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Abstract

Consider the task of locating an unknown target point using approximate distance queries:
in each round, a reconstructor selects a reference point and receives a noisy version of its
distance to the target. This problem arises naturally in various contexts—ranging from
localization in GPS and sensor networks to privacy-aware data access—and spans a wide
variety of metric spaces. It is relevant from the perspective of both the reconstructor (seeking
accurate recovery) and the responder (aiming to limit information disclosure, e.g., for privacy
or security reasons). We study this reconstruction game through a learning-theoretic lens,
focusing on the rate and limits of the best possible reconstruction error. Our first result
provides a tight geometric characterization of the optimal error in terms of the Chebyshev
radius, a classical concept from geometry. This characterization applies to all compact
metric spaces (in fact, even to all totally bounded spaces) and yields explicit formulas for
natural metric spaces. Our second result addresses the asymptotic behavior of reconstruction,
distinguishing between pseudo-finite spaces—where the optimal error is attained after
finitely many queries—and spaces where the approximation curve exhibits a nontrivial
decay. We characterize pseudo-finiteness for convex Euclidean spaces.

1 Introduction

In the reconstruction game, a reconstructor seeks to locate an unknown point x⋆ in a metric space
(X,distX) using a sequence of approximate distance queries. In each round, the reconstructor selects
a query point qt ∈ X and receives a response d̂t that approximates the true distance distX(qt, x

⋆).
The approximation is controlled by two error parameters: ϵ ≥ 0, which bounds the multiplicative error,
and δ ≥ 0, which bounds the additive error. Specifically, the response satisfies d̂t =ϵ,δ distX(qt, x

⋆),
where

x =ϵ,δ y means that x ≤ (1 + ϵ)y + δ and y ≤ (1 + ϵ)x+ δ.

After a bounded number of such queries, the reconstructor outputs a guess x̂ ∈ X and aims to
minimize the reconstruction error distX(x̂, x⋆).

This simple game arises in a wide range of natural scenarios. In privacy-preserving data analysis, it
models the trade-off between utility and privacy: a responder must answer queries while protecting
sensitive data, as in the foundational work of [Dinur and Nissim, 2003] that initiated the study of
differential privacy1. In computational geometry, related questions arise when inferring geometric
structures from noisy measurements [Disser and Skiena, 2017]. In remote sensing, satellites and
sensors reconstruct physical information—such as terrain or atmospheric properties—from indirect
and error-prone signals [Twomey, 1977]. Similar structures also appear in learning theory: for
instance, hypothesis selection and distribution learning via statistical queries can be framed as
reconstruction problems over suitable metric spaces.

1The reconstruction model studied by Dinur and Nissim uses counting (or linear) queries, but it is essentially
equivalent to our model with distance queries. We elaborate on this connection at Example 1.
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The reconstruction game captures a natural tension between two objectives: recovering hidden
information and limiting what can be revealed. From the reconstructor’s perspective, the task is to
approximate an unknown point from noisy distance measurements. This challenge arises in a variety
of applications, including navigation, search-and-rescue, and remote sensing, where inference must be
made under uncertainty. On the other side, the responder may wish to share useful information while
restricting what can be inferred—whether for reasons of privacy, security, or resource constraints.
This interplay between noisy access and limited disclosure makes the model relevant across several
domains.

While this framework treats the reconstructor and the responder symmetrically, assigning equal
roles to both players, our technical results are directed toward understanding the limits of what the
reconstructor can achieve. We present two main contributions:

Limit of optimal reconstruction (Theorem 2). We characterize the optimal approximation error
that the reconstructor can guarantee in the limit, as the number of queries tends to infinity. This error
depends on the metric space and the approximation parameters ϵ and δ, and our characterization
applies to all totally bounded metric spaces. The result is expressed in terms of a classical geometric
quantity: the Chebyshev radius. This limiting error plays a role analogous to the Bayes optimal error
in statistical learning: it captures the best achievable performance in the presence of noise, regardless
of the specific strategy or number of queries. Our result provides a geometric characterization and
interpretation of this optimum in the context of the reconstruction game.

Pseudo-finite Spaces (Theorem 6). Beyond the limiting error, a central question concerns the
rate at which this optimum is approached as a function of the number of queries. This question is
inherently rich and depends delicately on the geometry of the space. It is analogous to the study
of learning curves in statistical learning theory, which quantify how the performance of a learner
improves with more data. We initiate the study of this question in our setting by identifying and
analyzing a fundamental distinction between pseudo-finite spaces—where finitely many queries
suffice to reach the optimum—and spaces where convergence is gradual. We show that this notion
is already subtle and nontrivial, and we provide a characterization of pseudo-finiteness for convex
Euclidean spaces.

1.1 Problem Setup and Main Results

We now define the reconstruction game, a formal interaction between two players: a reconstructor
(RC) and a responder (RSP). The game takes place in a metric space (X,distX), where X is the
domain and distX : X ×X → R≥0 is a distance function. The interaction is governed by two error
parameters: ϵ ≥ 0, controlling multiplicative distortion, and δ ≥ 0, controlling additive distortion.

The Reconstruction Game

The game is parameterized by ϵ, δ ≥ 0, and is played over T rounds in a metric space (X,distX).
Each round t = 1, . . . , T proceeds as follows:

1. The reconstructor submits a query point qt ∈ X .

2. The responder returns a value d̂t, which approximates the true distance to some secret
point.

The responder must ensure that all answers given in the game remain jointly consistent with at
least one point x⋆. That is: (∃x⋆ ∈ X)(∀t ≤ T ) : d̂t =ϵ,δ distX(qt, x

⋆), where x =ϵ,δ y means
that d̂t ≤ (1 + ϵ)distX(qt, x

⋆) + δ and distX(qt, x
⋆) ≤ (1 + ϵ)d̂t + δ.

At the end of the game, the reconstructor outputs a final guess x̂T ∈ X . The reconstruction error
is defined as the worst-case distance to a consistent point: supx⋆ distX(x̂T , x

⋆), where x⋆ ranges
over all consistent points.

The reconstruction game studied in this work generalizes the task of determining the sequential metric
dimension (SMD), which was originally introduced in the noiseless setting for graphs by Seager
[2013]. The SMD captures the minimum number of exact distance queries required to identify an
unknown point exactly, and has been studied in finite metric spaces induced by graphs [Bensmail
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et al., 2020, Ódor and Thiran, 2021, Tillquist et al., 2023], with particular emphasis on the gap
between sequential and static metric dimension.2

As another example, the counting-query model introduced by Dinur and Nissim [2003] in their
foundational work can also be naturally viewed as a special case of our reconstruction game on the
Boolean cube endowed with the Hamming metric:
Example 1 (From counting queries to distance queries). In the counting-query model [Dinur and
Nissim, 2003], the dataset is a binary vector D = (d1, . . . , dn) ∈ {0, 1}n. At round t = 1, . . . , T ,
the reconstructor chooses a subset qt ⊆ [n] and receives

at =
∑
i∈qt

di + ηt, |ηt| ≤ δ.

This game is not syntactically a metric-distance game, yet it is equivalent to our distance-query model
on the Boolean cube with the Hamming metric, in the sense that counting queries and Hamming-
distance queries simulate each other with at most a two-query overhead per round. Full details of the
simulation appear in Appendix F.3, Example 30.

A Priori vs. A Posteriori Responder. There are two natural variants of the reconstruction game,
which differ in when the responder commits to the secret point.

In the a priori version, the responder selects a secret point x⋆ ∈ X at the beginning of the game and
must answer all queries consistently with that fixed point. In contrast, the a posteriori version (which
we adopt) allows the responder to wait until the end of the game when the reconstructor selects her
guess x̂T , before selecting the secret point x⋆.

Note that for deterministic reconstructors, the a priori and a posteriori models are equivalent: any
a posteriori responder can be simulated by an a priori one, simply by anticipating all queries of
the reconstructor and precomputing a worst-case consistent point in advance. “Deterministic” here
refers only to the absence of internal randomness and does not restrict adaptivity; a deterministic
reconstructor may choose each query based on the entire interaction so far, whereas “non-adaptive”
denotes the special case in which all queries are fixed in advance.
Remark. We define the game using the a posteriori model because our results focus on the capabilities
of the reconstructor in the worst-case setting. From this viewpoint, the most meaningful formulation is
one where the responder is allowed maximal flexibility, making the task of reconstruction as difficult
as possible.

