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ABSTRACT

The ability to discover behaviours from past experience and transfer them to new
tasks is a hallmark of intelligent agents acting sample-efficiently in the real world.
Equipping embodied reinforcement learners with the same ability may be crucial
for their successful deployment in robotics. While hierarchical and KL-regularized
reinforcement learning individually hold promise here, arguably a hybrid approach
could combine their respective benefits. Key to these fields is the use of infor-
mation asymmetry across architectural modules to bias which skills are learnt.
While asymmetry choice has a large influence on transferability, existing methods
base their choice primarily on intuition in a domain-independent, potentially sub-
optimal, manner. In this paper, we theoretically and empirically show the crucial
expressivity-transferability trade-off of skills across sequential tasks, controlled
by information asymmetry. Given this insight, we introduce Attentive Priors for
Expressive and Transferable Skills (APES), a hierarchical KL-regularized method,
heavily benefiting from both priors and hierarchy. Unlike existing approaches,
APES automates the choice of asymmetry by learning it in a data-driven, domain-
dependent, way based on our expressivity-transferability theorems. Experiments
over complex transfer domains of varying levels of extrapolation and sparsity,
such as robot block stacking, demonstrate the criticality of the correct asymmetric
choice, with APES drastically outperforming previous methods.

1 INTRODUCTION

While Reinforcement Learning (RL) algorithms recently achieved impressive feats across a range of
domains (Silver et al., 2017; Mnih et al., 2015; Lillicrap et al., 2015), they remain sample inefficient
(Abdolmaleki et al., 2018; Haarnoja et al., 2018b) and are therefore of limited use for real-world
robotics applications. Intelligent agents during their lifetime discover and reuse skills at multiple
levels of behavioural and temporal abstraction to efficiently tackle new situations. For example, in
manipulation domains, beneficial abstractions could include low-level instantaneous motor primitives
as well as higher-level object manipulation strategies. Endowing lifelong learning RL agents (Parisi
et al., 2019) with a similar ability could be vital towards attaining comparable sample efficiency.

To this end, two paradigms have recently been introduced. KL-regularized RL (Teh et al., 2017;
Galashov et al., 2019) presents an intuitive approach for automating skill reuse in multi-task learning.
By regularizing policy behaviour against a learnt task-agnostic prior, common behaviours across tasks
are distilled into the prior, which encourages their reuse. Concurrently, hierarchical RL also enables
skill discovery (Wulfmeier et al., 2019; Merel et al., 2020; Hausman et al., 2018; Haarnoja et al.,
2018a; Wulfmeier et al., 2020) by considering a two-level hierarchy in which the high-level policy
is task-conditioned, whilst the low-level remains task-agnostic. The lower level of the hierarchy
therefore also discovers skills that are transferable across tasks. Both hierarchy and priors offer
their own skill abstraction. However, when combined, hierarchical KL-regularized RL can discover
multiple abstractions. Whilst prior methods attempted this (Tirumala et al., 2019; 2020; Liu et al.,
2022; Goyal et al., 2019), the transfer benefits from learning both abstractions varied drastically, with
approaches like Tirumala et al. (2019) unable to yield performance gains.

In fact, successful transfer of the aforementioned hierarchical and KL-regularized methods critically
depends on the correct choice of information asymmetry (IA). IA more generally refers to an
asymmetric masking of information across architectural modules. This masking forces independence
to, and ideally generalisation across, the masked dimensions (Galashov et al., 2019). For example,
for self-driving cars, by conditioning the prior only on proprioceptive information it discovers skills

∗Equal contribution. Correspondence to: sasha.salter@hotmail.com.

1



Published as a conference paper at ICLR 2023

independent to, and shared across, global coordinate frames. For manipulation, by not conditioning
on certain object information, such as shape or weight, the robot learns generalisable grasping
independent to these factors. Therefore, IA biases learnt behaviours and how they transfer across
environments. Previous works predefined their IAs, which were primarily chosen on intuition and
independent of domain. In addition, previously explored asymmetries were narrow (Table 1), which if
sub-optimal, limit transfer benefits. We demonstrate that this indeed is the case for many methods on
our domains (Galashov et al., 2019; Bagatella et al., 2022; Tirumala et al., 2019; 2020; Pertsch et al.,
2021; Wulfmeier et al., 2019). A more systematic, theoretically and data driven, domain dependent,
approach for choosing IA is thus required to maximally benefit from skills for transfer learning.

In this paper, we employ hierarchical KL-regularized RL to effectively transfer skills across sequential
tasks. We begin by theoretically and empirically showing the crucial expressivity-transferability
trade-off, controlled by choice of IA, of skills across sequential tasks for hierarchical KL-regularized
RL. Our expressivity-transferability theorems state that conditioning skill modules on too little or
too much information, such as the current observation or entire history, can both be detrimental
for transfer, due to the discovery of skills that are either too general (e.g. motor primitives) or too
specialised (e.g. non-transferable task-level). We demonstrate this by ablating over a wide range
of asymmetries between the hierarchical policy and prior. We show the inefficiencies of previous
methods that choose highly sub-optimal IAs for our domains, drastically limiting transfer performance.
Given this insight, we introduce APES, ‘Attentive Priors for Expressive and Transferable Skills’
as a method that forgoes user intuition and automates the choice of IA in a data driven, domain
dependent, manner. APES builds on our expressivity-transferability theorems to learn the choice of
asymmetry between policy and prior. Specifically, APES conditions the prior on the entire history,
allowing for expressive skills to be discovered, and learns a low-entropic attention-mask over the
input, paying attention only where necessary, to minimise covariate shift and improve transferability
across domains. Experiments over domains of varying levels of sparsity and extrapolation, including a
complex robot block stacking one, demonstrate APES’ consistent superior performance over existing
methods, whilst automating IA choice and by-passing arduous IA sweeps. Further ablations show the
importance of combining hierarchy and priors for discovering expressive multi-modal behaviours.

2 SKILL TRANSFER IN REINFORCEMENT LEARNING

We consider multi-task reinforcement learning in Partially Observable Markov Decision Processes
(POMDPs), defined by Mk = (S,X ,A, rk, p, p0k, γ), with tasks k sampled from p(K). S, A, X
denote observation, action, and history spaces. p(x′|x,a) : X × X × A → R≥0 is the dynamics
model. We denote the history of observations s ∈ S, actions a ∈ A up to timestep t as xt =
(s0,a0, s1,a1, . . . , st). Reward function rk : X ×A×K → R is history-, action- and task-dependent.

2.1 HIERARCHICAL KL-REGULARIZED REINFORCEMENT LEARNING

The typical multi-task KL-regularized RL objective (Todorov, 2007; Kappen et al., 2012; Rawlik
et al., 2012; Schulman et al., 2017) takes the form:

L(π, π0) = Eτ∼pπ(τ),
k∼p(K)

[ ∞∑
t=0

γt
(
rk(xt,at)− α0DKL (π(a|xt, k) ∥ π0(a|xt))

)]
(1)

where γ is the discount factor and α0 weighs the individual objective terms. π and π0 denote the
task-conditioned policy and task-agnostic prior respectively. The expectation is taken over tasks and
trajectories τ from policy π and initial observation distribution p0k(s0), (i.e. pπ(τ)). Summation over
t occurs across all episodic timesteps. When optimised with respect to π, this objective can be viewed
as a trade-off between maximising rewards whilst remaining close to trajectories produced by π0.
When π0 is learnt, it can learn shared behaviours across tasks and bias multi-task exploration (Teh
et al., 2017). We consider the sequential learning paradigm, where skills are learnt from past tasks,
psource(K), and leveraged while attempting the transfer set of tasks, ptrans(K).
While KL-regularized RL has achieved success across various settings (Abdolmaleki et al., 2018;
Teh et al., 2017; Pertsch et al., 2020; Haarnoja et al., 2018a), recently Tirumala et al. (2019) pro-
posed a hierarchical extension where policy π and prior π0 are augmented with latent variables,
π(a, z|x, k) = πH(z|x, k)πL(a|z,x) and π0(a, z|x) = πH

0 (z|x)πL
0 (a|z,x), where subscripts H

and L denote the higher and lower hierarchical levels. This structure encourages the shared low-level
policy (πL = πL

0 ) to discover task-agnostic behavioural primitives, whilst the high-level discovers
higher-level task relevant skills. By not conditioning the high-level prior on task-id, Tirumala et al.
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(2019) encourage the reuse of common high-level abstractions across tasks. They also propose the
following upper bound for approximating the KL-divergence between hierarchical policy and prior:

DKL (π(a|x) ∥ π0(a|x)) ≤ DKL

(
πH(z|x)

∥∥ πH
0 (z|x)

)
+ EπH

[
DKL

(
πL(a|x, z)

∥∥ πL
0 (a|x, z)

)]
(2)

We omit task conditioning and declaring shared modules to show this bound is agnostic to this.

2.2 INFORMATION ASYMMETRY
Table 1: Previously Explored IAs

Paper π
(H)
0 input

(Tirumala et al., 2020; Liu et al., 2022) xt

(Bagatella et al., 2022) at−n:t

(Bagatella et al., 2022) xt−1:t

(Pertsch et al., 2020; 2021; Ajay et al., 2020) st
(Rao et al., 2021; Tirumala et al., 2019; 2020) zt−1

(Tirumala et al., 2019; Goyal et al., 2019) −

Information Asymmetry (IA) is a key component in both
of the aforementioned approaches, promoting the discov-
ery of behaviours that generalise. IA can be understood as
the masking of information accessible by certain modules.
Not conditioning on specific environment aspects forces
independence and generalisation across them (Galashov et al., 2019). In the context of (hierarchical)
KL-regularized RL, the explored asymmetries between the (high-level) policy, π(H), and prior, π(H)

0 ,
have been narrow (Tirumala et al., 2019; 2020; Liu et al., 2022; Pertsch et al., 2020; 2021; Rao et al.,
2021; Ajay et al., 2020; Goyal et al., 2019). Concurrent with our research, Bagatella et al. (2022)
published work exploring a wider range of asymmetries, closer to those we explore. We summarise
explored asymmetries in Table 1 (with at−n:t representing action history up to n steps in the past).

