{pSCp (C052 ol — pw(a))} >0, Ypsep € Sap- (6)

The criterion is violated by the set of entangled states that can be detected by this witness family. The
above optimisation leads to the following quadratic WBM criterion,

S:4f1f2_(f3_f4)2 >0, vpsepesalr (7)

where f; .= Tr{E;p} are probabilities obtained from WBM &. The value of S in equation @ depends on the
underlying WBM. Thus, for a WBM & and state p, we denote equation @ as Sg(p). We note that measuring
the witness basis provides estimates for a distinct set of observables. For instance, the base witness in
equation @ yields estimates for three observables: ZI+ 17, ZZ, and XX +YY . The six-witness ensemble in
total provides 15 independent expectation values, which provide sufficient information about the two-qubit
state. Thus, if the state is undetected by the family of six witnesses, it can be reconstructed using these
expectation values.

2.2 Fixed-Confidence Multi-Armed Bandit Policies

In this section, we briefly review some fixed-confidence policies for Best Arm Identification (BAI) and Good
Arm Identification (GAI) in the stochastic Multi-Armed Bandit (MAB) setting, a canonical framework for
sequential decision-making problems under uncertainty. A bandit instance p (problem instance) comprises
K arms, each described by a reward distribution v; supported on R with unknown mean g;. In each round
t, the learner chooses an arm X;, receives an independent reward Z; ~ vx,, and chooses the subsequent
action based on a specified policy. We consider the class of d-correct policies, i.e., given a fized error ¢ and
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problem instance g, such policies terminate in finite time and return the correct solution with probability
at least 1 — §. Mathematically, a d-correct policy m = (7, ¢) satisfies:

]PZ(T < OO) = 1a ]P)Z(¢ = ¢truc) >1- 57 (8)

where 7 is the stopping time, ¢ is the learner’s final recommendation, and ¢y, is the actual correct answer
for the specific problem (BAI or GAI). Below, we briefly review well-known MAB policies that operate
under fized-confidence guarantees, aiming to make statistically reliable recommendations while minimising
the number of samples.

2.2.1 Fixed-Confidence Best Arm ldentification

In the BAI problem, the learner’s objective is to identify the (best) arm * = argmax;c(x) p; with the
largest expected reward. Without loss of generality, arms are enumerated based on their expected reward
M1 > pe > -+ > pui and the sub-optimality gap of arm 4 is given by A; = p; — p;. The performance of
BAT policies is primarily characterised by the expected stopping time E,,[r], which represents the expected
number of samples required to recommend a best arm with confidence 1 — §. The sample complexity
improves progressively across algorithms: O(A~?log (nA*Q)) for Successive Elimination (Even-Dar ef all,
o002) and O(A~2log A~2) for LUCB (Kalyanakrishnan et all, 2Z01%). Building upon this, Exponential-Gap
Elimination (Karnin_ef-all, P0T3) and li'UCB (Hamieson_ef all, 2014) utilize the law of the iterated logarithm
(LIL) bounds to reach the near-optimal complexity of O(A~2loglog A~2), bridging the gap to the theoretical
lower bounds (Earrell, 1964; Mannor & Tsifsiklid, 2004).

2.2.2 Fixed-Confidence Good Arm ldentification

The GAI problem generalises BAI by introducing a threshold ¢ and defining the set G = {7 € [K]: y; > ('}
of "good" arms with unknown cardinality |G| = m, leading to the (m, K)-GAI formulation. Without loss of
generality, assume 1 > fio > ... > fy > ¢ > i1 --- > i and the learner is unaware of this indexing.
Fixed-confidence GAI policies adapt the notion of (X, d)-correctness (Kano et all, 20I8). A GAI policy is
said to be (A, d)-correct if, with probability at least 1 —4, it correctly identifies at least A true good arms and
does not misclassify any bad arm. Here, A specifies the number of correctly identified good arms. Unlike
BAI, the sub-optimality gaps are denoted by A; == |u; — (] and A, ; = p; — p; and the sample complexity
is expressed in terms of A = min(min;e(x) Ay, minje(x—1) Ajj+1/2).

The goal, as in BAI, is to minimise the expected stopping time E,[r]. However, a key difficulty in
GALI is the exploration-exploitation dilemma of confidence, where the learner explores arms other than
the empirical best arm to identify potentially ‘good’ arms with fewer pulls, while simultaneously ex-
ploiting the empirical best arm to increase confidence in its classification as a good arm. The Hybrid
Dilemma-of-Confidence (HDoC) algorithm (Kano“ef"all, PIT8) combines UCB-based exploration (Aner
ef_all, 2002) with LUCB-based elimination (Kalyanakrishnan et all, 2012), achieving sample complexity
O(A™?(Klog  + Klog K + Klog %)). The LIL-based refinement MSaief_all (2024) li'HDoC, employs
tighter confidence widths to achieve O (A‘2 (K log% + Klog K + K loglog %)) samples, the best-known
order for fixed-confidence GAI policies. The specific connections between BAI/GAI and entanglement de-
tection are elaborated in Section B and B.

3 The Quantum MAB Framework For Entanglement Detection

In this section, we introduce the quantum Multi-Armed Bandit (MAB) framework for batch entanglement
detection. We formalise the structural similarity between the stochastic MAB model and its quantum
analogue, where the learner interacts with a batch of quantum states by performing structured measurements.

3.1 Stochastic-Quantum MAB Mapping

In the stochastic MAB setting, pulling an arm ¢ corresponds to sampling from a probability distribution p;(-)
with known support and unknown mean u;. Each pull yields a reward j with probability (w.p.) p;(j) and
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rewards across arm pulls are independent and identically distributed (i.i.d.). Analogously, in the quantum
setting, each arm represents an unknown quantum state p. When p is measured, the outcome distribution is
determined by the fixed WBM. Specifically, if a WBM €& is chosen, measuring £ on p will result in a outcome
j €{1,2,3,4} with probability Tr(pE;). Once the measurement is fixed, repeated measurements of p yield
i.i.d. outcomes. The key distinction lies in the source of the rewards: in the stochastic MAB model, rewards
are sampled from classical distributions, whereas in the quantum MAB model, the rewards depend on i.i.d.
outcomes obtained by measuring £ on p.

3.2 Problem Setting and Objective

Given a batch of K unknown quantum states {pi,...,px}, of which an unknown subset m < K states
are entangled, the learner’s objective is to correctly identify all entangled states while minimizing the total
number of measurements performed. Given a fixed WBM &, the goal is to estimate the quadratic WBM
criterion Sg(p;) which indicates that p; is entangled if Sg(p;) < 0 and is inconclusive otherwise. The learner
applies the MAB routine to this (m, K) instance of quantum states under the chosen WBM & with the
objective of accurately identifying Aent = {i € [K] such that Sg(p;) < 0}, using the fewest possible number
of measurements. Since a single WBM may not detect all m entangled states, and the value of m itself
is unknown, the MAB routine must be repeated for the six WBMs. Importantly, the measurement data
collected under one WBM is not used to decide the next WBM; each WBM configuration should be treated
as an independent instance. We summarise the stochastic-quantum MAB correspondence concisely in Table

.
Table 1: Stochastic-Quantum MAB

‘ Attributes ‘ Stochastic MAB ‘ Quantum MAB ‘

Arms Probability distributions (p1,pa, ... pK) Density operators {p1, p2, ..., px}
Measurement — WBM &
Measurement Data Jj w.p. pi(4),Vi € [K] Jw.p. Tr(E; p;), Vj € [4],Vi € [K]
Parameters to estimate p= (1, po, .. piK) Se = (Se(p1), Se(p2), - .-, Se(pK))
Objective Identify G¢ = {i € [K] such that u; < ¢} | Identify Acy = {7 € [K] such that Sg(p;) < 0}

We now formalise this correspondence by defining the (m, K)-quantum MAB setting.