1.2 Optimal Reconstruction Distance

At each point in the game, the sequence of query–response pairs received so far determines a feasible
region—the set of points in X that are consistent with all previous answers under the error model.
The size and geometry of this region reflect the remaining uncertainty about the secret point. From
the reconstructor’s perspective, the goal is to make this region as small as possible, ideally identifying
a point that is close to every element in it. We measure the performance of a reconstruction strategy
by the worst-case distance between the output x̂T and any point in the feasible region. The key
quantity we study is the optimal worst-case guarantee achievable by the reconstructor after T queries,
denoted by

OPTX(T, ϵ, δ) := inf
RC

sup
RSP

sup
x∈ΦT

distX(x̂T , x). (1)

Here, ΦT ⊆ X is the feasible region—the set of points that remain consistent with the transcript (i.e.,
the sequence of queries and responses) {(qt, d̂t)}Tt=1

Φ({qi, ri}Ti=1) := {x ∈ X | for all 1 ≤ i ≤ T : distX(x, qi) =ϵ,δ ri} . (2)

The infimum ranges over all strategies employed by the reconstructor, and each such strategy is
evaluated in the worst case: against the most adversarial responder strategy (subject to consistency),
and with respect to the most distant feasible point. For randomized reconstructors, we interpret
Equation (1) by replacing distX(x̂T , x) with E[distX(x̂T , x)], where the expectation is over the

2The static metric dimension is the minimum number of reference points needed to uniquely determine any
point in the space based on its distances to those references. It corresponds to the non-adaptive variant of our
setting, where all queries are fixed in advance.
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internal randomness of the reconstructor. For simplicity of presentation, we assume the reconstructor
is deterministic; however, all of our results and proofs extend to the randomized setting.

Much of our focus will be on understanding how this function behaves as T → ∞, and how it depends
on the geometry of the underlying metric space X . Our first main result concerns the asymptotic
quantity

OPTX(ϵ, δ) := lim
T→∞

OPTX(T, ϵ, δ),

which captures the best reconstruction error the reconstructor can guarantee in the limit, as the number
of queries grows3.

Chebyshev Radius. To characterize OPTX(ϵ, δ), we rely on a classical geometric quantity called
the Chebyshev radius, which captures how well a set can be enclosed by a ball. Let (X,distX) be
a metric space, and let α > 0 be a parameter. For any subset S ⊆ X , we denote its diameter by
diam(S) := supx,y∈S distX(x, y). The Chebyshev radius of S, denoted r(S), is defined as

r(S) := inf
x∈X

sup
y∈S

[distX(x, y)] ,

that is, the smallest radius for which some ball centered in X contains all of S.

We will also rely on the following quantity that captures the worst-case relationship between sets of
diameter at most α and the radius of their smallest enclosing ball:

eX(α) := sup
S: diam(S)≤α

r(S).

For example, in Euclidean space (Rn, ℓ2), it is known that for all α > 0, eX(α) =
√

n
2(n+1) · α, as

shown, for instance, in Blumenthal [1970]’s monograph.

Before stating our first main result, we recall a standard notion from metric geometry. A metric space
(X,distX) is said to be totally bounded if for every r > 0, there exists a finite cover of X by balls of
radius r. This is a common weakening of compactness that still ensures many desirable finiteness
properties. As we will see in Section 2, this assumption is necessary for the theorem’s conclusion;
without it, the game can trivialize, allowing the responder to force an approximation error equal to
the space’s diameter.

Tight Error via Chebyshev Radius

Theorem 2. Let X be a totally bounded metric space. Then, for any ϵ, δ ≥ 0,

OPTX(ϵ, δ) = eX
(
(2 + ϵ)δ

)
.

Moreover, if the distance (2 + ϵ)δ is realized in X , i.e., there exist a pair of points at this distance,
then

1

2
(2 + ϵ)δ ≤ OPTX(ϵ, δ) ≤ (2 + ϵ)δ.

This result expresses the limiting reconstruction error in terms of the function eX(·), which captures
the worst-case Chebyshev radius over sets of bounded diameter. While the definition of eX((2 + ϵ)δ)
may seem somewhat cryptic at first glance, it is often closely tied to the scale of noise introduced by
the responder. Specifically, in many natural spaces, it holds that

OPTX(ϵ, δ) = Θ
(
(2 + ϵ)δ

)
.

This follows from the next general observation, which bounds the ratio between the Chebyshev radius
and the diameter of a set in any metric space.
Observation 3. In any metric space (X,distX) and every α > 0 which is realized as a distance in
the space, 1

2α ≤ eX(α) ≤ α. The upper bound follows because any set of diameter α can be trivially
enclosed in a ball of radius α. The lower bound holds because no ball of radius r < α/2 can contain
two points at distance α.

The bounds α/2 and α are tight: they are attained by natural totally bounded metric spaces, as we
will demonstrate through examples in Section 2.

3As shown in Appendix D, specifically in Claim 13, the function OPTX(T, ϵ, δ) is monotonically non-
increasing in T , so this limit always exists.
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1.3 Excess Reconstruction Error

From a learning-theoretic perspective, the limiting error OPTX(ϵ, δ) plays a role analogous to
the Bayes optimal error in statistical learning: it represents the best achievable performance under
the constraints of the model. This motivates the study of the excess reconstruction error—the
difference between the error achieved after T queries and this asymptotic optimum: OPTX(T, ϵ, δ)−
OPTX(ϵ, δ). Understanding the rate at which this quantity decays as T → ∞ is a natural next step.
This question is generally quite challenging and depends intricately on the geometry of the underlying
space. As a first step in this direction, our second main result focuses on a basic dichotomy:
between spaces where convergence to the optimal error is trivial—i.e., achieved after finitely many
queries—and all others. We formalize this notion through the following definition:
Definition 4 (Pseudo-finite Spaces). A metric space (X,distX) is said to be (ϵ, δ)-pseudo-finite if
there exists a finite constant TX,ϵ,δ <∞ such that

OPTX(T, ϵ, δ) = OPTX(ϵ, δ) for all T ≥ TX,ϵ,δ.

It is easy to see that any finite metric space is (ϵ, δ)-pseudo-finite for all values of ϵ, δ ≥ 0: the
reconstructor can simply query every point in the space; and no additional information can be
obtained once all points have been queried. Another example of pseudo-finiteness is provided by
finite-dimensional Euclidean spaces. The space Rn is (0, 0)-pseudo-finite4 since the reconstructor
can determine the exact location of the secret by querying n + 1 affinely independent points (see,
e.g.[Tillquist et al., 2023]). In contrast, we will see in the next section an example of a totally bounded
metric space that is not (0, 0)-pseudo-finite.

We now turn our attention to Euclidean spaces. Naturally, we begin with the simplest case: the real
line. Despite its simplicity, the real line exhibits a nuanced pseudo-finiteness behavior that depends
on the error parameters. In particular, pseudo-finiteness holds when there is no multiplicative noise,
but breaks down as soon as any multiplicative distortion is allowed:
Proposition 5 (Pseudo-finiteness of the real line). Let X = [0, 1] ⊆ R equipped with the standard
Euclidean metric. Then: (i) For every δ ≥ 0, the space X is (0, δ)-pseudo-finite. (ii) For every ϵ > 0
and every δ ≥ 0, the space X is not (ϵ, δ)-pseudo-finite.

This proposition follows from our general result below (Theorem 6), but can also be derived more
directly in this special case. When ϵ = 0, the reconstructor can query one of the endpoints q1 ∈ {0, 1};
the response confines the secret to an interval of length 2δ, and outputting its midpoint yields an error
of at most δ, which is optimal5. When ϵ > 0, the responder can use a binary-search-like strategy to
ensure that the feasible region always contains an interval of length strictly greater than (2 + ϵ)δ,
thereby preventing the reconstructor from reaching the optimum in finitely many steps.

How about higher-dimensional Euclidean spaces—do they exhibit the same behavior as the real line
with respect to pseudo-finiteness? Our second main result addresses this question for the class of
convex subsets of Euclidean space. To state it, we recall that the dimension of a convex set X ⊆ Rn
refers to the dimension of its affine span, i.e., the smallest affine subspace containing X . In higher
dimensions, this nuanced behavior disappears: convex subsets of Rn with dimension at least two
are never pseudo-finite, regardless of the values of ϵ and δ, as long as they are sufficiently small
compared to the diameter.

Pseudo-Finiteness in Convex Euclidean Spaces

Theorem 6. Let X ⊂ Rn be a bounded convex set equipped with the Euclidean metric such
that dimX > 0 and let ϵ ≥ 0. Then, for all sufficiently small δ > 0, the space X is not
(ϵ, δ)-pseudo-finite, except in the case where ϵ = 0 and dimX = 1.

