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Abstract

Quantifying the effects of textual interventions001
in social systems, such as reducing anger in002
social media posts to see its impact on en-003
gagement, is challenging. Real-world inter-004
ventions are often infeasible, necessitating re-005
liance on observational data. Traditional causal006
inference methods, typically designed for bi-007
nary or discrete treatments, are inadequate for008
handling the complex, high-dimensional tex-009
tual data. This paper addresses these chal-010
lenges by proposing CAUSALDANN, a novel011
approach to estimate causal effects using text012
transformations facilitated by large language013
models (LLMs). Unlike existing methods, our014
approach accommodates arbitrary textual in-015
terventions and leverages text-level classifiers016
with domain adaptation ability to produce ro-017
bust effect estimates against domain shifts,018
even when only the control group is observed.019
This flexibility in handling various text inter-020
ventions is a key advancement in causal estima-021
tion for textual data, offering opportunities to022
better understand human behaviors and develop023
effective interventions within social systems.024

1 Introduction025

Causal inference is essential for studying social026

phenomena from observational data, as it distin-027

guishes true effects from spurious correlations (Ok-028

tay et al., 2010). Unlike predictive models, causal029

inference explores counterfactual scenarios, offer-030

ing deeper insights into individual and social be-031

haviors (Adhikari and Zheleva, 2023; Russo et al.,032

2024) and informing effective interventions (Pan033

et al., 2016; Kleven et al., 2024). Given that much034

of online data is textual, estimating the causal035

effects of language presents an important chal-036

lenge (Russo et al., 2023; Egami et al., 2022; Weld037

et al., 2022; Gligorić et al., 2019). Without causal038

inference, studies risk hidden biases and mislead-039

ing conclusions (Leeb et al., 2025). Given the040

complexity of human behavior and society, robust041

Figure 1: The causal diagram of the problem setup.
We aim to estimate the effect from the treatment T to
the outcome Y, accounting for confounding and/or non-
confounding covariates.

causal methods are crucial for producing reliable, 042

actionable insights. 043

However, causal inference on utterances of lan- 044

guage presents unique challenges both for identifi- 045

cation and estimation (Chen and Chu, 2023; Feder 046

et al., 2022). Consider the question of whether 047

angrier social media posts receive more attention 048

(Figure 1). The key challenge is that the treatment 049

variable “anger,” is latently embedded in text, never 050

directly observed and must be inferred, which fur- 051

ther complicates causal-effect estimation (Pryzant 052

et al., 2021). Any biases in anger estimation can 053

distort the causal estimate. This is the fundamen- 054

tal challenge of identifying the causal effect of a 055

treatment that is itself a latent attribute of text. An- 056

other challenge is that identifying and adjusting 057

for confounders is particularly difficult in observa- 058

tional studies, making results susceptible to various 059

biases from hidden confounding. 060

We propose CAUSALDANN, a framework that 061

crafts a hypothetical intervention on the observed 062

text, which can be implemented as a text transfor- 063

mation using a large language model (LLM), and 064

estimates the effect by predicting the outcomes for 065

both observed and transformed data. This approach 066

enables causal inference via language even when 067

an intervention group is missing, overcoming a key 068

limitation of conventional methods. 069

To the best of our knowledge, we are the first to 070
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address the estimation of causal effects of direct071

text interventions. Our first contribution is using072

LLMs to formulate text interventions. These inter-073

ventions operate in the high-dimensional embed-074

ding space of language and can be implemented by075

prompting an LLM, such as rephrasing text to ex-076

press more anger while preserving all other proper-077

ties. This intervention allows the treatment variable078

in a potential-outcomes framework (Rubin, 1974)079

to be an entire text, and allows for causal analysis080

even in the absence of an intervention group. It081

also reduces the need for identifying and adjusting082

for confounders already embedded in the texts.083

Our second contribution is a method to predict084

unobserved outcomes of text interventions. Af-085

ter transformation, we have both non-intervened086

(observed) and intervened text, but outcomes for087

the latter remain unobserved. However, predicting088

the outcomes for unseen data is challenging due089

to domain shift (Ryu et al., 2022; Ma et al., 2025)090

between the observed training data and the unob-091

served intervened data. To tackle this, we propose092

CAUSALDANN, which adapts domain adaptation093

neural network (DANN) (Ganin and Lempitsky,094

2015) as the outcome predictor. Experiments show095

that DANN leads to less bias in causal estimation096

than alternatives like inverse propensity weighting097

(IPW) and doubly robust method (DR).098

We evaluate CAUSALDANN on three semi-099

synthetic datasets constructed using LLM simu-100

lations, and find that it outperforms baselines for101

estimating causal effects of direct text interventions.102

In our evaluation, we analyze potential sources of103

bias, but recognize the larger need to evaluate and104

mitigate bias in LLM-generated text in future ap-105

plications, which can impact whether the chosen106

LLM transformations truly isolate the causal vari-107

able while preserving all else. Future works may108

assess whether this framework generalizes to real-109

world settings beyond the semi-synthetic datasets.1110

2 Related Works111

Causal Inference with Text The field of causal112

inference in machine learning is rapidly advanc-113

ing, as does its intersection with language model-114

ing. Prior works on causal effect estimation with115

text (Sridhar and Blei, 2022) does not usually con-116

sider the text as the treatment variable. Rather,117

text embeddings are used as covariate informa-118

1Our code can be found at https://anonymous.4open.
science/r/CausalDANN-8294/README.md.

tion (Veitch et al., 2020), or some discrete coding 119

of the text is used as the treatment (Pryzant et al., 120

2021; Egami et al., 2022; Cheng et al., 2022; Zhou 121

and He, 2023; Jiang et al., 2024). As far as we 122

know, we are the first to introduce a method for es- 123

timating the effects of direct interventions on text. 124

Efforts to mitigate spurious correlations in text 125

classifiers (Veitch et al., 2021; Bansal and Sharma, 126

2023) mirrors some of the techniques used for 127

causal effect estimation, as their statistical implica- 128

tions resemble confounding. Generally, spurious 129

correlations are of concern for model generaliza- 130

tion (Feder et al., 2023), and causal effect estima- 131

tion can be seen as a special case of generalization 132

to the interventional domain. 133

LLMs for Causal Inference LLMs offer poten- 134

tial for advancing causal inference with text (Kıcı- 135

man et al., 2023; Zhang et al., 2023; Ashwani et al., 136

2024; Jin et al., 2023). However, spurious corre- 137

lations in large text corpora often obscure causal 138

relationships (Zečević et al., 2023). This weakness 139

may stem from a fundamental limitation of LLM 140

training—causal inference requires extrapolating 141

to novel conditions, such as interventions (Peters 142

et al., 2017; Imbens and Rubin, 2015). Querying 143

an LLM about text interventions places it in a low- 144

probability regime of its training data, where recent 145

work suggests LLM reasoning struggles (Udan- 146

darao et al., 2024). 147

To integrate LLMs into causal inference with- 148

out relying on their limited causal reasoning, new 149

estimation methodologies are needed. Doubly ro- 150

bust (DR) machine learning focuses on controlling 151

overfitting bias via sample splitting and orthogo- 152

nalization (Chernozhukov et al., 2018), and has 153

been applied on texts and LLMs (Veljanovski and 154

Wood-Doughty, 2024; Ma et al., 2025). However, 155

DR specifically considers discrete (e.g. binary) 156

treatments that are observed separately from the 157

text, but has not yet been developed for the identi- 158

fication setting where the interventions acting di- 159

rectly on a piece of text. Another promising di- 160

rection is counterfactual data generation (Hamilton 161

and Piper, 2022; Mishra et al., 2024; Bhattachar- 162

jee et al., 2024; Li et al., 2023). In our work, we 163

leverage LLMs in two ways: (1) imposing inter- 164

ventions on text (e.g., modifying sentiment in text) 165

without requiring causal reasoning, and (2) generat- 166

ing counterfactual outcomes to construct evaluation 167

datasets. 168
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Domain Adaptation Pre-training followed by169