Choice of information conditioning heavily influences which skills can be uncovered and how well
they transfer. For example, Pertsch et al. (2020) discover observation-dependent behaviours, such as
navigating corridors in maze environments, yet are unable to learn history-dependent skills, such as
never traversing the same corridor twice. In contrast, Liu et al. (2022), by conditioning on history, are
able to learn these behaviours. However, as we will show, in many scenarios, naı̈vely conditioning
on entire history can be detrimental for transfer, by discovering behaviours that do not generalise
favourably across history instances, between tasks. We refer to this dilemma as the expressivity-
transferability trade-off. Crucially, all previous works predefine the choice of asymmetry, based on
the practitioner’s intuition, that may be sub-optimal for skill transfer. By introducing theory behind
the expressivity-transferability of skills, we present a simple data-driven method for automating the
choice of IA, by learning it, yielding transfer benefits.

3 MODEL ARCHITECTURE AND THE
EXPRESSIVITY-TRANSFERABILITY TRADE-OFF

π0,hπ0,hKL

KL π0,hπ0,h

Figure 1: Hierarchical KL-
regularized architecture. The
hierarchical policy modules πH

and πL are regularized against their
corresponding prior modules πH

i

and πL
i . The inputs to each module

are filtered by an information
gating function (IGF), depicted
with colored rectangles.

To rigorously investigate the contribution of priors, hierarchy,
and information asymmetry for skill transfer, it is important to
isolate each individual mechanism while enabling the recovery
of previous models of interest. To this end, we present the uni-
fied architecture in Fig. 1, which introduces information gating
functions (IGFs) as a means of decoupling IA from architec-
ture. Each component has its own IGF, depicted with a colored
rectangle. Every module is fed all environment information
xk = (x, k) and distinctly chosen IGFs mask which part of the
input each network has access to, thereby influencing which
skills they learn. By presenting multiple priors, we enable a
comparison with existing literature. With the right masking,
one can recover previously investigated asymmetries (Tirumala
et al., 2019; 2020; Pertsch et al., 2020; Bagatella et al., 2022;
Goyal et al., 2019), explore additional ones, and also express purely hierarchical (Wulfmeier et al.,
2019) and KL-regularized equivalents (Galashov et al., 2019; Haarnoja et al., 2018c).

3.1 THE INFORMATION ASYMMETRY EXPRESSIVITY-TRANSFERABILITY TRADE-OFF

While existing works investigating the role of IAs for skill transfer in hierarchical KL-regularized RL
have focused on multi-task learning (Galashov et al., 2019)1, we focus on the sequential task setting,
in particular the prior’s π0 ability to handle covariate shift. In contrast to multi-task learning, in the
sequential setting, there exists abrupt distributional shifts, during training, for task p(K) and trajectory
pπ(τ) distributions. As such, it is important that the prior handles such distributional and covariate

1Concurrent with our research Bagatella et al. (2022) also investigated various IAs for sequential transfer.
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Figure 2: Environments. a) CorridorMaze: The agent starts in the hallway and must traverse a given
sequence of corridors. The agent completes a corridor by traversing to its depth and back. b) Stack:
The agent must stack the cubes in a given ordering over the light blue target pad.

shifts (see Theorem 3.1 for a definition). For multi-task learning, trajectory shifts are gradual and
skills are continually retrained over such shifts, alleviating transfer issues. In general, IA plays a
crucial role, influencing the level of covariate shift encountered by the prior during learning:
Theorem 3.1. The more random variables a network depends on, the larger the covariate shift (input
distributional shift, here represented by KL-divergence) encountered across sequential tasks. That is,
for distributions p, q and inputs b, c such that b = (b0, b1, ..., bn) and c ⊂ b:

DKL (p(b) ∥ q(b)) ≥ DKL (p(c) ∥ q(c)) .
Proof. See Appendix B.1.
In our case, p and q can be interpreted as training psource(·) and transfer ptrans(·) distributions over
network inputs, such as history xt for high-level prior πH

0 . Intuitively, Theorem 3.1 states that the
more variables you condition your network on, the less likely it will transfer due to increased covariate
shift encountered between source and transfer domains, thus promoting minimal information condi-
tioning. For example, imagine conditioning the high-level prior on either the entire history x0:t or a
subset of it xt−n:t, n ∈ [0, t− 1] (the subscript referring to the range of history values). According
to Theorem 3.1, the covariate shift across sequential tasks will be smaller if we condition on a subset
of the history, DKL (psource(x0:t) ∥ ptrans(x0:t)) ≥ DKL (psource(xt−n:t) ∥ ptrans(xt−n:t)). In-
terestingly, covariate shift is upper-bounded by trajectory shift: DKL (pπsource

(τ) ∥ pπtrans
(τ)) ≥

DKL (pπsource
(τf ) ∥ pπtrans

(τf )) (using Theorem 3.1), with the right hand side representing covari-
ate shift over network inputs τf = IGF (τ), filtered trajectories (e.g. τf = xt−n:t, τf ⊂ τ ), and
πsource, πtrans, source and transfer domain policies. It is therefore crucial, if possible, to minimise
both trajectory and covariate shifts across domains, to benefit from previous skills. Nevertheless, the
less information a prior is conditioned on, the less knowledge that can be distilled and transferred:
Theorem 3.2. The more random variables a network depends on, the greater its ability to distil
knowledge in the expectation (output distributional shift between network and target distribution,
here represented by the expected KL-divergence). That is, for target distribution p and network q
with outputs a and possible inputs b, c, d, such that b = (b0, b1, ..., bn) , d ⊂ c ⊂ b , e ∈ d⊕ c:

Eq(e|d) [DKL (p(a|b) ∥ q(a|c))] ≤ DKL (p(a|b) ∥ q(a|d)) .
Proof. See Appendix B.2.
In this particular instance, p and q could be interpreted as policy π and prior π0 distributions, a as
action at, b as history x0:t, and c, d, e as subsets of the history (e.g. xt−n:t, xt−m:t, xt−n:t−m respec-
tively, with n > m andm & n ∈ [0, t]), with e denoting the set of variables in c but not d . Intuitively,
Theorem 3.2 states in the expectation, conditioning on more information improves knowledge dis-
tillation between policy and prior (e.g. Eπ0(xt−n:t−m|xt−m:t) [DKL (π(at|x0:t) ∥ π0(at|xt−n:t))] ≤
DKL (π(at|x0:t) ∥ π0(at|xt−m:t)), with π0(xt−n:t−m|xt−m:t) the conditional distribution, induced
by π0, of history subset xt−n:t−m given xt−m:t). Therefore, IA leads to an expressivity-transferability
trade-off of skills (Theorems 3.1 and 3.2). Interestingly, hierarchy does not influence covariate shift
and hence does not hurt transferability, but it does increase network expressivity (e.g. of the prior),
enabling the distillation and transfer of rich multi-modal behaviours present in the real-world.

4 APES: ATTENTIVE PRIORS FOR EXPRESSIVE AND TRANSFERABLE SKILLS

While previous works chose IA on intuition (Tirumala et al., 2019; 2020; Galashov et al., 2019;
Pertsch et al., 2020; Wulfmeier et al., 2019; Bagatella et al., 2022; Singh et al., 2020; Ajay et al.,
2020; Liu et al., 2022) we propose learning it. Consider the information gating functions (IGFs)
introduced in Section 3 and depicted in Figure 1. Existing methods can be recovered by having the
IGFs perform hard attention: IGF (xk) = m⊙ xk, with m ∈ {0, 1}dim(xk), predefined and static,
and ⊙ representing element-wize multiplication. In contrast, we propose performing soft attention
with m ∈ [0, 1]dim(xk) and learn m based on: 1) the hierarchical KL-regularized RL objective
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(Equations (1) and (2)); 2) LIGF (m) = −H(m),H denoting entropy (calculated by turning m into
a probability distribution by performing Softmax over it), thereby encouraging low entropic, sparse
IGFs (similar to Salter et al. (2019) applying a related technique for sim2real transfer):

LAPES(π, π0, {mi}i∈I) = Eτ∼pπ(τ),
k∼p(K)

[ ∞∑
t=0

γt
(
rk(xt,at)− α0DKL(π(a|xk)||π0(a|xk))

)]
−
∑
i∈I

αmiH(mi)

(3)

With αmi
weighing the relative importance of the entropy and KL-regularized RL objectives for

each attention mask {mi}i∈I for each module using self-attention (e.g. πH
0 ), I denoting this set.

Whilst soft attention does not eliminate dimensions in the same way that hard attention does, thus
losing the strict connection with Theorems 3.1 and 3.2, in practice it often leads to many 0-attention
elements (Salter et al., 2020; Mott et al., 2019). mi spans all history dimensions and supports
intra-observation and intra-action attention. We train off-policy akin to SAC (Haarnoja et al., 2018b),
sampling experiences from the replay buffer, approximating the return of the agent using Retrace
(Munos et al., 2016) and double Q-learning (Hasselt, 2010) to train our critic. Refer to Appendices A
and D for full training details. Exposing IGFs to all available information xk, we enable expressive
skills that maximize the KL-regularized RL objective, with complex, potentially long-range, temporal
dependencies (Theorem 3.2). Encouraging low-entropic masks mi promotes minimal information
conditioning (by limiting the IGF’s channel capacity) whilst still capturing expressive behaviours. This
is achieved by paying attention only where necessary to key environment aspects (Salter et al., 2022)
that are crucial for decision making and hence heavily influence behaviour expressivity. Minimising
the dependence on redundant information (aspects of the observation s, action a, or history x spaces
that behaviours are independent to), we minimise covariate shift and improve the transferability of
skills to downstream domains (Theorem 3.1). Consider learning the IGF of high-level prior πH

0 for
a humanoid navigation task. Low-level skills πL could correspond to motor-primitives, whilst the
high-level prior could represent navigation skills. For navigation, joint quaternions are not relevant,
but the Cartesian position is. By learning to mask parts of the observations corresponding to joints,
the agent becomes invariant and robust to covariate shifts across these dimensions (unseen joint
configurations). We call our method APES, ‘Attentive Priors for Expressive and Transferable Skills’.

