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Abstract

In this paper, we study the problem of networked multi-agent reinforcement learn-
ing (MARL), where a number of agents are deployed as a partially connected
network and each interacts only with nearby agents. Networked MARL requires all
agents to make decisions in a decentralized manner to optimize a global objective
with restricted communication between neighbors over the network. Inspired by the
fact that sharing plays a key role in human’s learning of cooperation, we propose
LToS, a hierarchically decentralized MARL framework that enables agents to learn
to dynamically share reward with neighbors so as to encourage agents to cooperate
on the global objective through collectives. For each agent, the high-level policy
learns how to share reward with neighbors to decompose the global objective, while
the low-level policy learns to optimize the local objective induced by the high-level
policies in the neighborhood. The two policies form a bi-level optimization and
learn alternately. We empirically demonstrate that LToS outperforms existing
methods in both social dilemma and networked MARL scenarios across scales.

1 Introduction

In fully cooperative multi-agent reinforcement learning (MARL), there are multiple agents interacting
with the environment via their joint action to cooperatively optimize an objective. Many methods of
centralized training and decentralized execution (CTDE) have been proposed for cooperative MARL,
such as COMA (Foerster et al., 2018), QMIX (Rashid et al., 2018), QPLEX (Wang et al., 2021),
and FOP (Zhang et al., 2021). However, these methods suffer from the overgeneralization issue:
employed value functions cannot estimate well because agents sometimes choose uncoordinated
actions, and thus the optimal policy cannot be learned (Castellini et al., 2019). Moreover, they may
not easily scale up with the number of agents due to centralized learning (Qu et al., 2020a).

In many MARL applications, there are a large number of agents that are deployed as a partially
connected network and collaboratively make decisions to optimize the globally averaged return, such
as communication networks (Kim et al., 2019) and traffic signal control (Wei et al., 2019). To deal
with such scenarios, networked MARL is formulated to decompose the dependency among all agents
into dependencies between only neighbors. To avoid decision-making with insufficient information,
agents are permitted to exchange messages with neighbors over the network. In such settings, it is
feasible for agents to learn to make decisions in a decentralized way (Zhang et al., 2018; Qu et al.,
2020b). However, there are still difficulties of dependency if anyone attempts to make decisions
independently, e.g., prisoner’s dilemma and tragedy of the commons (Pérolat et al., 2017). Existing
methods tackle these problems by consensus update of value function (Zhang et al., 2018), credit
assignment (Wang et al., 2020), or reward shaping (Chu et al., 2020). However, these methods rely on
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either access to the global state and joint action (Zhang et al., 2018) or hand-crafted reward functions
(Wang et al., 2020; Chu et al., 2020).

Inspired by the fact that sharing plays a key role in human’s learning of cooperation (Eisenberg
and Mussen, 1989), we propose learning to share (LToS), a hierarchically decentralized learning
framework for networked MARL. LToS enables agents to learn to dynamically share reward with
neighbors so as to collaboratively optimize the global objective. The high-level policies decompose
the global objective into local ones by determining how to share their rewards, while the low-level
policies optimize local objectives induced by the high-level policies. LToS learns in a decentralized
manner, and we prove that the high-level policies are a mean-field approximation of the joint
high-level policy. Moreover, the high-level and low-level policies form a bi-level optimization and
alternately learn to optimize the global objective.

LToS is a general hierarchical framework for networked MARL and can be easily realized by diverse
combinations of RL algorithms. We currently implement LToS by DDPG (Lillicrap et al., 2016) as the
high-level policy and DGN (Jiang et al., 2020) as the low-level policy. We empirically demonstrate
that LToS outperforms existing methods for networked MARL in both social dilemma and networked
MARL scenarios.

2 Related Work

There are many recent studies for collaborative MARL. Most adopt CTDE (Rashid et al., 2018; Wang
et al., 2021; Zhang et al., 2021; Su and Lu, 2022). Many of them are constructed on the basis of
factorizing the joint Q-function (Rashid et al., 2018; Wang et al., 2021). However, these factorized
methods suffer from the overgeneralization issue (Castellini et al., 2019). Other studies focus more
on decentralized training, to which our work is more closely related, as summarized as follows.