fine-tuning on specific tasks has become a stan-170

dard paradigm in language modeling (Devlin et al.,171

2018; Brown et al., 2020; Dubey et al., 2024).172

However, fine-tuning often leads to performance173

degradation on unseen data due to domain shift174

between training and test data (Ma et al., 2019;175

Ryu et al., 2022; Bet,ianu et al., 2024). To mitigate176

this, domain adaptation techniques have been de-177

veloped, including sample reweighting (Li et al.,178

2016), structural correspondence learning (Blitzer179

et al., 2006), joint distribution matching (Long180

et al., 2013), and mixture of experts (Guo et al.,181

2018). A notable approach is Domain Adversarial182

Neural Network (DANN)(Ganin and Lempitsky,183

2015), which integrates a domain classifier as an184

adversary to encourage domain-invariant features,185

improving adaptation. This method has been ef-186

fective in NLP tasks such as stance and morality187

detection (Allaway et al., 2021; Guo et al., 2023).188

Domain adaptation helps address the covariate189

shift in causal estimation, by aligning the distri-190

butions of treated and control groups (Abdullahi,191

2021). Some classic causal methods to adjust for192

confounders, such as inverse propensity weighting193

(IPW) (Hirano and Imbens, 2001) and doubly ro-194

bust (DR) methods, can also be viewed as a form195

of domain adaptation by aligning the distributions.196

However, advanced deep learning-based adaptation197

remains underexplored in causal estimation. In198

our work, we evaluate IPW, DR and DANN for199

predicting potential outcomes.200

3 Methods201

We tackle the challenge of causal estimation for202

textual data where the treatment variable (e.g., emo-203

tion) is unobserved, and constructing the treated or204

control group is difficult. We propose CAUSAL-205

DANN (Figure 2), a framework that (1) applies206

a transformation on observed text to construct the207

intervened group, (2) predicts potential outcomes208

using a domain-adaptation model trained on non-209

intervened data, and (3) estimates causal effects210

from the predicted outcomes.211

3.1 Identification212

We formalize our inference problem on text with213

potential outcomes (Imbens and Rubin, 2015; Ru-214

bin, 1974). For text W and outcome Y , we con-215

struct causal estimands through an intervention on216

the text defined by a transformation W 7→ g(W )217

(e.g., rephrasing text to express more anger while 218

preserving all other aspects). This intervention im- 219

plicitly defines the treatment and results in two 220

groups: the observed and the intervened. The 221

causal estimand now becomes the difference in 222

predicted outcomes between W and g(W ). Struc- 223

turally, this setup mirrors the binary treatment 224

framework, ensuring that three key causal iden- 225

tification assumptions still hold: 226

SUTVA (Stable Unit Treatment Value Assump- 227

tion): a unit’s potential outcomes are only a func- 228

tion of its own text and not that of any other units. 229

Overlap: For each original text W , the trans- 230

formed text g(W ) lies within the support of the 231

representation space covered by the observational 232

data. We assume that text W encodes both the treat- 233

ment implicitly defined through the intervention, 234

and latent covariates C (e.g., grammar). When con- 235

ceptualizing text in a high-dimensional representa- 236

tion space, the treatments and the latent covariates 237

can be thought to correspond to some of these di- 238

mensions. A transformation g(·) then moves the 239

text along specific dimensions. Overlap requires 240

that g(W ) does not lie in a separate region from 241

the observed data W . This enables generalization, 242

especially through domain adaptation. 243

Ignorability: Conditional on the observed text 244

W and external covariates X , the treatment as- 245

signment is independent of potential outcomes. 246

Here we distinguish between the two types of 247

covariates—X includes observed covariates exter- 248

nal to the text (e.g., social platform where text is 249

posted), whereas C represents latent covariates of 250

interest that are recovered from the text (e.g., gram- 251

mar). See Fig. 1. In our estimation, we always con- 252

dition on text, which contains the latent covariates 253

C. This reduces the burden of externally control- 254

ling for C. Both C and X can be confounding or 255

non-confounding. 256

These assumptions enable the identification of 257

potential outcomes by conditioning on the treat- 258

ment text w, which can be observed or transformed. 259

E[Y (w) | X = x] = E[Y | W = w,X = x] (1) 260

We can thus compute the average treatment ef- 261

fect (ATE) and the conditional average treatment 262

effect (CATE) as 263

ATE = E[Y (g(w))]− E[Y (w)] (2) 264

CATE = E[Y (g(w))|X]− E[Y (w)|X] (3) 265
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Figure 2: We first apply an LLM transformation or sampling to the observed text and outcome (non-intervened
group) to generate text data for the intervened group. The outcomes for the transformed data remain unobserved.
To predict the outcomes, we use (a) the BERT-based baseline predictor or (b) the proposed CAUSALDANN with
domain adaptation. We then predict outcomes for both groups and compute the causal effects.

3.2 Interventions on Text using an LLM266

We introduce different kinds of transformations267

W 7→ g(W ) on observed text W to generate data268

in the intervened group.269

1. LLM-based transformation: An LLM is270

prompted to rephrase text to intensify or atten-271

uate an attribute such as anger or sentiment,272

while preserving all other properties. This273

enables targeted interventions and supports274

estimation of specific treatment effects (Sec-275

tion 4.4).276

2. Structured sampling: In datasets with struc-277

tured formats (e.g., product reviews with rat-278

ings or Reddit posts with comments), we con-279

struct control/intervened groups by selecting280

alternative observed examples—e.g., 5-star vs.281

1-star reviews (Section 4.2), or top-ranked vs.282

randomly selected comments on the same post283

(Section 4.3).284

It may be questioned whether an intervention de-285

fined through an LLM with a certain prompt really286

disentangles and modifies one aspect of language287

while preserving the others. LLMs’ capabilities in288

counterfactual generation are well-known (Brown289

et al., 2020; Dubey et al., 2024; Mishra et al., 2024;290

Li et al., 2023); however, they are not free of all291

social bias. We conduct manual inspections and292

analyze potential biases in our data and did not ob-293

serve any significant bias (see Appendix A). Future294

applications of our framework should validate the295

fidelity of specific LLM-defined transformations296

using techniques such as improved prompting (Li297

et al., 2023), human-in-the-loop annotations, and298

improved alignment. Our work studies how to esti- 299

mate the effect of a given intervention. 300

3.3 Counterfactual Generation with LLMs 301

Even after applying transformation techniques to 302

construct the intervened group, outcomes remain 303

unobserved, and ground truth causal effects are un- 304

available. Thus, generating synthetic data is crucial 305

for evaluation. LLMs, with their extensive training 306

and reinforcement learning from human feedback 307

(RLHF), can simulate outcomes for unobserved 308

data, such as modeling social norms (Brown et al., 309

2020; Dubey et al., 2024). In Sections 4.3 and 4.4, 310

we use LLMs to simulate social judgments on posts 311

from Reddit’s /r/AmITheAsshole. Although using 312

LLMs for counterfactual generation in evaluation 313

data may introduce biases, we did not find any in 314

our case studies (see analyses and mitigation strate- 315

gies in Appendix A). 316

3.4 Outcome Prediction 317

Since the outcomes of the generated (intervened) 318

data are never observed, we need a prediction 319

model to estimate the outcomes for all the data 320

in order to estimate the causal effects. CAUSAL- 321

DANN improves robustness to the domain shift 322

between observational and intervened text by us- 323

ing domain adversarial training to learn domain- 324

invariant features, enabling more accurate predic- 325

tion on transformed texts. 326

3.4.1 BERT 327

BERT based models (Devlin et al., 2018) are 328

among the best approaches for adjusting for textual 329

confounding (Feder et al., 2021; Veljanovski and 330

Wood-Doughty, 2024; Keith et al., 2020). Thus, we 331
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use it as our baseline outcome predictor. We train332