The proof of this result is surprisingly delicate. At a high level, one might expect that a responder
could simply inject random noise into the true distances, thereby ensuring that the reconstructor
improves only gradually over time. However, such a strategy does not suffice to rule out pseudo-
finiteness: to do so, one must ensure that for every reconstructor strategy, the reconstruction error

4Note that noise plays an important role in this example: Rn is not pseudo-finite whenever the noise
parameters are nonzero and n ≥ 2.

5The optimality of the error δ on the interval, for sufficiently small δ, follows from the fact that e[0,1](δ) = δ
together with Theorem 2.
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remains strictly larger than the optimal limit for any finite number of queries. This requires carefully
calibrated noise that not only misleads the reconstructor but also guarantees that the resulting feasible
region strictly contains a set of points forming an extremal body—one that achieves the maximal
Chebyshev radius under a bounded diameter constraint.

In fact, the lower bound on OPTX(ϵ, δ) established in Theorem 2 is implicitly used in proving
Theorem 6, as it certifies the minimal size of the region that the responder must preserve.
Remark. The proof of Theorem 6 provides two lower bounds on the convergence rate of OPT(T, ϵ, δ):
exponential in T for ϵ ̸= 0 and double-exponential for ϵ = 0. On the upper-bound side, obtaining a
matching rate for δ > 0 appears nontrivial, and the optimality of the known lower bounds remains
unclear.

In the purely multiplicative case δ = 0, however, OPTX(ϵ, 0) = 0, and a matching exponential
upper bound follows from a standard grid-refinement argument: the reconstructor queries a uniform
grid of fixed size (depending only on the dimension), selects the grid point with the smallest reported
distance, then recenters a new fixed-size grid at that point and rescales to a smaller neighborhood.
Iterating this geometrically shrinks the feasible region, yielding an exponential upper bound on
OPTX(T, ϵ, 0).

Organization. In the next section (Section 2), we analyze and discuss basic examples of the
reconstruction game. In Section 3, we provide a high-level overview of the main technical ideas used
in our proofs. For space reasons, the related work is deferred to Appendix A, which surveys relevant
literature from learning theory, privacy, and geometry. The complete formal proofs are presented
in Appendices B through E. Appendix F collects technical lemmas from geometry and topology
and provides full proofs of the examples sketched in Section 2, along with additional examples that
further clarify the game.

2 Examples

This section presents illustrative examples of the reconstruction game in a variety of metric spaces.
These examples shed light on different aspects of the problem, including the necessity of the
assumptions in our main theorems and the range of geometric behaviors that can arise. They also
help clarify the role of total boundedness in Theorem 2, and lead naturally to an open question
about pseudo-finite totally bounded spaces. In contrast to the following sections—which focus
more heavily on Euclidean metric spaces in the context of Theorem 6—this section is technically
lighter and features some more “exotic” spaces. Full proofs of the examples discussed here appear in
Appendix F.3.

2.1 Total Boundedness in Theorem 2

The first main result (Theorem 2) characterizes the limiting reconstruction error in terms of the
Chebyshev radius function eX(·), assuming that the metric spaceX is totally bounded. The following
examples illustrate that this assumption is essential: if total boundedness is lifted, even seemingly
natural spaces allow the responder to prevent the reconstructor from obtaining any meaningful
approximation—specifically, an error bounded away from zero, or even infinite.
Example 7 (Unbounded Space: The Real Line). We begin with a simple case: R with its standard
Euclidean metric. This space is not bounded (and hence not totally bounded), and the responder
can exploit its unboundedness to maintain extremely large feasible regions throughout the game. A
formal proof is given in Appendix F.3.

The previous example showed that in some unbounded metric spaces, such as R, the responder
can force the reconstruction error to be arbitrarily large. This naturally raises the question: could
boundedness alone suffice for the conclusion of Theorem 2? That is, can we strengthen the theorem
by replacing total boundedness with the weaker assumption of boundedness? The answer is negative:
Example 8 (Bounded but Not Totally Bounded: Discrete Countable Space). Consider the space
X = N, the set of natural numbers equipped with the discrete metric: distX(i, j) = 0 if i = j, and
distX(i, j) = 1 otherwise. This space is bounded (diameter 1) but not totally bounded.

Now, note that even if the responder must be fully honest (i.e., ϵ = δ = 0), it can always answer d̂t = 1.
This ensures that the feasible region after every round remains an infinite subset of X in which all

6



points are pairwise at distance 1. Consequently, the responder can choose a consistent point of
distance 1 from the point guessed by the reconstructor, yielding an approximation error equal to the
diameter of the space.

2.2 Pseudo-Finiteness

Although our main result about pseudo-finiteness focuses on convex Euclidean spaces, the phe-
nomenon is more subtle in general metric spaces. In this section, we present three infinite metric
spaces. Two of these spaces are (ϵ, δ)-pseudo-finite for all values of ϵ, δ ≥ 0, while the third is not
even (0, 0)-pseudo-finite. These examples highlight the diversity of possible behaviors in general
metric spaces and motivate an open question concerning the structural nature of pseudo-finiteness in
totally bounded spaces.
Example 9 (Sparse Subsets of the Real Line). Let X = {0} ∪ {22n : n ∈ N} ⊂ R with the standard
Euclidean metric. Then X is (ϵ, δ)-pseudo-finite for every ϵ, δ ≥ 0.

To see this, let the reconstructor begin by querying the point q1 = 0. The response d̂1 yields a feasible
region consisting of a finite subset of X , whose size is bounded by a constant N(ϵ, δ) that depends
only on the noise parameters (and not on the specific value of d̂1). This is because the set X , when
viewed as a monotone sequence, grows asymptotically faster than any geometric progression. After
this initial step, the reconstructor continues to query all points in the feasible region to identify an
optimal approximation.

The above example is unbounded. This raises the question of whether there exist bounded infinite
spaces that are (ϵ, δ)-pseudo-finite for all ϵ, δ. The next example shows that the answer is yes.
Example 10 (Countable Discrete Metric Space Revisited). Recall the space X = N with the discrete
metric: distX(x, y) = 0 if x = y, and 1 otherwise. This space is bounded, with diameter 1. As
previously discussed (see Example 8), we have OPTX(ϵ, δ) = 1 for all ϵ, δ ≥ 0. Therefore, the
reconstructor can achieve optimal performance without submitting any queries, simply by outputting
any fixed point in the space. Thus, X is (ϵ, δ)-pseudo-finite for all ϵ, δ ≥ 0.

These two examples motivate the following open question: can similar behavior occur in totally
bounded spaces?:
Open Question 11. Let X be a totally bounded metric space. Are the following two statements
equivalent? (i) X is finite. (ii) X is (ϵ, δ)-pseudo-finite for all ϵ, δ ≥ 0.

We conclude this section by presenting a totally bounded metric space that is not (0, 0)-pseudo-finite:
Example 12 (Infinite binary strings). Let X = {0, 1}N be the space of infinite binary sequences,
equipped with the standard ultrametric,6 defined by d(α, β) = 2−j , where j is the first index at which
αj ̸= βj . Then X is a compact metric space that is not (0, 0)-pseudo-finite. The proof appears in
Example 28.

3 Technical Overview

In this section, we outline the key ideas behind the proofs of Theorem 2 and Theorem 6; complete
proofs are deferred to Appendices C and E. To keep the exposition focused on the central arguments,
we omit technical complications arising from cases where suprema or infima are not attained. These
can be handled with standard limiting arguments but would introduce additional notation and obscure
the main ideas.

3.1 Proof of Theorem 2

We begin by recalling the core assertion of Theorem 2. It characterizes the optimal reconstruction
error OPTX(ϵ, δ) in terms of the geometry of the metric space and the noise parameters ϵ and δ.
Specifically, it asserts that OPTX(ϵ, δ) equals the maximum Chebyshev radius among all subsets
of X with diameter at most (2 + ϵ)δ:

OPTX(ϵ, δ) = eX
(
(2 + ϵ)δ

)
.

6This metric satisfies the ultrametric inequality: d(x, z) ≤ max{d(x, y), d(y, z)}, which is stronger than
the standard triangle inequality. It implies, for instance, that all triangles are isosceles with the two longer sides
equal.
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To prove this, we begin by analyzing an idealized setting in which the reconstructor is allowed to
query all points in the space. Of course, this is unrealistic in infinite spaces—but it serves as a useful
thought experiment for understanding the limits of reconstruction.