4.1 TRAINING REGIME AND THE INFORMATION ASYMMETRY SETUP

We are concerned with investigating the roles of priors, hierarchy and IA for transfer in sequential task
learning, where skills learnt over past tasks psource(K) are leveraged for transfer tasks ptrans(K).
While one could investigate IA between hierarchical levels (πH , πL) as well as between policy and
prior (π, π0), we concern ourselves solely with the latter. Specifically, to keep our comparisons with
existing literature fair, we condition πL on st and zt, and share it with the prior, πL = πL

0 , thus
enabling expressive multi-modal behaviours to be discovered with respect to st (Tirumala et al., 2019;
2020; Wulfmeier et al., 2019). In this paper, we focus on the role of IA between high-level policy
πH and prior πH

0 for supporting expressive and transferable high-level skills between tasks. As is
common, we assume the source tasks are solved before tackling the transfer tasks. Therefore, for
analysis purposes it does not matter whether we learn skills from source domain demonstrations
provided by a hardcoded expert or an optimal RL agent. For simplicity, we discover skills and skill
priors using variational behavioural cloning from expert policy πe samples:
Lbc(π, π0, {mi}i∈I) =

∑
j∈{0,e}

LAPES(π, πj , {mi}i∈I) with rk = 0, γ = 1, τ ∼ pπe(τ) (4)

Equation (4) can be viewed as hierarchical KL-regularized RL in the absence of rewards and with
two priors: the one we learn π0; the other the expert πe. See Appendix A.2 for a deeper discussion
on the similarities with KL-regularized RL. We then transfer the skills and solve the transfer domains
using hierarchical KL-regularized RL (as per Equation (3)). To compare the influence of distinct IAs
for transfer in a controlled way, we propose the following regime: Stage 1) train a single hierarchical
policy π in the multi-task setup using Equation (4), but prevent gradient flow from prior π0 to policy.
Simultaneously, based on the ablation, train distinct priors (with differing IAs) on Equation (4) to
imitate the policy. As such, we compare various IAs influence on skill distillation and transfer in
a controlled manner, as they all distil behaviours from the same policy; Stage 2) freeze the shared
modules (πL, πH

0 ) and train a newly instantiated πH on the transfer task. By freezing πL, we
assume the low-level skills from the source domains suffice for the transfer domains, often called
the modularity assumption (Khetarpal et al., 2020a; Salter et al., 2022). While appearing restrictive,
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Figure 3: Skill-level exploration for Sparse 2
corr. 4 rollouts, episodes unrolled horizontally.
Corridors are colour coded and depth within
them is denoted by shade; the darker the deeper.
Hallway is white. Only the full setup leads to
corridor-level exploration.

the increasingly diverse the source domains are (commonly desired in settings like lifelong learning
(Khetarpal et al., 2020a) and offline RL), the increasingly probable the optimal transfer policy can be
obtained by recomposing the learnt skills. If this assumption does not hold, one could either fine-tune
πL during transfer, which would require tackling the catastrophic forgetting of skills (Kirkpatrick
et al., 2017), or train additional skills (by expanding z dimensionality for discrete z spaces). We leave
this as future work. We also leave extending APES to sub-optimal demonstration learning as future
work, potentially using advantage-weighted regression (Peng et al., 2019), rather than behavioral
cloning, to learn skills. For further details refer to Appendices A and D.

5 EXPERIMENTS AND RESULTS
Our experiments are designed to answer the following sequential task questions: (1) Can we benefit
from both hierarchy and priors for effective transfer? (2) How important is IA choice between
high-level policy and prior. Does it lead to an impactful expressivity-transferability trade-off? In
practice, how detrimental is covariate shift for transfer? (3) How favourably does APES automate the
choice of IA for effective transfer? Which IAs are discovered? (4) How important is hierarchy for
transferring expressive skills? Is hierarchy necessary? We compare against competitive skill transfer
baselines, primarily Tirumala et al. (2019; 2020); Pertsch et al. (2020); Wulfmeier et al. (2019), on
similar navigation and manipulation tasks for which they were originally designed and tested against.
5.1 ENVIRONMENTS

We evaluate on two domains: one designed for controlled investigation of core agent capabilities and
the another, more practical, robotics domain (see Figure 2). Both exhibit modular behaviours whose
discovery could yield transfer benefits. See Appendix C for full environmental setup details.

• CorridorMaze. The agent must traverse corridors in a given ordering. We collect 4∗103 trajectories
from a scripted policy traversing any random ordering of two corridors (psource(K)). For transfer
(ptrans(K)), an inter- or extrapolated ordering must be traversed (number of sequential corridors
= {2, 4}) allowing us to inspect the generalization ability of distinct priors to increasing levels
of covariate shift. We also investigate the influence of covariate shift on effective transfer across
reward sparsity levels: s-sparse (short for semi-sparse), rewarding per half-corridor completion;
sparse, rewarding on task completion. Our transfer tasks are sparse 2 corr and s-sparse 4 corr.

• Stack. The agent must stack a subset of four blocks over a target pad in a given ordering. The
blocks have distinct masses and only lighter blocks should be placed on heavier ones. Therefore,
discovering temporal behaviours corresponding to sequential block stacking according to mass, is
beneficial. We collect 17.5 ∗ 103 trajectories from a scripted policy, stacking any two blocks given
this requirement (psource(K)). The extrapolated transfer task (ptrans(K)), called 4 blocks, requires
all blocks be stacked according to mass. Rewards are given per individual block stacked.

5.2 HIERARCHY AND PRIORS FOR KNOWLEDGE TRANSFER

Table 2: Average return across 100 episodes (mean ± standard deviation for 7 random seeds).
Experiments that do not ((Hier-)RecSAC) / do leverage prior experience, were ran for 106 vs 1.5 ∗ 105
environment steps. APES employs hierarchy, priors and learns m for πH

0 . APES-{H20 - S} do not
learn m. The remainder do not employ priors.

Approach Paper πH
0 input learn m sparse 2 corr (int) s-sparse 4 corr (ext) 4 blocks (ext)

APES - xt−20:t ✓ 0.92 ± 0.04 7.03 ± 0.06 3.36 ± 0.12

APES-H20 Tirumala et al. (2020) xt−20:t ✗ 0.15 ± 0.07 3.79 ± 0.14 1.10 ± 0.31
APES-H10 - xt−10:t ✗ 0.25 ± 0.07 4.12 ± 0.41 1.25 ± 0.19
APES-H1 Bagatella et al. (2022) xt−1:t ✗ 0.80 ± 0.02 6.33 ± 0.13 3.13 ± 0.09

APES-S Galashov et al. (2019)
Pertsch et al. (2020) st ✗ 0.00 ± 0.00 2.96 ± 0.32 2.05 ± 0.11

APES-no prior Tirumala et al. (2019) - - 0.00 ± 0.00 2.30 ± 0.11 0.00 ± 0.00
Hier-RecSAC Wulfmeier et al. (2019) - - 0.00 ± 0.00 0.07 ± 0.02 0.01 ± 0.00
RecSAC Haarnoja et al. (2018b) - - 0.00 ± 0.00 0.08 ± 0.01 0.01 ± 0.00

Expert 1 8 4
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Our full setup, APES, leverages hierarchy and priors for skill transfer. The high-level prior is given
access to the history (as is common for POMDPs) and learns sparse self-attention m. To investigate
the importance of priors, we compare against APES-no prior, a baseline from Tirumala et al. (2019),
with the full APES setup except without a learnt prior. Comparing transfer results in Table 2, we
see APES’ drastic gains highlighting the importance of temporal high-level behavioural priors. To
inspect the transfer importance of the traditional hierarchical setup (with πL(st, zt)), we compare
APES-no prior against two baselines trained solely on the transfer task. RecSAC represents a history-
dependent SAC (Haarnoja et al., 2018d) and Hier-RecSAC a hierarchical equivalent from Wulfmeier
et al. (2019). APES-no prior has marginal benefits showing the importance of both hierarchy and
priors for transfer. See Table 6 for a detailed explanation of all baseline and ablation setups.

5.3 INFORMATION ASYMMETRY FOR KNOWLEDGE TRANSFER

Table 3: H(m) vs DKL(π
H ||πH

0 )

Metric H(m) DKL(π
H ||πH

0 )
Domain Corr/Stack Corr/Stack

APES-S 0.70/0.70 0.81/0.75
APES-H1 0.78/0.95 0.22/0.65
APES-H10 1.78/1.96 0.12/0.49
APES-H20 2.08/2.26 0.11/0.47
APES 0.26/1.20 0.16/0.49

Max 2.08/2.26 0.84/1.71
Min 0.00/0.00 0.00/0.00

To investigate the importance of IA for transfer, we ablate over
high-level priors with increasing levels of asymmetry (each in-
put a subset of the previous): APES-{H20, H10, H1, S}, S
denoting an observation-dependent high-level prior, Hi a history-
dependent one, xt−i:t. Crucially, these ablations do not learn m,
unlike APES, our full method. Ablating history lengths is a nat-
ural dimension for POMDPs where discovering belief states by
history conditioning is crucial (Thrun, 1999). APES-H1, APES-S
are hierarchical extensions of Bagatella et al. (2022); Galashov et al. (2019) respectively, and APES-
H20 (representing entire history conditioning) is from Tirumala et al. (2020). APES-S is also an
extension of Pertsch et al. (2020) with πL(st, zt) rather than πL(zt). Table 2 shows the heavy IA
influence, with the trend that conditioning on too little or much information limits performance. The
level of influence depends on reward sparsity level: the sparser, the heavier influence, due to rewards
guiding exploration less. Regardless of the transfer domain being interpolated or extrapolated, IA is
influential, suggesting that IA is important over varying levels of sparsity and extrapolation.