a vanilla BERT model using only non-intervened333

text, where outcomes are observed and serve as334

labels for supervised learning. To mitigate the bias335

from BERT predictions being propagated into ef-336

fect estimation, we predict the outcomes for both337

control and treated with the same BERT mode, en-338

suring a fairer comparison when estimating effects339

as a relative difference between the two groups.340

We build the outcome predictor by appending341

a linear classification layer to the BERT embed-342

ding model (see Appendix C). To obtain the pre-343

dicted outcome for all data, we randomly split the344

data into five folds. Each time we train the out-345

come predictor with four-fifths of the data, which346

is further split into training and validation sets by347

80%-20% ratio. Finally, we predict on the remain-348

ing one-fifth data to obtain their predicted out-349

comes. Given the i-th text Wi and its observed350

covariate Xi, the outcome can be predicted as351

Yi = E[Y |W,X] ≈ µBERT (Wi, Xi) from the352

BERT-based classification model. The ATE can be353

estimated as354

ATE = E[Y (g(W ))]− E[Y (W )]355

≈ 1

N

N∑
i=1

µBERT(g(Wi), Xi)− µBERT(Wi, Xi) (4)356

where N is the total number of data points and357

g(·) is the text transformation function. The CATE358

can be computed by using equations 1 and 3359

CATE = E[Y (g(W ))|X]− E[Y (W )|X]360

= E[E[Y |W = g(W ), X]|X]− E[Y (W )|X] (5)361

We can use BERT to estimate the inner expec-362

tation E[Y |W = g(W ), X] ≈ µBERT (g(W ), X)363

in the first term, and the outer expectation marginal-364

izes out the W. The second term can be similarly365

computed with µBERT (W,X).366

In CATE, the confounding external covariates367

X needs to be conditioned on, but the latent co-368

variates C is not explicitly necessary for causal369

identification, since we always condition on text.370

In conventional settings (e.g. T is anger), adjusting371

for latent language properties C (e.g. grammar) is372

difficult, but our framework reduces this burden.373

Nevertheless, non-confounding features can also374

be used to analyze heterogeneous treatment effects.375

For example, while topic (C) is controlled in LLM376

transformation and not a confounder, we can still377

examine effects across different topics.378

CATE ≈ 1

Nc,x

Nc,x∑
i:Ci=c,Xi=x

µBERT (g(Wi), Xi) 379

− µBERT (Wi, Xi) ∀c ∈ C, x ∈ X (6) 380

3.4.2 CAUSALDANN 381

Fine-tuned BERT often suffers performance drops 382

on unseen data (Ma et al., 2019; Ryu et al., 2022). 383

Since our outcome predictor must perform well on 384

both non-intervened data with observed outcomes 385

and transformed data with unobserved outcomes 386

(section 3.2), we adopt Domain Adversarial Neural 387

Network (DANN) instead of vanilla BERT. Guo 388

et al. (2023) demonstrated DANN’s strong perfor- 389

mance in domain adaptation for textual data. 390

DANN mitigates data shift by mapping text em- 391

beddings from both labeled source and unseen 392

target domains onto a shared space. CAUSAL- 393

DANN consists of three modules (Figure 2b): (1) a 394

BERT encoder for textual representation, (2) an out- 395

come predictor—a linear classifier same as in the 396

vanilla BERT outcome predictor, and (3) a domain 397

predictor—another linear classifier but with cross- 398

entropy loss trained adversarially to be maximized, 399

ensuring domain-invariant embeddings. This is 400

achieved by connecting the domain classifier to the 401

other parts of the model with a gradient reversal 402

layer. The loss term is: 403

L = Loutcome − λD · Ldomain (7) 404

where λD is a loss-balancing hyperparameter (see 405

training details in Appendix C). 406

In our setup, the source domain is non- 407

intervened (observed) data, while the target do- 408

main is intervened (unobserved) data. We train the 409

model in a semi-supervised way, providing both 410

the labeled non-intervened training data and the un- 411

labeled intervened data in each batch, balanced in 412

size. Both pass through the BERT encoder to learn 413

textual representations. Next, the non-intervened 414

data go through both the outcome and domain pre- 415

dictors, while intervened data, lacking outcome 416

labels, only pass through the domain classifier. 417

This adversarial setup pushes the encoder to learn 418

domain-invariant embeddings, aligning intervened 419

data closer to the non-intervened labeled data (see 420

Appendix C). After obtaining predicted outcome 421

by CAUSALDANN, the ATE and CATE can be 422

caculated in the same way as in Section 3.4.1. 423
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4 Experiments424