Networked MARL. Zhang et al. (2018) and Qu et al. (2019) proposed consensus update of local
value functions, where each agent keeps a local copy of the global value function but is assumed to
have global information. Qu et al. (2020a) proposed intention propagation between agents, where each
agent updates its policy based on intentions shared by other agents, but the policy may converge slowly
due to propagated intentions over the network. Qu et al. (2020b) and Lin et al. (2020) investigated
the exponential decay property, i.e., the impact of agents on each other decays exponentially in their
graph distance, while Chu et al. (2020) introduced a spatial discount factor to capture the influence
between agents, which remains hand-tuned. However, none of these studies provide an explicit
mechanism to solve social dilemmas in networked MARL.

Reward Design. Hostallero et al. (2020) aimed at maximizing social welfare, but they simply
used temporal difference error for reward shaping. As temporal difference error in deep RL hardly
converges to zero, it still biases the optimization objective. Mguni et al. (2019) added an extra part to
the original reward as non-potential based reward shaping and used Bayesian optimization to induce
the convergence to a desirable equilibrium between agents. However, the extra part remains fixed
during an episode, which makes it less capable of dealing with dynamic environments. Moreover,
the reward shaping alters the original optimization problem. Hughes et al. (2018) proposed the
inequity aversion model to balance agents’ selfish desire and social fairness. Wang et al. (2020)
considered learning the Shapley value as the credit assignment. However, these methods still rely
on hand-crafted reward designs. Lupu and Precup (2020) added gifting as an extra action into the
original MDP to modify the MDP and objective. Yang et al. (2020) proposed that each agent learns
an incentive function and optimizes the policy in terms of both reward and incentives given by other
agents. Obviously, both methods alter the original objective of optimization.

Unlike existing work, LToS enables agents to learn to dynamically share reward with other agents
without the bias of the optimization objective such that they can collaboratively optimize the global
objective in networked MARL.

3 Background

3.1 Networked Multi-Agent Reinforcement Learning

Assume N agents interact with an environment. Let V = {1, 2, · · · , N} be the set of agents. The
multi-agent system is modeled as an undirected graph G(V, E), where each agent i serves as vertex
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i and E⊆ V × V is the set of all edges. Two agents i, j ∈ V can communicate with each other if
and only if eij = (i, j) ∈ E . We denote agent i and its all neighbors in the graph together as a set
Ni. The state of the environment s ∈ S transitions upon joint action a ∈ A according to transition
probability Pa : S ×A× S → [0, 1], where joint action set A = ×i∈VAi. Each agent i has a
policy πi ∈ Πi : S ×Ai → [0, 1], and we denote the joint policy of all agents as π ∈ Π = ×i∈VΠi

(Zhang et al., 2018). For networked MARL, a common and realistic assumption is that the reward
of each agent i just depends on its action and the actions of its neighbors (Qu et al., 2020a), i.e.,
ri(s,a) = ri(s, aNi

). Moreover, each agent i may only obtain partial observation oi ∈ Oi, but can
approximate the state by the observations of Ni (Jiang et al., 2020) or the observation history (Chu
et al., 2020), which are all denoted by oi for simplicity. The global objective is to maximize the sum
of cumulative rewards of all agents , i.e.,

∑∞
t=0

∑N
i=1 γ

trti .

3.2 Markov Game

In such a setting, each agent could individually maximize its own expected return, which is known as
the Markov game. This may lead to stable outcome or Nash equilibrium, which however is usually
sub-optimal in terms of the global objective. Given the joint policy π, the value function of agent i is
given by

vπi (s) =
∑
a

π(a|s)
∑
s′

pa(s′|s,a)[ri + γvπi (s′)], (1)

where pa ∈ Pa describes the state transitions. Then, a Nash equilibrium is defined as (Mguni et al.,
2019)

v
(πi,π−i)
i (s) ≥ v(π

′
i,π−i)

i (s), ∀π′i ∈ Πi,∀s ∈ S,∀i ∈ V,

where π−i = ×j∈V\{i}πj .