5.4 THE EXPRESSIVITY-TRANSFERABILITY TRADE-OFF
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Figure 4: Expressivity-Transferability Trade-Off. Distillation loss
vs transfer performance increase when pre-training πH . The level
of information conditioning is shown by marker size. Absolute
transfer performance is shown by marker colour (red - high; blue
- low). We fit a second order curve (in red) to show the general
expressivity-transferability trend, per Theorems 3.1 and 3.2, that
distilling more, by reducing IA, can hurt transfer, due to increased
covariate shift. See Table 8 for detailed tabular results.

To investigate whether Theo-
rems 3.1 and 3.2 are the rea-
son for the apparent expressivity-
transferability trade-off seen in
Table 2, we plot Figure 4 show-
ing, on the vertical axis, the dis-
tillation loss DKL

(
πH

∥∥ πH
0

)
at the end of training over
psource(K), verses, on the hor-
izontal axis, the increase in trans-
fer performance (on ptrans(K))
when initialising πH as a task
agnostic high-level policy pre-
trained over psource(K) (instead
of randomly, as is default). We ran these additional pre-trained πH experiments to investigate whether
covariate shift is the culprit for the degradation in transfer performance when conditioning the high-
level prior πH

0 on additional information. By pre-training and transferring πH , we reduce initial
trajectory shift and thus initial covariate shift between source and transfer domains (see Section 2.2).
This is as no networks are reinitialized during transfer, which would usually lead to an initial shift
in policy behaviour across domains. As per Theorem 3.1, we would expect a larger reduction in
covariate shift for the priors that condition on more information. If covariate shift were the culprit for
reduced transfer performance, we would expect a larger performance gain for those priors conditioned
on more more information. Figure 4 demonstrates that is the case in general, regardless of whether the
transfer domain is inter- or extra-polated. The trend is significantly less apparent for the semi-sparse
domain, as here denser rewards guide learning significantly, alleviating covariate shift issues. We
show results for APES-{H20, H10, H1, S} as each input is a subset of the previous. These relations
govern Theorems 3.1 and 3.2. Figure 4 and Table 3 show that conditioning on more information
improves prior expressivity, reducing distillation losses, as per Theorem 3.2. These results together
with Table 2, show the impactful expressivity-transferability trade-off of skills, controlled by IA (as
per Theorems 3.1 and 3.2), where conditioning on too little or much information limits performance.
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5.5 APES: ATTENTIVE PRIORS FOR EXPRESSIVE AND TRANSFERABLE SKILLS

Figure 5: APES attention for πH
0 , plotted as log10(m), for

each domain (key on right; red and blue as high and low val-
ues). We aggregate attention to the observation/action levels,
e.g. log10(mst) = log10(

∑dim(S)
i=0 mi

st) (with mst the aggregate
attention for st and mi

st attention for the ith dimension of st).
For intra-observation/action attention visualisation, reporting val-
ues per individual dimension, see Figure 7. APES learns sparse,
domain dependent, attention, primarily focusing on recent actions.

As seen in Table 2, APES, our
full method, strongly outper-
forms (almost) every baseline
and ablation on each transfer do-
main. Comparing APES with
APES-H20, the most compara-
ble approach with the prior fed
the same input (xt−20:t), we ob-
serve drastic performance gains.
These results demonstrate the im-
portance of reducing covariate
shift (by minimising information
conditioning), whilst still supporting expressive behaviours (by exposing the prior to maximal infor-
mation), only achieved by APES. Table 3 shows H(m), each πH

0 mask’s entropy (a proxy for the
amount of information conditioning), vs DKL(π

H ||πH
0 ) (distillation loss), reporting max/min scores

across all experiments cycles. We ran 4 random seeds but omit standard deviations as they were
negligible. APES not only attends to minimal information (H(m)), but for that given level achieves a
far lower distillation loss than comparable methods. This demonstrates APES pays attention only
where necessary. We inspect APES’ attention masks m in Figure 5 (aggregated at the observation and
action levels). Firstly, many attention values tend to 0 (seen clearly in Figure 7) aligning APES closely
to Theorems 3.1 and 3.2. Secondly, APES primarily pays attention to the recent history of actions.
This is interesting, as is inline with recent concurrent work (Bagatella et al., 2022) demonstrating
the effectiveness of state-free priors, conditioned on a history of actions, for effective generalization.
Unlike Bagatella et al. (2022) that need exhaustive history lengths sweeps for effective transfer, our
approach learns the length in an automated domain dependent manner. As such, our learnt history
lengths are distinct for CorridorMaze and Stack. For CorridorMaze, some attention is paid to the most
recent observation st, which is unsurprising as this information is required to infer how to optimally
act whilst at the end of a corridor. In Figure 7, we plot intra-observation and action attention, and note
that for Stack, APES ignores various dimensions of the observation-space, further reducing covariate
shift. Refer to Appendix E.1 for an in-depth analysis of APES’ full attention maps.

5.6 HIERARCHY FOR EXPRESSIVITY Table 4: Hierarchy Ablation
Transfer task sparse 2 corr s-sparse 4 corr

APES-H1 0.80 ± 0.02 6.33 ± 0.13
APES-H1-KL-a 0.75 ± 0.07 5.65 ± 0.13
APES-H1-flat 0.06 ± 0.03 4.42 ± 0.41

Expert 1 8

To further investigate whether hierarchy is necessary for effec-
tive transfer, we compare APES-H1 with APES-H1-flat, which
has the same setup except with a flat, non-hierarchical prior
(conditioned on xt−1:t). With a flat prior, KL-regularization
must occur over the raw, rather than latent, action space. There-
fore, to adequately compare, we additionally investigate a hierarchical setup where regularization
occurs only over the action-space, APES-H1-KL-a. Transfer results for CorridorMaze are shown in
Table 4 (7 seeds). Comparing APES-H1-KL-a and APES-H1-KL-flat, we see the benefits of a hierarchi-
cal prior, more significant for sparser domains. Upon inspection (see Section 5.7), APES-H1-KL-flat
is unable to solve the task as it cannot capture multi-modal behaviours (at corridor intersections). Con-
trasting APES-H1 with APES-H1-KL-a, we see minimal benefits for latent regularization, suggesting
with alternate methods for multi-modality, hierarchy may not be necessary.

5.7 SKILL-LEVEL EXPLORATION ANALYSIS

To gain a further understanding on the effects of hierarchy and priors, we visualise policy rollouts
early on during transfer (5∗103 steps). For CorridorMaze (Figure 3), with hierarchy and priors APES
explores randomly at the corridor level. Hierarchy alone, unable to express preference over high-level
skills, leads to temporally uncorrelated behaviours, unable to explore at the corridor level. The flat
prior, unable to represent multi-modal behaviours, leads to suboptimal exploration at the intersection
of corridors, with the agent often remaining static. Without priors nor hierarchy, exploration is further
hindered, rarely traversing corridor depths. For Stack (Figure 6), APES explores at the block stacking
level, alternating block orderings but primarily stacking lighter upon heavier. Hierarchy alone is
unable to stack blocks with temporally uncorrelated skills, exploring at the intra-block stacking level,
switching between blocks before successfully stacking, or often interacting with, any individual one.
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Stack Sparse 4 Blocks
i) Prior & Hierarchy ii) Hierarchy

Figure 6: Skill-level exploration for 4 Blocks.
End-effector and block rollouts depicted by dot-
ted and dashed lines respectively, colour-coded
per rollout. The end positions for gripper and
blocks are represented by cross or cubes, re-
spectively. Cube numbers represent their mass
order with 0 the heaviest. APES explores at the
stacking level whilst hierarchy alone is unable
to stack. See Figure 10 for video rollouts.

6 RELATED WORK

Hierarchical frameworks have a long history (Sutton et al., 1999). The options semi-MDP literature
explore hierarchy and temporal abstractions (Nachum et al., 2018; Wulfmeier et al., 2020; Igl et al.,
2019; Salter et al., 2022; Kamat & Precup, 2020; Harb et al., 2018; Riemer et al., 2018). Approaches
like Wulfmeier et al. (2019; 2020) use hierarchy to enforce knowledge transfer through shared
modules. Gehring et al. (2021) use hierarchy to discover skills of varying expressivity levels. For
lifelong learning (Parisi et al., 2019; Khetarpal et al., 2020b), where number of skills increase over
time, it is unclear how well these approaches will fare, without priors to narrow skill exploration.