We use real-world data from Amazon prod-425

uct reviews (Ni et al., 2019) and Reddit426

r/AmITheAsshole discussions of social dilemmas 2427

for model evaluation in three case studies.428

4.1 Baselines and Setups429

We compare three baselines (1) BERT, (2) inverse430

propensity weighting (IPW) and (3) doubly robust431

estimator (DR) against the proposed (3) CAUSAL-432

DANN. We also evaluate (4) CAUSALDANN+DR433

to assess whether DR further improves domain434

adaptation. See details of baseline implementations435

in Appendix C. Additionally, we compare with (5)436

TextCause (Pryzant et al., 2021), a causal estima-437

tion method that, like ours, adjusts for confounding438

using BERT embeddings. However, TextCause as-439

sumes observations exist in both control and treat-440

ment groups, and fails when the treatment variable441

is unobserved or when one group lacks data. Nev-442

ertheless, The TextCause performance acts as the443

"upper bound" and tells us how good the effect es-444

timation can get to even with more training data445

from both control and treated groups.446

We evaluate performance using two metrics: (1)447

∆ATE, the absolute difference between predicted448

and ground truth ATE, and (2) mean squared er-449

ror (MSE) of the CATE vector across all covariate450

dimensions. For both, lower values indicate bet-451

ter performance. Each experiment is repeated five452

times to report the average and standard deviation.453

4.2 Amazon Reviews454

4.2.1 Data455

We first evaluate our method on a semi-synthetic456

dataset based on Amazon reviews (Ni et al., 2019),457

a benchmark also used in (Pryzant et al., 2021).458

This dataset consists of 5.6K reviews on products459

in the categories of mp3, CD, or Vinyl. Reviews460

for products worth more than $100 or fewer than 5461

words are excluded.462

Following (Pryzant et al., 2021), we estimate463

the effect of positive sentiment in reviews on sales,464

hypothesizing that positive reviews increase click465

and purchase likelihood, though product type may466

confound this effect. Since sentiment is embedded467

in text and not explicitly observed, defining the468

treatment variable in a conventional causal setting469

is challenging.470

2https://github.com/iterative/aita_dataset

Based on our framework, we define a transfor- 471

mation function g(·) that intervenes on the posi- 472

tive sentiment of the reviews without manipulating 473

other attributes like grammar. In this experiment, 474

we do not use an LLM, but instead we sample 475

the positive and non-positive reviews from the ob- 476

served data itself, labeling reviews as positive if 477

they have 5 stars and non-positive if they have 1 or 478

2 stars. The intervention is T = 1positive. This set- 479

ting (1) evaluates our framework without potential 480

biases from LLM-generated text, and (2) mirrors a 481

traditional causal estimation setup, enabling a fair 482

comparison with TextCause. 483

The observed covariate X is a binary indicator 484

for whether the associated review is a CD or not. 485

The outcome Y , a binary variable for whether a 486

product received a click or not, is simulated based 487

on the textual intervention T = 1positive and the 488

covariate X as following: 489

Y ∼ Bernoulli(σ(βX(π − β0) + βTT + ε)) (8) 490

where σ(·) is the sigmoid function, π = P (T |X) is 491

the propensity, βX controlling confound strength is 492

set to 4.0, βT controlling treatment strength is set to 493

0.8, β0 controlling propensity is set to 0.8. All these 494

hyperparameters are set as the same as a harder- 495

to-estimate scenario in (Pryzant et al., 2021). This 496

outcome generation process ensures the SUTVA, 497

overlap and ignorability assumptions. 498

We then follow our framework and train the out- 499

come and propensity predictors. We assume that 500

we do not observe the outcomes in the intervened 501

(positive) group. Therefore, we only use the non- 502

intervened reviews and their labels Y (T = 0) to 503

train the outcome predictors. For the propensity 504

predictor in the IPW method, we use T as the train- 505

ing labels and both intervened (T = 1) and non- 506

intervened (T = 0) groups. 507

4.2.2 Results 508

Table 1 shows that CAUSALDANN gives us the 509

ATE and CATE estimation closest to the ground 510

truth, outperforming other baselines including 511

BERT, IPW, DR and also CAUSALDANN+DR. 512

The fact that CAUSALDANN achieves lower error 513

than the vanilla BERT baseline tells us the effec- 514

tiveness of domain adaptation by DANN. In addi- 515

tion, the results show that IPW has significantly 516

worse performance, suggesting issues with propen- 517

sity score estimation. We notice that the propen- 518

sity predictor easily classifies reviews as positive 519

or negative, yielding probability outputs near 0 or 520
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1, even after temperature scaling. This extreme521

weighting leads to the numerical ill behavior in522

IPW. DR also utilize the propensity score. For523

the same reason, DR also has worse performance524

than CAUSALDANN, although its bias is much525

less significant than IPW due to DR’s doubly de-526

biasing approach. Last, TextCause sets an upper527

bound on performance by leveraging more observa-528

tions in the intervened group. It is no surprise that529

TextCause performs better. However, CAUSAL-530

DANN achieves a ∆ATE close to TextCause and531

matches its MSE for CATE, demonstrating that its532

estimations are less biased.533

∆ATE (↓) MSE of CATE (↓)
TextCause 0.05± 0.02 0.01± 0.01

BERT 0.12± 0.05 0.02± 0.01

IPW 27.29± 6.22 1135.02± 416.02

DR 0.58± 0.42 1.26± 1.27

CAUSALDANN 0.09± 0.04 0.01± 0.01

CAUSALDANN+DR 1.37± 0.40 2.99± 1.30

Table 1: Causal estimation errors in Amazon Reviews.

4.3 Reddit AITA Comments534

4.3.1 Data and Experiment Set-up535

Next we evaluate our methods on the Reddit536

r/AmITheAsshole (AITA) data, where users share537

social dilemmas and receive judgements on who is538

at fault. This data has been used as a benchmark539

for causal estimation (Marmarelis et al., 2024).540

In AITA, the verdict is shaped by upvotes on541

comments, with the most upvoted comment re-542

maining at the top, increasing its visibility. A key543

research question is whether exposure to the top544

comment affects individual judgment, due to influ-545

ences of mainstream opinions. Conducting such546

an experiment in real life is challenging, but our547

framework enables an approximation to this causal548

question utilizing LLMs.549

In this experiment, we do not use LLM trans-550

formation as an intervention, but sample both in-551

tervened and control units from real-world data.552

We select the top-ranked comment on each Reddit553

post as the intervened unit and randomly sample an-554

other comment (excluding the top-ranked one) on555

the same post as the control unit. The intervention556

is thus the binary variable T = 1top comment.557

To create a semi-synthetic evaluation dataset, we558

perform LLM counterfactual generation by prompt-559

ing GPT-4 3 to act as a moral judge on these560

3https://openai.com/index/gpt-4/

real-world posts and generate verdicts (Marmarelis 561

et al., 2024). This simplifies the problem from es- 562

timating effects on human behavior to analyzing 563

impact in an LLM-simulated scenario. In other 564

words, we estimate the effect of being exposed to 565

top/random comment on GPT’s judgement. See Ap- 566

pendix D for prompting procedure. Table 5 shows 567

example generations, which exhibit good quality. 568

The outcome Y is simulated by prompting an LLM 569

to provide moral verdicts for (a) a story with its 570

top-ranked comment and (b) the same story with a 571

randomly selected comment. This ensures ignora- 572

bility, as only the comment changes while all other 573

aspects (e.g., the post) remain the same. We for- 574

mulate outcome Y to be binary, with Y = 1 when 575

GPT assigns fault and Y = 0 otherwise (we catego- 576

rize YTA (you are the asshole) and ESH (Everyone 577

sucks here) into Y = 1, and NTH (not the ass- 578

hole) and NAH (no asshole here) into Y = 0). For 579

each post, we generate both outcomes Y (T = 1) 580

and Y (T = 0) to compute synthetic ground truth 581

treatment effects. We examine potential LLM gen- 582

eration biases in Appendix A. 583

We assume overlap is also satisfied. Our covari- 584

ates are latent in the post and comment text. Each 585

pair of intervened and control units have the same 586

post. We assume comments are also similar in 587

style, because both top and random comments orig- 588

inate from the same discussion thread. Thus, as ex- 589

plained in Section 3, observational and intervened 590

texts should occupy the same high-dimensional 591

space except along the "treatment dimension". 592

Following the approach in Section 3, we train 593

the outcome predictor and the propensity predic- 594

tor. Both predictors use concatenated post and 595

comment text, adjusting for latent confounders 596

in texts. The outcome predictor is trained using 597

only non-intervened data with observed ground 598

truth Y (T = 0) labels, while the propensity pre- 599

dictor uses T = 1top comment labels from both 600

groups. Additionally, we compute CATE con- 601

ditioned on post topics, which we extract using 602

BERTopic (Grootendorst, 2022). See Appendix E. 603

4.3.2 Results 604

Table 2 shows that CAUSALDANN performs ex- 605

ceptionally well on this dataset. It has similar per- 606

formance to BERT because top and random com- 607

ments are often similar in perspective and writing 608

style, leading to minimal data shift between non- 609

intervened and intervened data. As a result, BERT 610

also performs well here. The similarity between 611
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∆ATE (↓) MSE of CATE (↓)
TextCause 0.04± 0.01 0.01± 0.00

BERT 0.01± 0.01 0.01± 0.01

IPW 3.43± 1.02 14.08± 9.03

DR 0.07± 0.03 0.04± 0.01

CAUSALDANN 0.01± 0.01 0.00± 0.00

CAUSALDANN+DR 0.21± 0.06 0.08± 0.03

Table 2: Causal estimation errors in AITA comments.

