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ABSTRACT
Federated Learning aims to learn a global model on the server side
that generalizes to all clients in a privacy-preserving manner, by
leveraging the local models from different clients. Existing solutions
focus on either regularizing the objective functions among clients
or improving the aggregation mechanism for the improved model
generalization capability. However, their performance is typically
limited by the dataset biases, such as the heterogeneous data distri-
butions and the missing classes. To address this issue, this paper
presents a cross-silo prototypical calibration method (FedCSPC),
which takes additional prototype information from the clients to
learn a unified feature space on the server side. Specifically, FedC-
SPC first employs the Data Prototypical Modeling (DPM) module to
learn data patterns via clustering to aid calibration. Subsequently,
the cross-silo prototypical calibration (CSPC) module develops an
augmented contrastive learning method to improve the robust-
ness of the calibration, which can effectively project cross-source
features into a consistent space while maintaining clear decision
boundaries. Moreover, the CSPC module’s ease of implementation
and plug-and-play characteristics make it even more remarkable.
Experiments were conducted on four datasets in terms of perfor-
mance comparison, ablation study, in-depth analysis and case study,
and the results verified that FedCSPC is capable of learning the
consistent features across different data sources of the same class
under the guidance of calibrated model, which leads to better per-
formance than the state-of-the-art methods. The source codes have
been released at https://github.com/qizhuang-qz/FedCSPC.
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1 INTRODUCTION
Federated learning has gained significant attention for addressing
data silos in scenarios where data sources are dispersed and diffi-
cult to share. It enables multiple parties to collaboratively train a
model without sharing their data and aims to aggregate the local
models obtained from the parties to generate a global model with
generalization capability [26, 32, 37]. However, the vulnerability
of the federated model when confronted with heterogeneous data
distribution patterns across clients has been highlighted in recent
research [6, 38, 44]. This is mainly due to the bias in optimiza-
tion objectives among the data sources, which makes it difficult to
aggregate multiple ill-posed learners into an excellent model.

To mitigate the challenge of heterogeneous data distribution,
three main approaches have been developed: data sharing, miti-
gating the local drift on the client side and optimizing the aggre-
gation scheme on the server. The first method involves the use of
public or synthetic datasets to create balanced data distributions,
which can be beneficial in guiding clients to build unbiased models
[9, 17]. The second approach typically utilizes global information
as a regularizer to guide the learning process of each client, with
the purpose of promoting model output consistency among clients
[7, 11, 16, 18, 19, 56]. And these methods can also be divided into
three subcategories: parameter-based [7, 19], feature-based [18, 56],
and prediction-based [11, 16]. The third method considers that
directly averaging parameters of local models will lead to a perfor-
mance decline. They either design novel strategies to enhance the
aggregation phase (such as FedMA [46], FedNova [47].) or retrain
the global classifier using virtual representations (CCVR [27]). How-
ever, the heterogeneity of data distribution across sources results
in inconsistent feature spaces, which leads to difficulties in training
a model to fit data from all clients.
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Figure 1: Motivation of FedCSPC. It calibrates the representa-
tion space of heterogeneous clients on the server side, which
improves the generalization capability of the global model.

To address this problem, this paper presents a novel Cross-Silo
Prototypical Calibration method, termed FedCSPC. As illustrated in
Figure 1, compared with conventional federated learning method,
the proposed FedCSPC performs prototypical calibration, which can
map representations from different feature spaces to a unified space
while maintaining clear decision boundaries. Specifically, FedC-
SPC has two main modules: the Data Prototypical Modeling (DPM)
module and the Cross-Silo Prototypical Calibration (CSPC) module.
To promote the alignment of features across different spaces, the
DPM module employs clustering to model the data patterns and
provides prototypical information to the server to assist with model
calibration. Subsequently, to enhance the robustness of calibration,
FedCSPC develops an augmented contrastive learning method in
the CSPCmodule, which increases sample diversity by positive mix-
ing and hard negative mining, and implements contrastive learning
to achieve effective alignment of cross-source features. Meanwhile,
the calibrated prototypes form a knowledge base in a unified space
and generate knowledge-based class predictions to reduce errors.
Notably, the CSPC module is a highly adaptable tool that easily inte-
grates into various algorithms. As observed, FedCSPC is capable of
alleviating the feature gap between data sources, thus significantly
improving the generalization ability.

Experiments are conducted on four datasets in terms of per-
formance comparison, ablation study of the key components of
FedCSPC, in-depth analysis and case study for the effectiveness of
cross-source calibration and error analysis of FedCSPC. The results
verify that FedCSPC can calibrate heterogeneous representations
from different sources into a unified space via CSPC, which can
mitigate the negative impact of data heterogeneity. Moreover, the
error analysis reveals the potential sources of error in FedCSPC
and provides insights for future improvements.

To summarize, this paper includes three main contributions:
• A novel cross-silo prototypical calibration method is proposed to
alleviate the problem of data distribution heterogeneity among
different clients. To the best of our knowledge, this is the first
method that can map heterogeneous features from different
sources to a unified space.

• The proposed CSPC module is an orthogonal improvement to
client-based methods. Its plug-and-play design makes it easy
to integrate into existing infrastructure, and it enhances the
generalization without altering core components.

• This study reveals the fact that the inconsistent feature spaces
across clients pose a challenge for the federated model to fit
all clients effectively. And we have verified that FedCSPC can
effectively solve this problem.
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Figure 2: Feature distributions learned by FedAvg and FedC-
SPC. FedCSPC effectively generalizes to client-side samples
by learning to calibrate client-side prototypes.

2 RELATEDWORK
To address the issue of data heterogeneity, existing methods typ-
ically follow three main approaches: the first approach aims to
alleviate the difference between local and global objectives during
the local training phase, the second method focuses on optimizing
the model aggregation scheme on the central server, and the third
approach stems from the data sharing.