Priors have been used in various fields. In the context of offline-RL, Siegel et al. (2020); Wu et al.
(2019) primarily use priors to tackle value overestimation (Levine et al., 2020). In the variational
literature, priors have been used to guide latent-space learning (Hausman et al., 2018; Igl et al., 2019;
Pertsch et al., 2020; Merel et al., 2018). Hausman et al. (2018) learn episodic skills, limiting their
ability to transfer. Igl et al. (2019); Khetarpal et al. (2020a) learn options together with priors or
interest functions, respectively. The primer is on-policy, limiting applicability and sample efficiency.
Both predefine information conditioning of shared modules, limiting transferability. Skills and priors
have been used in model-based RL to improve planning (Xie et al., 2020; Shi et al., 2022). Sikchi
et al. (2022) use priors to reduce covariate shifts during planning. In contrast, APES ensures the
priors themselves experience reduced shifts. In the multi-task literature, priors have been used to
guide exploration (Pertsch et al., 2020; Galashov et al., 2019; Siegel et al., 2020; Pertsch et al., 2021;
Teh et al., 2017), yet without hierarchy expressivity in learnt behaviours is limited. In the sequential
transfer literature, priors have also been used to bias exploration (Pertsch et al., 2020; Ajay et al.,
2020; Singh et al., 2020; Bagatella et al., 2022; Goyal et al., 2019; Rao et al., 2021; Liu et al., 2022),
yet either do not leverage hierarchy (Pertsch et al., 2020) or condition on minimal information (Ajay
et al., 2020; Singh et al., 2020; Rao et al., 2021), limiting expressivity. Unlike APES, Singh et al.
(2020); Bagatella et al. (2022) leverage flow-based transformations to achieve multi-modality. Unlike
many previous works, we consider the POMDP setting, arguably more suited for robotics, and learn
the information conditioning of priors on based on our expressivity-transferability theorems.

Whilst most previous works rely on IA, choice is primarily motivated by intuition. For example,
Igl et al. (2019); Wulfmeier et al. (2019; 2020) only employ task or goal asymmetry and Tirumala
et al. (2019); Merel et al. (2020); Galashov et al. (2019) use exteroceptive asymmetry. Salter et al.
(2020) investigate a way of learning asymmetry for sim2real domain adaptation, but condition m on
observation and state. We consider exploring this direction as future work. We provide a principled
investigation on the role of IA for transfer, proposing a method for automating the choice.

7 CONCLUSION

We employ hierarchical KL-regularized RL to efficiently transfer skills across sequential tasks,
showing the effectiveness of combining hierarchy and priors. We theoretically and empirically show
the crucial expressivity-transferability trade-off, controlled by IA choice, of skills for hierarchical KL-
regularized RL. Our experiments validate the importance of this trade-off for both interpolated and
extrapolated domains. Given this insight, we introduce APES, ‘Attentive Priors for Expressive and
Transferable Skills’ automating the IA choice for the high-level prior, by learning it in a data driven,
domain dependent, manner. This is achieved by feeding the entire history to the prior, capturing
expressive behaviours, whilst encouraging its attention mask to be low entropic, minimising covariate
shift and improving transferability. Experiments over domains of varying sparsity levels demonstrate
APES’ consistent superior performance over existing methods, whilst by-passing arduous IA sweeps.
Ablations demonstrate the importance of hierarchy for prior expressivity, by supporting multi-modal
behaviours. Future work will focus on additionally learning the IGFs between hierarchical levels.
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A METHOD

A.1 TRAINING REGIME

In this section, we algorithmically describe our training setup. We relate each training phase to the
principle equations in the main paper, but note that Appendices A.2 and A.3 outline a more detailed
version of these equations that were actually used. We note that during BC, we apply DAGGER (Ross
et al., 2011), as per Algorithm 2, improving learning rates. For further details refer to Appendix D.

Algorithm 1 APES training regime

1: # Full training and transfer regime. For BC, gradients
are prevented from flowing from π0 to π. In practice
π0 = {πi}i∈{0,...,N}, multiple trained priors. During
transfer, πH , is reinitialized.

2:
3: # Behavioral Cloning
4: Initialize: policy π, prior π0, replay Rbc, DAGGER

rate r, environment env
5: for Number of BC training steps do
6: Rbc, env← collect(π, Rbc, env, True, r)
7: π, π0← BC update(π, π0, Rbc) # Eq. 4
8: end for
9: # Reinforcement Learning

10: Initialize: high level policy πH , critics Qk∈{1,2}, re-
play Rrl, transfer environment envt

11: for Number of RL training steps do
12: Rrl, envt← collect(π, Rrl, envt)
13: πH ← RL policy update(π, π0, Rrl) # Eq. 3
14: Qk ← RL critic update(Qk, π, Rrl) # Eq. 9
15: end for

Algorithm 2 collect

1: # Collects experience from either πi
or πe, applying DAGGER at a given
rate if instructed, and updates Rj ,
env accordingly.

2: function COLLECT(πi, Rj , env,
dag=False, r=1)

3: x← env.observation()
4: πe ← env.expert()
5: ai ← πi(x)
6: ae ← πe(x)
7: a← Bernoulli([ai, ae], [r, 1 - r])
8: x′, rk, env ← env.step(a)
9: if dag then

10: af ← ae
11: else
12: af ← ai
13: end if
14: Rj ← Rj .update(x,af ,rk,x′)
15: return Rj , env
16: end function

A.2 VARIATIONAL BEHAVIORAL CLONING AND REINFORCEMENT LEARNING

In the following section, we omit APES’ specific information gating function objective IGF (xk) for
simplicity and generality. Nevertheless, it is trivial to extend the following derivations to APES.

Behavioral Cloning (BC) and KL-Regularized RL, when considered from the variational-inference
perspective, share many similarities. These similarities become even more apparent when dealing
with hierarchical models. A particularly unifying choice of objective functions for BC and RL that fit
with off-policy, generative, hierarchical RL: desirable for sample efficiency, are:

Lbc(π, {πi}i∈I) = −
∑
i∈I

DKL (π(τ) ∥ πi(τ)), Lrl(π, {πi}i⊂I) = Eπ(τ)[R(τ)]+Lbc(π, {πi}i⊂I)

(5)

Lbc, corresponds to the KL-divergence between trajectories from the policy, π, and various priors,
πi. For BC, i ∈ {0, u, e}, denote the learnt, uniform, and expert priors. For BC, in practice, we train
multiple priors in parallel: π0 = {πi}i∈{0,...,N}. We leave this notation out for the remainder of this
section for simplicity. When considering only the expert prior, this is the reverse KL-divergence,
opposite to what is usually evaluated in the literature, (Pertsch et al., 2020). Lrl, refers to a lower
bound on the expected optimality of each prior log pπi

(O = 1); O denoting the event of achieving
maximum return (return referred to as R(.)); refer to (Abdolmaleki et al., 2018), appendix B.4.3
for proof, further explanation, and necessary conditions. During transfer using RL, we do not have
access to the expert or its demonstrations (i ⊂ I := i ∈ {0, u}).
For hierarchical policies, the KL terms are not easily evaluable. DKL (π(τ) ∥ πi(τ)) ≤∑

t Eπ(τ)

[
DKL

(
πH(zt|xk)

∥∥ πH
i (zt|xk)

)
+ EπH(zt|xk)

[
DKL

(
πL(at|xk, zt)

∥∥ πL
i (at|xk, zt)

)]]
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2 (Tirumala et al., 2019), is a commonly chosen upper bound. If sharing modules, e.g. πL
i = πL, or

using non-hierarchical networks, this bound can be simplified (removing the second or first terms
respectively). To make both Eq. (5) amendable to off-policy training (experience from {πe, πb}, for
BC/RL respectively; πb representing behavioral policy), we introduce importance weighting (IW),
removing off-policy bias at the expense of higher variance. Combining all the above with additional
individual term weighting hyperparameters, {βz

i , β
a
i }, we attain:

D̃
q(τ)
KL (π(τ)||πi(τ)) := Eq(τ)

[∑
t

νq[t] ·
(
βz
i · Ci,h(zt|xk) + βa

i · EπH(zt|xk) [Ci,l(at|xk, zt)]
)]

ζni =
EπH(zi|xi,k)

[
πL (ai|xi, zi, k)

]
n(ai|xi, k)

, νn =

[
ζn1 , ζ

n
1 ζ

n
2 , . . . ,

τt∏
i=1

ζni

]
, Cµ,ϵ(y) = log

(
πr
ϵ (y)

πr
µ,ϵ(y)

)
−DKL(π(τ)||πe(τ)) ≥ −

∑
i∈{0,u,e}

D̃
πe(τ)
KL (π(τ)||πi(τ)) (6)

Ep(K),
π0(τ)

[log(O = 1|τ, k)] ≥ Eπb(τ)

[∑
t

νπb [t] · rk(xt,at)

]
−

∑
i∈{0,u}

D̃
πb(τ)
KL (π(τ)||πi(τ)) (7)

Where D̃
q(τ)
KL (π(τ)||πi(τ)) (for {βz

i , β
a
i } = 1) is an unbiased estimate for the aforementioned upper

bound, using q’s experience. ζni is the IW for timestep i, between π and arbitrary policy n. νn[t] is
the tth element of νn; the cumulative IW product at timestep t. Equations 6, 7 are the BC/RL lower
bounds used for policy gradients. See Appendix B.4 for a derivation, and necessary conditions, of
these bounds. For BC, this bounds the KL-divergence between hierarchical and expert policies, π, πe.
For RL, this bounds the expected optimality, for the learnt prior policy, π0. Intuitively, maximising
this particular bound, maximizes return for both policy and prior, whilst minimizing the disparity
between them. Regularising against an uninformative prior, πu, encourages highly-entropic policies,
further aiding at exploration and stabilising learning (Igl et al., 2019).

In RL, IWs are commonly ignored (Lillicrap et al., 2015; Abdolmaleki et al., 2018; Haarnoja et al.,
2018b), thereby considering each sample equally important. This is also convenient for BC, as
IWs require the expert probability distribution: not usually provided. We did not observe benefits
of using them and therefore ignore them too. We employ module sharing (πL

i = πL; unless
stated otherwize), and freeze certain modules during distinct phases, and thus never employ more
than 2 hyperparameters, β, at any given time, simplifying the hyperparameter optimisation. These
weights balance an exploration/exploitation trade-off. We use a categorical latent space, explicitly
marginalising over, rather than using sampling approximations (Jang et al., 2016). For BC, we train
for 1 epoch (referring to training in the expectation once over each sample in the replay buffer).