the top and random comments also leads to inaccu-612

rate propensity score estimation. Therefore, IPW613

and DR-based methods perform worse due to low614

accuracy in the propensity prediction (F1-score is615

0.52 ± 0.01). Finally, although TextCause can-616

not handle unobserved outcomes in the intervened617

group, we run it by providing LLM-generated coun-618

terfactuals. We find CAUSALDANN slightly out-619

performs TextCause using more information.620

4.4 Anger in AITA Posts621

4.4.1 Data and Experiment Set-up622

In the same AITA dataset, we investigate whether623

the anger level in posts affects people’s verdicts.624

Posts with higher anger or aggression may lead to625

a higher likelihood of being deemed the author’s626

fault. Anger is a latent attribute in texts. Under a627

conventional setup, we would need to use a proxy628

treatment variable which could be susceptible to629

more bias (Pryzant et al., 2021). In our framework,630

we define an intervention T = 1anger, where we631

use Claude 3.5 Sonnet 4 to transforms each post632

to increase its anger level while preserving style,633

semantics, and perspective. To mitigate bias from634

LLM transformations, we also rephrase the original635

post keeping the same anger level. Manual inspec-636

tion confirms the quality of the transformations637

(details in Appendix D).638

Similar to section 4.3, we create a semi-synthetic639

evaluation data by counterfactual generation of out-640

comes. Y is generated by prompting an LLM for641

verdicts on (a) an LLM-anger-transformed AITA642

story and (b) an LLM-rephrased version of the643

original story. We are estimating the effect of644

the intervention formulated as this LLM-anger-645

transformation, conditioned on text containing la-646

tent text-related covariates and the implicit treat-647

ment. All confounding latent covariates are con-648

trolled, and ignorability and overlap assumptions649

4We use Claude 3.5 Sonnet (https://www.anthropic.
com/news/claude-3-5-sonnet), as GPT is more conserva-
tive and does not significantly alter the anger level.

are satisfied. More analysis on potential bias 650

from LLM-generations, data shift and overlap from 651

LLM-transformation can be found in Appendix. 652

Similar to previous experiments, we only use 653

the non-intervened (rephrased) posts and their cor- 654

responding Claude-generated verdicts to train the 655

outcome predictor. To train the propensity predic- 656

tor, we use all data and T = 1anger as the label. 657

The input to both predictors are the post texts. In 658

addition, we also have the covariates C to be the 659

binary vector of the top 30 frequent topics obtained 660

from BERTopic for computing CATE. The train- 661

ing procedure is similar to previous experiments 662

(Appendix C). 663

4.4.2 Results 664

From Table 3, we see that CAUSALDANN outper- 665

forms other methods and matching the performance 666

of TextCause (using more training data from the 667

intervened group). Methods using DANN archi- 668

tecture are better than methods based on vanilla 669

BERT, again showing the effectiveness of domain 670

adaptation in predicting potential outcomes. Ap- 671

plying IPW again signifincantly lowers the perfor- 672

mance because of the numerical ill behavior when 673

the propensity scores were close to either 0 or 1. 674

CAUSALDANN also outperforms DR again in this 675

data. All these results indicate that propensity esti- 676

mation, IPW and DR can be less robust. 677

∆ATE (↓) MSE of CATE (↓)
TextCause 0.05± 0.01 0.02± 0.01

BERT 0.09± 0.07 0.03± 0.02

IPW 154.61± 16.24 25744.42± 5467.05

DR 0.10± 0.05 0.31± 0.36

CAUSALDANN 0.05± 0.03 0.01± 0.01

CAUSALDANN+DR 0.07± 0.04 0.15± 0.18

Table 3: Causal estimation errors in AITA-anger data.

5 Conclusions 678

In this work, we target the problem of causal esti- 679

mation for textual data especially when the treat- 680

ment variable is not directly observed. We propose 681

CAUSALDANN, a framework for estimating the 682

causal effect of tailored interventions on text. Us- 683

ing domain-adaptive text classifiers, our approach 684

produces robust effect estimates while handling 685

domain shifts. We demonstrate CAUSALDANN’s 686

strong performance across three experiments. 687
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Limitations First, LLM-generated data is prone688

to biases and limited diversity (Appendix A). We689

mitigate these issues through manual inspection of690

the generations, and by applying LLM rephrasing691

to the non-intervened group alongside the transfor-692

mation of intervened group. This ensures a fair693

comparison when estimating effects as a relative694

difference between the two groups. If the trans-695

formation intervention does contain biases from696

LLMs, then this bias would propagate to effect es-697

timation. Our evaluation on three different datasets698

shows that our method achieves lower biases in699

causal estimation than the baselines. Bias mit-700

igation in counterfactual generation is an active701

research area, including strategies like enhanced702

prompting and human-in-the-loop annotation (Li703

et al., 2023; Bhattacharjee et al., 2024). However,704

this topic is beyond the scope of our paper.705

Second, our experiments evaluate the proposed706

framework using LLM-generated semi-synthetic707

data, meaning the estimated effects reflect simu-708

lated LLM textual transformations. However, ap-709

plying this approach to causal estimation on real710

data requires the assumption that LLMs can reli-711

ably infer unobserved data points through text trans-712

formation based on observed human behavior—an713

assumption that may not always hold. For instance,714

although we control for linguistic properties such as715

semantics and grammar through prompting, mod-716

ifying anger levels via LLM transformation may717

also unintentionally alter toxicity. Future applica-718

tions of our framework should also carefully vali-719

date this assumption. We also plan to explore fine-720

tuning LLMs with observed data, enabling them to721

learn specific personas and more closely align their722

behavior with human social systems. Alternative723

testing methods can also be designed in the future.724

For example, in AITA-comments experiment, we725

can change the prompt so that GPT is given the726

same comment twice but told once that it was a top-727

ranked comment and once that it was a low-ranked728

comment.729

The third limitation is the potential presence of730

unobserved confounders that are not accounted for731

in our experiments. While we adjust for confound-732

ing by conditioning on textual representations and733

estimated propensity scores, there may still be la-734

tent factors influencing both the treatment and out-735

come that our models fail to capture. For example,736

in the AITA dataset, implicit biases in user interac-737

tions in the Reddit threads could affect verdicts in738

ways not reflected in the observed text. Addressing739

unobserved confounding remains a fundamental 740

challenge in causal inference from observational 741

data, and future work could explore the proper sen- 742

sitivity analysis to bound the uncertainty. 743

Ethics Statement In this research, we utilized 744

Large Language Models (LLMs) to generate data 745

for analysis. We acknowledge the ethical considera- 746

tions associated with the use of LLMs, particularly 747

concerning potential biases, data validity, and the 748

broader implications of AI-generated content. The 749

raw Reddit AITA and Amazon reviews data we 750

use contain information like names or uniquely 751

identifies individuals, and contain offensive con- 752

tent. All the user names are anonymized to ID 753

strings. Additionally, we only present the aggre- 754

gated average effects, without revealing any in- 755

dividual information. To maintain transparency, 756

we have detailed the methodology used for data 757

generation and the steps taken to address ethical 758

concerns in this paper. We encourage readers to 759

consider these factors when interpreting our find- 760

ings. Furthermore, our causal estimation frame- 761

work, while effective in controlled semi-synthetic 762

settings, may not generalize perfectly to real-world 763

scenarios. In real data applications, unobserved 764

confounders and biased treatment effect estima- 765

tions could lead to misleading conclusions. Users 766

of our method should be cautious when applying 767

it to real-world interventions, particularly in high- 768

stakes domains such as policy-making, healthcare, 769

or legal decision-making, ensuring appropriate val- 770

idation and sensitivity analyses. 771

Finally, this manuscript was drafted by the au- 772

thors with the assistance of ChatGPT to refine the 773

language and improve readability. All content was 774

reviewed and verified for accuracy. 775
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A Mitigation of LLM-related Biases 1069