4 Method

LToS is a decentralized hierarchy. At each agent, the high-level policy determines the weights of
reward sharing based on low-level policies while the low-level policy directly interacts with the
environment to optimize the local objective induced by the high-level policies. Therefore, they form
a bi-level optimization and alternately learn towards the global objective.

4.1 Reward Sharing

The intuition of reward sharing is that if agents share their rewards with others, each agent has to
consider the consequence of its actions on others, and thus it promotes cooperation. In networked
MARL, as the reward of an agent is assumed to depend on the actions of neighbors, we allow reward
sharing only between neighboring agents. This is because the change of actions of neighbors directly
affects the reward while the agents outside the neighborhood can only affect the return of the agent
indirectly by the change of state distribution. Moreover, this also fits the setting of networked MARL
with restricted communication between neighbors.

For the graph of V , we additionally define a set of directed edges, D, constructed from E . Specifically,
we add a loop dii ∈ D for each agent i and split each undirected edge eij ∈ E into two directed
edges: dij = (i, j) and dji = (j, i) ∈ D. Each agent i determines a weight wij ∈ [0, 1] for each
directed edge dij ,∀j ∈ Ni, subject to the constraint

∑
j∈Ni

wij = 1, so that wij proportion of agent
i’s environment reward ri will be shared to agent j. Let w ∈ W = ×dij∈Dwij be the weights of the
graph. Therefore, the shaped reward after sharing for each agent i is defined as

rwi =
∑
j∈Ni

wjirj . (2)
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4.2 Hierarchy

Assume there is a joint high-level policy φ ∈ Φ : S ×W → [0, 1] to determinew. Given φ andw,
we can define the value function of π at each agent i based on (1) as

vπi (s;φ) =
∑
w

φ(w|s)
∑
a

π(a|s,w)
∑
s′

pa(s′|s,a)[rwi + γvπi (s′;φ)], (3)

vπi (s;w,φ) =
∑
a

π(a|s,w)
∑
s′

pa(s′|s,a)[rwi + γvπi (s′;φ)].

It is noteworthy thatw is a multidimensional action for an allocation scheme rather than a probability
distribution. In our derivation, we express w as a discrete action for simplicity. It also holds
for continuous action as long as we change all the summations to integrals. Let V φV (s;π)

.
=∑

i∈V v
π
i (s;φ) and QφV(s,w;π)

.
=

∑
i∈V v

π
i (s;w,φ).

Proposition 4.1. Given π, V φV (s;π) andQφV(s,w;π) are respectively the value function and action-
value function of φ.

Proof. The proof is deferred to Appendix A.

Proposition 4.1 implies that φ directly optimizes the global objective by generating w, given π.
Unlike existing hierarchical RL methods, we can directly construct the value function and action-value
function of φ based on the value function of π at each agent.

As φ optimizes the global objective given π while πi optimizes the shaped reward individually at
each agent given φ (assuming π convergent to Nash equilibrium or stable outcome, denoted as
lim), they form a bi-level optimization. Let Jφ(π) and Jπ(φ) denote the objectives of φ and π
respectively. The bi-level optimization can be formulated as follows,

max
φ

Jφ(π∗(φ))

s.t. π∗(φ) = arg lim
π
Jπ(φ).

(4)

4.3 Decentralized Learning

We start from collective learning to achieve global optimization of average reward. So far, the joint
high-level policy is still in a centralized form. Note that the scenario needs a decentralized method and
each agent has its own reward. Now we turn to learning the joint high-level policy in a decentralized
way. Let wout

i
.
= {wij |j ∈ Ni} and win

i
.
= {wji|j ∈ Ni}. The following proposition proves each

agent’s independence of each other on the high level.
Proposition 4.2. The joint high level policy φ can be learned in a decentralized manner, and the
decentralized high-level policies of all agents form a mean-field approximation of φ.