Definition 2 The (m, K)-quantum Multi-Armed Bandit (MAB) setting for entanglement detection is fully
characterized by the tuple (A,E). Here, A denotes a finite action set with |A| = K, consisting of (K —m)
two-qubit separable states and m two-qubit entangled states. The term &€ corresponds to a suitable Witness

Basis Measurement (WBM).

The objective of the (m, K)-quantum MAB problem for entanglement detection aligns with the classical
(m, K)-Bad Arm identification where the goal is to find the set of "bad” arms G¢ = {i € [K]such that u; < ¢}
whose mean rewards fall below a threshold ¢. Analogously, the (m, K)-quantum MAB problem seeks to
identify the set of entangled states A,y whose quadratic WBM scores Sg violate the separability threshold. In
essence, the (m, K)-Bad Arm identification setting and the (m, K)-quantum MAB problem for entanglement
detection share a unified statistical structure, differing only in the interpretation of the reward model. To
the best of our knowledge, this work is the first to establish a direct connection between stochastic MAB
and quantum entanglement detection. This correspondence enables existing MAB algorithms to be directly
applied in quantum settings, where the reward is encoded in the outcomes of WBM.

Remark 1 The d-dimensional discrete multi-armed quantum bandit model (Lumbreras et all, 2023) is dif-
ferent from our formulation. The authors consider arms to be a finite set of observables and the environ-
ment, an unknown quantum state p. The objective is to learn the unknown quantum state p through an
exploration-exploitation tradeoff. Given sequential oracle access to copies of p, each round involves selecting
an observable to mazimize its expectation value (reward). The information from previous rounds (history)
aids in refining the action choice, thereby minimizing the regret, which is the difference between the obtained
and mazximal rewards. The authors also exploit the inherent linear structure in measurement outcomes and
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map it to the linear bandit setting. Specifically, let {U}fil be a set of orthogonal Hermitian matrices. The

2 2 2
unknown environment p = Zidzl Tr(po;)o; = Z?:l 0;0; and arm O; = Zidzl Tr(Oo;)o; = Z?Zl A0
Then, Tr(pOy;) = 0T A; where @ = (01,0,,...042) and A; = (Ap1, Ar oy ... Apg2). In round t, pulling arm
Oy provides a reward X; = 0TA, + M, where 1, is 1-subgaussian.

4 Parameterized Qubit States F

To demonstrate the applicability of stochastic MAB policies for entanglement detection, we define a class
F of parameterized two-qubit states defined as a union of three sub-families, F = F; U Fp U F3. These
correspond to Depolarized Bell states (F), Bell Diagonal states (F3), and amplitude-damped Bell Diagonal
states (F3) whose explicit parametrisations are detailed in Sec BT, B2 and E=3, respectively. We identify
suitable WBMs from the witness family in equation B that can detect the same. We denote the first two
witnesses in the witness family by & (base witness) and & (adapted using (Uy,Usz) = (I, X)), respectively.
Here, & = {]00) (00|, [11) (11], [) (W], [w=) (9|} and & = {[01) (01, [10) (10], |&+) (@], [ @) (@~ 1.

4.1 Two-qubit Depolarized Bell States

For w € R,—1/3 <w < 1, a two-qubit Depolarized Bell state p(w) is given by,

p(w) = w|T) (T] 4 (1~ w)7. )
Here, |Y) represents any one of the four Bell states |[¥*) = (|01) +[10)) /v/2, |®*) = (]00) £ |11)) /v/2. When
T = |¥™), equation A is called a Werner state, and when T = |®T), equation 8 is called an Isotropic state.
The Peres-Horodecki criterion guarantees that p(w) is separable when —1/3 < w < 1/3 and is entangled
when 1/3 < w < 1. Table B outlines the specific choices of WBM for the combination of the maximally
mixed state with each of the four Bell states. When measured with these corresponding WBMSs, the entangled
depolarized Bell states are conclusively detected, determined by the value of S = (w — 1)?/4 — w? which is
strictly positive for —1 < w < 1/3 and negative for w > 1/3.

Table 2: WBM for Depolarized Bell States

‘ Depolarized State ‘ Pauli Basis ‘ WBM ‘
w|®T) (B + (1 —w)I/4 [I—ka(XX—YYJrZZ)J/Zl &

WU (U + (1 —w) /4 | [T+a(XX+YY - 2Z2)|/4 | &
WU+ (1 —w)I/4 | [[+a(-XX-YY —Z2)|/4| &
w|®) (P + (1 —w)l/4 {I—i—a(—XX—i—YY—l—ZZ)J/ZL &y

4.2 Two-qubit Bell diagonal States

Bell diagonal states are a probabilistic mixture of the four Bell states. These states are more general than
the ones in equation B. Given parameters pq, p2, ps and ps such that p; > 0,>", p; = 1, the Bell diagonal
state is defined,

e = 21 [ (8% o [ (W 4y [97) (07| 4 ) (0. (10)

The eigenvalues of p¢ are calculated to be 1/2 —py, 1/2 — pa, 1/2 — p3 and 1/2 — py. Consequently, a Bell
diagonal state is entangled if any one of these probabilities exceeds 1/2, while the sum of the other three
probabilities is less than 1/2. Conversely, a Bell diagonal state is separable if all probabilities are less than
or equal to 1/2. Expressing equation I in the Pauli basis yields,

1
Povs = [+ aXX +bYY +cZ7],

where a = p; +p2 —p3 — ps, b= —p1 +p2 —p3 +ps and c = p; — p2 — p3 + p4.
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Table 3: WBM for Bell Diagonal States

‘ Probabilistic mixture ‘ a ‘ b ‘ c ‘ WBM ‘
p1>05, po+ps+ps <05 | + | — | + &
pa>0.5, p1+p3s+ps <05 | + | + | — &1
p3>0.5, pr+p2+ps <05 | — | — | — &1
P4 >05, pr+p2+p3 <05 | — | + | — &

When p,,s is entangled, the index for which p; > 1/2 determines the sign of a,b, and ¢, see Table B. It is
notable that the signs of a, b and ¢ follow a similar pattern to the Pauli basis expansion of various Depolarized
Bell states listed in Table B. We observe that, for suitable combinations of a,b, and ¢ € {+1,—1}, the Bell
diagonal state reduces to one of the Depolarized Bell states, and states can be detected using the same WBMs,
as in Table . Specifically, the value of S under the two WBMs in Table B is equal to (1—p; —p4)? —4(p1 —p4)?
and (1 —ps —p3)? —4(p2 — p3)?, respectively. Depending on the probabilistic mixture, one of the two WBMs
will conclusively result in S < 0.

4.3 Two-qubit Amplitude Damping on Depolarized Bell States

A qubit amplitude damping channel is a source of noise in superconducting circuit-based quantum computing
and thus serves as a realistic channel model for simulating lossy processes in these systems. Mathematically,
it can be obtained from an isometry J,

JiHe = Hy@He; JT=1, (11)

where H, denotes the Hilbert space for the channel’s input, and #; and H, represent the Hilbert spaces for
the direct and complementary channel outputs, respectively. An isometry of the form,

J110) = 10), 1),
Jil1), = V1=r[1),[1), +V70),[0)., (12)

where 0 < 7 < 1 defines a pair of channels, B(A) = Tr.(JAJ!) and C(A) = Try(JAJ'). Here, B is an
amplitude damping channel with damping probability r for the state |1), to decay to output state [0),. The
isometry J1 = Ko ® |0) + K7 ® |1) where K and K; (Kraus) damping operators such that Ky = [0,+/7;0, 0]
and K7 = [1,0;0,/1 — r]. For a single qubit represented by state p, the amplitude-damped output is given
by,

B(p) = KopK{ + K1pK]. (13)

We can extend equation 3 for two-qubit states with damping probabilities  and ¢ for the first and second
qubit, respectively. Assuming that r = ¢, we consider Depolarized Bell states equation 8 with amplitude
damping.