Each query-answer pair (q, r) determines a feasible region Φ({q, r}), which consists of all points
whose noisy distances to q are (ϵ, δ)-indistinguishable from r. The intersection of all these regions
gives the overall feasible region of the interaction, denoted by Φ := Φ({q, rq}q∈X).

Upper Bound. In the idealized case where all points in the space are queried, a simple yet insightful
argument shows that the diameter of the feasible region Φ is at most (2 + ϵ)δ. Indeed, for any two
points A,B ∈ Φ, since B was queried and A remained feasible, the reported noisy distance must
not exceed δ, and therefore the true distance distX(A,B) cannot exceed (2 + ϵ)δ. By letting the
reconstructor output the Chebyshev center of Φ, the reconstruction error is at most eX ((2 + ϵ)δ).

When only finitely many queries are allowed, however, the reconstruction error can be significantly
larger than in the idealized case; as shown in Section 2.1, there exist spaces in which this discrepancy
is arbitrarily large.

Nevertheless, if the metric spaceX is totally bounded, the reconstructor can approximate the idealized
strategy arbitrarily well: by querying all points in a sufficiently dense finite cover, one ensures that
the feasible region has diameter arbitrarily close to (2 + ϵ)δ. Such a finite cover exists by definition:
a metric space is totally bounded if, for every α > 0, it admits a finite α-cover—that is, a finite subset
such that every point in the space lies within distance α of some point in the cover. Denote by Nα the
number of points in an α-cover of the metric space X . As illustrated in Figure 2, after Nα queries
the reconstructor can guarantee that the diameter of the feasible region is less than (2 + ϵ)δ + α′,
where α′ = ((1 + ϵ)2 + 1)α. Hence, by outputting the Chebyshev center of the feasible region, the
reconstructor ensures that the worst-case error after Nα queries is at most eX((2 + ϵ)δ + α′), by
the definition of eX(β) as the maximum Chebyshev radius over all subsets of X with diameter at
most β.

It might be tempting to conclude that we are done, since the function eX appears to be continuous.
However, this inference is, in general, false: for arbitrary metric spaces, eX need not be continuous.
For instance, in finite metric spaces the function eX is not continuous.

On the other hand, it can be shown that for totally bounded metric spaces the function eX is right-
continuous, which is sufficient for establishing the desired upper bounds. Nevertheless, proving
right-continuity remains nontrivial in general: there exists a non–totally bounded metric space for
which the corresponding function eX fails to be right-continuous (see Example 29 in Appendix F.3).

We prove that the function eX is right-continuous for totally bounded metric spaces using the theory
of hyperspaces. Namely, given a metric space X , one considers the space of (nonempty) compact
subsets of X , denoted K(X), equipped with metrics induced by the metric on X . The most standard
choice is the Hausdorff metric: for subsets S1, S2 ⊆ X ,

dH(S1, S2) = max

{
sup
x∈S1

inf
y∈S2

distX(x, y), sup
y∈S2

inf
x∈S1

distX(x, y)

}
.

A variety of classical results are known for (K(X), dH); for instance, when X is compact, the
hyperspace K(X) is compact as well. This is a classical fact in metric topology; see, e.g., Illanes and
Jr. [1999][Theorem 3.5].

Both the diameter and the Chebyshev radius of a set are continuous functions on (K(X), dH); this
follows by bounding their variation in terms of the Hausdorff distance (see the detailed argument
in Appendix F.1). Together with the compactness of (K(X), dH), this yields, via a compactness
argument, that eX is right-continuous for compact metric spaces. For a totally bounded metric
space X , in turn, one can show that eX = eX̂ , where X̂ denotes the completion of X . Since the
completion of a totally bounded metric space is compact by the classical Heine–Borel characterization
for metric spaces (compact ⇔ complete and totally bounded), it follows that eX is right-continuous
for totally bounded metric spaces as well. All techniques and formal proofs for the right-continuity
of eX are presented in Appendix F.1. The full proof of the upper bound appears in Appendix C.2.

Lower Bound. The crucial observation is that at the beginning of the game, the responder may
select any subset S ⊂ X of diameter at most (2 + ϵ)δ, and maintain the invariant S ⊆ Φ throughout
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the interaction: In response to each query q, the responder identifies a point Smin ∈ S that minimizes
the distance to q, and returns the perturbed value

r := (1 + ϵ) · distX(q, Smin) + δ.

A simple calculation, which relies only on the triangle inequality, shows that every s ∈ S satisfies
distX(q, s) =ϵ,δ r, and hence S remains feasible.

After the interaction concludes, given the reconstructor’s final guess, the responder can choose a
secret point at distance no less than r(S) inside S ⊆ Φ. This ensures that no reconstructor can
guarantee an error smaller than eX ((2 + ϵ)δ). A precise description of the responder strategy that
preserves an extremal set is presented in Appendix C.1.

Φ
Chebyshev center

q - query

x

≤ (2 + ϵ)δ

Figure 1: Feasible region Φ (blue) of the ideal-
ized case

Φ

y

x q - query
< α

≤ (2 + ϵ)δ + α′
α-ball
net point

α′ = ((1 + ϵ)2 + 1)α

Figure 2: Feasible region Φ (blue) of the finite
interaction

3.2 Proof of Theorem 6

We now turn to the proof of Theorem 6, which establishes a dichotomy for pseudo-finiteness in
bounded convex subsets of Euclidean space. Specifically, the theorem states that a bounded convex
set X ⊂ Rn is (ϵ, δ)-pseudo-finite if and only if dim(X) = 1 and ϵ = 0. In all other cases—namely,
when dim(X) > 1 or ϵ > 0—the reconstruction error cannot reach its optimal value in finitely many
steps.

One might hope to prove non-pseudo-finiteness by designing a responder strategy that gradually
shrinks the feasible region—e.g., by adding uniform random noise to the true distance in each
response. However, this naive approach fails to guarantee the desired behavior: in particular, it does
not ensure that the reconstruction error remains strictly greater than the optimum OPT(ϵ, δ) at all
finite T . In fact, such strategies may lead to convergence toward a strictly smaller value, and are
therefore not optimal for the responder.

To overcome this, our proof explicitly constructs a responder strategy that, at every round, ensures
the feasible region contains a subset guaranteeing that the reconstruction error remains strictly larger
than the optimum OPT(ϵ, δ) + αT , where αT > 0 depends only on the number of rounds.

This mirrors the lower-bound strategy used in Theorem 2, where the responder preserved an extremal
set to ensure the Chebyshev radius never fell below OPT(ϵ, δ). However, to prove non-pseudo-
finiteness, it is not sufficient to preserve a region whose radius merely equals the optimum. Instead,
we must ensure that the feasible region’s Chebyshev radius remains strictly greater than the limiting
value for all finite T .

To accomplish this, our strategy preserves an α-neighborhood of the vertices {xi}ni=0 of some regular
simplex ∆7, denoted ∆α, where α > 0 depends only on the number of rounds T . Formally, the
α-neighborhood of the simplex ∆ with vertices {xi}ni=0 is defined as

∆α := ∪ni=0B(xi, α), B(xi, α) denotes the Euclidean ball of radius α centered at xi. (3)

This ensures that the feasible region contains a regular simplex of diameter (2 + ϵ)δ +
√

2(n+1)
n α,

which in turn implies that its Chebyshev radius is at least OPT(ϵ, δ) + α.

Our strategy proceeds as follows. Assume that at round t the feasible region already contains an
αt-neighbourhood of a regular simplex ∆. Upon receiving the next query qt, we pick a radius αt+1

7Throughout this work, by a “simplex” we usually mean the set of its vertices—that is, n + 1 affinely
independent points in the Euclidean space X of dimension n.
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determined solely by t+ 1, ϵ, δ; then we reply with an appropriate noisy distance rt and, if necessary,
replace ∆ by a new extremal simplex ∆′ so that

(∆′)αt+1
⊂ (∆)αt

and (∆′)αt+1
⊂ (updated feasible region).

This step is then repeated indefinitely, keeping the Chebyshev radius strictly above OPT. Conse-
quently, X is not pseudo-finite.

The main challenge is to provide a uniform lower bound on αt that depends only on the round t, and
not on the specific query qt. We note in passing that it is relatively easy to give a bound on αt+1 that
depends on both t and the query qt; however, such a bound is insufficient for our purposes, as it does
not yield a general lower bound on OPTT valid for all reconstructor strategies, which is essential for
ruling out pseudo-finiteness.