A.3 CRITIC LEARNING

The lower bound presented in Eq. (7) is non-differentiable due to rewards being sampled from the
environment. Therefore, as is common in the RL literature (Mnih et al., 2015; Lillicrap et al., 2015),
we approximate the return of policy π with a critic, Q. To be sample efficient, we train in an off-policy
manner with TD-learning (Sutton, 1988) using the Retrace algorithm (Munos et al., 2016) to provide
a low-variance, low-bias, policy evaluation operator:

Qret
t := Q

′
(xt,at, k) +

∞∑
j=t

ϵtj

[
rk(xj ,aj) + E πH(z|xj+1,k),

πL(a′|xj+1,z,k)

[
Q

′
(xj+1,a

′, k)
]
−Q

′
(xj ,aj , k)

]
(8)

L(Q) = Ep(K),
πb(τ)

[
(Q(xt,at, k)− argmin

Qret
t

(Qret
t ))2

]
ϵtj = γj−t

j∏
i=t+1

ζbi (9)

2For proof refer to Appendix B.3

15



Published as a conference paper at ICLR 2023

Where Qret
t represents the policy return evaluated via Retrace. Q

′
is the target Q-network, commonly

used to stabilize critic learning (Mnih et al., 2015), and is updated periodically with the current Q
values. IWs are not ignored here, and are clipped between [0, 1] to prevent exploding gradients,
(Munos et al., 2016). To further reduce bias and overestimates of our target, Qret

t , we apply the double
Q-learning trick, (Hasselt, 2010), and concurrently learn two target Q-networks, Q

′
. Our critic is

trained to minimize the loss in Eq. (9), which regularizes the critic against the minimum of the two
targets produced by both target networks.

B THEORY AND DERIVATIONS

In this section we provide proofs for the theory introduced in the main paper and in Appendix A.

B.1 THEOREM 1.

Theorem 1. The more random variables a network depends on, the larger the covariate shift (input
distributional shift, here represented by KL-divergence) encountered across sequential tasks. That is,
for distributions p, q

DKL (p(b) ∥ q(b)) ≥ DKL (p(c) ∥ q(c))
with b = (b0, b1, ..., bn) and c ⊂ b.

(10)

Proof

DKL (p(b) ∥ q(b)) = Ep(b)

[
log

(
p(b)

q(b)

)]
= Ep(d|c)·p(c)

[
log

(
p(d|c) · p(c)
q(d|c) · q(c)

)]
with d ∈ b⊕ c

= Ep(c)

[
Ep(d|c) [1] · log

(
p(c)

q(c)

)]
+ Ep(c)

[
Ep(d|c)

[
log

(
p(d|c)
q(d|c)

)]]
= DKL (p(c) ∥ q(c)) + Ep(c) [DKL (p(d|c) ∥ q(d|c))]
≥ DKL (p(c) ∥ q(c)) given Ep(c) [DKL (p(d|c) ∥ q(d|c))] ≥ 0

(11)

B.2 THEOREM 2.

Theorem 2. The more random variables a network depends on, the greater its ability to distil
knowledge in the expectation (output distributional shift between network and target distribution,
here represented by the expected KL-divergence). That is, for target distribution p and network q
with outputs a and possible inputs b, c, d, such that b = (b0, b1, ..., bn) and d ⊂ c ⊂ b

Eq(e|d) [DKL (p(a|b) ∥ q(a|c))] ≤ DKL (p(a|b) ∥ q(a|d)) with e ∈ d⊕ c (12)

Proof

DKL (p(a|b) ∥ q(a|d)) = Ep(a|b)

[
log

(
p(a|b)
q(a|d)

)]
= Ep(a|b)

[
log p(a|b)− logEq(e|d) [q(a|c)]

]
with e ∈ d⊕ c

≥ Ep(a|b)·q(e|d)

[
log

(
p(a|b)
q(a|c)

)]
given Jensen’s Inequality

= Eq(e|d) [DKL (p(a|b) ∥ q(a|c))]

(13)

B.3 HIERARCHICAL KL-DIVERGENCE UPPER BOUND

All proofs in this section ignore multi-task setup for simplicity. Extending to this scenario is trivial.
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Upper Bound

DKL (π(τ) ∥ πi(τ)) ≤
∑
t

Eπ(τ)[DKL

(
πH(zt|xt)

∥∥ πH
i (zt|xt)

)
+ EπH(zt|xt)

[
DKL

(
πL(at|xt, zt)

∥∥ πL
i (at|xt, zt)

)]
]

(14)

Proof

DKL (π(τ) ∥ πi(τ)) = Eπ(τ)

[
log

(
π(τ)

πi(τ))

)]
= Eπ(τ)

[
log

(
p(s0) ·

∏
t p(st+1|xt,at) · π(at|xt)

p(s0) ·
∏

t p(st+1|xt,at) · πi(at|xt)

)]
= Eπ(τ)

[
log

(∏
t

π(at|xt)

πi(at|xt)

)]
=

∑
t

Eπ(τ) [DKL (π(at|xt) ∥ πi(at|xt))]

≤
∑
t

Eπ(τ)[DKL (π(at|xt) ∥ πi(at|xt))+

Eπ(at|xt) [DKL (π(zt|xt,at) ∥ π(zt|xt,at))]]

=
∑
t

Eπ(τ)

[
Eπ(at,zt|xt)

[
log

(
π(at|xt)

πi(at|xt)

)
+ log

(
π(zt|xt,at)

πi(zt|xt,at)

)]]
= Eπ(τ) [DKL (π(at, zt|xt) ∥ πi(at, zt|xt))]

=
∑
t

Eπ(τ)[DKL

(
πH(zt|xt)

∥∥ πH
i (zt|xt)

)
+ EπH(zt|xt)

[
DKL

(
πL(at|xt, zt)

∥∥ πL
i (at|xt, zt)

)]
]

(15)

B.4 POLICY GRADIENT LOWER BOUNDS

B.4.1 IMPORTANCE WEIGHTS DERIVATION

D̃
q(τ)
KL (π(τ)||πi(τ)) = ub(DKL (π(τ) ∥ πi(τ))) (16)

For βz
i , β

a
i = 1, where ub(DKL (π(τ) ∥ πi(τ))) corresponds to the hierarchical upper bound intro-

duced in Appendix A.2.

Proof

ub(DKL (π(τ) ∥ πi(τ))) =
∑
t

Eπ(τ)[DKL

(
πH(zt|xt)

∥∥ πH
i (zt|xt)

)
+ EπH(zt|xt)

[
DKL

(
πL(at|xt, zt)

∥∥ πL
i (at|xt, zt)

)]
]

=
∑
t

E
q(τ)·π(τ)

q(τ)

[DKL

(
πH(zt|xt)

∥∥ πH
i (zt|xt)

)
+ EπH(zt|xt)

[
DKL

(
πL(at|xt, zt)

∥∥ πL
i (at|xt, zt)

)]
]

=
∑
t

E
q(τ)·

∏t
i=0

π(ai|xi)

q(ai|xi)

[DKL

(
πH(zt|xt)

∥∥ πH
i (zt|xt)

)
+ EπH(zt|xt)

[
DKL

(
πL(at|xt, zt)

∥∥ πL
i (at|xt, zt)

)]
]

= D̃
q(τ)
KL (π(τ)||πi(τ))

(17)
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B.4.2 BEHAVIORAL CLONING UPPER BOUND

−DKL(π(τ)||πe(τ)) ≥ −
∑

i∈{0,u,e}

D̃
πe(τ)
KL (π(τ)||πi(τ))

for βz
i , β

a
i ≥ 1

(18)

Proof
DKL (π(τ) ∥ πe(τ)) ≤

∑
i∈{0,u,e}

DKL (π(τ) ∥ πi(τ))

≤
∑

i∈{0,u,e}

ub(DKL (π(τ) ∥ πi(τ)))

=
∑

i∈{0,u,e}

D̃
q(τ)
KL (π(τ)||πi(τ)) for βz

i , β
a
i = 1

≤
∑

i∈{0,u,e}

D̃
q(τ)
KL (π(τ)||πi(τ)) for βz

i , β
a
i ≥ 1

(19)

The last line holds true as each weighted term in D̃
q(τ)
KL (π(τ)||πi(τ)) corresponds to KL-divergences

which are positive.

B.4.3 REINFORCEMENT LEARNING UPPER BOUND

Ep(K),
π0(τ)

[log(O = 1|τ, k)] ≥ Eπb(τ)

[∑
t

νπb [t] · rk(xt,at)

]
−

∑
i∈{0,u}

D̃
πb(τ)
KL (π(τ)||πi(τ))

for βz
i , β

a
i ≥ 1 and rk < 0

(20)

Proof

Ep(K),
π0(τ)

[log(O = 1|τ, k)] ≥ Eπb(τ)

[∑
t

νπb [t] · rk(xt,at)

]
−DKL (π(τ) ∥ πi(τ))

≥ Eπb(τ)

[∑
t

νπb [t] · rk(xt,at)

]
− D̃

πb(τ)
KL (π(τ)||πi(τ)), for βz

i , β
a
i = 1

≥ Eπb(τ)

[∑
t

νπb [t] · rk(xt,at)

]
− D̃

πb(τ)
KL (π(τ)||πi(τ)), for βz

i , β
a
i ≥ 1

≥ Eπb(τ)

[∑
t

νπb [t] · rk(xt,at)

]
−

∑
i∈{0,u}

D̃
πb(τ)
KL (π(τ)||πi(τ)),

for βz
i , β

a
i ≥ 1

(21)

For line 1 proof see (Abdolmaleki et al., 2018). The final 2 lines hold due to positive KL-divergences.