Proposition 3 For any damping probability » > 0, a Depolarized Bell state with amplitude damping can
not be expressed as a Bell diagonal state equation ID.

This fact can be readily demonstrated through a straightforward calculation. Consider the Isotropic state
p(w) = w|®F) (®F|+ (1 —w)Z, which can be represented by the Bell diagonal state formed with probability
distribution (p1,p2,ps,p4) = (Bw+1)/4,(1 —w)/4,(1 —w)/4,(1 —w)/4). In a Bell diagonal state, the
diagonal elements corresponding to |00) (00| and |11) (11| are identical. In the case of an amplitude-damped
Isotropic state, we observe that,

1—1r
4

However, obtaining closed-form expressions for p; and py when r > 0 is cumbersome. Specifically, the values
on the diagonal corresponding to [00) (00| and [11) (11] is given by w(r? + 1)/2 — (w — 1)4(r + 1)?/4 and
w(r —1)2/2 — (w — 1)(r — 1)2/4, respectively. These expressions are equal only when 7 = 0.

Py = p3 = (w—wr—r—1).
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Proposition 4 For every w € [%7 1], there exists ¥ C [0,1] such that an amplitude-damped Depolarised Bell
state becomes separable.

The PPT criterion asserts that a two-qubit state is entangled if and only if its partial transpose contains at
least one negative eigenvalue. For Bell states that are both amplitude damped and depolarized, we evaluate
the eigenvalues and observe that one of them can exhibit either positive or negative values contingent upon
the range of r. Detailed findings are presented in Table @ and depicted graphically in Fig. @ and Fig. IH.
Furthermore, the WBM for amplitude damped and Depolarized Bell states aligns with that of depolarized
Bell states, as outlined in Table B.

S 1 pa — .

{ o Positive eigenvalues ¢ o Positive eigenvalues

0.8 + Negative eigenvalues 0.8 + Negative eigenvalues

0.6 0.6
~ &~ i

0.4 04

0.2 0.2

0.4 0.6 0.8 0.4 0.6 0.8
w w

(a) Range of r for eigenvalue corresponding to ’¢i> (b) Range of r for eigenvalue corresponding to ’\I/i>

Figure 1: A phase diagram representing the region of damping and depolarizing parameters, r and w,
respectively, where the dampeddepolarized Bell state has negative or positive partial transpose.

Table 4: The four eigenvalues of amplitude-damped Depolarized Bell states

State with \<I>>i ‘ State with \\Il>i ‘ Sign of eigenvalue
7(w+1)£1_r23 —(1_T)(1+Z+w_w) Always positive
7(1”“)214) —<17T)(1+2+w7wr) Always positive

w(r—1)24(r+1)2 24 1—w(l—r)2+2¢/w? (1-1)2 112

1 Always positive

4
Y 3 241 —w(1—r)?—2 /w2 (1I—1)2 472
oo Dtwrt(=dw) | tloeion) 2o nDTEE | pogitive and Negative

5 Stochastic MAB policies for Entanglement Detection

We apply stochastic MAB algorithms for entanglement detection in the parameterized states F from Section
B. The terminology aligns with classical counterparts, as outlined in Table M. Consider a set of K unknown
states, denoted by A = {p1,p2,...,pr} € F. To perform measurements on the arms, the learner must know
the underlying WBM. Thus, we assume knowledge of the specific forms of the arms in 4. For instance, A
could represent the set of isotropic states detectable under the WBM &, where each state is of the form
pi = w; |®F) (®F|+ (1 —w;) %, with w; being unknown for all i € [K]. With this assumption, we describe the
MAB routine as follows: In each round ¢ € N, the learner selects a state p,, € A, performs a measurement &€
and obtains i.i.d. outcomes, and then updates the values S’g to identify the entangled arm(s) or continues.
In the subsequent sections, we discuss two MAB policies: Successive Elimination, which is applicable when
there is a guarantee of one entangled arm among K arms, and the lil’HDoC' policy, designed for scenarios
where there are m entangled arms among K, with m being unknown. For proving d-correctness of policies, we
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use concentration inequalities applicable to o-subgaussian® random variablesspecifically, the law of iterated
logarithm (Tamieson_ef all, POT4, Lemma 3) for a finite sum of o-subgaussian random variables:

Lemma 5 Let X1, X5,...X; be ii.d. sub-gaussian random wvariables with scale parameter o. For any
€(0,1),0 € (0, W) one has with probability at least 1 — c.6+¢) for all t > 1,

S

> X, <U(t,0), (14)

1+4¢
where U(t,0) = (1 + \@)\/202(;4-5) log (log((?s)t)) is the confidence width and c. = 2% (710g(1+6)) .

5.1 Successive Elimination Algorithm

Consider the set of states A = {p1, p2,...,pr} detectable under WBM &, with the guarantee that exactly
one arm in the set is entangled. Given a WBM &, for each state p;, we use the notation S; and Sg(p;)
interchangeably, and denote by S’Z Nty the estimate formed from Nj(t) ii.d. samples. The underlying
problem instance Sg satisfies Sg(p1) > Se(p2) > -+ > Se(pr-1) > 0 > Seg(pk). To identify the entangled
arm, we use the Successive Elimination algorithm (Exen-Dar ef all, 2002) with a modified elimination rule,
as outlined in Algorithm 0. The algorithm takes as input the set A, threshold { = 0, WBM €& and the
error probability d, and it outputs the entangled state i* = arg min;e(x] Se(p;). The algorithm maintains an
active set 2 and measures every state in it. In order to identify ¢*, the policy eliminates states whose Lower
Confidence Bound (LCB) exceeds the threshold and halts when only one state remains in the active set.

Algorithm 1 SUCCESSIVE ELIMINATION ALGORITHM
Input: (=0, 6, A, WBM &
Output: Q2
Initialize active set Q + A
Set: t < 0, N;(t) < 0,5, n,(r) < 0, Vi € Q
fort=1,2,3,... do
for p; € 1 do
Perform measurement £ on p;
Update N;(¢), S’Z N, () based on measurement outcomes

Update confidence width U (Ni(t)7 CE%) (see Lemma H)

Compute lower confidence bound: LCB;(t) + SuM-(t) -U (Ni(t)7 cj}()
end for
if LCB;(t) > 0 for ¢ € Q then

Update active set: Q + Q — {i}

end
if |2] =1 then
Return Q
end
end for

Lemma 6 Algorithm @ is §-correct.

Proof: The proof is presented in Appendix B—2. a

The correctness of Algorithm 0 and the copy complexity of identifying the entangled arm are presented
below.

2.2
LA o-subgaussian random variable is a real, centered random variable X that satisfies E[e5X] < e ¢ /2 for any s € R.

10
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Theorem 7 With probability at least 1 —0, the entangled state i* = K = argmin;c(x] Se(p;) remains in the
active set Q) till termination.

Proof: The proof is presented in Appendix B=232. O

Theorem 8 With probability at least 1 — §, Algorithm O identifies the entangled state i*, requiring
—2

Zie[K] @) (A;2log (%)) copies. Here, A; = |Sg(p;) — (| denotes the sub-optimality gap with re-

spect to the threshold C.