Proof. The proof is deferred to Appendix A.

Proposition 4.1 and 4.2 indicate that for each agent i, the low-level policy simply learns a local
πi(ai|s, win

i ) to optimize the cumulative reward of rwi , since rwi is fully determined by win
i according

to (2) and denoted as rwi from now on. And the high-level policy φi just needs to locally determine
wout
i to optimize the cumulative reward of rφV .

Therefore, for decentralized learning, (4) can be decomposed locally for each agent i as
max
φi

Jφi
(φ−i, π

∗
1(φ), · · · , π∗N (φ))

s.t. π∗i (φ) = arg max
πi

Jπi
(π−i, φ1(π), ··, φN (π)).

(5)

Now we use max instead of lim because local policies can be compared and improved in a de-
centralized manner in a Markov game. We abuse the notation and let φ and π also denote their
parameterizations respectively. To solve the optimization, we have

∇φiJφi(φ−i, π
∗
1(φ), · · · , π∗N (φ))

≈ ∇φiJφi(φ−i, π1 + α∇π1Jπ1(φ), · · · , πN + α∇πN
JπN

(φ)),
(6)
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where α is the learning rate for the low-level policy. Let π′i denote πi + α∇πiJπi(φ), we have

∇φi
Jφi

(φ−i, π
∗
1(φ), · · · , π∗N (φ))

≈ ∇φi
Jφi

(φ−i, π
′
1, · · · , π′N ) + α

N∑
j=1

∇2
φi,πj

Jπj
(φ)∇π′jJφi

(φ−i, π
′
1, · · · , π′N ).

The second-order derivative is neglected due to high computational complexity, without incurring
significant performance drop such as in meta-learning (Finn et al., 2017) and neural architecture
search (Liu et al., 2019). Differently, our low-level policy requires more than one gradient step until
convergence. Similarly, we have

∇πi
Jπi

(π−i, φ
∗
1(π), · · · , φ∗N (π))

≈ ∇πi
Jπi

(π−i, φ1 + β∇φ1
Jφ1

(π), · · · , φN + β∇φN
JφN

(π)),

where β is the learning rate of the high-level policy. Therefore, we can solve the bi-level optimization
(4) by the first-order approximations in a decentralized way. For each agent i, φi and πi are alternately
updated.

QeighbRUV

QeighbRUV

gUadieQW ÁRZ
daWa ÁRZ

ageQW 

environment

Figure 1: LToS

In distributed learning, as each agent i usually
does not have access to state, we further approxi-
mate φi(wout

i |s) and πi(ai|s, win
i ) by φi(wout

i |oi) and
πi(ai|oi, win

i ), respectively. Moreover, in network
MARL as each agent i is closely related to neigh-
boring agents, (5) can be further seen as πi maxi-
mizes the cumulative discounted reward of rwi given
φNi

, where φNi
= ×j∈Ni

φj , and φi equivalently
optimizes the global objective given πNi

, where
πNi

= ×j∈Ni
πj . During training, πNi

and φNi
are

implicitly considered by interactions of wout
i and win

i
respectively. The architecture of LToS is illustrated
in Figure 1. At each timestep, the high-level policy
of each agent i makes a decision of action wout

i as the
weights of reward sharing based on the observation.
Then, the low-level policy takes the observation and
win
i as an input and outputs the action. Agent i ob-

tains the shaped reward according to win
i for both the high-level and low-level policies. The gradients

are backpropagated along purple dotted lines.

Further, from Proposition 4.1, we have: qφi

i (s, wout
i ;πNi

) = vπi
i (s;win

i , φNi
), where qφi

i is the
action-value function of φi given πNi

, vπi
i is the value function of πi given φNi

and conditioned on
win
i . As aforementioned, we approximately have qφi

i (oi, w
out
i ) = vπi

i (oi;w
in
i ). We can see that the

action-value function of φi is equivalent to the value function of πi. That said, we can use a single
network to approximate these two functions simultaneously. For a deterministic low-level policy, the
high-level and low-level policies can share the same action-value function. In the current instantiation
of LToS, we use DGN (Jiang et al., 2020) (Q-learning) for the low-level policy and DDPG (Lillicrap
et al., 2016) for the high-level policy. Thus, the Q-network of DGN also serves as the critic of DDPG,
and the gradient of win

i is calculated based on the maximum Q-value of ai.