2.1 Models mitigating client drift
Common strategies in the local training phase involve utilizing
global information as knowledge to regularize local updates. Con-
ventional approaches along the line of research include weights-
based [7, 19, 42], feature-based [18, 56], and prediction-based [11,
16] constraints. Weights-based methods either design proximal
terms to constrain the consistency of the local and global models
or use a drift factor to track the gap between the global and local
models in the parameter space. Feature-based methods focus on
feature contrast to penalize inconsistency. They typically align lo-
cal and global output in latent space or use prototypes to restrict
clients from learning similar representations. Nevertheless, it has
been observed that there exists feature maps inconsistency in these
works, which leads a limited performance (See Figure 2). Prediction-
based approaches usually rely on an auxiliary dataset, and they
integrate local soft-label predictions on the auxiliary dataset rather
than model parameters or gradients, which reduces communication
costs and achieves knowledge distillation.

2.2 Models optimizing aggregation scheme
To improve the performance of the federated model, many studies
focus on optimizing the aggregation mechanism on the server side.
For instance, FedMA uses a Bayesian non-parametric method to
match neurons rather than naively averaging [46], FedAvgM applies
the momentum rule to update the global model, which can improve
robustness to heterogeneous distributed data [13], and FedNova
eliminates inconsistencies by normalizing local updates before av-
eraging them [47]. In addition, re-training or fine-tuning schemes
are also applied to mitigate the model shift after aggregation, such
as FedFTG uses an auxiliary generator to generate pseudo data for
retraining, which can model the input space of local models [57].
CCVR [27] and CReFF [40] illustrate that the heterogeneity of the
classifier is the main reason for the performance degradation of
models trained on non-IID data. Therefore, they retrain the classi-
fier by using the virtual feature generated by the gaussian mixture
model and the federated feature with a consistency gradient to the
real data, respectively.
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Download both calibrated global model and class prototypes for client-side guidanceUpload local models and prototypes to assist with calibration
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Figure 3: Illustration of the framework of FedCSPC. FedCSPC offers flexibility in the choice of algorithms for optimizing
the local model on the client-side, including FedAvg and MOON, among others. It uses prototypes obtained from the clients
to retrain the global projection head 𝐻𝑔 (·) and global classifier 𝐹𝑔 (·) on the server to align features from different spaces.
Meanwhile, it uses prototype augmentation to improve the robustness of the calibration.

2.3 Models Trained with Auxiliary Data
Due to the heterogeneity of the data distribution across different
sources, the local models trained on the client side may have insuf-
ficient generalization ability for certain patterns or samples from
absent classes. Therefore, existing studies propose ideas for sharing
data. They typically share public datasets [17], synthesized datasets
[12], and truncated versions of private data [9]. However, these ap-
proaches may violate privacy preservation rules since they expose
the raw data to other parties.

3 PROBLEM FORMULATION
In federated learning, there are 𝑁 clients C = {𝐶1,𝐶2, ...,𝐶𝑁 } and a
sever 𝑆 . The client 𝐶𝑘 holds a local dataset 𝐷𝑘 = {(X𝑘 ,Y𝑘 )} and a
local model𝑀𝑘 = 𝐸𝑘⊙𝐻𝑘⊙𝐹𝑘 with parameters𝑤𝑘 = 𝑤𝐸

𝑘
⊕𝑤𝐻

𝑘
⊕𝑤𝐹

𝑘
,

where 𝐸𝑘 is an image encoder with parameters 𝑤𝐸
𝑘
, 𝐻𝑘 denotes

projection head with parameters 𝑤𝐻
𝑘

and 𝐹𝑘 is a classifier with
parameters𝑤𝐹

𝑘
. The goal of federated learning methods is to jointly

train a global model with the assistance of a server 𝑆 without leaking
privacy and minimize the following problem:

min𝐿(𝑤) = min
∑︁

𝐶𝑘 ∈C
𝑝𝑘𝐿𝑘 (𝑤 ;𝐷𝑘 ), (1)

where 𝐿𝑘 (𝑤) = E(𝑥,𝑦)∼D𝑘
[ℓ𝑘 (𝑤 ; (𝑥,𝑦))] is the objective loss of

𝐶𝑘 , and 𝑝𝑘 =
|𝐷𝑘 |
𝐷

is the corresponding weight, 𝐷 =
∑
𝐶 𝑗 ∈C

��𝐷 𝑗

��.
After local training, clients 𝐶𝑘 ∈ C upload the local parameters𝑤 𝑗

to sever, and the server aggregates these parameters by

𝑤𝑔 =
∑︁

𝐶𝑘 ∈C
𝑝𝑘𝑤𝑘 , (2)

The process is repeated for 𝑇 rounds and the resulting𝑀𝑔 with the
parameter𝑤𝑔 represents the final aggregated model.

In contrast, the proposed FedCSPC introduces a Cross-Silo
Prototypical Calibration (CSPC) module on the server, which
aims to relearn the global projection head 𝐻𝑔 ↦→ �̂�𝑔 the classifier

𝐹𝑔 ↦→ 𝐹𝑔 to align representations from different feature spaces, i.e.
�̂�𝑔 (𝐸𝑖 (𝑥𝑖 )) ≈ �̂�𝑔 (𝐸 𝑗 (𝑥 𝑗 )), where 𝑥𝑖 and 𝑥 𝑗 are the samples with
the same label in the client 𝐶𝑖 and 𝐶 𝑗 , respectively. FedCSPC first
generates class-aware prototypes in all clients, U = {U𝑘 |𝑘 ∈ C}
andU𝑘 = {𝑢𝑖

𝑘
|𝑖 ∈ Y𝑘 } for each class on the client, and sends them

to the server. Subsequently, the CSPC module learns the mapping
�̂�𝑔 (·) based on these prototypes and the corresponding augmented
samples U𝑎𝑢𝑔 to gather together cross-source features shared the
same label. Finally, calibrated prototypes form a knowledge base
to produce knowledge-based prediction 𝑃𝑟𝑒𝑑𝑘 . The final predic-
tion 𝑃𝑟𝑒𝑑𝑓 𝑖𝑛𝑎𝑙 is achieved by 𝑃𝑟𝑒𝑑𝑘 ⊕ 𝑃𝑟𝑒𝑑𝑛𝑒𝑡 ↦→ 𝑃𝑟𝑒𝑑𝑓 𝑖𝑛𝑎𝑙 , where
𝑃𝑟𝑒𝑑𝑛𝑒𝑡 is the prediction of network.