Proof: The proof is presented in Appendix B=273. O

We observe that the sample complexity derived in Theorem B is within a log(K) factor of the optimal bound,
as demonstrated in Theorem 1 of lamieson_ef all (2004). This result follows from the concentration bound
established in Lemma B, which forms the basis for the MAB policy described in the following section.

5.2 li'HDoC Algorithm

The li'HDoC algorithm ([lsai"ef all, 2024) builds on the HDoC algorithm (Kana ef all, 2ZO0IR) by leveraging
finite LIL concentration bounds (Lemma B) instead of the LCB-based identification rule (Kalyanakrishnan
ef-all, DOT2). To explore among promising arms, li'HDoC adopts the sampling rule from Kanoef'all (2UIR),
derived from the UCB algorithm for regret minimization (Auner_ef all, 2002). It improves sample complexity
over HDoC by utilizing the LIL bound, where the y/loglogt/t factor has a higher growth rate than the
\/logt/t factor in the LCB bound. In other words, there exists a value T such that for all t > T, ¢y, ¢y € RT,

logt loglogt
C1 T > Co P .

The confidence bound for HDoC grows as «(t) = \/ha(“g1t2 )/2t. Through straightforward calculations, the
smallest integer T such that the confidence bound U (T, §/c. K) is greater than «(T) is,

1 1
T> log(K + 1) log <max ((5’2>) 2. (15)

Thus, if each state is measured T times initially, lil'HDoC achieves comparable identification capabilities to
HDoC with O (log(K + 1) log (max (1/4,2))) copies of each state. We note that small values of € tighten the
confidence radius and therefore incur more samples before elimination, while large e values reduce the number
of samples with a higher chance of premature arm elimination. The asymptotic growth of U(t,d) with e
is sublinear, and the policy’s correctness remains unaffected for ¢ > 0. The ‘warm-start’ phase parameter
T controls the number of measurements collected before adaptive allocation begins. Once the threshold in
equation A is crossed, the d-correct guarantees and copy complexity depend primarily on (4A;, K, §) and not
on T itself.

Consider K states such that Sg(p1) > Se(p2)... > Se(prx—m) > 0 > Se(pr—m+1) ... > Se(px), with m
being unknown. The algorithm takes as input, the set of states A, threshold ( = 0, WBM & and the error
probability § and outputs A = {i € [K] such that Sg(p;) < 0}. The algorithm maintains an active set
Q and terminates when the set Q = (). To demonstrate the correctness of Algorithm B, we first show that
the algorithm is (A, §)-correct for all A € [K] and then characterize the copy complexity of identifying m
entangled states.

Lemma 9 Algorithm B is §-correct.
Proof: The proof is presented in Appendiz A3 1. O

Theorem 10 With probability at least 1 — 9, the algorithm identifies all the states in Agpy.

11
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Algorithm 2 LiI’HDOC ALGORITHM

Input: ¢ =0,0, A, WBM &
Output: At
Initialize active set  « A, Aent < 0
Set: t ¢ 0, N;(t) + 0,8 n,1) < 0, Vi € Q
fori=1,2,... K do
Perform T measurements £ on p;
Update t, N;(t), S'i,t based on outcomes
end for
while Q # 0 do
_logt_

Find h; = argmax;c 4 Si,N,;(t) + IN, (D)

Perform measurement £ on py,
Update t, Ny, (t), She,Ny, () based on outcomes

Update confidence width U (Ni(t), CELK)

if ghtyNh,t(t) -U (Nht (t), CELK) Z C then
Remove h; from Q

else if Sy, n,, (1) + U (Nht (1), %) < ¢ then
Add hy to Aeng
Remove h; from

end
end while

Proof: The proof is presented in Appendix B=3. ]

With T =1 in equation I3, it can be seen from Theorem B that the number of samples required to identify
—2

an entangled state p; € Ais O (A;2 log (%)). However, in practice, T' is chosen to be larger than 1,

and the total sample complexity is expressed in terms of A = min;e[x] A;.

Theorem 11 With probability 1 — § and an initialization of T measurements, Algorithm B identifies the en-
tangled states using O (A~2 (K log 3 + K log K + K loglog %)) + O (K log(K + 1) log (max (3,€))) copies.

Proof: The first term in the sample complexity is derived in Appendix B273 and the second term follows
from equation I5. 0

6 Implementation and Simulations on IBMQ Cloud

This section presents an experimental workflow for detecting entangled states from an ensemble of Bell
Diagonal states. Sections Bl and B2 describe the procedures for generating Bell Diagonal states (BDS) and
their corresponding WBMs, respectively. The performance of the MAB policies (see Section H) is presented
through numerical findings in Sections B4.

6.1 Generating Bell Diagonal States

Bell Diagonal States (BDS) are constructed as convex combinations of the four Bell states equation [T,
forming a geometric tetrahedron, 7 and are represented by:

4 3
1
Povs = § pi |T) (Y] = L E tiot @of | . (16)
=1 =1

12
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Here, 0;’s are the Pauli operators and (t1, t2,t3) are the coordinates within the tetrahedron 7. The mapping
{p; }?:1 — (t1,t2,t3) equation 7 is implemented through the quantum circuit proposed by Pozzohom &
Mazierd (2019); Riedel Garding et al] (20211) and is shown in Fig. B.

VL = cos(¥), vz = sin() cos(6), /s = sin()sin(0) cos(), v/pi = sin(y)sin(6)sin(p)  (17)

The sub-circuit G encodes the probabilities {p;}]_, into canonical coordinates (1, 6, ) on the unit 3-sphere,
and sub-circuit B entangles the states in the Bell basis. Finally, the Bell-Diagonal state psps = peq is obtained
by taking a partial trace over qubits a and b.

|w>ab
10)a — . :
1 unread (env.)
0y, —_ =
0}, —o——{H ]+
1 : L : Ped
0) 4 Soas Sre:
' R >
------------------------------------------------------- e
0), R,(20)] ;
|w>ab
0D Ry(2¢) Ry (—2¢)

........................................................

Figure 2: Four-qubit circuit for generating BDS with canonical encoder G shown below.

6.2 Implementing Witness Basis Measurements

As outlined in Table B, BDS are detectable under WBMs &; and &;. To measure in the Pauli-Z (computa-
tional) basis, we apply appropriate unitary transformations to £; and €. The corresponding transformations
are realized through circuits CIRCg, and CIRCg, shown in Fig. B and applied to qubits ¢ and d (see Fig. O)
before measurement.

Ped

Figure 3: Circuits CIRCg, (top) and CIRCg, (bottom) perform the unitary transformations required to map
&1 and &> into the Pauli-Z basis.

6.3 Workflow for entanglement detection

We propose a workflow for detecting entanglement in BDS without assuming prior knowledge of the specific
WBM. Instead, WBMs are sequentially adapted using suitable unitary transformations, as detailed in Section
2132, To generate a set A = {p1,p2,...,px} of BDS, we construct K sets of probabilistic mixtures for
combining the four Bell states. Specifically, m states are generated with max;p; > %, while the remaining
K —m states satisfy max; p; < % These probabilities are encoded following the procedure outlined in Fig. @,

where the BDS circuit for state p; is denoted as BDS;. Subsequently, one of two WBM circuits, CIRCg, or

13
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Algorithm 3 Workflow for Entanglement Detection in BDS

Input: ¢ =0, §, {BDS,}, CIRCg, WBM choice = 1
Output: Ag., Stopping time 7
Run Algorithm B on {BDS;} with circuit CIRCg, on K states
Return entangled states |Aent,1| = 7 and stopping time 7.
if (m = K) then
Aenta < 0, 72 < 0.
else if m < K then
Run Algorithm 2 on {BDS;} with circuit CIRCg, on K — i states
Return entangled states Agyt,2 and stopping time 7.
end
Aent — Aent,l + Aent,27 T4 T1+ T2

CIRCg,, is appended to the respective BDS circuit. Algorithm B outlines this workflow for BDS and takes
the following inputs: threshold ¢ = 0, error §, BDS circuits {BDS;}, WBM circuits CIRCg, and CIRCg,
and the initial choice of WBM. Notably, the initial WBM selection is arbitrary, as the sequence of WBM
adaptations does not rely on state estimation.