For completeness, Algorithm 1 (see Appendix B) gives the training procedure of LToS based on
DDPG and DGN. More discussions about training LToS are also available in Appendix C. The code
of LToS is available at https://github.com/PKU-RL/RoadnetSZ.

5 Experiments

For the experiments, we adopt three scenarios prisoner, jungle, and traffic depicted in Figure 2, where
prisoner and jungle (Jiang et al., 2020) are grid games about social dilemma that easily measures
agents’ cooperation, while traffic is a realistic scenario of networked MARL. We obey the principle
of networked MARL that only allows communication in neighborhood as Zhang et al. (2018) and
Chu et al. (2020).

5
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A B
cooperate cooperate

defect defect

(a) prisoner

reward +1 for eating food 

reward -4 for being attacked 

reward +2 for attacking other agent 

(b) jungle (c) traffic

Figure 2: Three experimental scenarios: (a) prisoner, (b) jungle, and (c) traffic.

To illustrate the reward sharing scheme each agent learned, we use a simple indicator: selfishness, the
reward proportion that an agent chooses to keep for itself. For ablation, we keep the sharing weights
fixed for each agent, named fixed LToS. Throughout the experiments, we additionally compare with
the baselines including DQN and DGN, where DGN also serves the ablation of LToS without reward
sharing as DGN is the low-level policy of LToS. To maximize the global return directly by centralized
learning, we use QMIX (Rashid et al., 2018) as a baseline throughout the three scenarios and two
other ones in prisoner. Moreover, as LToS aims to bring harmonious cooperation by reward sharing
in networked MARL, we compared LToS to three methods for networked MARL, i.e., ConseNet
(Zhang et al., 2018), NeurComm (Chu et al., 2020) and Intention Propagation (abbreviated as IP) (Qu
et al., 2020a), and LIO (Yang et al., 2020) for incentivized learning, all of which use recurrent neural
network (RNN) or graph neural network (GNN) for the partially observable environment. More
details of hyperparameters are available in Appendix D.

5.1 Prisoner

We use prisoner, a grid game version of the well-known matrix game prisoner’s dilemma from
Sodomka et al. (2013) to empirically demonstrate that LToS is able to learn cooperative policies to
achieve the global optimum (i.e., maximize globally averaged return). As illustrated in Figure 2a,
there are two agents A and B that respectively start on two sides of the middle of a grid corridor
with full observation. At each timestep, each agent chooses an action left or right and moves to the
corresponding adjacent grid, and every action incurs a cost −0.01. There are three goals, two goals
at both ends and one in the middle. The agent gets a reward +1 for reaching the goal. The game
ends once some agent reaches a goal or two agents reach different goals simultaneously. This game
resembles prisoner’s dilemma: going for the middle goal (“defect") will bring more rewards than the
farther one on its side (“cooperate"), but if two agents both adopt that, a collision occurs and only one
of the agents wins the goal with equal probability. On the contrary, both agents obtain a higher return
if they both “cooperate", though it takes more steps. The highest possible return is 1.

Figure 3a illustrates the learning curves of all the methods in terms of average return. Note that for all
three scenarios, we present the average of 5 training runs with different random seeds by solid lines
and the min/max value by shadowed areas. As a result of self-interest optimization, DQN converges
to the “defect/defect" Nash equilibrium where each agent receives an expected reward about 0.5. So
does DGN since it only aims to take advantage of its neighbors’ observations while prisoner is a
fully observable environment already. Given a hand-tuned reward shaping factor to direct agents to
maximize average return, NeurComm and fixed LToS agents are able to cooperate eventually. So
are ConseNet and QMIX. However, they converge slowly. In contrast, IP agents learn at a slower
pace and its performance is only a little higher than 0.5. LIO agents cooperate soon enough at the
beginning, but they cannot form steady cooperation and perhaps need longer training to get rid of
such instability.