On the other hand, finding the uniform bound requires handling each query type with care, since for
some queries it is easy to obtain a sufficiently large neighborhood of some simplex ∆′ contained
within the neighborhood of the previous one, while for others it requires a more delicate geometric
argument.

Determining the Maximal Surviving Neighborhood. To address the challenges above, we ask:
under what conditions does there exist an answer that the responder can give to the query q such that
the α-neighborhood (see Eq. (3)) of ∆ remains entirely within the feasible region?

The answer is as follows: there exists such a response if and only if rmin
q (∆α) ≤ rmax

q (∆α), where
rmin
q places the farthest point of ∆α on the outer boundary of the feasible region, and rmax

q places the
nearest point on the inner boundary (see Fig. 4, Fig. 3).

q

Smin

Smax

∆

Figure 3: Φ(q, rmin) (blue)

q

Smin

Smax

∆

Figure 4: Φ(q, rmax) (orange)

The larger the radius α of the neighborhood ∆α, the smaller the gap rmax − rmin becomes. Solving
the equation rmax(∆α)−rmin(∆α) = 0 for α yields the exact value α⋆(∆, q) of the largest surviving
neighborhood upon querying q. It is useful to view the quantity α⋆(∗, q) as a function on the space of
regular simplexes. The derivation of the exact formula for α⋆ is presented in Appendix D.

Additive–Only vs. Multiplicative Noise. Both responder strategies—additive-only and mixed-
noise—rely on the same principle: for a fixed simplex ∆ and a target neighborhood radius αt+1,
together with the neighborhood radius αt > αt+1 from the previous round, we partition the space
into (∆, αt+1)-good and bad regions. A query point q is called good if there exists a response that
preserves a neighborhood of radius at least αt+1 of ∆ within the feasible region; equivalently, if the
maximal surviving neighborhood satisfies α⋆(∆, q) ≥ αt+1. Otherwise, q is bad.

When q is good, the responder can maintain the αt+1-neighborhood of the current simplex ∆ inside
the feasible region. The critical difference between regimes arises when q is bad. In this case we
should find another regular simplex ∆′ in the αt-neighborhood of ∆ such that the point q is now
(∆′, αt+1)-good. In the multiplicative case (ϵ > 0), the responder can translate the simplex ∆
slightly away from the query point q to ensure that α⋆(∆′, q) ≥ αt+1 and that ∆′

αt+1
⊂ ∆αt

.

In contrast, when ϵ = 0, translations of ∆ within its αt-neighborhood do not substantially
change α⋆(∗, q). To achieve a significant increase in α⋆(∗, q) in this case, we rotate the simplex ∆.
To do this successfully, the rotated simplex must preserve the identity of the closest and farthest
points from the query, which requires a careful geometric analysis. In Appendix F.2, we develop
the tools necessary to carry out this strategy. In dimensions n ≥ 2, rotations allow us to maintain a
surviving neighborhood indefinitely. In one dimension, however—where nontrivial rotations are not
possible—this strategy fails for a good reason: one-dimensional intervals are pseudo-finite.
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A Related Work

We organize the discussion into two parts: research that focuses on the responder’s perspective, and
research that centers on the reconstructor’s perspective. In both cases, the relevant literature is vast,
so we focus on works most closely related to the questions studied in this paper.

The Responder’s Perspective. The reconstruction game is closely related to problems studied in
privacy-preserving data analysis, where the goal is to answer queries on a sensitive dataset while
limiting what an adversary can infer [Dwork et al., 2006]. The foundational work of Dinur and Nissim
[2003] initiated this line of research by showing that approximate answers to too many counting
queries enable the reconstruction of a large fraction of the database. Their model uses counting
queries on binary datasets, which are essentially equivalent to Hamming distance queries on the
Boolean cube {±1}n. This connection is illustrated in Example 1.

Subsequent works have sharpened and generalized this reconstruction viewpoint. Notably, Dwork et al.
[2007], Dwork and Yekhanin [2008], and Haitner et al. [2022] provided refined attacks and bounds
under weaker assumptions. More recently, Balle et al. [2022] and Cummings et al. [2024] proposed
formal definitions of reconstruction robustness that relate privacy guarantees to the attacker’s ability
to reconstruct sensitive data. Recent work by Cohen et al. [2025] further explores the foundations
of reconstruction attacks, proposing a new definitional framework—Narcissus Resiliency—and
uncovering connections to Kolmogorov complexity and classical notions such as differential privacy.

Surveys such as Dwork et al. [2017] provide a comprehensive overview of privacy attacks and
defenses, including reconstruction. We also note the classical work of Erdos and Renyi [1963], which
(in disguise) studies a version of the reconstruction problem on the Hamming cube in the noiseless
setting.

The Reconstructor’s Perspective. Our work primarily studies the problem from the perspective of
the reconstructor, who seeks to locate a hidden point using approximate distance queries. Related
problems have been studied under several guises. A classic formulation is the metric dimension of
a graph [Harary and Melter, 1976, Slater, 1975, Tillquist et al., 2023], which asks for the smallest
set of vertices such that all other vertices are uniquely identified by their distances to this set. This
corresponds to an oblivious version of the reconstruction game, where the reconstructor must submit
all queries in advance.

A more sequential variant, closer to our setting, is the sequential metric dimension [Seager, 2013,
Bensmail et al., 2020, Ódor and Thiran, 2021], which measures the number of adaptive queries
needed to identify an unknown point. These works mostly consider noiseless settings on finite graphs.
In contrast, our work allows noisy responses, considers general metric spaces, and studies the rate of
convergence as a function of the number of queries.

The general formulation of locating a hidden point via distance queries has also appeared in applied
contexts. For instance, the problem of reconstructing a physical quantity from noisy measurements
arises in remote sensing, including terrain mapping and atmospheric profiling. Classic references
include Twomey [1977] and Rodgers [2000], which formulate and analyze such problems as inverse
problems under uncertainty. While much of this literature is algorithmic or statistical, our work
provides a geometric and learning-theoretic view that complements these perspectives.

B General notation and basic facts

Let us remind the setup of the game and important concepts used throughout the proofs.

We work in a metric space (X,distX). The interaction lasts for a fixed number of rounds T , labeled
t = 1, 2, . . . , T . In round t, the reconstructor selects a query point qt ∈ X . The responder then
returns a real number rt that represents a noisy distance from qt to an as-yet-unspecified target, with
multiplicative parameter ϵ ≥ 0 and additive parameter δ ≥ 0.

Formally, the reply must satisfy

distX(x, qi) ≤ (1 + ϵ)ri + δ,

ri ≤ (1 + ϵ)distX(x, qi) + δ
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to at least one point x ∈ X . In other words, after each answer the set

Φ({qi, ri}ti=1) :=

{
x ∈ X | for all 1 ≤ i ≤ t :

distX(x, qi) ≤ (1 + ϵ)ri + δ,

ri ≤ (1 + ϵ)distX(x, qi) + δ

}
is guaranteed to be non-empty. This set for the round T is called the feasible region. In the end of the
game the reconstructor outputs a guess point x̂T , and then the responder commits to a target point,
choosing any x⋆ ∈ ΦT .

The aim of the reconstructor is to minimize the distance distX(x⋆, x̂T ), and of the responder is to
maximize it.

Let us denote the set of all reconstructors which play game for T rounds by RCT , and the set of
responders by RSPT . The final guess of the reconstructor R ∈ RCT we will denote by x̂R and the
output secret point of the responder A ∈ RSPT by x⋆A. As recalled in Equation 1 the optimal error
must be

OPTX(T, ϵ, δ) := inf
RC

sup
RSP

sup
x∈ΦT

distX(x̂T , x).

Claim 13 (Monotone error in T ). The function T 7→ OPTX(T, ϵ, δ) is non-increasing.

Proof of Claim 13. We show that for every T ≥ 0, the function T 7→ OPTX(T, ϵ, δ) is non-
increasing; that is,

OPTX(T + 1, ϵ, δ) ≤ OPTX(T, ϵ, δ).

Fix any α > 0. By the definition of OPTX(T, ϵ, δ), there exists a reconstructor R that, after T
queries, guarantees an error at most OPTX(T, ϵ, δ) + α against any responder.

Now consider a new reconstructor R′ for T + 1 rounds, which simulates R for the first T queries,
and then issues an arbitrary “dummy” query at round T +1, ignores the response, and simply outputs
the same guess x̂T+1 := x̂T that R would have produced after T rounds.

Since the feasible region after T +1 queries is always contained in the feasible region after T queries,
and since the final guess remains the same, the reconstruction error of R′ is at most OPTX(T, ϵ, δ)+α
for any responder.