The learner does not initially know under which WBM the BDS are detectable. Consequently, at least
one iteration of Algorithm B must be executed. In the first iteration, the algorithm processes circuits
corresponding to K states with WBM &; (or &) and identifies a subset of entangled states, m, where
0 <m < K. In the second iteration, Algorithm B is applied to the K — m states that remain undetected by
using circuits with WBM &, (or &) as inputs.

Corollary 12 Let Ay := min |Sg,|, Ag = min |Sg,| and Am = min{A, Ay}, then, with probability 1 — §
and T = 1, Algorithm B identifies entangled BDS using O (Afz (K log% + Klog K + K loglog += ))

min Amin

copies.

6.4 Qiskit Experiment

The workflow presented in Algorithm B is simulated on IBM’s Qiskit. The Python code implementation is
available in Bharafi (2025). We present numerical results on the achievable copy complexity for entanglement
detection in BDS. The experimental setup is given as follows:

o Simulation Environments: The workflow is executed across three computational setups: (i)
AerSimulator for idealized simulations, (i¢) FakeBrisbane backend to simulate noisy quantum
environments, and (i4¢) ibm-brisbane for real quantum processing unit (QPU) computations.

e Problem Instance: We consider K = 5 states of which m = 3 are entangled. The probabilities
are suitably generated, and the true corresponding parameters under & and &, are,

Se, = [0.6306, —0.2688,0.5232, 0.1796, 0.0695] ,
Se, = [—0.0749,0.5963, —0.1735,0.2801, 0.3768] .

¢« MAB routine: Each state was measured 10° times on backends (i,4i) and 10° times on (4ii).
Algorithm B was run 20 times on (4,44) and 5 times on (i) for 6 € (0,1). We plot the average
number of copies measured until stoppage on the y-axis and log(1/d) on the x-axis, as shown in
Fig.d. Here, we note that the large standard deviation for the trend in backend (4i%) arises due to
the limited number of experiment iterations, constrained by available compute resources.

e Benchmarking: We benchmark our approach against non-adaptive BDS tomography, as described
in Appendix BT and compare the resulting copy complexity across the same range of §. We present
a criterion in equation that guarantees that the reconstructed states are not misclassified (see

14
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Figure 4: Copy complexity for entanglement detection in BDS v/s log(1/0)

Appendix B7T). For the K = 5 BDS instance considered in this experiment, the bottleneck is de-
termined by State 5 (max; p; = 0.446), implying € < 0.054 to avoid misclassification theoretically.
Choosing € = 0.05 allows only a negligible margin for statistical fluctuations, resulting in low classi-
fication accuracy. Thus, to ensure a valid comparison that matches the high reliability of the MAB
approach, we choose € = 0.01 as the functional baseline.

From Corollary 2, we observe that the factor log(1/4) has a multiplicative effect on the sample complexity,
while the average copy complexity is primarily determined by Api,. The values of S¢ are governed by the
four frequencies f1, fa, f3, and f4, as defined in equation @M. While the true values of the f;’s are calculated
using Tr{p.sE; }, the values of f; obtained from register counts based on simulations performed on different
backends differ from the true values upto O(10~2). Due to measurement noise and decoherence, the goalpost
for Sg varies across different backends, and these differences influence Aj,. One option is to mitigate the
measurement noise (see details in the appendix, Sec. B4).

7 Entanglement Detection in Arbitrary Quantum States

This section outlines a routine for detecting entanglement in arbitrary two-qubit quantum states. Specifically,
we consider K arbitrary states, one of which is entangled, and describe an MAB routine along with numerical
results.

7.1 Numerical Experiment

The workflow outlined in Algorithm @ is implemented in MATLAB. The algorithm takes the following inputs:
a threshold ¢, an error parameter J, a set of K states A (with the promise that one state is entangled), and
a permutation of {1,2,3,4,5,6} that specifies the order in which the WBMs should be adapted. As this is
a promise problem, the algorithm terminates as soon as it identifies an entangled state, without needing to
measure with all six WBMs. The different modules in the software code are described below:

e Generating arbitrary quantum states: To generate arbitrary density matrices, we follow the
method described in Zyczkowski & Sommers (20001). Specifically, we start by generating a complex
matrix A € C***, where the real and imaginary parts of each element are independently sampled

15
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Algorithm 4 Entanglement detection for arbitrary states

Input: (=0,4d, A« {p1,p2...px}, WBM Order P
Output: Acyg
flag «— 1, I <1
while flag do
With & < Ep(r), run Algorithm B for K arms
(I

ent

Return entangled arm A
if |[A7)] =1 then
flag < 0
else
I+ T+1
end
end while
Aent < A(I)

ent

from a normal distribution. We then compute the density matrix p by normalizing AAT, resulting
in p = AAT/Tr(AAT). This procedure ensures that p is a valid density matrix. We encountered
pure states with Sg(-) = 0. For such cases, the algorithm took a significantly long time to converge
and, despite this, incorrectly estimated the value of Sg(p). Consequently, we adjusted the threshold
to ¢ = —1 x 1073 and imposed a cutoff on the sample complexity at 1 x 10'2 to better reflect the
real-time performance of this policy.

o Experiment Setup: In this experiment, we generate 1000 distinct instances of K = 5 full rank
arbitrary states, ensuring that each instance contains exactly one entangled state. These instances
are validated using the PPT criterion.

Detection ratio versus §: We test the efficacy of using the single-parameter family of witnesses equation @
to detect entanglement in arbitrary states. For ¢ € (0, 1), we report the detection ratio, which is defined as
the fraction of times the entangled state is correctly identified by the MAB policy. This result is shown in
Fig. B. We observe that the detection ratio diminishes with larger error margins.
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s

Figure 5: Entanglement Detection ratio v/s § for arbitrary quantum states
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WBM usage under arbitrary ordering vs. §: For a random WBM ordering, we compute how many
WBMs are required to detect a single valid entangled state among a set of K states. For § € (0,1), we
present the frequency distribution of the number of WBMs used, displayed as a cumulative histogram in
Fig. B. For significantly larger values of §, the lower detection ratios indicate that the algorithm terminates

o
o
T

Number of WBMs used
o o
S (4,

0.01 0.11 021 0.31 0.41 0.51 0.61 0.71 0.81 0.91
6

Figure 6: The cumulative histograms compare the number of WBMs used to detect one valid entangled state
across different values of §.

upon identifying the wrong state, preventing further adaptation and primarily (around 85%) relying on up
to three witnesses. This experiment can be extended to the scenario where there are m entangled states.
However, since m is unknown and the states may be detectable under any of the WBMs, the routine would
necessitate measuring under all WBMs to reliably identify the entangled states.

7.2 Numerical Outliers

We present an example of an entangled state certified by the PPT test that yields positive values for Sg¢(p)
under all six WBMs. Consider the pure entangled states and their corresponding S¢ values, as shown in Table
8. The state p = Z?:l i [1i) (4], where |¢);) are defined in Table B, and (p;)?_; = (0.2936,0.0655, 0.6409),
has a negative eigenvalue of —0.029 after applying the partial transpose, thus confirming it as an entangled
state. However, the values of (Sg) = (0.0732,0.1727,0.1257,0.1139,0.0736,0.0296) under the six WBMs
are all non-negative. This indicates that the state cannot be detected by the witness family described in
equation H.