4 APPROACH
4.1 Overall framework
FedCSPC introduces a cross-silo prototypical calibration method to
enhance the generalization capability of the global model. Figure 3
illustrates the main framework of FedCSPC. It first designs a novel
Data Prototypical Modeling (DPM) module, which is used to model
the representation distribution on the clients and provide prototypi-
cal information to the server. Afterward, the Cross-Source Prototyp-
ical Calibration (CSPC) module obtains prototypical representations
from all clients and learns themapping from the dispersed space to a
unified space based on these prototypes to eliminate feature hetero-
geneity in the heterogeneous space. This enables the global model
to generalize to all clients. Meanwhile, the calibrated prototypes
form a knowledge base to aid decision-making.

4.2 Data Prototypical Modeling (DPM) module
The Data Prototypical Modeling (DPM) module aims to provide the
prototypical information regarding representations to the server,
which aids in model calibration. It has two main process: Strength-
ening local representation learning to alleviate calibration pressure
and Modeling prototypical representations for data via clustering.
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4.2.1 Local Representation Learning (LRL). It is understand-
able that calibration becoming more difficult as the heterogeneity
of features among clients increases. To alleviate this problem, the
DPM module employs global prototypes U𝑔 to guide all clients
learn similar representations as much as possible within fewer
training epochs. It uses three levels of constraints to regularize
representation learning, including node, angle, and edge levels, as
shown in Figure 4(a). For the point level regularization, we define an
prototype-based contrastive loss to optimize the distance between
the local representation and the corresponding global prototype,

L𝑁 = − log
exp(𝑓 · 𝑢+𝑔 /𝜏𝑙 )

exp(𝑓 · 𝑢+𝑔 /𝜏𝑙 ) +
∑
exp(𝑓 · 𝑢−𝑔 /𝜏𝑙 )

(3)

where 𝑓 denotes a local representation, 𝑢+𝑔 , 𝑢−𝑔 are the global proto-
types of the same/different class as 𝑓 , respectively. Note that the
method for calculating global prototypes will be provided in the
section 4.3. 𝜏𝑙 is a temperature parameter. For the angle level, given
three representations 𝑓1, 𝑓2, 𝑓3 with different labels, the correspond-
ing prototypes are 𝑢 𝑓1𝑔 , 𝑢 𝑓2𝑔 , 𝑢 𝑓3𝑔 , and the angle-based alignment loss
is defined as

L𝐴 =




(cos ∠(𝑓 1, 𝑓 2, 𝑓 3), cos ∠(𝑢 𝑓1𝑔 , 𝑢
𝑓2
𝑔 , 𝑢

𝑓3
𝑔 ))





1

(4)

where cos ∠(𝑓 1, 𝑓 2, 𝑓 3) =
〈

𝑓1−𝑓2
∥ 𝑓1−𝑓2 ∥2

,
𝑓3−𝑓2

∥ 𝑓3−𝑓2 ∥2

〉
, ⟨·⟩ denotes the in-

ner product. For the edge level, it requires the distance between the
samples to be consistent with the corresponding prototypes,

L𝐸 = ℓ (∥ 𝑓1 − 𝑓2∥2 −



𝑢 𝑓 1𝑔 − 𝑢

𝑓 2
𝑔





2
) (5)

where ℓ (·) is the 𝐿2 norm.

4.2.2 Clustering-based Prototype Modeling (CPM). After rep-
resentation learning, to capture the homogeneity and diversity of
representations in each class, the DPMmodule expands the K-means
clustering approach to investigate patterns in representation distri-
butions. Specifically, the procedure of mining different patterns of
class 𝑗 can be formulated as:

𝑐1𝑗 , 𝑐
2
𝑗 , ..., 𝑐

𝑘
𝑗 = K-means(𝐸 (𝑥), 𝑘), 𝑥 ∈ 𝐷 𝑗 (6)

where 𝑘 is the number of clusters. 𝑐𝑛
𝑗
denotes the 𝑛-th cluster of

class 𝑗 , 𝐸 (·) is an image encoder, 𝐷 𝑗 denotes data of class 𝑗 .
To better model the distribution of representations, we repeat

the process of randomly sampling 𝑛𝑟𝑒𝑝𝑒𝑎𝑡 times within each cluster
to generate multiple class-aware prototypes, as shown in Figure
4(b). Compared with using a single prototype to represent the entire
class distribution [26, 35], the DPM module is capable of increasing
the diversity of prototypes and providing sufficient and effective
information for calibration. The calculation of the prototype can
be formulated as:

𝑢
𝑖,𝑡
𝑗

= mean{𝑓 |𝑓 ∈ sampling(𝑐𝑖𝑗 , 𝑟 )} (7)

where𝑢𝑖,𝑡
𝑗

represents the 𝑡-th local prototype of cluster 𝑐𝑖
𝑗
,mean(·)

is a Mean operation, sampling(𝑐𝑖
𝑗
, 𝑟 ) denotes randomly select sam-

ple features with a proportion of 𝑟 in cluster 𝑐𝑖
𝑗
. Finally, client 𝑘

sends the local model 𝑀𝑘 and local prototype set U𝑘 = {𝑢𝑖,𝑡
𝑗
| 𝑗 ∈

Y𝑘 , 𝑖 = 1, 2, ..., 𝑛 𝑗 , 𝑡 = 1, ..., 𝑛𝑟𝑒𝑝𝑒𝑎𝑡 } as output to the server.