As this holds for every α > 0, it follows that

OPTX(T + 1, ϵ, δ) ≤ OPTX(T, ϵ, δ),

as required.

C Proof of Theorem 2

In this section, we present the full proof of Theorem 2. The proof is based on geometric notions such
as the Chebyshev radius and the diameter of a set, together with a fundamental invariant of a metric
space: the maximal radius of an enclosing ball over all subsets of bounded diameter.

We begin by recalling the relevant definitions. For a subset S ⊆ X , the Chebyshev radius of S,
denoted r(S), and the diameter of S, denoted diam S, are defined by

r(S) = inf
q∈X

sup
x∈S

distX(x, q), diam S = sup
x,y∈S

distX(x, y).

The supremum and infimum of a set of real numbers A ⊂ R serve the same purpose as the maximum
and minimum. The key difference is that the supremum or infimum may not be attained by any
element of A. In such cases, one can approximate it by a sequence {ai}i∈N ⊆ A satisfying

lim
i→∞

ai = supA or lim
i→∞

ai = inf A.

An important invariant used in the proof—intuitively, the maximal radius of an enclosing ball among
all subsets of X with diameter at most α—is formally defined by

eX(α) := sup
S⊆X

diam(S)≤α

r(S).
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In some cases, this supremum is attained; when that happens, we refer to the corresponding subset
S ⊂ X as extremal. In general, even when the supremum is not attained, we may consider a sequence
of subsets {Sm}m∈N of bounded diameter, diam Sm ≤ α, whose Chebyshev radii converge to the
supremum:

lim
m→∞

r(Sm) = eX(α).

The statement of Theorem 2 consists of two parts: an exact (tight) expression for OPT in terms of
the function eX , and upper and lower bounds on eX .

We begin with the proof of the first part.
Theorem 2 (First part). Let X be a totally bounded metric space. Then, for any ϵ, δ ≥ 0,

OPTX(ϵ, δ) = eX
(
(2 + ϵ)δ

)
.

Proof. To prove the equality, we need to establish both directions:

OPTX(ϵ, δ) ≥ eX
(
(2 + ϵ)δ

)
and OPTX(ϵ, δ) ≤ eX

(
(2 + ϵ)δ

)
.

Lower bound. To show that the optimal error is at least eX((2+ϵ)δ), it suffices to construct responder
strategies that guarantee a reconstruction error arbitrarily close to this value.

Although the supremum in the definition of eX may not be attained by any single set, we can
approximate it by a sequence of sets {Sm} with diam Sm ≤ (2 + ϵ)δ and r(Sm) −→ eX((2 + ϵ)δ).
For each such set, we define a responder strategy that preserves Sm inside the feasible region, thereby
ensuring that the reconstructor cannot achieve error smaller than r(Sm). Taking the limit yields the
desired lower bound.

Upper bound. To establish that the optimal error does not exceed eX((2 + ϵ)δ), we construct a
sequence of reconstruction strategies, each using a query set of size Tn, such that the corresponding
error remains within eX((2 + ϵ)δ) + αn, where αn → 0.

Since X is totally bounded, for any precision level α > 0, there exists a finite set Tα ⊂ X that forms
an α-cover of the space. After querying every point in such a cover, a feasible region has diameter
smaller than (2 + ϵ)δ +

(
(1 + ϵ)2 + 1

)
α, and hence

OPT(Tα, ϵ, δ) ≤ eX((2 + ϵ)δ +
(
(1 + ϵ)2 + 1

)
α).

The remaining step is to show that the function eX is right-continuous, i.e.,

eX((2 + ϵ)δ + α′) −−−→
α′→0

eX((2 + ϵ)δ),

which requires general machinery from topology—specifically, endowing the collection of compact
subsets of X with a natural metric that measures how far these subsets are from each other within X .
This part of the proof is deferred to Appendix F.1.

C.1 Lower bound via extremal sets

As mentioned earlier, the supremum

eX ((2 + ϵ)δ) := sup
S⊆X

diam(S)≤(2+ϵ)δ

r(S)

plays the role of a maximum, although it may not actually be attained. In such cases, we simulate
extremal sets—that is, sets that would attain this maximum—by considering approximately extremal
sets: a sequence {Sm}m∈N satisfying

r(Sm) −→
m→∞

eX(α), diamSm ≤ (2 + ϵ)δ.

For any m ∈ N, define a responder strategy that, given any query q ∈ X , replies with

rq := (1 + ϵ) inf
s∈Sm

distX(q, s) + δ.

Here, the infimum plays the role of a minimum; so if the minimum is attained at some point B ∈ Sm,
this strategy effectively places B on the boundary of the feasible region (see Figure 4).
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Let us elaborate. We will show that for any point s ∈ Sm, the response satisfies

rq ≤ (1 + ϵ)distX(q, s) + δ,

and then, using the triangle inequality, we will obtain the reverse bound,

rq ≥ (1 + ϵ)distX(q, s)− δ.

The inequality rq ≤ (1+ ϵ)distX(q, s)+ δ follows directly from the definition of the infimum, which
represents the minimal possible distance:

(1 + ϵ)distX(q, s) + δ ≥ (1 + ϵ) inf
x∈Sm

distX(q, x) + δ = rq.

For the reverse direction, express infy∈Sm
distX(q, y) in terms of rq:

inf
y∈Sm

distX(q, y) =
rq − δ

1 + ϵ
.

By the triangle inequality, for any two points y, s ∈ Sm, we have

distX(s, q) ≤ distX(y, q) + distX(s, y).

Since distX(s, y) ≤ diam Sm ≤ (2 + ϵ)δ, it follows that

distX(s, q) ≤ distX(y, q) + (2 + ϵ)δ.

Combining this with the inequality (1 + ϵ)2distX(y, q) ≥ distX(y, q), and taking the infimum over
y ∈ Sm, we obtain that for any point s ∈ Sm,

(1 + ϵ)rq + δ = (1 + ϵ)2 inf
y∈Sm

distX(q, y) + (2 + ϵ)δ ≥ distX(s, q).

Therefore, rq =ϵ,δ distX(s, q) for every point s ∈ Sm, and hence the entire set Sm lies within the
feasible region. Once the reconstructor selects a guess point x̂, the responder may choose any point
from the feasible region, and in particular any s ∈ Sm.

By the definition of the Chebyshev radius,

r(Sm) ≤ sup
x∗∈Sm

distX(x∗, x̂),

so for any α > 0, the responder can choose a point x∗ ∈ Sm such that distX(x̂, x∗) > r(Sm)− α.

It follows that
OPT(T, ϵ, δ) ≥ r(Sm), and r(Sm) −→

m→∞
eX((2 + ϵ)δ).

Therefore,
OPT(T, ϵ, δ) ≥ eX((2 + ϵ)δ).

C.2 Upper bound via α-covers

To show that the optimal error is at most eX((2 + ϵ)δ), it suffices to construct a sequence of
reconstructor strategies, each using Tn queries, that guarantee a reconstruction error of at most
eX((2 + ϵ)δ) + αn, where αn → 0.

Since the space X is totally bounded, for any α > 0 there exists a finite α-cover Tα ⊂ X , consisting
of Tα points.

Take a sequence of αn-nets with αn → 0, and denote the number of queries in the corresponding
nets by Tn := |Tαn |. Since X is totally bounded, these finite nets exist.

Denote the points of the αn-net by {qt}t∈[Tn], and the responses of the responder by {rt}t∈[Tn]. We
claim that

diam(Φ({qt, rt}t∈[T ])) ≤ (2 + ϵ)δ + ((1 + ϵ)2 + 1)α.

To see this, take any two points A,B in the feasible region after the interaction.
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There exists a query q ∈ {qt}t∈[T ] such that distX(A, q) ≤ αn. Let r be the responder’s answer to
this query. Since A ∈ Φ(q, r) and distX(q, A) ≤ αn, we have

r ≤ (1 + ϵ)αn + δ.

On the other hand, since B ∈ Φ(q, r), we have

distX(q,B) ≤ (1 + ϵ)r + δ ≤ (1 + ϵ)2αn + (2 + ϵ)δ.

By the triangle inequality,

distX(A,B) ≤ distX(q,B) + distX(A, q) ≤
(
(1 + ϵ)2 + 1

)
αn + (2 + ϵ)δ.

Hence diamΦ({qt, rt}t∈[Tn]) ≤ (2 + ϵ)δ + ((1 + ϵ)2 + 1)αn.