Table 5: Examples of arbitrary pure entangled states detected by the family of witnesses equation @

‘ Pure entangled states |11) , |[¢2) and [¢3) ‘ Values under (Sg,)$_, ‘

[0.2687 + 0.03757; 0.2406 + 0.4090¢; 0.0502 + 0.6162¢; 0.2413 + 0.51074] | (—0.1851,0.3160, 0.1598, —0.0058,0.2177, —0.1947)
[0.0565 4 0.3355¢; 0.0508 + 0.06867; 0.4885 + 0.51914; 0.5689 + 0.2125¢] | (0.1562, —0.0280, —0.1135,0.1832, —0.0779,0.1373)
[0.1953 + 0.44384; 0.4958 + 0.4009:; 0.0069 + 0.3495i; 0.0322 + 0.4848¢] | (—0.1851,0.3160, 0.1598, —0.0058,0.2177, —0.1947)

We derive an observation on the nature of such states, focusing specifically on the eigenstate |\) . =
[0.3773 — 0.1445:,0.4768 — 0.32441,0.4598 + 0.08094, 0.5351], which corresponds to the largest eigenvalue of
p. This eigenstate has a Schmidt coefficient close to, but not exactly equal to 1, suggesting that it lies near
the boundary of separable states while still remaining entangled. The pure state |\), .. (|, Produces the
following values for (Sg) = (0.0380,0.1269, 0.0401,0.1054,0.0221,0.0074). This highlights that both pure
and mixed entangled states can yield inconclusive results when measured using this specific witness family.

In these cases, it is crucial to measure all six witnesses a sufficient number of times to accurately obtain
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the expected values of the corresponding observables. Additionally, performing FST can help determine the
entanglement of these states using other separability criteria.

8 Discussions

8.1 The MAB Advantage

While traditional FST and fixed witness testing methods (Zhu ef”all, 210) are direct and computationally
feasible for bipartite qubit states, the proposed MAB approach provides a practical and theoretical advantage
for entanglement detection in parameterised two-qubit states considered in this work.

Fixed-confidence guarantees without state reconstruction: J-correct MAB policies considered in
this work output a statistically certified set of entangled parameterised two-qubit states, obtained directly
from measurement data and without explicit state reconstruction. In contrast, FST necessitates state recon-
struction up to a specified trace accuracy € and does not provide any explicit confidence guarantee on the
entanglement aspect. Thus, any guarantee derived from FST is therefore indirect and depends on post-hoc
analysis of the reconstructed state using analytical separability tests, whereas the MAB approach delivers
decision-level guarantees by design.

Adaptive allocation of measurements: The key advantage of the MAB formulation is its adaptivity in
measuring the witness basis on states based on their separability gaps {A;}, i.e., prioritising states whose
gaps are smaller or whose entanglement status is uncertain. This yields instance-dependent copy complexity
guarantees that scale polynomially in A; and have polylogarithmic dependence on K and (1/6). Adaptivity
also allows early stopping when the criteria for entanglement certification are met. In contrast, non-adaptive
methods like FST and repeated witness-testing approaches (Zhu et all, 2010) tend to systematically over-
sample with no principled stopping rule; that is, states far from the threshold (large A;) are measured as
extensively as the ones close to it (small A;) till the desired trace accuracy is achieved. This results in the
copy complexity scaling linearly in K; sample-optimal FST with collective measurements requires O(16 K /€?)
copies Haah ef_all ('ZD‘I?)_

Practical Advantage: As illustrated in Fig. @, the copy complexity achieved by the MAB policy is
benchmarked against that of the non-adaptive tomography baseline for Bell-diagonal states described in
Appendix BT. The MAB routine is run across IBMQ backends (Aer, FakeBrisbane, ibm-brisbane), achieving
a copy complexity of O(10%) — O(10°). In contrast, the Bell Diagonal state tomography approach requires
O(105) — O(107) copies to achieve a trace distance accuracy € = 0.01 for the same scale (K = 5) and same
range of 9. We emphasise that the two-order-of-magnitude reduction in copy complexity is enabled via
adaptive sampling and early stopping.

Overall, the MAB-based approach offers a quantitatively demonstrated reduction in copy complexity for Bell
Diagonal states, explicit confidence guarantees, adaptivity in distributing measurement effort and scalability
for batch detection tasks for the two-qubit parameterised states.

8.2 Does the MAB routine optimize WBM ordering?

As outlined in Dai“ef~all (2014), there are WBM optimization strategies that prescribe an optimal WBM
ordering for efficiently detecting whether a single arbitrary two-qubit quantum state is entangled. One such
adaptive strategy uses the maximum-likelihood maximum-entropy (MLME) estimate of the unknown state,
based on causal measurement data. Using this estimate, the subsequent WBM is identified to be the one
that minimises the quadratic separability criterion. This leads to partial estimation of the quantum state.

In the context of batch entanglement detection, where an unknown number m of entangled states out of
a set of K states may be detectable under different witnesses, implementing the WBM adaptive strategies
from Daiefall (2014) would be both time-consuming and complex. This is because each of the K states may
require a unique permutation of the WBM ordering. Furthermore, the goal of the proposed MAB framework
is to minimize the number of measurements needed for detecting entanglement in a given set of quantum
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states under a specific WBM. Notably, this framework does not optimize the WBM ordering across multiple
MAB runs.

The closest comparison is with Fig. B, which depicts the cumulative frequency of WBMs used. This aligns
with the cumulative percentage of states identified under the WBM family, as seen in schemes 1A and 4A of
the recently reported incomplete state estimation techniques (see (Dai-ef all, 2014, Fig. 1)). However, this
approach does not address the batch entanglement detection problem. The WBM adaptation scheme A in
Dai et all (2014) successfully detects 98% of random pure states but only 33% of full-rank mixed states. We
specifically analyze the latter category, generating multiple instances of K states to quantify the number of
WBMs required to detect a single entangled state, presenting results for varying §. In this way, we provide
numerical insight into the sample complexity and convergence rate of our proposed schema, in contrast to [Dai
ef_all (2014).

9 Future Work And Conclusion

Batch entanglement detection, as discussed in this paper, is particularly useful for verifying the integrity of
a batch of practically relevant entangled states, before use in applications like secure multi-channel quantum
communication. We established a novel correspondence between the problem of batch entanglement detection
and the Thresholding Bandit problem in stochastic Multi-Armed Bandits. We proposed the (m, K)-quantum
Multi-Armed Bandit framework for entanglement detection. The focus of this framework is on identifying
m entangled states out of K states, where m is potentially unknown. We apply this framework to two-qubit
states using two key ingredients: a specialized set of six measurements for two-qubit states called Witness
Basis Measurements (WBM) £ and a separability criterion Sg, which is based on the data obtained from these
measurements and serves as the parameter that needs to be estimated. We present theoretical guarantees
and numerical simulations to demonstrate how this parameter can be estimated quickly and accurately using
MAB policies. First, we show that entangled states belonging to a class of parameterised two-qubit states
F can be detected by measuring a subset of the six WBMs. With the knowledge of the WBM, we show that
we can directly apply some suitable MAB policies. Second, for the same parameterised states, we present a
routine for entanglement detection when the WBM is not known by enabling arbitrary sequential adaptation
of the WBMs. We extend this to arbitrary two-qubit quantum states and provide numerical results on the
efficacy of using these measurements for detecting entanglement.