JointDQN, Coco-Q (Sodomka et al., 2013), and LToS perform similarly and outperform other
methods. JointDQN is one centralized DQN that takes control of joint actions of both agent A and B,
and thus should be able to achieve the best performance but still takes time to converge even in such
a simple two-agent scenario. As a modified tabular Q-learning method, Coco-Q introduces the coco
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Figure 3: Learning curves in (a) prisoner, (b) jungle, and (c) traffic. All the curves are plotted using 5
training runs with different random seeds, where the solid line is the mean and the shadowed area is
enclosed by the min and max value.

value (Kalai and Kalai, 2010) as a substitute for the expected return in the Bellman equation and
regards the difference as transferred reward. However, it is specifically designed for some games, and
it is hard to be extended beyond two-player games. LToS can learn the reward sharing scheme where
one agent at first gives all the reward to the other so that both of them are prevented from “defect",
and thus achieve the best average return quickly, as observed in the experiment. By prisoner, we
verify that LToS can escape from local optimum by learning to share reward.

5.2 Jungle

Jungle is a scenario about moral dilemma proposed by Jiang et al. (2020) based on MAgent (Zheng
et al., 2017). As illustrated in Figure 2b, there are N agents and L stationary foods. At each timestep,
each agent can attack or move to one adjacent grid. Eating (attacking food) brings a positive reward
+1, but attacking other agents obtains a higher reward +2. The victim, however, suffers a negative
reward −4, which makes each attack between agents a negative-sum action. Moreover, attacking a
blank grid gets a small negative reward −0.01 (inhibiting excessive attacks). We follow the original
setting of Jiang et al. (2020): map size = 30 × 30 grids, N = 20, L = 12, and the observation
consists of one’s coordinates and a field of 11× 11 grids nearby. Each agent has 3 closest agents as
its neighbors. Compared to prisoner, jungle has much more agents, and thus JointDQN and Coco-Q
are disregarded for this scenario. Another challenge of jungle is that the network topology is dynamic
since each agent can always move. Fortunately, the topology change slowly and predictably, and
algorithms may get the time-varying neighbor set Ni as part of the input. Therefore, it is still likely
to estimate the shaped rewards and value functions well.

Table 1: Average reward per step of all the methods in jungle.

DQN DGN fixed LToS LToS NeurComm ConseNet LIO IP QMIX upper bound

0.24 0.66 0.71 0.86 -0.05 -0.04 0.00 0.63 0.04 0.95

Figure 3b illustrates the learning curves of all the methods, and their performance after convergence
is also summarized in Table 1. NeurComm, ConseNet and QMIX do not perform well in this task. In
NeurComm, each agent gets a “delayed global information". However, a stable pattern of delayed
global information cannot be formed when the communication is conducted via a dynamic topology.
ConseNet is constructed on the basis of a premise of full observation, and it can hardly learn well
when the input is not only partial but also fairly varying in sequence and content. LIO agents also
perform badly, since they cannot be distinguished from one another in the dynamic topology and
thus fail to learn a proper incentive function. Moreover, LIO requires opponent modeling, but it is
hard to simultaneously model all other agents in a dynamic environment. QMIX is free from these
problems. While aiming at global optimization, like LIO, it realizes that attacking usually means a
negative-sum action, but as a result, it avoids attacking as well as eating most of the time and thus only
achieves a reward slightly higher than 0. Another possible reason to explain the performance QMIX
is its scalability. As there are 20 agents in the scenario, it can be hard to learn the joint action-value
function to directly optimize the average return (Qu et al., 2020a). Also, we can see that a fixed
reward sharing scheme does not bring any gain over DGN. This is because fixed reward sharing does
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Figure 4: Representative behaviors of agents learned by (a) NeurComm, (b) ConseNet, (c) IP, (d)
DGN, and (e) LToS in jungle.

not adapt to the dynamic topology. By learning proper reward sharing and adjusting to changing
circumstances, LToS outperforms all other baselines. Note that there is an upper bound for average
reward per step for jungle. By estimating the average distance between each agent and the food that
is the closest to it at the beginning of one episode, we can give a loose upper bound around 0.95 to
reflect our improvement.