Denote by α′
n the quantity ((1+ϵ)2+1)αn. The Chebyshev radius of Φ

(
{(qt, rt)}t∈[Tn]

)
is therefore

bounded by eX
(
(2 + ϵ)δ + α′

n

)
, and hence

OPTX(Tn, ϵ, δ) ≤ eX
(
(2 + ϵ)δ + α′

n

)
.

By the right-continuity of eX (see Appendix F.1), for every sequence of nonnegative numbers α′
n → 0

we have
eX
(
(2 + ϵ)δ + α′

n

)
−→ eX

(
(2 + ϵ)δ

)
.

Therefore, we conclude the desired bound

OPTX(ϵ, δ) ≤ eX
(
(2 + ϵ)δ

)
.

The proof of the second part of the theorem relies on general properties of the function eX that hold
for arbitrary metric spaces.

Theorem 2 (Second part). If the distance (2 + ϵ)δ is realized in a totally bounded metric space X ,
i.e., there exist a pair of points at this distance, then

1

2
(2 + ϵ)δ ≤ OPTX(ϵ, δ) ≤ (2 + ϵ)δ.

Proof. By the first part of Theorem 2, which we proved earlier,

OPTX(ϵ, δ) = eX((2 + ϵ)δ).

So it suffices to prove that

1

2
(2 + ϵ)δ ≤ eX((2 + ϵ)δ) ≤ (2 + ϵ)δ.

To show the lower bound eX((2 + ϵ)δ) ≥ 1
2 (2 + ϵ)δ, it suffices to construct a set S ⊆ X of diameter

at most (2 + ϵ)δ such that every enclosing ball of S must have radius at least 1
2 (2 + ϵ)δ. Indeed, by

assumption, there exist two points y1, y2 ∈ X such that

distX(y1, y2) = (2 + ϵ)δ.

Then for any point x ∈ X , the triangle inequality implies

distX(y1, x) + distX(x, y2) ≥ (2 + ϵ)δ,

so one of the two distances must be at least 1
2 (2 + ϵ)δ. Therefore, no point in X lies at a distance less

than 1
2 (2 + ϵ)δ from both y1 and y2, and thus any ball containing both points must have radius at

least this value. To show the upper bound eX((2 + ϵ)δ) ≤ (2 + ϵ)δ, it suffices to find an enclosing
ball of radius (2 + ϵ)δ for any set S ⊆ X of diameter at most (2 + ϵ)δ. Indeed, let x ∈ S be any
point of the set, and consider the ball of radius (2 + ϵ)δ centered at x. Since the diameter of S is
at most (2 + ϵ)δ, every point y ∈ S satisfies distX(x, y) ≤ diam(S) ≤ (2 + ϵ)δ, so S is entirely
contained in this ball. This proves the claim.
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D Feasible-region calculus

The goal of this section is to determine when there exists an answer r ∈ R+ such that a given set
S ⊂ X is contained in the feasible region Φ(q, r) (see Equation 2) resulting from a query at point q.

We will answer this question and provide a criterion for such an answer in Lemma 12.

For any set S ⊂ X , define its α-neighborhood by

Sα :=
⋃
x∈S

B(x, α),

where B(x, α) denotes the ball of radius α centered at x.

We will also be interested in the following optimization problem: what is the largest value of α such
that the α-neighborhood of a fixed set S ⊂ X can be entirely contained in the feasible region for
some answer to the query q? We will describe this quantity for convex Euclidean subspaces and
specify the answer that the responder must give in order to preserve this neighborhood within the
feasible region.

To answer the first question, it is useful to consider two natural candidates for the answer:

rmin
q (S) :=

sups∈S distX(s, q)− δ

1 + ϵ
, rmax

q (S) := (1 + ϵ) inf
s∈S

distX(s, q) + δ.

Intuitively, rmin
q (S) places the farthest point of S on the outer boundary of the feasible region while

keeping all of S inside it, and rmax
q (S) places the nearest point of S on the inner boundary while still

preserving inclusion (see Fig. 3, Fig. 4).

Supremum and infimum of the set of numbers {distX(y, s)}s∈S play the same role as
mins∈S distX(s, q) and maxs∈S distX(s, q). The only difference is that sometimes the minimum or
maximum is not attained by any point in the set S. In such cases, one must take a sequence of points
{xi}i∈N ⊆ S that plays the role of the minimum or maximum, in the sense that

lim
i→∞

distX(y, xi) = sup
s∈S

distX(y, s) or lim
i→∞

distX(y, xi) = inf
s∈S

distX(y, s).

Lemma 12 (Consistency window). Fix a set S ⊂ X . For a given query q, there exists an answer r
such that S is contained in the feasible region Φ(q, r) if and only if rmin

q (S) ≤ rmax
q (S). Moreover,

this inclusion holds if and only if r ∈ [ rmin
q (S), rmax

q (S)]8.

Proof. Assume the responder gives an answer r such that S ⊂ Φ(q, r). By the definition of the
supremum, if

r <
supx∈S distX(x, q)− δ

1 + ϵ
,

then there exists a point A ∈ S such that

r <
distX(A, q)− δ

1 + ϵ
,

and hence A /∈ Φ(q, r), contradicting the assumption.

Similarly, if r > rmax
q (S) = (1+ ϵ) infs∈S distX(s, q)+ δ, then there exists a point B ∈ S such that

r > (1 + ϵ)distX(B, q) + δ,

and therefore B /∈ Φ(q, r).

Hence, for any r outside the interval [rmin
q (S), rmax

q (S)], there exists a point in S that lies outside
Φ(q, r). This shows that if S ⊂ Φ(q, r), then necessarily r ∈ [rmin

q (S), rmax
q (S)], and in particular

rmin
q (S) ≤ rmax

q (S).

8Note that we do not require the answer to be positive; it may be negative, yet the feasible region can still be
non-empty.
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To prove the converse, suppose r ∈ [rmin
q (S), rmax

q (S)]. Take any point s ∈ S. We must verify the
two inequalities:

distX(s, q) ≤ (1 + ϵ)r + δ and r ≤ (1 + ϵ)distX(s, q) + δ.

Indeed, since

r ≤ rmax
q (S) = (1 + ϵ) inf

x∈S
distX(x, q) + δ ≤ (1 + ϵ)distX(s, q) + δ,

and

r ≥ rmin
q (S) =

supx∈S distX(x, q)− δ

1 + ϵ
≥ distX(s, q)− δ

1 + ϵ
,

we have s ∈ Φ(q, r). Since s ∈ S was arbitrary, it follows that S ⊂ Φ(q, r), completing the
proof.

The observation above does not rely on any structural properties of the metric space; in particular, it
holds even if the triangle inequality is not satisfied. However, to determine the largest neighborhood
of a set that may remain feasible after a query, we need to use some form of continuity in the space.
That’s why, from this point on, we assume that the metric space X is a convex subset of Rn.
Observation 13. Let S ⊆ X , and let α > 0. Suppose that for every x ∈ S, the Euclidean ball
B(x, α) ⊆ Rn is entirely contained in X . Then:

rmin
q (Sα) = rmin

q (S) +
α

1 + ϵ
, rmax

q (Sα) = max
{
δ, rmax

q (S)− α(1 + ϵ)
}
.

Proof. We start by analyzing the supremum. We want to show:

sup
y∈Sα

distX(q, y) = sup
s∈S

distX(s, q) + α.

The inequality
sup
y∈Sα

distX(q, y) ≤ sup
s∈S

distX(s, q) + α

is immediate from the triangle inequality. Indeed, for any point y ∈ Sα, there exists some s ∈ S such
that y ∈ B(s, α). Then:

distX(q, y) ≤ distX(q, s) + distX(s, y) ≤ sup
s∈S

distX(s, q) + α,

and so the inequality holds for all y ∈ Sα, yielding the upper bound on the supremum.

For the reverse inequality, take a sequence {xi}i∈N ⊂ S such that:

lim
i→∞

distX(xi, q) = sup
s∈S

distX(s, q).

For each xi, choose a point yi ∈ B(xi, α) lying along the ray from q through xi such that:

distX(q, yi) = distX(q, xi) + α.

This is possible because the balls are Euclidean. Then:

sup
y∈Sα

distX(q, y) ≥ lim
i→∞

distX(q, yi) = sup
s∈S

distX(s, q) + α,

proving the desired equality.

Now we turn to the infimum:

inf
y∈Sα

distX(q, y) = max

{
0, inf
s∈S

distX(s, q)− α

}
.