LLM-generated text can be biased due to imperfec- 1070

tions in training data, affecting both (1) counterfac- 1071

tual generation for synthetic test data and (2) text 1072

interventions via LLM transformations. 1073

For the first point, we assume LLMs have 1074

learned social norms and common sense from ex- 1075

tensive online data. To assess potential biases, we 1076

analyze the distribution of LLM-generated AITA 1077

verdicts across self-reported gender and age groups, 1078

detected via regex from real posts (e.g., "I (30F)..."). 1079

We observe differences in verdict distributions by 1080

age and gender (Figure 3), such as younger authors 1081

being labeled "ESH" more often and older authors 1082

receiving "NAH" more frequently. However, this 1083

may be a reflection of real-world human behav- 1084

iors where people with different ages tend to talk 1085

about different types of stories, rather than reflect- 1086

ing LLM bias. To further test for bias, we rerun the 1087

same prompt on identical stories while randomly 1088

altering age or flipping gender. The verdict remains 1089

unchanged 91% of the time with a random age and 1090

93% with a flipped gender, suggesting minimal bias 1091

in LLM-generated verdicts. In addition, we man- 1092

ually check 50 randomly selected generations to 1093

ensure the quality (see Appendix D for prompting 1094

procedure and Table 7 for example GPT genera- 1095

tions). Last, using GPT-generated verdicts for both 1096

treated and control data also mitigates the biases 1097

propagating into our causal estimation. 1098

Disclaimer: we binarize gender labels here for 1099

simplicity, but we acknowledge that gender is not 1100

binary, and this simplification does not fully cap- 1101

ture the diversity of gender identities. 1102

With respect to the biases in interventions on 1103

text using LLM text transformation, we also manu- 1104

ally review 50 randomly selected generations and 1105

do not observe bias present. See Appendix D 1106

for prompting procedure and Table 5 for exam- 1107

ple GPT generations, which exhibit good quality. 1108

To further mitigate this bias, other than performing 1109

the text transformation defined as the intervention 1110

(e.g., increasing anger), we also rephrase the orig- 1111

inal textual data using an LLM. In this way, both 1112

non-intervened and intervened groups are LLM- 1113

generated. The estimated effect is a relative dif- 1114
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Figure 3: GPT generated AITA verdicts in different (a)
age and (b) gender groups. We use regex to capture
these.

ference between the two groups. With text and1115

outcomes in both groups being LLM-generated,1116

the biases should cancel out to a large extent.1117

B Data shift and Overlap in AITA1118

We provide additional results analyzing overlap1119

and data shift in intervened and non-intervened1120

groups. We assess the anger levels in Reddit1121

AITA stories for both control and treated data us-1122

ing SpanEmo (Alhuzali and Ananiadou, 2021), a1123

BERT-based emotion classifier trained on the Se-1124

mEval social media dataset, which has been vali-1125

dated in prior work (Burghardt et al., 2024). The1126

figure below shows that original Reddit data (blue)1127

exhibits greater variance in anger, while LLM-1128

transformed data (yellow) predominantly contains1129

texts with high anger probability—expected since1130

the LLM was prompted to intensify anger. The1131

observed data shift is consistent with the obser-1132

vation that CausalDANN with domain adaptation1133

has better performance. In addition, there is still1134

an overlap between the two distributions, allowing1135

the model to adapt from the original to the unseen1136

domain.1137

Figure 4: Distribution of Anger in control and inter-
vened data. T0 is observed texts and T1 is LLM-
transformed texts with respect to anger.

C Model Training and Hyperparameters 1138

BERT baseline We build the outcome predic- 1139

tor by appending linear classification layer to the 1140

BERT embedding model, with cross-entropy loss 1141

and sigmoid normalization for the binary clas- 1142

sification task. We add a dropout layer with a 1143

rate of 0.3. Adam optimizer with an initial learn- 1144

ing rate of 5e-5 is used, along with a scheduler 1145

lr = lrinit/((1+α ·p)β), where p = current epoch
total epoch 1146

and α = 10 and β = 0.25, following (Guo et al., 1147

2023). To obtain the predicted outcome for all data, 1148

we randomly split the data into five folds. Each 1149

time we train the outcome predictor with four-fifths 1150

of the data, which is further split into training and 1151

validation sets by 80%-20% ratio. We train for 20 1152

epochs and stop early when the model achieves 1153

the best validation F1 score. The batch size is 64. 1154

Finally, we predict on the remaining one-fifth data 1155

to obtain their predicted outcomes. 1156

We use BERT model on hugging- 1157

face (https://huggingface.co/docs/ 1158

transformers/en/model_doc/bert) which 1159

is open sourced and permitted for research. The 1160

parameter size is about 110 millions. 1161

CAUSALDANN Same to BERT baseline, we per- 1162

form training and prediction by randomly splitting 1163

the data into five folds. We train with 20 epochs 1164

in total. However, during the first three epochs the 1165

model is trained without the domain adversarial 1166

module activated, the model to better learn the out- 1167

come labels first. The batch size is 32. The Adam 1168

optimizer, the learning rate and the scheduler are 1169

the same as those for the BERT baseline. 1170

Equation 7 describes the loss to be minimized 1171

for DANN training. Following (Guo et al., 2023), 1172

we balance the loss terms between the outcome pre- 1173
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dicting module and the domain predicting module1174

by controlling λD indirectly by1175

λD = 2/(1 + e−γ·p)− 1 (9)1176

where p = current epoch−epochs trained w/o adversary
total epochs ,1177

and γ is now the hyperparameter. We performed a1178

grid search for γ in [0.1, 1, 10] and decide to set1179

γ = 1.1180

We build our model on top of https://github.1181

com/NaJaeMin92/pytorch-DANN and https://1182

github.com/fionasguo/DAMF which are both1183

open sourced and permitted for research. The pa-1184

rameter size is about 110 millions.1185

Inverse Propensity Weighting (IPW) Baseline1186

The second baseline is Inverse Propensity Weight-1187

ing (IPW), a popular causal estimation method.1188

IPW accounts for confounders by adjusting an es-1189

timate with the inverse of the propensity score1190

π(W,X) = P (T = 1 | W,X). However, in our1191

scenario, direct IPW is infeasible since intervened1192

outcomes are unobserved.1193

Nevertheless, IPW can also be seen as a sample1194

reweighting technique, a commonly used domain1195

adaptation technique (Li et al., 2016) that aligns1196

the distributions of the observed non-intervened1197

data and the unobserved intervened data. In our1198

case, we define the interventions using an LLM or1199

structured sampling (Section 3.2), and we can take1200

advantage of the overlap assumption between the1201

control and the intervened groups in the textual rep-1202

resentation space. Thus, π(W,X) is the probability1203

of a piece of text being classified as interventional1204

(as opposed to observational). This is equivalent to1205

training a propensity model directly on observed1206

binary treatments, to produce density ratios of in-1207

terventional over observational. When propensity1208

scores are accurately estimated, IPW helps debias1209

outcome predictions. We can apply IPW as a base-1210

line on top of predictions from vanilla BERT or1211

CAUSALDANN.1212

We estimate the propensity score π(W,X) us-1213

ing a separate BERT model, structured as in Sec-1214

tion 3.4.1. We train this propensity predictor on1215

both intervened and non-intervened texts, using1216

T = 1transformed as labels. To obtain the propen-1217

sity score as a probability, we calibrate it with tem-1218

perature scaling (Guo et al., 2017) on a validation1219

set that also includes intervened and non-intervened1220

data. See details in Appendix C.1221

Once the propensity scores are obtained, we com-1222

pute the ATE as1223

ATE =
1

N

N∑
i=1

( π(Wi, Xi)

1− π(Wi, Xi)
− 1

)
Y (10) 1224

The CATE can be computed as 1225

CATE =
1

Nc,x

N1,c,x∑
Ci=c,Xi=x

( π(Wi, Xi)