C ENVIRONMENTS

Here we cover each environment setup in detail, including the expert setup used for data collection.

C.1 CORRIDORMAZE

Intuitively, the agent starts at the intersection of corridors, at the origin, and must traverse corridors,
aligned with each dimension of the observation space, in a given ordering. This requires the agent to
reach the end of the corridor (which we call half-corridor cycle), and return back to the origin, before
the corridor is considered complete.

18



Published as a conference paper at ICLR 2023

s ∈ {0, l}c, p(s0) = 0c, k = one-hot task encoding, a ∈ [0, 1], rsemi-sparse
k (xt,at) = 1 if

agent has correctly completed the entire or half-corridor cycle else 0, rsparse
k (xt,at) =

1 if task complete else 0. Task is considered complete when a desired ordering of corri-
dors have been traversed. c = 5 represents the number of corridors in our experiments. l = 6,
the lengths of each corridor. Observations transition according to deterministic transition function
sjtt+1 = f(sjtt ,at). jt corresponds to the index of the current corridor that the agent is in (i.e. jt = 0

if the agent is in corridor 0 at timestep t). si corresponds to the ith dimension of the observation.
Observations transition incrementally or decrementally down a corridor, and given observation dimen-
sion si, if actions fall into corresponding transition action bins ψinc, ψdec. We define the transition
function as follows:

f(sjtt ,at) =

 sjtt + 1, if ψw
inc(at, jt).

sjtt − 1, elif ψw
dec(at, jt).

0, otherwise.
(22)

ψw
inc(at, j) = bool(at in [j/c, (j + 0.5 ·w)/c]), ψw

dec(at, j) = bool(at in [j/c, (2 · j − 0.5 ·w)/c]).
The smaller the w parameter, the narrower the distribution of actions that lead to transitions. As such,
w, together with rk controls the exploration difficulty of task k. We set w = 0.9. We constrain the
observation transitions to not transition outside of the corridor boundaries. Furthermore, if the agent
is at the origin, s = 0c (at the intersection of corridors), then the transition function is ran for all
values of jt, thereby allowing the agent to transition into any corridor.

C.1.1 EXPERT SETUP

The expert samples actions uniformly within the optimal action bin range, from Eq. (22), that leads
to the optimal state transition, traversing the correct corridor in the correct direction, according to the
task, which corridors have been traversed, and which remain.

C.2 STACK

This domain is adapted from the well known gym robotics FetchPickAndPlace-v0 environment
(Plappert et al., 2018). The following modifications were made: 1) 3 additional blocks were in-
troduced, with different colours, and a goal pad, 2) object spawn locations were not randomized
and were instantiated equidistantly around the goal pad, see Fig. 2, 3) the number of substeps was
increased from 20 to 60, as this reduced episodic lengths, 4) a transparent hollow rectangular tube
was placed around the goal pad, to simplify the stacking task and prevent stacked objects from
collapsing due to structural instabilities, 5) the arm was always spawned over the goal pad, see
figure Fig. 2, 6) the observation space corresponded to gripper position and grasp state, as well
as the object positions and relative positions with respect to the arm: velocities were omitted as
access to such information may not be realistic for real robotic systems. k = one-hot task encoding,
rsparse
k (xt,at) = 1 if correct object has been placed on stack in correct ordering else 0.

C.2.1 EXPERT SETUP

The expert is set up to stack the blocks in the given ordering. Each individual block stacking cycle
consists of six segments: 1) Move the gripper position to a target location 20cm directly above the
block, keeping the gripper open; 2) Vertically lower the gripper to 5mm over the block, keeping the
gripper open; 3) Close the gripper until the object is grasped; 4) Vertically raise the gripper to 20cm
above the initial block position, keeping the gripper closed; 5) Move the gripper to target location
20cm above the target pad, with the gripper closed; 6) Open the gripper until the object is dropped
onto the target pad.

We use Mujoco’s (Todorov et al., 2012) PD controller, given target relative desired gripper position,
which coupled with Mujoco’s inverse kinematics model, produces desired actions. We apply gains of
21 to these actions. One the target location is reached for a given stage, we proceed to the next. When
opening or closing the gripper we apply actions of 0.05,−0.1, for stages 3 and 6. For stage 3, we
continue closing the gripper until there are contact forces between the gripper and cube. For stage 6,
we continue opening the gripper until the block has dropped such that it is within 14cm of the target
pad. To prevent fully deterministic samples, which can be problematic for behavioural cloning, we
inject noise into the expert actions. Specifically, we add Gaussian noise with a diagonal covariance
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Table 5: Feedforward Module, π{H,L}
(0)

hidden layers (512, 512)
hidden layer activation relu
output activation linear

Table 6: Full experimental setup. Describes inputs to each module, level over which KL-regularization
occurs, which modules are shared, and which are reused across training and transfer tasks.

Name learn m πH
0 πL

0 πL πH KL level πL = πL
0 reused modules

APES ✓ xt−20:t st st xk z ✓ πH
0 , πL

0 , π
L

APES-H20 ✗ xt−20:t st st xk z ✓ πH
0 , πL

0 , π
L

APES-H10 ✗ xt−10:t st st xk z ✓ πH
0 , πL

0 , π
L

APES-H1 ✗ xt−1:t st st xk z ✓ πH
0 , πL

0 , π
L

APES-S ✗ st st st xk z ✓ πH
0 , πL

0 , π
L

APES-no prior - st xk πL

Hier-RecSAC - st xk

RecSAC - xk

APES-H1-KL-a ✗ xt−1:t st st xk a ✗ πH
0 , πL

0

APES-H1-flat ✗ xt−1:t st xk a ✗ πL
0

and standard deviation of 0.2 per dimension. We do not apply noise to the gripper closing or opening
actions.

D EXPERIMENTAL SETUP

We provide the reader with the experimental setup for all training regimes and environments below.
We build off the softlearning code base (Haarnoja et al., 2018b). Algorithmic details not mentioned in
the following sections are omitted as are kept constant with the original code base. For all experiments,
we sample batch size number of entire episodes of experience during training.

D.1 MODEL ARCHITECTURES

We continue by outlining the shared model architectures across domains and experiments. Each
policy network (e.g. πH , πL, πH

0 , π
L
0 ) is comprized of a feedforward module outlined in Table 5.

The softlearning repository that we build off (Haarnoja et al., 2018b), applies tanh activation over
network outputs, where appropriate, to match the predefined outpute ranges of any given module.
The critic is also comprized of the same feedforward module, but is not hierarchical. To handle
historical inputs, we tile the inputs and flatten, to become one large input 1-dimensional array. We
ensure the input always remains of fixed size by appropriately left padding zeros. For πH , πH

0 we use
a categorical latent space of size 10. We found this dimensionality sufficed for expressing the diverse
behaviours exhibited in our domains. Table 6 describes the setup for all the experiments in the main
paper, including inputs to each module, level over which KL-regularization occurs (z or a), which
modules are shared (e.g. πL and πL

0 ), and which modules are reused across sequential tasks. For
the covariate-shift designed experiments in Table 8, we additionally reuse πH (or πL for RecSAC)
across domains, and whose input is xt. For all the above experiments, any reused modules are not
given access to task-dependent information, namely task-id (k) and exteroceptive information (cube
locations for Stack domain). This choice ensures reused modules generalize across task instances.

D.2 BEHAVIOURAL CLONING

For the BC setup, we use a deterministic, noisy, expert controller to create experience to learn off.
We apply DAGGER (Ross et al., 2011) during data collection and training of policy π as we found
this aided at achieving a high success rate at the BC tasks. Our DAGGER setup intermittently during
data collection, with a predefined rate, samples an action from π instead of πe, but still saves BC
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target action at as the one that would have been taken by the expert for xk. This setup helps mitigate
covariate shift during training, between policy and expert. Noise levels were chosen to be small
enough so that the expert still succeeded at the task. We trained our policies for one epoch (once over
each collected data sample in the expectation). It may be possible to be more sample efficient, by
increasing the ratio of gradient steps to data collection, but we did not explore this direction. The
interplay we use between data collection and training over the collected experience, is akin to the RL
paradigm. We build off the softlearning code base (Haarnoja et al., 2018b), so please refer to it for
details regarding this interplay.

Table 7: Full Training Setup

(a) Behavioural Cloning Setup

Environment CorridorMaze Stack

π(i) learning rate 3e−4 3e−4

z categorical size 10 10
πH history-depth 24 5
βz
u 1e−3 1e−3

βa
u 1e−2 1e−2

βa
e 1 1

βz
0 = βa

0 1 1
αm 1e−1 1e−1

DAGGER rate 0.1 0.1
batch size 128 128
episodic length 24 35

(b) Reinforcement Learning Setup

Environment CorridorMaze Stack

Reward Type sparse semi-sparse sparse

Transfer task 2 corridor 4 corridor 4 blocks

Q learning rate 3e−6 3e−5 3e−5

π learning rate 3e−4 3e−4 3e−4

β
z/a
0 1e−2 1e−1 5e−2

β
z/a
u 1e−2 0 5e−4

Q update rate 6e−4 6e−4 6e−4

Retrace λ 0.99 0.99 0.99
batch size 128 128 128
episodic length 30 60 65

Refer to Table 7a for BC algorithmic details. It is important to note here that, although we report
five β hyper-parameter values, there are only two degrees of freedom. As we stop gradients flowing
from π0 to π, choice of β0 is unimportant (as long as it is not 0) as it does not influence the interplay
between gradients from individual loss terms. We set these values to 1. βa

e ’s absolute value is also
unimportant, and only its relative value compared to βz

u and βa
u matters. We also set βa

e to 1. For
the remaining two hyper-parameters, βz

u, β
a
u, we performed a hyper-parameter sweep over three

orders of magnitude, three values across each dimension, to obtain the reported optimal values. In
practice π0 = {πi}i∈{0,...,N}, multiple trained priors each sharing the same β0 hyper-parameters.
For αm, denoting the hyper-paramter in Equation (3) weighing the relative contribution of the πH

0 ’s
self-attention entropy objective IGF (xk) with relation to the remainder of the RL/BC objectives,
we performed a sweep over three ordered of magnitude (1e0, 1e−1, 1e−2). This sweep was ran
independent of all the other sweeps, using the optimal setup for all other hyper-parameters. We chose
the hyper-parameter with lowest DKL(π

H ||πH
0 ), H(m) combination. Four seeds were ran, as for

all experiments. We observed very small variation in learning across the seeds, and used the best
performing seed to bootstrap off for transfer. We separately also performed a hyper-parameter sweep
over π learning rate, in the same way as before. We did not perform a sweep for batch size. We found
for both BC and RL setups, that conditioning on entire history for πH was not always necessary, and
sometimes hurt performance. We state the history lengths used for πH for BC in Table 7a. This value
was also used for both πH and Q for the RL setup.