# agents DGN fixed LToS LToS upper bound

10 0.52 0.63 0.71 0.93
20 0.66 0.71 0.86 0.95
30 0.77 0.79 0.88 0.96
40 0.84 0.80 0.90 0.96
50 0.86 0.79 0.91 0.97
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Figure 5: Average reward per step of methods in jungle with different number of agents.

Figure 4 illustrates the representative behaviors of agents learned by difference methods. For
NeurComm, ConseNet (and the same with LIO), most agents are not even close to the foods, so as to
avoid being attacked. Even though, there are still conflict and sneak attack between agents sometimes.
IP and DGN agents learn much better, but agents may still be cautious about each other, which leads
to hesitation when they are near the same food. LToS agents learn to properly share the food even
if the foods are close (i.e., agents are easy to be attacked) as depicted in Figure 4e and demonstrate
much better cooperation than the agents learned by other methods. The experimental results in jungle
verify that LToS can also adapts to considerably varying topology in networked MARL.

Besides, we compared LToS and ablation baselines (i.e., DGN and fixed LToS) with different number
of agents (i.e., from 10 to 50) to verify the scalability of LToS. All the setting remains the same except
that the number of agents and food grows proportionally (i.e., #agents/#foods = 5/3). As depicted in
Figure 5, LToS can always achieve the best performance as the agent population size increases.

# neighbors LToS

1 0.83
2 0.84
3 0.86
4 0.66
5 0.80

(a) performance
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Figure 6: Average reward per step of LToS in jungle with different number of neighbors.

We also conducted a study on the impact of graph density. To be specific, we run LToS with different
number of neighbors (i.e., from 1 to 5). As illustrated is Figure 6, the number of neighbors indeed
affects the performance. With the increase of neighbors, the performance increases first and then
decreases in an indefinitive way. We think the reason may be that when the graph density increases,
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the learning difficulty also increases as the agent needs to decide how to share rewards with more
neighbors. Beyond a certain threshold, the learning difficulty outweighs the gain. This is similar to
learning to communicate, where the graph density increases, the gain of communication decreases
due to learning difficulty (Ding et al., 2020). However, as in networked MARL the graph structure is
typically assumed to be sparse and given, this should not be a problem.

5.3 Traffic

Table 2: Statistics of traffic flows

Time
(second)

Arrival Rate
(vehicles/s)

0− 600 1
600− 1, 200 1/4
1, 200− 1, 800 1/3
1, 800− 2, 400 2
2, 400− 3, 000 1/5
3, 000− 3, 600 1/2

In traffic, as illustrated in Figure 2c , we aim to investigate the
capability of LToS in dealing with highly dynamic environment
through reward sharing. We adopt the same problem setting
as Wei et al. (2019). In a road network, each agent serves as
traffic signal control at an intersection. The observation of an
agent consists of a one-hot representation of its current phase
(directions for red/green lights) and the number of vehicles on
each incoming lane of the intersection. At each timestep, an
agent chooses a phase from the pre-defined phase set for the
next time interval, i.e., 10 seconds. The reward is set to be the
negative of the sum of the queue lengths of all approaching lanes at current timestep. The global
objective is to minimize average wait time of all vehicles in the road network, which is equivalent to
minimizing the sum of queue lengths of all intersections over an episode (Zheng et al., 2019). The
experiment was conducted on a traffic simulator, CityFlow (Zhang et al., 2019). We use a 6× 6 grid
network with 36 intersections. The traffic flows were generated to simulate dynamic traffic flows
including both peak and off-peak period, and the statistics are summarized in Table 2.