1− π(Wi, Xi)
− 1

)
Y (11) 1226

The model archetecture, the training procedure 1227

and hyperparameters are the same as those for 1228

BERT baseline. The parameter size is about 110 1229

millions. 1230

Doubly Robust (DR) Baseline The third base- 1231

line is the doubly robust estimator (Chernozhukov 1232

et al., 2018). DR combines two modeling ap- 1233

proaches, the propensity score model and an out- 1234

come model, to estimate treatment effects. This 1235

ensures that the final estimation remains consistent 1236

if either the propensity score model or the outcome 1237

model is correctly specified. Further, the estima- 1238

tor’s bias decays with the expected product of the 1239

two models’ errors, leading to double rate robust- 1240

ness. In our experiments, the ATE and CATE are 1241

computed as: 1242

ATE =
1

N

N∑
i=1

[( π(Wi, Xi)

1 − π(Wi, Xi)
− 1

)
(Y − µBERT (Wi, Xi)) 1243

+
(
µBERT (g(Wi), Xi) − µBERT (Wi, Xi)

)]
(12) 1244

CATE =
1

Nc,x

N1,c,x∑
Ci=c,Xi=x

[( π(Wi, Xi)

1 − π(Wi, Xi)
− 1

)
1245

· (Y − µBERT (Wi, Xi)) 1246

+
(
µBERT (g(Wi), Xi) − µBERT (Wi, Xi)

)]
(13) 1247

in which we use both propensity estimator 1248

π(Wi, Xi) similar as in the IPW method and the 1249

outcome predictor µBERT (Wi, Xi) to ensure dou- 1250

bly robustness. 1251

Computing resource Each experiment was con- 1252

ducted on an RTX A6000 GPU with 48GB memory. 1253

On average, training and testing took 9.5 hours for 1254

BERT baselines and 11.2 hours for DANN models. 1255

The extended training time is due to the need for 1256

outcome and propensity prediction, each requiring 1257

five-fold cross-validation. 1258
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D Prompting LLMs1259

D.1 AITA-comments Data1260

For the experiment AITA-comments in Section 4.3,1261

we use the prompt in Table 4 to ask GPT-4 to pro-1262

vide a verdict based on a given AITA post and a top1263

or a random comment. We remove the responses1264

that GPT refuses to answer, possibly in cases where1265

topics are sensitive.1266

The following Table 5 shows some example1267

posts with their top and random comments, and1268

the GPT generated verdicts. For some posts (e.g.1269

row 1) the top and random comments are very simi-1270

lar in perspectives, and the GPT-generated verdicts1271

also are the same when different comments are1272

given. Interestingly, the top and random comments1273

in the second example have different perspectives.1274

Nevertheless, GPT still gives the same verdict, pos-1275

sibly because the random comment was very short.1276

The last example show how GPT changes verdict1277

when the top and random comments are different1278

in perspectives.1279

D.2 AITA-anger Data1280

For the experiment AITA-anger in Section 4.4, we1281

use the prompt in Table 6 to ask Claude-3.5-Sonet1282

to (1) transform text to a version with higher anger,1283

but keeping the semantic and all other linguis-1284

tic properties the same; (2) rephrase text without1285

changing the anger level (the purpose is to rephrase1286

the non-intervened group too so that both groups1287

are LLM-generated and bias from LLM generation1288

can be mitigated), or (3) provide a verdict.1289

We remove the responses that Claude refuses to1290

answer, possibly in cases where topics are sensitive.1291

The following Table 7 shows some examples of the1292

rephrased and anger-transformed posts, as well as1293

the Claude generated verdicts. We see that Claude1294

has transformed the text into very aggressive and1295

angry version. Warning: Table 5 contains offensive1296

language.1297

E BERTopic1298

To detect the top frequent topics in the AITA1299

dataset, we use BERTopic. We first preprocess1300

all posts to remove url links and stop words in En-1301

glish. We run BERTopic with UMAP dimension1302

reduction and HDBSCAN clustering algorithms,1303

and we use hyperparamters top_n_words = 10,1304

n_gram_range = (1, 1), min_topic_size = 101305

and nr_topic = 10. Table 8 shows the top 301306

topics detected and their post counts.1307

BERTopic assigns a single topic to each text. We 1308

focus on the top 30 topics, represented as a binary 1309

vector C for each post. The CATE is a vector of 1310

length equal to the number of topics, with each 1311

element representing the treatment effect averaged 1312

across data within that topic. In the IPW method 1313

we compute CATE similarly. 1314

F Impact of Text-Length Filtering on 1315

AITA Results 1316

To reduce computational complexity, we select 1317

posts with fewer than 140 words. Our AITA semi- 1318

synthetic dataset contains approximately 12k sam- 1319

ples after filtering out stories under 140 tokens. 1320

This is sufficient for training and testing. To en- 1321

sure story length is not a major confounder, we 1322

conducted additional experiments on 10k randomly 1323

selected samples without length filtering. As shown 1324

in the table, CausalDANN still outperforms other 1325

baselines, confirming our conclusions. 1326
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system_prompt = """\
You are a moral arbiter hired by r/AmITheAsshole.\
When presented with a story, you respond objectively with your verdict.\
As is customary in that subreddit, you always begin your response with one of [NTA, YTA, ESH, NAH].

"""

def query_judge(story, comment):
response = openai.ChatCompletion.create(

model = model, temperature=1, max_tokens=2,
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"The author said--\n{story}"},
{"role": "user", "content": f"The community said--\n{comment}"},
{"role": "user", "content": "What do you say? Is the verdict NTA, YTA, ESH, or NAH? No explanations."}
])

return response

Table 4: Code to prompt GPT-4 to generate verdicts based on a given AITA post and a comment.

Post and Comments Verdict
Post: So I recently graduated high school and I’m attending a program lasting all of July that helps ease students
into college life. My roomate met a girl there whom she really likes, and he told me and his other friends that he
intends to ask her out to be his girlfriend. Keep in mind they just met. However, this girl told me that she does not
reciprocate these feelings. I’m afraid to disclose this to my roommate, and I’m extremely confused if I’m the asshole
in this situation.
Top Comment: I don’t think you are an asshole for not telling him. It sounds like something he needs to hear from
this girl. You can tell him if you feel it is the right thing to do. He may get angry with you and accuse you of having
feeling for her. It can hurt not to have feeling reciprocated and sometimes

NAH

Random Comment: You’re not an asshole. Don’t get involved. This is between your roommate and this girl, and it
would be inappropriate and unwise to get between the two.

NAH

Post: My parents are diabetic, morbidly obese, and addicted to food. I’m the same, minus the diabetes. I’ve been
trying for a while to eat healthily and lose weight. So have they, but yet every time they go to the store, they bring
home junk food. I understand that it’s hard for them, but it’s also hard to stay on track with my healthier lifestyle
when there’s junk food all around me. Plus, they’re getting older, so it is crucial for them to get healthy now. A few
weeks ago, they brought home 4 bags of donuts, and I emptied each pack into the trash. Am I an asshole for this?
**Edit:** I love all the responses. Got one "no", one "maybe", and one "yes". I agree with all of you. **Edit 2:**
You guys are right–I’m the asshole.
Top Comment: Yep. You’re the asshole. If you want to make the commitment to work hard on improving your
health and your diet, then that is your job. If those who live with you want to support you by changing their lifestyle,
too, that would be fabulous. But, it’s not for you to dictate to them, or to throw away their property.