An exciting avenue for future research lies in identifying WBMs for higher-dimensional bipartite systems. The
minimalistic tomographic scheme proposed in Zhu ef all (2010) significantly reduces the number of required
witnesses for two-qutrits from 81 to just 11, demonstrating the potential for more efficient entanglement
detection. Meanwhile, recent advancements in data-driven machine learning, particularly the use of SVMs
to construct linear entanglement witnesses from local measurements (Greenwood et all, 2023), open new
possibilities for tackling the (m, K)-quantum MAB problem. By leveraging these techniques, one could
optimize the number of witnesses needed to reliably detect all m states.

Entanglement detection can be reframed as a membership problem, where a state belongs to a set if it
exhibits a specific propertysuch as entanglement. This perspective aligns with the partition identification
problem (Juneja & Krishnasamyi, 2019), in which the objective is to determine the partition to which a
data point belongs using a hyperplane structure. Extending this framework to the (m, K)-quantum MAB
problem could pave the way for groundbreaking approaches to adaptive entanglement detection.
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A Appendix

A.1 Non-adaptive baseline: Bell-Diagonal State Tomography

Copy Complexity Bound: For a prescribed trace-distance accuracy e, we derive a copy-complexity
guarantee for non-adaptive Bell-diagonal-state tomography and compare it with adaptive bandit algorithms
for entanglement detection. As seen in Table B, Bell-diagonal states are characterised by three two-qubit
Pauli correlations X X,YY and ZZ. Thus, no other Pauli settings are required. Given p;s , it is sufficient
to estimate

Czz = (X X) cyy = (YY)

PBDS Czz = <ZZ> (18)

PBDS ? PBDS *

Let ¢ := (Cyz, Cyy, C22) | - The eigenvalues of p,,s correspond to the statistical mixture p = {p;}; equation M
and are given by the affine map

1
p=(1+Ac), (19)
where
1 -1 1
1 1 -1
A=1_1 1 4
-1 1 1

Each measurement outcome for s € {xx,yy, 22} is a random variable X, € {—1,1} with mean c¢s. Let
Cs =1/t j X,,; be the empirical mean obtained from ¢ measurements. By Hoeffding’s inequality,

2
P(|és —cs| > 77) < 2exp<—tg) )
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Denoting € := (éza, &yy, ¢..)" and taking a union bound over the three correlators gives,

t 2
P(le - clle > 1) < Y B(e, — ol > ) < sexp(-"0) =5 (20)
S
From equation 4, p — p = $A(¢ — c), hence
1B =Pl = FIA@E = <)l1 = _|(A(e — ¢))i] < 3]} = ¢]lo- (21)

=1

Let pgps be the estimate of pgps, then the trace distance between pyps and pgps is given by,

A« A (a) N N N
D(pBDsapBDs) = %HPBDS _pBDs”l = % ‘pl _pz| = %”p_le < %”C_C”oo (22)
i=1

where (a) holds because both p.ps and pyps are diagonal in the Bell basis, so the eigenvalues of pps — pBpDSs

are {p; —p; }+_,. To guarantee a trace distance of € between pps and puy, it suffices to enforce ||€ —cl|o < 2Ze.

3
Setting n = %e, we solve for ¢ in equation 20,
9 6

t > —1 - 23
> 53 0g< 5) (23)

shots per setting. Since three measurement settings are used, the total number of copies required is,

27 6

NBDS(E,&) = 3t Z 26210g<6) . (24)

Choice of ¢ for preserving the true status of reconstructed Bell-Diagonal States: From Section
B2, we know that a Bell diagonal state is entangled if p;« > %, where i* = argmax; p; and separable if
pir < % Since p and p both form valid probability distributions,

4

S (i - pi) = 0. (25)

=1

Preserving the status of p,,s amounts to preserving the inequality defining the status, i.e., entangled means
Dix > % and separable means p;» < % Let z == |;z§1-* — p;i«| denote the magnitude of the estimation error
on the largest eigenvalue. We consider the worst case in which p;» changes by z in the most detrimental
direction to status preservation. If p;» decreases by x, then

A

Pbix — Pix = —T.

For equation 23 to hold, we must have

Z(ﬁi —pi) = .

i
By the triangle inequality,
Z |pi —pi| > Z(ﬁi —pi)| ==
itir i
Substituting in equation 22,

[Dir — pir| + Z Ipi —pil | > =
i

R 1
D(pBDS7 pBDs) = 5
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Imposing the constraint D(pgps, prps) < € therefore yields
|Pir — pir| <€ (26)

We now present the condition for status preservation. If p,.s is entangled, then p;» > % The worst-case

decrease according to equation PG implies p;« > p;« — €. Thus, entanglement is preserved if,

Similarly, if pgps is separable, then p;« < %, and the worst-case increase is p;« < p;« + €. Hence, separability
is preserved if
€< 3 —pis. (28)

Combining equation 274 and equation B8, the unified status-preservation condition is,
A.2 Proofs for Section bl

The following lemma is useful for some calculations.

Lemma 13 Fort>1,¢>0,e € (0,1),0 <w <1,

2log ((16';5)) a0

t w

llog <1og (1 +e)t)

)20: t < —log
c

A.2.1 Proof of Lemma B

Proof: Let B denote the "good" event that at any time ¢ > 0 and for all arms i € [K], the true value
Se(pi) is well concentrated around its estimate S; n,) = 1/Ny(t) Et Ji s, where i.i.d. samples J; s =

s=1

Ay lyyr—oy — (l{y:3} — 1{y:4}) (1{Y/:3} — 1{Y,:4}) for i.i.d. outcomes Y,Y” from measuring £ on p;.

K o

) 1)

B = U U {Si,Ni(t) o Sl| sU <Ni(t), CEK)}
i=1t=1

From Lemma B and by applying the union bound, we get that

IP’[B]>1—CEK< 0 )1+€>1—5 (31)

c. K
where Eq. BT holds because € € (0,1) and ¢, > 1. O

A.2.2 Proof of Theorem @

Se(ps)... > Se(pr-1) > 0 > Se(pk). Let us consider the case that the event B described in Lemma
@ holds. As outlined in Algorithm @, the arm ¢* will be dropped from the active set Q if LCB;x (¢t) > 0. That
is,

Proof: Recall that the threshold ( = 0 and problem instance Sg¢ is such that Sg(p1) > Sg(p2) >

. 0
Si*,Ni*(t) -U (Ni* (t), CEK> >0

N

Sie Npe(t) = |G nr ey = Six| > 0

— S;» >0

This contradicts the assumption about the problem instance S because S;» = Se(pr) < 0 and so, the arm
1* will not be dropped from the active set (2 as long as event B holds. O
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A.2.3 Proof of Theorem B

Proof: Let us consider the case where B holds. By the elimination rule of Algorithm [, an arm 7 is removed
from the active set © if LCB;(¢) > 0. We have that,

SiNi(t) — ( K)

NN >2U( (),CEK> (32)

Let us denote N; to be the number of samples of arm 4, that is, N; = inf{t : U (Ni(t), ch) < %} The

minimum value of N; can be obtained by solving,

0 A
N, ) =2
U( “cEK) 2

(1+ xf)\/ (1]\;; %) log (k)g (S;:;)Ni)> = %

L, (log((1+)Ny) A2
v ) ] 33
From Lemma 3, we get that,
St o)1t a2, (20K log (St R e? K
N; = € log : "

A? 0

Thus, the total number of samples required to identify the arm i* with a probability of at least 1 — § is
K
N<> N |

A.3 Proofs for Section B2
A.3.1 Proof of Lemma 4

Proof: Firstly, we show that Algorithm B is (X, d)-correct for arbitrary A € [K]. In the case where there are
arms greater than or equal to A, we show that P [{r < A} UU;cq. {Si < ¢}] < & where 7 is the number
of good arms identified by the agent. Since we are now considering the case when m > A, the event {rh < A}
implies that at least one good arm j € [m] is identified as a bad arm by the agent. That is, for some j € [m)]

and t € N, the upper confidence bound Sj,Nj(t) +U (Nj (1), CELK) < (. Thus, we have that,