4.3 Cross-Silo Prototypical Calibration (CSPC)
module

The CSPC module obtains all local models and local prototype set
{M,U} = {(𝑀𝑘 ,U𝑘 ) |𝑘 = 1, ..., 𝑁 } from clients. It has been found
that regularization of client representation learning cannot com-
pletely eliminate heterogeneity. Therefore, the CSPC module is
designed to align these prototypical features from heterogeneous
spaces, i.e. �̂�𝑔 (U𝑖 ) ≈ �̂�𝑔 (U𝑗 ). Another challenge of learning the
generalization mapping �̂�𝑔 (·) to align features of heterogeneous
spaces is the insufficient amount of data. Therefore, the FedCSPC
develops an augmented contrastive learning method in the CSPC
module. It has two main process: In-client prototype augmenta-
tion for information supplementation and Cross-client contrastive
alignment for mitigating heterogeneity.

4.3.1 In-Client Prototype Augmentation (PA). To augment the
local prototype set, two strategies are used to generate new sample
features, i.e. positive mixing and negative mining. Specifically, we
use extrapolation between prototypes of the same class and interpo-
lation between prototypes of different classes to generate positive
samples and mine hard negative samples, respectively, i.e.,

𝑢+𝑖 = (𝑢 𝑗 − 𝑢𝑖 ) × 𝜆𝑢 + 𝑢 𝑗 , 𝑢−𝑖 = (𝑢𝑘 − 𝑢𝑖 ) × 𝜆𝑢 + 𝑢𝑖 (8)

where 𝑢𝑖 and 𝑢 𝑗 share the same label, whereas 𝑢𝑘 has a distinct
label. 𝜆𝑢 is a constant coefficient. Notably, intra-class extrapolation
preserves the core features while increasing diversity. Meanwhile,
inter-class interpolation injects positive information into negative
samples, making it more difficult for the model to distinguish the
decision boundary, which is advantageous for improving the gen-
eralization ability of the model.

4.3.2 Cross-Client Contrastive Alignment (CA). For the raw
global model𝑀𝑔 = 𝐸𝑔 ⊙𝐻𝑔 ⊙ 𝐹𝑔 , obtained by Eq. (2), the projection
head 𝐻𝑔 (·) and 𝐹𝑔 (·) need to be calibrated, i.e. 𝐻𝑔 (·) ↦→ �̂�𝑔 (·),
𝐹𝑔 (·) ↦→ 𝐹𝑔 (·). To enhance the robustness of calibration, augmented
samples are used as additional constraints,

L𝐴𝐶𝐿 (𝑢𝑖 , 𝑢+𝑖 , 𝑢
−
𝑖
) = | |𝐻𝑔 (𝑢𝑖 ) − 𝐻𝑔 (𝑢+𝑖 ) | |

2
2 − ||𝐻𝑔 (𝑢𝑖 ) − 𝐻𝑔 (𝑢−𝑖 ) | |

2
2 + 𝛼 (9)
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where 𝛼 is the margin parameter. For the real samples, we maximize
the similarity between prototypes of the same class from different
sources via weighted contrastive learning,

L𝑊𝐶𝐿 (𝑢𝑖 ) = − 1
𝑃 (𝑢𝑖 )

∑
𝑢 𝑗 ∈𝑃 (𝑢𝑖 )

log 𝜎 𝑗 ·exp(𝑧𝑇𝑖 ·𝑧 𝑗 /𝜏𝑔 )∑
𝑢𝑘 ∈𝐼𝑠

𝜎𝑘 ·exp(𝑧𝑇𝑖 ·𝑧𝑘/𝜏𝑔 )
(10)

where 𝑃 (𝑢𝑖 ) indicates the positive set of𝑢𝑖 . 𝐼𝑠 denotes the sample set.
𝑧𝑖 = 𝐻𝑔 (𝑢𝑖 ), 𝜏𝑔 is a temperature parameter. 𝜎 𝑗 is a weighting factor.
Considering that it is more difficult to pull samples from different
sources closer and push samples from the same source farther away,
we design the following rules: if 𝑢𝑖 and 𝑢 𝑗 are samples of the same
class from different clients or samples of different classes from the
same client, 𝜎 𝑗 = 1; otherwise, 𝜎 𝑗 = 0.5.

Meanwhile, to enhance the classification capability, the cross-
entropy loss is used to further optimize the classifier 𝐹𝑔 (·) ↦→ 𝐹𝑔 (·),

L𝑠𝑢𝑝 (𝑢𝑖 ) = −
∑︁𝑁𝑐

𝑗=1
I(𝑦𝑖 = 𝑐) log(𝑦𝑖, 𝑗 ) (11)

where I(·) denotes the indication function, 𝑁𝑐 represent the num-
ber of classes. 𝑦𝑖 is the label of 𝑢𝑖 , 𝑦𝑖, 𝑗 is the prediction that 𝑢𝑖
belongs to class 𝑗 .