YTA

Random Comment: What? No man. YTA
Post: In a nutshell I was at a hardcore punk show. I got a beer between bands. I was drinking it up front waiting for
the next band to start. They did and a ferocious pit opened up near me. So I got knocked around and so did my beer.
I spilled over multiple people around me and they got beer over their clothes and hair. After I talked about this to
some people who clearly don’t go to punk shows they seemed to think I was rude, but frankly every person near the
center of the crowd at such a show knows they’ll possibly get beer spilled on them. It’s happened to me multiple
times. So AITA?
Top Comment: YTA. I go to local punk shows regularly and have worked a lot with booking agents and in music
journalism. When the band takes the stage and the pit goes nuts you back to the side with the beer or put it down
somewhere else. Spilling beer all over everyone is not normal, at least not in any of the

YTA

Random Comment: Never been to a show like this. If it’s not common to take a drink where you know you’re
going to get tossed around, YTA. If it’s basically expected to have a drink, then not the asshole. People can be
annoyed they get beer spilled on them, but they know people have drinks and it can happen. Then they shouldn’t

NAH

Table 5: Example generations of verdicts by GPT-4 given AITA posts along with top or random comments.
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def get_response(post, task):

if task == 'anger_transformation':
system_prompt = f"\

Here is a Reddit post: {post}. Rephrase it while maintaining the semantics, writing style,
structures and paragraphs, but express much more anger. The output length should be 10 words
more or less than the original post. Please only output the rephrased texts:

"
elif task == 'rephrasing':

system_prompt = f"\
Here is a Reddit post: {post} Rephrase it while maintaining the semantics, writing style,
structures and paragraphs. The output length should be 10 words more or less than the original
post. Please only output the rephrased texts:

"
elif task == 'give_verdict':

system_prompt = f"\
Given a Reddit post from r/AmItheAsshole, classify it into one of the following four
categories: \
YTA (You're the asshole): The submitter is deemed to be in the wrong; \
NTA (Not the asshole): The other party is considered to be wrong; \
ESH (Everyone sucks here): Both parties are wrong; \
NAH (No asshole): Both parties acted appropriately, but the situation just sucks. \
Your task is to analyze the post and determine which category it belongs to based on the
narrative provided by the submitter. Consider the actions, intentions, and attitudes of all
involved parties to make an accurate classification. Only output one of these labels: YTA,
NTA, ESH, or NAH. No explanation is needed. Limit your response to 3 characters:

"
else:

assert

message = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
temperature=1,
messages=[

{
"role": "user",
"content": [

{
"type": "text",
"text": system_prompt

}]}]
)
return message.content[0].text

Table 6: Code to prompt Claude to transform a post to higher anger level but keeping other linguistic properties the
same, or to rephrase a post, or to provide a verdict based on a given post.
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Posts Verdict
Original: So I recently graduated high school and I’m attending a program lasting all of July that helps ease students
into college life. My roomate met a girl there whom she really likes, and he told me and his other friends that he
intends to ask her out to be his girlfriend. Keep in mind they just met. However, this girl told me that she does not
reciprocate these feelings. I’m afraid to disclose this to my roommate, and I’m extremely confused if I’m the asshole
in this situation.
Rephrased: Having recently completed high school, I’m participating in a July program designed to smoothly
transition students into college life. My roommate encountered a girl there whom he’s deeply attracted to, and
he confided in me and our other friends his intention to ask her to be his romantic partner, despite their recent
acquaintance. However, this young woman revealed to me that she doesn’t share his amorous sentiments. I’m
hesitant to divulge this information to my roommate, leaving me utterly perplexed about whether I’m the one in the
wrong in this predicament.

NTA

Anger-Transformed: I just finished that goddamn high school hell, and now I’m stuck in this idiotic college prep
program for the entire fucking July. My moronic roommate met some chick there and instantly developed a pathetic
crush on her, telling me and our other dumbass friends that he plans to ask her out as his girlfriend. Can you believe
this imbecile’s audacity? They barely know each other! But here’s the real kicker: that girl confided in me that she
doesn’t share his delusional feelings at all. I’m torn between ripping the truth out of his thick skull or letting him
make a fool of himself. Either way, I’m caught in this infuriating mess, and I can’t decide if I’m the raging asshole
here or not.

ESH

Original: My parents are diabetic, morbidly obese, and addicted to food. I’m the same, minus the diabetes. I’ve
been trying for a while to eat healthily and lose weight. So have they, but yet every time they go to the store, they
bring home junk food. I understand that it’s hard for them, but it’s also hard to stay on track with my healthier
lifestyle when there’s junk food all around me. Plus, they’re getting older, so it is crucial for them to get healthy now.
A few weeks ago, they brought home 4 bags of donuts, and I emptied each pack into the trash. Am I an asshole for
this? **Edit:** I love all the responses. Got one "no", one "maybe", and one "yes". I agree with all of you. **Edit
2:** You guys are right–I’m the asshole.
Rephrased: My parents suffer from diabetes, extreme obesity, and food addiction. Like them, I’m obese but without
diabetes. I’ve been striving to eat healthily and shed pounds for some time. They’ve also attempted this, yet they
consistently bring unhealthy snacks home from the grocery store. While I understand their struggle, it’s challenging
to maintain my healthier lifestyle amidst the temptation of junk food. Moreover, as they age, it becomes crucial
for them to prioritize their well-being. A few weeks ago, they purchased four bags of donuts, and I discarded the
contents of each bag. Was I wrong for doing so? **Edit:** I appreciate all the responses – one "no," one "maybe,"
and one "yes." I concur with you all. **Edit 2:** You’re correct – I was the one in the wrong.

ESH

Anger-Transformed: My goddamn parents are fucking diabetic, disgustingly morbidly obese, and pathetically
addicted to food like a bunch of pigs. I’m the same, minus the shitty diabetes. I’ve been trying for a fucking eternity
to eat healthily and lose weight, but those assholes keep sabotaging me. So have they, but yet every damn time they
go to the store, they bring home junk food like the brainless morons they are. I understand that it’s hard for those
idiots, but it’s also hard to stay on track with my healthier lifestyle when there’s junk food all around me thanks
to their stupidity. Plus, they’re getting older, so it is crucial for them to get healthy now before they croak. A few
weeks ago, those dumbasses brought home 4 bags of donuts, and I angrily emptied each pack into the trash like
the responsible adult I am. Am I an asshole for this? **Edit:** I love all the responses, you fucking geniuses. Got
one "no", one "maybe", and one "yes". I agree with all of you, you brilliant bastards. **Edit 2:** You guys are
right–I’m the asshole, and I fucking hate myself for it.

ESH

Table 7: Example generations of rephrased and anger-transformed posts by Claude, and the verdicts also generated
by Claude.
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Topic Count
wedding_birthday_party_family 204
gift_gifts_christmas_birthday 120
job_work_boss_for 112
teacher_class_school_he 106
racist_white_black_english 104
tip_tipping_food_delivery 98
ordered_order_pizza_the 89
friend_him_ex_he 80
lane_traffic_road_driving 66
church_religion_religious_atheist 65
dog_dogs_puppy_him 64
rent_pay_split_bills 63
her_she_girl_me 62
child_daughter_have_baby 60
sex_she_porn_relationship 56
eat_food_cook_she 56
name_names_my_is 54
bathroom_toilet_shower_use 52
car_drive_gas_pay 50
cat_cats_allergic_my 49
she_go_plans_her 47
kids_wife_work_babysit 47
gay_lgbt_people_men 42
funeral_died_passed_family 42
he_pair_charger_selling 39
kid_was_the_fish 39
hair_shave_beard_cut 38
wear_wearing_bra_shirt 38
eat_food_eating_he 36
tattoo_art_tattoos_design 34

Table 8: Top 30 topics detected in AITA data by BERTopic.

Model AITA (filtered <140 tokens) AITA (unfiltered)
δATE MSE of CATE δATE MSE of CATE

BERT 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01
IPW 3.43± 1.02 14.08± 9.03 2.89± 0.95 11.46± 6.23
DR 0.07 ± 0.03 0.04 ± 0.01 0.06 ± 0.01 0.05 ± 0.01
CAUSALDANN 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.01
CAUSALDANN + DR 0.21 ± 0.06 0.08 ± 0.03 0.20 ± 0.07 0.09 ± 0.04

Table 9: Performance comparison on AITA data with and without story length filtering.
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