Table 3: Average number of red lights one vehicle waits for at per intersection of methods in traffic.

Network DQN DGN fixed LToS LToS NeurComm ConseNet LIO IP QMIX lower bound

6× 6 0.90 0.78 0.80 0.58 0.71 0.78 7.74 4.67 5.94 0.50
Shenzhen 13.99 2.02 1.94 1.71 2.27 7.63 19.15 5.52 19.74 1.50

For better demonstration, we choose to show the normalized metric of wait time: the average number
of red lights one vehicle waits for at per intersection, and we can also give a loose lower bound
0.50 to reflect our improvement. Figure 3c shows the learning curves of all the methods in terms
of that in logarithmic form. The performance after convergence is summarized in Table 3, where
LToS outperforms all other methods. LToS outperforms DGN, which demonstrates the reward
sharing scheme learned by the high-level policy indeed helps to improve the cooperation of agents.
Without the high-level policy, i.e., given fixed sharing weights, fixed LToS does not perform well in
dynamic environment. This indicates the necessity of the high-level policy. The performance of IP
agents increases so slowly that they cannot converge efficiently. Although NeurComm and ConseNet
both take advantage of RNN for partially observable environments, LToS still outperforms these
methods, which verifies the great improvement of LToS in networked MARL. QMIX is confined to
suboptimality (Mahajan et al., 2019). As observed in the experiment, QMIX tries to release traffic
flows from one direction while stopping flows from the other direction all the time, because this will
only make two rows of intersections on the border blocked but keep most of the intersections from
any traffic jam all the time. However, the global optimality actually does not need to be constructed
on the sacrifice of anyone. Some similar thing happens to LIO. It is likely because LIO contains some
sensitive parameters (Yang et al., 2020) and agents are hard to learn and coordinate their incentive
functions since the original reward functions change acutely once an improper operation causes traffic
congestion. An introduction of some explicit coordination mechanism may also alleviate the problem,
like that of NeurComm and ConseNet.

We visualize the variation of selfishness of all agents during an episode in traffic in Figure 7a and 7b.
Figure 7a depicts the temporal variance of selfishness for each agent. For most agents, there are two
valleys occurred exactly during two peak periods (i.e., 0−600s and 1, 800−2, 400s). This is because
for heavy traffic agents need to cooperate more closely, which can be induced by being less selfish.
We can see this from the fact that selfishness is even lower in the second valley where the traffic is
even heavier (i.e., 2 vs. 1 vehicles/s). Therefore, this demonstrates that the agents learn to adjust
their extent of cooperation to deal with dynamic environment by controlling the sharing weights.
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(a) temporal pattern (b) spatial pattern

Figure 7: Patterns of selfishness in traffic.

Figure 7b shows the spatial pattern of selfishness at different timesteps, where the distribution of
agents is the same as the road network in Figure 2c. The edge and inner agents tend to have very
different selfishness. In addition, inner agents keep their selfishness more uniform during off-peak
periods, while they diverge and present cross-like patterns during peak periods. This shows that
handling heavier traffic requires more diverse reward sharing schemes among agents to promote more
sophisticated cooperation.

Figure 8: Shenzhen network

In addition, we use another road network that is part of Shenzhen,
China with 33 intersections as illustrated in Figure 8, and one-hour
real traffic flows (Xu et al., 2022). The performance is also summa-
rized in Table 3. It is shown that LToS still outperforms the baselines
by a large margin. The experimental results in traffic verify that
LToS can also handle highly dynamic environment in networked
MARL.

6 Conclusion

In this paper, we proposed LToS, a hierarchically decentralized framework for networked MARL.
LToS enables agents to share reward with neighbors so as to encourage agents to cooperate on the
global objective through collectives. For each agent, the high-level policy learns how to share reward
with neighbors to decompose the global objective, while the low-level policy learns to optimize
the local objective induced by the high-level policies in the neighborhood. Experimentally, we
demonstrate that LToS outperforms existing methods in both social dilemma and networked MARL
scenario across scales.
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