In addition, FedCSPC is unique in that it generates an exemplar
𝑒𝑖 for each class in the unified space, which serves as a knowledge
base to form a knowledge-based prediction. And the final prediction
of the test sample 𝑥 is obtained by fusing the decisions from both
the network 𝑃𝑟𝑒𝑑𝑛𝑒𝑡 (𝑥) and knowledge base 𝑃𝑟𝑒𝑑𝑘 (𝑥), i.e.,

𝑒𝑖 =
1
𝑁

∑︁𝑁

𝑗=1
1

𝑛𝑟𝑒𝑝𝑒𝑎𝑡

∑︁𝑛𝑟𝑒𝑝𝑒𝑎𝑡

𝑡=1
�̂� (𝑢𝑖,𝑡

𝑗
) (12)

𝑃𝑟𝑒𝑑𝑓 𝑖𝑛𝑎𝑙 (𝑥) = (1 − 𝜆𝑝 ) × 𝑁𝑜𝑟𝑚(𝑃𝑟𝑒𝑑𝑛𝑒𝑡 (𝑥)) + 𝜆𝑝 × 𝑁𝑜𝑟𝑚(𝑃𝑟𝑒𝑑𝑘 (𝑥)) (13)
where 𝑃𝑟𝑒𝑑𝑘 (𝑥) = [𝑠𝑖𝑚(𝑓𝑥 , 𝑒𝑖 ) |𝑖 = 1, ..., 𝑁𝑐 ] contains the simi-

larity between the sample feature 𝑓𝑥 and all exemplars {𝑒𝑖 |𝑖 = 1, ..., 𝑁𝑐 },
𝑠𝑖𝑚(·) and 𝑁𝑜𝑟𝑚(·) denote the similarity and normalization func-
tion, respectively.

Furthermore, to reduce the heterogeneity of features among
clients, the CSPC module generates global prototypesU𝑔 = {𝑢𝑖𝑔 |𝑖 =
1, ..., 𝑁𝑐 } to regularize the representation learning of all clients,

𝑢𝑖𝑔 =
1
𝑁

∑︁𝑁

𝑗=1
1

𝑛𝑟𝑒𝑝𝑒𝑎𝑡

∑︁𝑛𝑟𝑒𝑝𝑒𝑎𝑡

𝑡=1
𝑢
𝑖,𝑡
𝑗

(14)

Finally, the CSPC module sends the calibrated global model �̂�𝑔 =

𝐸𝑔 ⊙ �̂�𝑔 ⊙ 𝐹𝑔 and the global prototypes U𝑔 to all clients.

4.4 Training Strategies
FedCSPC focuses on calibrating feature space on the server side,
which can be combined with multiple client-based methods. Con-
sequently, FedCSPC has the following training strategies.
• In the client, the optimization objective varies depending on
the base algorithm being used. Moreover, the alignment loss
L𝑎𝑙𝑖𝑔𝑛 = L𝑁 + L𝐴 + L𝐸 is used to regularize all clients to learn
similar representations, which can alleviate the calibration diffi-
culty due to heterogeneity. Therefore, the overall optimization
objective for a client is

L𝑐𝑙𝑖𝑒𝑛𝑡 = L𝑏𝑎𝑠𝑒 + 𝜅 × L𝑎𝑙𝑖𝑔𝑛 (15)

where 𝜅 is a weight parameter, the base algorithm could be
FedAvg, FedASAM, and so on.

Table 1: Statistics of CIFAR10, CIFAR100, TinyImagenet, and
VireoFood172 datasets used in the experiment.

Datasets #Class #Training #Testing
CIFAR10 10 50000 10000
CIFAR100 100 50000 10000

TinyImagenet 200 100000 10000
VireoFood172 172 68175 25250

• In the server, FedCSPC aims to align features in heteroge-
neous spaces to eliminate heterogeneity and obtain clear decision
boundaries, and it optimizes the following objective function:

L𝑠𝑒𝑟𝑣𝑒𝑟 = 1
|𝐼𝑠 |

∑
𝑢𝑖 ∈𝐼𝑠

Lsup (𝑢𝑖 ) + 𝜂 [L𝑊𝐶𝐿 (𝑢𝑖 ) + L𝐴𝐶𝐿 (𝑢𝑖 , 𝑢+𝑖 , 𝑢
−
𝑖
)] (16)

where 𝜂 is a weight parameter.

5 EXPERIMENTS
5.1 Experiment Settings
5.1.1 Datasets. To verify the effectiveness of the algorithms, we
used four datasets in the experiment, including CIFAR10 [14], CI-
FAR100 [14] and TinyImageNet [15] which are commonly used in
federated learning. And a challenging food classification dataset
VireoFood172 [2]. Their statistical information is shown in Table 1.
The Dirichlet distribution is used to partition the dataset.

5.1.2 Evaluation Measures. Following previous studies [18, 32], we
use the Top-1 Accuracy to evaluate the performance of methods,

Accuracy = (𝑇𝑃 +𝑇𝑁 )/(𝑃 + 𝑁 ) (17)

where 𝑃 , 𝑁 ,𝑇𝑃 and𝑇𝑁 are Positives, Negatives, True Positives and
True Negatives, respectively.

5.1.3 Hyper-parameter Settings. Following recent studies [18, 35],
for all methods, we set the number of clients 𝑁 = 10 with the
sample fraction𝐶 = 1.0, the number of local training epochs 𝐸 = 10,
the batch size 𝐵 = 64, the communication round 𝑇 = 100 for
CIFAR10 and CIFAR100 datasets, 𝑇 = 50 for TinyImagenet and
VireoFood172 datasets, and the SGD optimizer with the learning
rate 𝑙𝑟 = 0.01 and the weight decay𝑤𝑑 is set to 1e-5. For all datasets,
the Dirichlet parameter 𝛽 = 0.5 and 𝛽 = 0.1. In the DPM module,
the number of clusters for each class 𝑘 is selected from {2, 3, 4}, the
sample proportion 𝑟 = 0.5, the number of sampling 𝑛𝑟𝑒𝑝𝑒𝑎𝑡 = 5,
and the temperature parameter 𝜏𝑙 = 0.5. In the CSPC module, the
constant coefficient 𝜆𝑢 and 𝜆𝑝 are selected from {0.1, 0.3, 0.5}, the
margin parameter 𝛼 = 1.0, the number of augmented samples for
each prototype 𝑛𝑎𝑢𝑔 = 5, the temperature parameter 𝜏𝑔 = 0.5. For
training strategies, both weight parameters 𝜅 and 𝜂 are adjusted
from {0.01, 0.05, 0.1, 0.5}. For other compared methods, we tuned
their hyper-parameters by referring to corresponding papers for
fair comparison and optimal performance.