We prevent gradient flow from π0 to π, to ensure as fair a comparison between ablations as possible:
each prior distils knowledge from the same, high performing, policy π and dataset. If we simulta-
neously trained multiple π and π0 pairs (for each distinct prior), it is possible that different learnt
priors would influence the quality of each policy π which knowledge is distilled off. In this paper, we
are not interested in investigating how priors affect π during BC, but instead how priors influence
what knowledge can be distilled and transferred. We observed prior KL-distillation loss convergence
across tasks and seeds, ensuring a fair comparison.

D.3 REINFORCEMENT LEARNING

During this stage of training we freeze the prior and low-level policy (if applicable, depending on
the ablation). In general, any reused modules across sequential tasks are frozen (apart from πH for
the covariate shift experiments in Table 8). Any modules that are not shared (such as πH for most
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experiments), are initialized randomly across tasks. The RL setup is akin to the softlearning repository
(Haarnoja et al., 2018b) that we build off. We note any changes in Table 7b. We regularize against
the latent or action level for, depending on the ablation, whether or not our models are hierarchical,
share low level policies, or use pre-trained modules (low-level policy and prior). Therefore, we only
ever regularize against, at most, two β hyper-parameters. Hyper-parameter sweeps are performed in
the same way as previously. We did not sweep over Retrace λ, batch size, or episodic length. For
Retrace, we clip the importance weights between [0, 1], like in Munos et al. (2016), and perform λ
returns rather than n-step. We found the Retrace operator important for sample-efficient learning.

E FINAL POLICY ROLLOUTS AND ANALYSIS

E.1 ATTENTION ANALYSIS

Figure 7: APES attention for πH
0 , plotted as log10(m), for each

domain (key on right; red and blue as high and low values). APES
learns sparse, domain dependent, attention.

We plot the full attention maps
for APES in Figure 7, including
intra- observation and action at-
tention. For CorridorMaze, at-
tention is primarily paid to the
most recent action at. For most
observations in the environment
(excluding end of the corridor
or corridor intersection observa-
tions), conditioning on the pre-
vious action suffices to infer the
optimal next action (e.g. continue traversing the depths of a corridor). Therefore, it is understandable
that APES has learnt such an attention mechanism. For the remainder of the environment observations
(such as corridor ends), conditioning on (a history of) observations is necessary to infer optimal
behaviour. As such APES pays some attention to observations. For Stack, attention is primarily paid
to a short recent history of actions, with the weights decaying further into the past. Interestingly,
attention over actions corresponding to opening/closing the gripper (the bottom row of Figure 7) decay
a lot quicker, suggesting that this information is redundant. This makes sense, as there exists strong
correlation between gripper actions at successive time-steps, but this correlation decays very quickly.
Additionally, APES does not pay attention to observations corresponding to gripper position (the final
3 observation rows in Figure 7), as this can be inferred from the remainder of the observation-space
as well as the recent history of gripper actions.

E.2 COVARIATE SHIFT ANALYSIS

Table 8: Covariate Shift Analysis. In general, reduced
IA benefits more from reduced covariate shift. Sparse
domains suffer more from shift, seen by clearer IA co-
variate trends.

CorridorMaze Stack

interpolate extrapolate extrapolate

sparse semi-sparse sparse

Approach 2 corridor 4 corridor 4 blocks

APES-H20 0.28 ± 0.03 0.12 ± 0.22 0.84 ± 0.06
APES-H10 0.24 ± 0.07 0.62 ± 0.30 1.20 ± 0.31
APES-H1 0.13 ± 0.02 0.34 ± 0.32 0.22 ± 0.24
APES-S 0.00 ± 0.00 0.48 ± 0.21 0.00 ± 0.17

APES-no prior 0.00 ± 0.00 0.09 ± 0.08 0.49 ± 0.26
Hier-RecSAC 0.00 ± 0.00 0.02 ± 0.03 0.00 ± 0.01
RecSAC 0.00 ± 0.00 0.27 ± 0.13 0.19 ± 0.05

Expert 0 0 0

In Table 8 we report additional return
(over a randomly initialised πH ) achieved
by pre-training (over psource(K)) and
transferring a task-agnostic high-level pol-
icy πH during transfer (ptrans(K)). For
experiments that are not hierarchical we
pre-train an equivalent non-hierarchical
agent. Theorem 3.1 suggests we would
expect a larger improvement in transfer
performance for priors that condition on
more information. Table 8 confirms this
trend demonstrating the importance of
prior covariate shift in transferability of
behaviours. This trend is less apparent for
the semi-sparse domain. Additionally, for
the interpolated transfer task (2 corridor),
the solution is entirely in the support of the training set of tasks. Naı̈vely, one would expect pre-
training to fully recover lost performance and match the most performant method. However, this
is not the case as the critic, trained solely on the transfer task, quickly encourages sub-optimal
out-of-distribution behaviours.
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CorridorMaze 4 Corridor
rollout

Figure 8: CorridorMaze 4 corridor. 10
final policy rollouts (episodes vertically,
rollouts horizontally) for most performant
method. Task: (Blue, Orange, Green,
Red) corridors. Policy distribution over
categorical latent space for πH and
πH
0 plotted (between policy rollouts,

denoted by xt) as vertical histograms,
with colour and width denoting category
and probability.

E.3 FINAL POLICY ROLLOUTS

In this section, we show final policy performance (in terms of episodic rollouts) for APES-H1, across
each transfer domain. We additionally display the categorical probability distributions for πH(xk)
and πH

0 (F (xk)) across each rollout to analyse the behaviour of each. F (.) denotes the chosen
information gating function for the prior (referred to as IGF (.) in the main text). For CorridorMaze
2 and 4 corridor, seen in Figs. 8 and 9(a), we see that the full method successfully solves each
respective task, correctly traversing the correct ordering of corridors. The categorical distributions for
these domains remain relatively entropic. In general, latent categories cluster into those that lead the
agent deeper down a corridor, and those that return the agent to the hallway. Policy and prior align
their categorical distributions in general, as expected. Interestingly, however, the two categorical
distributions deviate the most from each-other at the hallway, the bottleneck state (Sutton et al., 1999),
where prior multimodality (for hierarchical π0) exists most (e.g. which corridor to traverse next). In
this setting, the policy needs to deviate from the multimodal prior, and traverse only the optimal next
corridor. We also observe, for the hallway, that the prior allocates one category to each of the five
corridors. Such behaviour would not be possible with a flat prior.

Fig. 9(b) plots the same information for Stack 4 blocks. APES-H1 successfully solves the transfer task,
stacking all blocks according to their masses. Similar categorical latent-space trends exist for this
domain as the previous. Most noteworthy is the behaviour of both policy and prior at the bottleneck
state, the location above the block stack, where blocks are placed. This location is visited five times
within the episode: at the start s0, and four more times upon each stacked block. Interestingly, for this
state, the prior becomes increasingly less entropic upon each successive visit. This suggests that the
prior has learnt that the number of feasible high-level actions (corresponding to which block to stack
next), reduces upon each visit, as there remains fewer lighter blocks to stack. It is also interesting
that for s0, the red categorical value is more favoured than the rest. Here, the red categorical value
corresponds to moving towards cube 0, the heaviest cube. This behaviour is as expected, as during
BC, this cube was stacked first more often than the others, given its mass. For this domain, akin to
CorridorMaze, the policy deviates most from the prior at the bottleneck state, as here it needs to
behave deterministically (regrading which block to stack next).
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CorridorMaze 4 Corridor

rollout

((a)) CorridorMaze 2 corridor. 10 final policy rollouts
(episodes vertically, rollouts horizontally) for most perfor-
mant method. Task: (Blue, Orange) corridors. Policy dis-
tribution over categorical latent space for πH and πH

0 plot-
ted (between policy rollouts, denoted by xt) as vertical
histograms, with colour and width denoting category and
probability. Colour here does not correlate to corridor.

rollout
((b)) Stack 4 blocks. Top) Policy rollouts for most
performant method. Task: stack blocks in order
(0, 1, 2, 3). Bottom) policy distributions akin to
Fig. 9(a). Horizontal dashed lines in bottom plots
refer to current sub-task (block stack), vertically
transitioning upon each completion.

Figure 9: Final transfer performance for most performant method. Tasks are solved. Displaying
latent distribution for both policy and prior. For both domains, policy deviates most from prior at the
bottleneck state (hallway/stacking zone, for CorridorMaze/Stack), where prior multimodality exists
(e.g. which corridor/block to stack next), but where determinism is required for the task at hand.

Figure 10: Typical policy rollout, early during training, for APES on Stack 4 blocks. We plot
snapshots of a single typical policy rollout early during training. Video snapshots unroll left-to-right,
top-to-bottom. APES explores at the individual block stacking level.
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