Pl < A < ZP[U{SJNQWU( (1), (sK)<C}1

jelm] LteN

6 1+€
< R
< Z Ce <05K> (By Lemma B)

J€[m]

< mee (ch) (35)

The event (J,. (X1, %o, XA}{/“ < (} considers all those outcomes where a bad arm is identified to be a good

one. Thus, for some bad arm j € {X1, Xy,... X5} such that j € [K]\ [m], we have,
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P U {s; < ¢}

iE{Xl,Xz,‘..X)\}

< > [U{ N (1)~ (Nj(t)vci{)x}]

JEIK\[m] teN
1
< (K —
< (-~ mye. (%) (36)

Thus, putting Eq. B3 and Eq. BB together, we get that P [{m <A UUieqx, %, 2y 1 < C}} < §. Next,

we consider the case when the number of good arms m is less than A and show that P [ > A] < 4. Since
there are at most A good arms, the event {fiz > A} implies that one of the output arms j € {X1,X,,... Xy}
is such that there exists some index j such that X is a bad arm. Thus, we have that,

P[mZA]S Z P[jE{Xl,Xg,...X)\H
JEIK\[m]

5 1+e
< _
< (K —m)ee (csK)

K—-m ((5)
< ce | —
- K Ce

) (37)

We see that the algorithm is (A, d)-correct for all such A € [K], thereby giving us that the algorithm is
d-correct. O

A.3.2 Proof of Theorem I

Proof: Recall that the threshold ( = 0 and problem instance Sg is such that Sg(p1) > Seg(p2)... >
Se(prc—m) > 0 > Se(prg—m+1)-.. > Se(pk), with m being unknown. Let us consider the case that the
event B described in Lemma B holds. As outlined in Algorithm B, an arm ¢ will be dropped if LCB;(¢) > 0.
That is,

. 1)
Sinie) —U (Ni(t), cEK> >0

Si,Ni(t) - |k§i,N1-(t) - Si| >0
— 5, >0

Thus, as long as event B holds, all the arms that have S¢ < 0 will not dropped. Thus the lil’HDoC algorithm
identifies all the arms correctly. O

A.4 Integrating Error Mitigation in MAB Algorithms for Batch Entanglement Detection

In the MAB-based workflow for entanglement detection described in Section B, one state is measured at
every time instant as dictated by the sampling rule, and the statisticsnamely, the estimates of f1, fo, f3, and
faare updated as new measurement outcomes are obtained. These estimates are susceptible to measurement
errors, particularly readout errors, which induce inaccuracies in the measurement counts. To improve the
accuracy of the estimates, we characterize such errors and wish to mitigate them (Qiskit Community, 2024).
To this end, we carry out a preliminary investigation by incorporating a procedure for (a) error mitigation
and (b) including error mitigation in the MAB routine, and study the impact of error mitigation on the
overall copy complexity of batch entanglement detection.
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A.4.1 Procedure for Error Mitigation

In Fig. B, we apply a unitary transformation to WBM &; and & to measure the state of the system p in the
computational (Pauli Z) basis. Consequently, we obtain expectation values of the diagonal Pauli operators
77, ZI,and IZ. The estimates of f1, fo, f3, and f; are linear combinations of these expectation values.

fr=025(1+(12),+(ZI),+(Z2),)
f2=025(1— <IZ>p + <ZI>ﬂ - <ZZ>p)
f3=025(1+ <IZ>p - <ZI>p - <ZZ>p)
f1=025(01—(IZ), - (ZI), + (22),). (38)

Thus, it is essential to obtain precise expectation values for the diagonal Pauli operators to improve the
accuracy of our estimates. To do this, we use a LocalReadOut scheme from IBM’s Qiskit Experiments
library (Bravyi et all, 2021). In this scheme we characterize the readout errors of physical qubits on the
FakeBrisbane backend. These errors are assumed to be local in the sense that they are independent across
qubits. Readout error mitigation uses a mitigator object (matrix) computed from an assignment matrix
A, where each element A; ; represents the probability of observing outcome ¢ when the true outcome is j.
By applying this mitigator to unmitigated measurement counts, we refine our estimates by obtaining more
accurate expectation values for ZZ, Z1I, and 1Z.

A.4.2 How and where does it fit in the MAB Routine?

In each round of the MAB policy, based on an Upper Confidence Bound (UCB) score, the sampling rule
selects a quantum state to measure. Since only a single-shot measurement is performed per round, the error
mitigation procedure described in Section B4l is applied after a state has been measured several times.
To illustrate this process, consider a specific round ¢t = F', where state p; has previously been measured T
times. The unmitigated measurement counts for the four possibrle outcomes are denoted as F"™", F3'™, F3™,
and Fj™. The empirical frequencies of these outcomes are given by,

Fym

fom(p) = -, i€ 4. (39)

At this point, we invoke the error mitigation routine, supplying it with the unmitigated counts {F"™} as
input. The mitigation routine corrects for readout errors and returns mitigated expectation values of the
diagonal Pauli observables, yielding mitigated estimates fim(F ). With post-processing adjustments to correct
for decimal rounding errors, the corresponding mitigated measurement counts,

FP = f™(F)x T*, ield]. (40)

We propose a nested mitigative process where the MAB algorithm invokes the error mitigation routine
once every F' measurement shots per state and uses the mitigated values in subsequent shots. For instance,
at t = F, the routine produces mitigated estimates ﬁm(F) from which we obtain mitigated counts. Future
measurement outcomes update on these mitigated counts. At ¢t = 2F, the routine takes input these new
counts and outputs a new set of mitigated estimates f™(2F). This creates a nested-mitigation cycle, where
each round of mitigation refines the previous one.

We conduct an empirical study to assess the impact of error mitigation on the average copy complexity of the
MAB algorithm. Mitigation is invoked once every F' rounds, where F' ranges from 50 to 10,000 in steps of 50.
Here, smaller F' values correspond to high-frequency mitigation and larger values indicate lower-frequency
mitigation. For the problem instance described in Section B, with 6 € (0,1) and range of F, we execute
Algorithm B on FakeBrisbane, averaging the copy complexity at stoppage over 20 runs. The percentage of
error mitigation is quantified as the relative reduction in copy complexity compared to the case without
mitigation. To ensure the algorithm correctly identifies the entangled states, we employ an error indicator
that verifies whether its error remains within the prescribed threshold §. Using this framework, we generate
the heatmap in Fig. @, which visualizes the percentage reduction in copy complexity due to error mitigation.
Notably, the white regions indicate cases where the algorithm converged in finite time but failed to identify
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Figure 7: Heatmap of percentage error mitigation on FakeBrisbane backend for ¢ € (0,1) and various

mitigation frequencies

the entangled states correctly. We observe and report the following inferences from Fig. . First, the effect
of mitigation is d-dependent. For larger values of 4, the mitigation effect starts only as early as (F = 600)
and stabilizes faster (F' ~ 4000). In contrast, for smaller values of 4, the effect of mitigation is prominent
only mid-range and stabilizes at F' ~ 7000. Second, for F' < 600 and smaller values of §, the algorithm
fails to detect the correct set of states under the prescribed §. This can be attributed to over-mitigation,
which could potentially lead to random fluctuations in the estimates. Third, the observed stabilization zone
(yellow) across values of 0 suggests a critical threshold for F' beyond which reducing mitigation frequency
(increasing the value of F') no longer reduces errors. It remains an open question to fully understand and
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10

optimize for the use of error-mitigation and integrate them with MAB strategies.
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