5.2 Performance Comparison
We compare FedCSPC with nine state-of-the-art methods, includ-
ing FedAvg [32], FedProx [19], MOON [18], CCVR [27], FedDC
[7], FedNTD [16], FedASAM [1], FedProc [35] and FedDecorr [41].
And the network architecture used for all methods comprises an
image encoder, a projection head and a classifier. For all datasets,
we employ a 2-layer MLP as the projection head and the classi-
fier is a 1-layer fully-connected layer. For the CIFAR10 dataset, we
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Table 2: Performance comparison between FedCSPC with baselines on CIFAR10, CIFAR100, TinyImagenet, and VireoFood172
datasets. All algorithms were run by three trials, and the mean and standard derivation are reported.

Methods CIFAR10 CIFAR100 TinyImagenet VireoFood172
𝛽 = 0.1 𝛽 = 0.5 𝛽 = 0.1 𝛽 = 0.5 𝛽 = 0.1 𝛽 = 0.5 𝛽 = 0.1 𝛽 = 0.5

FL without
Calibration

FedAvg (AISTATS’17) 61.18±0.7 66.78±0.4 62.12±0.8 66.54±0.3 42.48±0.8 45.38±0.4 56.78±0.9 59.88±0.8
FedProx (MLSys’20) 62.85±1.2 67.55±0.6 62.87±0.6 67.13±0.8 42.67±0.6 46.59±0.7 57.52±0.6 60.69±0.9
MOON (CVPR’21) 63.11±0.8 69.04±0.7 63.45±0.3 67.88±0.4 43.75±0.7 47.31±0.9 58.17±0.5 61.25±1.1
FedDC (CVPR’22) 63.25±0.7 69.13±0.6 63.76±0.7 67.75±0.6 43.68±0.8 46.81±0.2 58.04±0.4 60.97±0.5

FedNTD (NeurIPS’22) 62.79±0.9 68.89±0.3 62.97±1.1 67.83±0.2 43.51±1.0 45.79±0.5 57.92±0.7 60.88±0.9
FedASAM (ECCV’22) 63.16±0.5 68.48±0.6 63.21±0.3 67.71±0.5 43.48±0.6 47.38±0.6 58.12±0.8 61.14±0.2
Fedproc (FGCS’23) 62.52±1.3 69.18±1.2 63.46±1.3 67.63±0.7 43.75±0.6 47.21±0.4 57.86±0.4 60.46±0.4
FedDecorr (ICLR’23) 62.38±0.8 68.66±0.8 63.53±0.5 67.79±0.6 43.94±0.3 46.21±0.7 58.01±0.3 61.06±0.7

FL with
Calibration

CCVRFedAvg (NeurIPS’21) 62.48±0.9 68.56±0.7 63.36±0.7 67.86±0.4 42.48±0.4 46.11±0.4 57.51±0.5 60.87±0.3
CCVRMOON (NeurIPS’21) 63.51±0.6 69.49±0.5 63.89±0.2 67.94±0.3 44.36±0.6 47.89±0.5 58.49±0.7 60.98±0.8
CCVRFedASAM (NeurIPS’21) 63.12±0.8 69.46±0.9 64.18±0.6 68.03±0.5 43.73±0.3 47.94±0.6 58.79±0.5 61.38±0.4

FedCSPCFedAvg 64.01±0.7 70.81±0.7 64.19±0.8 68.39±0.4 44.62±0.8 47.89±0.6 59.37±0.4 62.19±0.6
FedCSPCMOON 64.44±0.7 71.42±0.4 64.68±0.3 68.28±0.5 45.33±0.7 48.46±0.5 60.21±0.6 62.84±0.5
FedCSPCFedASAM 64.13±0.7 70.65±0.5 64.81±0.6 68.49±0.5 45.24±0.6 48.62±0.3 60.14±0.4 62.61±0.3

employ a convolutional neural network comprising two 5x5 convo-
lutional layers, which are followed by 2x2 max pooling, and two
fully connected layers with ReLU function as the image encoder.
For other datasets, we use a ResNet18 encoder, excluding its last
fully-connected layer. The following can be observed from Table 2.
• FedCSPCFedAvg, FedCSPCMOON, and FedCSPCFedASAM have
demonstrated substantial improvements in classification
compared to their corresponding baselines, highlighting the
model-agnostic character of the FedCSPC.

• FedCSPC algorithm typically performs better than other
algorithms, which is reasonable because the calibration mecha-
nism of FedCSPC algorithm can effectively alleviate the hetero-
geneity between features from different sources.

• Incorporating calibration techniques into the learning
process typically yields better results than the baseline
method. This is primarily because the calibration mechanism
can assist devices in learning a generalized model from various
data sources, such as CCVR and FedCSPC.

• As observed, the improvement achieved by combining Fed-
CSPC is significant compared to the baseline on CIFAR10,
while it is relatively small on other datasets. This is under-
standable because the final accuracy depends not only on the
degree of bias correction after model calibration but also closely
related to the quality of local representation learning.

5.3 Ablation Study
This section further studied the effectiveness of different modules
of FedCSPC. We set the sample fraction 𝐶 = 0.5 and 𝐶 = 1.0, the
Dirichlet parameter 𝛽 = 0.5. The results are summarized in Table 3.
• Simply combining the traditional prototype generation
method (TPG [26]) with the cross-client contrastive align-
ment (CA) may not bring performance gains, mainly be-
cause a single prototype cannot describe the overall distribution,
and an insufficient number of prototypes cannot provide enough
information to train a generalizable model.

• Cross-client contrastive alignment (CA) with the assis-
tance of the clustering-based prototype modeling (CPM)
outperforms the base on both datasets with a large margin

Table 3: Ablation study on the effectiveness of different com-
ponents of FedCSPC on the CIFAR10 and CIFAR100 datasets.

CIFAR10 CIFAR100
C=0.5 C=1.0 C=0.5 C=1.0

Base 65.71±0.6 66.78±0.4 65.01±0.7 66.54±0.3
+TPG+CA 63.49±0.7 64.32±0.5 62.37±0.5 64.68±0.5
+CPM+CA 67.66±0.2 68.89±0.3 66.32±0.4 67.35±0.3

+LRL+CPM+CA 68.14±0.6 69.51±0.4 67.04±0.1 68.02±0.7
+LRL+CPM+CA+KP 68.69±0.6 69.94±0.4 67.18±0.4 68.14±0.3

+TPG+PA+CA 64.84±0.3 66.19±0.6 61.79±0.6 65.74±0.2
+CPM+PA+CA 68.64±0.4 69.66±0.2 66.77±0.3 67.77±0.4

+LRL+CPM+PA+CA 69.01±0.6 70.42±0.4 67.24±0.1 68.21±0.7
+LRL+CPM+PA+CA+KP 69.47±0.3 70.81±0.4 67.36±0.5 68.39±0.4
of up to 1.95%, 2.11%, 1.31% and 0.81%, which verifies the
effectiveness of modeling the representational distribution.

• In general, using local representation learning (LRL) and
prototype augmentation (PA) can further yield superior
performance, as they improve the quality of client-side repre-
sentation learning and increase sample diversity, respectively,
which enhances the robustness of calibration.

• As reported,knowledge-based prediction (KP) demonstrates
greater efficacy on the CIFAR10 dataset compared to the
CIFAR100 dataset. This is mainly because it is easier to learn
reliable classification boundaries in the representation space of
CIFAR10 compared to CIFAR100.

5.4 In-depth Analysis

Figure 5: The influence of the number of prototypes (𝑛𝑟𝑒𝑝𝑒𝑎𝑡 =
1, 2, 4, 8, 16) on the final performance of FedCSPC on the CI-
FAR10 and TinyImagenet datasets with different levels of het-
erogeneity (𝛽 = 0.1, 0.5) and the number of clusters (𝑘 = 2, 3, 4).
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Figure 6: The influence of the number of augmented samples
(𝑛𝑎𝑢𝑔 = 1, 3, 5, 7, 9) on the final performance of FedCSPC on
the CIFAR10 and TinyImagenet datasets with different levels
of heterogeneity (𝛽 = 0.1, 0.5) and the number of prototypes
generated per cluster (𝑛𝑟𝑒𝑝𝑒𝑎𝑡 = 1, 5).

5.4.1 How many prototypes per cluster are enough to assist
the server to calibrate a good model? The key hyperparameter
𝑛𝑟𝑒𝑝𝑒𝑎𝑡 is the number of prototypes generated in a cluster. We
evaluate its influence by tuning it from {0, 1, 2, 4, 8, 16} on CIFAR10
with different heterogeneity 𝛽 = 0.1 and 𝛽 = 0.5, where 𝑛𝑟𝑒𝑝𝑒𝑎𝑡 = 0
denotes traditional FedAvg. And we tune the number of clusters 𝑘
from {2, 3, 4} for both datasets.

It can be found from Figure 5 that generatingmore class-aware
prototypes generally leads to higher accuracy. Moreover, with
an increase in the number of prototypes, the improvement stabi-
lizes gradually. This result is understandable, since many prototypes
with high similarity are produced, which provide limited informa-
tion. An impressive result is that even when only one prototype
is learned per cluster, FedCSPC can still achieve an average im-
provement of 1.2% and 2.2% on CIFAR10 when 𝛽 = 0.1 and 𝛽 = 0.5
respectively. It is worth noting that the performance of FedCSPC
approach the upper limit when 𝑛𝑟𝑒𝑝𝑒𝑎𝑡 = 4. This finding would
be conducive to mitigating the costs incurred in communication
between clients and server. Additionally, as the number of clus-
ters generated for each class increases, the final performance
gradually increases, since clustering can effectively capture dif-
ferent patterns in the data, which enables the prototypes to exhibit
diversity. In conclusion, although FedCSCP can bring performance
gain to the baseline, the number of prototypes should be tuned
carefully to achieve higher performance.

5.4.2 How does the number of augmented samples gener-
ated for each sample affect the final performance? This sec-
tion explores the impact of the number of augmented samples 𝑛𝑎𝑢𝑔
on the final results. We tune the 𝑛𝑎𝑢𝑔 from {1, 3, 5, 7, 9}. We consid-
ered two cases, 𝑛𝑟𝑒𝑝𝑒𝑎𝑡 = 1 and 𝑛𝑟𝑒𝑝𝑒𝑎𝑡 = 5.

In general, the more augmented samples generated, the
greater the performance gain for CIFAR10. This is because
the model can learn good local representations on CIFAR10, which
enables the augmented positive samples to effectively increase di-
versity, and the augmented negative samples can help suppress
overfitting, thereby enhancing the robustness of calibration. How-
ever, due to the higher complexity of the representation space in
TinyImagenet, the augmented samples may contain misleading in-
formation, which increases with the number of augmented samples.
This hinders the improvement of the model generalization capacity
and results in a decrease in performance. Therefore, we should
carefully select the number of augmented samples based on factors
such as data complexity to achieve the best performance.

𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟=2 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟=4TraditionalLocal Representation

Class 3 Class 7 Class 3 Class 7 Class 3 Class 7Class 3 Class 7

Class 3: 0.563 Class 7: 0.549 

Performance

Class 3: 0.512 Class 7: 0.486 

Performance

Class 3: 0.614 Class 7: 0.602 

Performance

Class 3: 0.635 Class 7: 0.641 

Performance

Figure 7: The influence of different clustering results
(𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟=2,4 and traditional method) on the representation
distribution modeling and global model performance.
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Figure 8: Illustration of the effectiveness of cross-silo rep-
resentation alignment. (a) For the same test data, the repre-
sentation distributions extracted by different local models
in the FedAvg method exhibit heterogeneity. (b) FedCSPC
effectively learns the common space of the same class but
from different clients, which enables the global model to
generalize to different clients.

5.5 Case Study
5.5.1 Clustering-based Prototype Generation. This section
evaluates the influence of prototype generation on the represen-
tation distribution modeling and global model performance. We
randomly selected the results of a training round and used TSNE
[45] to visualize the feature of two classes and their corresponding
prototypes for a random user. As shown in Figure 7, the traditional
prototype cannot exhibit the intra-class diversity, while the
clustering-based prototype generation method can capture
the distribution patterns of representations well. Meanwhile,
we observed that clustering-based prototype generation can capture
the overlapping representations between different classes (corn-
flower blue in the right figure). This significantly increases the
diversity within each class and, as hard samples, can improve the
robustness of calibration. In addition, the more clusters gener-
ated, themore accurate themodeling of representation distri-
bution will be, which brings more performance gains to the
model (𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 4 in the figure). This is mainly because a larger
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Figure 9: Left: the representation distribution before and after calibration. Right: the error analysis of FedCSPC. (a) FedCSPC
employs cross-silo prototypical calibration method to enhance the recognition ability of the correct class (b) FedCSPC can
correct the error of prediction and calibrate the feature attention. (c) FedCSPC failed due to poor representation learning. (d)
FedCSPC reduces the prediction difference between the ground-truth and top-1.

number of clusters can better capture the details and diversity of
sample distribution.

5.5.2 Cross-Silo Prototypical Calibration. In this section, we
randomly selected two local models and two easily confused classes
(cat and dog) and extracted 200 samples from the test set for each
class. The TSNE [45] method was used to visualize the feature dis-
tribution of samples before and after calibration. We also output the
corresponding classification accuracy of the model before and after
calibration. As shown in Figure 8, FedCSPC is capable of map-
ping features from disparate spaces to a unified space and
maintaining clear decision boundaries. In contrast, FedAvg can-
not eliminate heterogeneity during training. Moreover, FedCSPC
not only corrects the distribution of heterogeneous represen-
tations in the current round but also promotes consistency in
learning representations among clients. For instance, in the 25-
th round, FedCSPC almost eliminates the heterogeneity boundary
of the feature distribution before calibration. This improvement in
feature alignment may be a factor in the outstanding performance
of FedCSPC in federated classification tasks. In addition, we note
that FedCSPC was already able to calibrate heterogeneous feature
distributions in the first round, but the classification accuracy re-
mained low. This is due to the poor representation learning of local
models in the 1-th round, and the limited effective information
provided to the server, resulting in unreliable decision boundaries.

5.5.3 Error Analysis of FedCSPC. This section presents a case
study based on the TSNE visualization in Section 5.5.2 that delves
deeper into the workings of FedCSPC. To this end, GradCAM [39]
is employed to generate heatmaps. As depicted in Figure 9(a), both
methods achieve accurate predictions for image classes. Meanwhile,
FedCSPC employs calibration to attain a more precise focus on im-
age subjects after calibration. When the target object is highly
confused with other classes, the model before calibration may fail
to capture the main object andmake incorrect predictions. FedCSPC
relies on the calibration strategy to align cross-client features (see
red and green b in the left figure), which corrects prediction errors
and calibrates feature attention, as illustrated in Figure 9(b). Fig-
ure 9(c) exemplifies a scenario where the model produced accurate
classifications before calibration, but suboptimal representation
learning hindered subsequent calibration performance, leading to

an inaccurate prediction by FedCSPC (see red c in the left figure).
Finally, Figure 9(d) shows the case where the model makes incor-
rect predictions both before and after calibration. Nonetheless, the
calibration method improves the feature distribution (see red d
in the left figure), which makes the model pay more attention to
the dog region, reducing the discrepancy between the "dog" and
the top-1 prediction. These observations not only demonstrate the
effectiveness of calibration mechanisms in federated classification
but also emphasize the importance of local representation learning.

6 CONCLUSION
This paper presents a novel cross-silo prototypical calibration mech-
anism, termed FedCSPC, to handle the heterogeneity of feature
space across clients. FedCSPC first employs the DPM module to
mine the pattern of sample features and provide prototypical infor-
mation for the server. Subsequently, the CSPC module aligns the
features in the dispersed space to the unified space, and adopts pro-
totype augmentation to improve the robustness of the alignment.
Experimental results show that FedCSPC can not only calibrate the
heterogeneous representation distribution of the current round, but
also promote clients to learn a consistent representation in subse-
quent rounds and using this scheme makes FedCSPC outperform
existing methods in federated classification.

Despite the significant performance improvements achieved by
FedCSPC, there are two directions that could be further explored in
future work. First, stronger representation learning techniques that
better learning discriminative features in clients can significantly
improve performance [20, 24, 36, 48, 49]. Second, it would be worth-
while to extend the FedCSPC to more challenging tasks, such as
multimodal learning [3, 8, 10, 23, 25, 33, 34, 50, 52–55], recommen-
dation [28–31] and some generative tasks [4, 5, 21, 22, 43, 49, 51].
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