First, by the triangle inequality again, we have:

distX(q, y) ≥ distX(q, s)− distX(y, s) ≥ inf
s∈S

distX(s, q)− α
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for all y ∈ Sα. Also, clearly distX(q, y) ≥ 0. Therefore,

inf
y∈Sα

distX(q, y) ≥ max

{
0, inf
s∈S

distX(s, q)− α

}
.

To show the reverse inequality, consider a sequence {xi}i∈N ⊂ S such that:

lim
i→∞

distX(xi, q) = inf
s∈S

distX(s, q).

If infs∈S distX(s, q) < α, then for some xj , we have distX(xj , q) < α, so q ∈ B(xj , α) ⊂ Sα, and
thus:

inf
y∈Sα

distX(q, y) = 0.

Otherwise, all xi satisfy distX(xi, q) ≥ α. In that case, for each xi, there exists a point yi ∈ [q, xi]
such that distX(xi, yi) = α, i.e., yi lies along the segment from q to xi, at distance α from xi. Then:

distX(yi, q) = distX(xi, q)− α,

and so:
inf
y∈Sα

distX(q, y) ≤ lim
i→∞

distX(yi, q) = inf
s∈S

distX(s, q)− α.

This completes the proof.

Let us denote

ρqmin(S) := inf
s∈S

distX(q, s), ρqmax(S) := sup
s∈S

distX(q, s).

These quantities represent the minimal and maximal distances from the query point q to the set S,
and will be used to simplify the expressions that follow.

Lemma 14. Fix a set S ⊂ X and a query point q ∈ X . Define

α⋆ =
rmax
q (S)− rmin

q (S)

(1 + ϵ) + 1
1+ϵ

.

Assume that α⋆ > 0, and that for every point s ∈ S, the Euclidean ball B(s, α⋆), viewed as a subset
of Rn, is contained in X; that is, B(s, α⋆) ⊆ X .

Then there exists an answer r such that Sα⋆ ⊂ Φ(q, r). In particular, for the specific choice

r⋆q (S) :=
(1 + ϵ)

(
ρqmin + ρqmax

)
− ϵδ

1 + (1 + ϵ)2
,

we have Sα⋆ ⊂ Φ(q, r⋆q (S)).

Proof. By Lemma 12, it suffices to verify that

rmin
q (Sα⋆) ≤ r⋆q (S) ≤ rmax

q (Sα⋆).

First, observe that

ρqmax = (1 + ϵ)rmin
q (S) + δ, ρqmin =

rmax
q (S)− δ

1 + ϵ

and therefore

r⋆q (S) =
rmax
q + (1 + ϵ)2rmin

q

(1 + ϵ)2 + 1
.
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To verify the lower bound, note that by Observation 13,

rmin
q (Sα⋆) = rmin

q (S) +
α⋆

1 + ϵ

= rmin
q (S) +

rmax
q (S)− rmin

q (S)

(1 + ϵ)2 + 1

=
(1 + ϵ)2 · rmin

q (S) + rmax
q (S)

(1 + ϵ)2 + 1

= r⋆q (S).

For the upper bound, we distinguish between two cases depending on whether ρqmin ≥ α⋆ or
ρqmin < α⋆. Indeed, the form of rmax

q (Sα⋆) is case-dependent, with two distinct formulas: if
ρqmin ≥ α⋆, then rmax

q (Sα⋆) = rmax
q (S)− (1 + ϵ)α⋆; otherwise, rmax

q (Sα⋆) = δ.

Case ρqmin ≥ α⋆. Then by Observation 13,

rmax
q (Sα⋆) = rmax

q (S)− (1 + ϵ)α⋆

= rmax
q (S)−

(1 + ϵ)2
(
rmax
q (S)− rmin

q (S)
)

(1 + ϵ)2 + 1

=
(1 + ϵ)2 · rmin

q (S) + rmax
q (S)

(1 + ϵ)2 + 1

= r⋆q (S).

Case ρqmin < α⋆. In this case, we observe that
rmax
q (S) = (1 + ϵ) · ρqmin + δ < (1 + ϵ)α⋆ + δ,

and therefore
δ > rmax

q (S)− (1 + ϵ)α⋆ = r⋆q (S),

so again r⋆q (S) < δ = rmax
q (Sα⋆), as required.

This completes the proof.

For later use, we express the quantity α⋆ in terms of ρqmin and ρqmax, since this representation will be
useful below:

α⋆ =
(1 + ϵ)2ρqmin − ρqmax + (2 + ϵ)δ

(1 + ϵ)2 + 1
.

This leads to the following observation.
Remark 15. Assume that diamS ≤ (2 + ϵ)δ. Then the radius α⋆ of the neighborhood Sα⋆ , as
defined in Lemma 14, can be decomposed into two nonnegative terms, α⋆ = α1 + α2, where

α1 =
(2 + ϵ)δ − (supx∈S distX(x, q)− infx∈S distX(x, q))

(1 + ϵ)2 + 1

and

α2 =
(1 + ϵ)2 − 1

(1 + ϵ)2 + 1
· inf
x∈S

distX(x, q).

Note that α1 ≥ 0, since supx∈S distX(x, q)− infx∈S distX(x, q) ≤ diamS ≤ (2 + ϵ)δ.

Observation 16. Assume ϵ = 0 and fix the regular simplex ∆ ⊂ X with edges of length 2δ, and the
query q ∈ Rn. Denote

A = argmaxAi∈∆distX(A, q), B = argminAi∈∆distX(A, q).

Then Lemma 14 can be simplified; the α⋆-neighborhood lies in the feasible region: ∆α⋆ ⊂
Φ(q, r⋆q (∆)) for

r⋆q (∆) =
distX(q,A) + distX(q,B)

2
,

α⋆ =
distX(q,A)− distX(q,B)

2
.
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Lemma 17. Assume we are in the ϵ = 0 game scenario. Fix δ > α > 0, and let ∆ = A0A1 . . . An
be a regular simplex with edges of length 2δ. For a given point q, let A ∈ ∆ be the farthest vertex
from q, and let B ∈ ∆ be the nearest vertex (in the case of ties, choose any).

If
cos∠BAq ≤ 1− α

δ
,

then
∆α ⊂ Φ

(
{q, r⋆q (∆)}

)
, r⋆q (∆) =

qA+ qB

2
.

Proof. It suffices to show that B(A,α) and B(B,α) are both contained in Φ(q, r⋆q (∆)).

Let us estimate Aq −Bq. We will show that

Aq −Bq ≤ cos∠BAq · 2δ.

Drop a perpendicular from q onto the line AB, and let the foot of this perpendicular be H . Denote
the angle ∠qAH by ϕ and the angle ∠qBH by ψ.

A B H

q

ϕ ψ

(a) Visualization of case 1

A BH

q

ϕ ψ

(b) Visualization of case 2

Figure 5: Visualization of two cases

We distinguish two cases: H /∈ AB and H ∈ AB (see Figure 5). Note that in both cases,

0 < ϕ ≤ ψ <
π

2
,

and since the cosine function decreases on this interval, we have cosϕ ≥ cosψ ≥ 0.

Case 1: H /∈ AB. Since Aq2 = qH2 +HA2 and Bq2 = BH2 +HB2, and AH −BH = 2δ we
compute:

Aq −Bq =
Aq2 −Bq2

Aq +Bq
=

AH2 −BH2

Aq +Bq
= 2δ

AH +BH

Aq +Bq
.

On the other hand since cosϕ ≥ cosψ:

AH +BH

Aq +Bq
=
Aq · cosϕ+Bq · cosψ

Aq +Bq
≤ 1.

Hence
Aq −Bq ≤ 2δ cosϕ = 2δ cos∠qAB.

Case 2: H ∈ AB. Similarly since AH +BH = 2δ:

Aq −Bq =
Aq2 −Bq2

Aq +Bq
=

AH2 −BH2

Aq +Bq
= 2δ

AH −BH

Aq +Bq
=

2δ
Aq · cosϕ−Bq · cosψ

Aq +Bq
,

which again implies
Aq −Bq ≤ 2δ cosϕ = 2δ cos∠qAB.

Now take a point MA ∈ B(A,α). By Lemma assumption α ≤ δ(1− cos∠BAq), hence

qMA ≤ qA+ α ≤ qA+ δ(1− cos∠BAq) ≤ qA− Aq −Bq

2
+ δ = r⋆q (∆) + δ.
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Also, because α < δ, it follows that MAA ≥ r⋆q (∆). Hence MA ∈ Φ(q, r⋆q (∆)).

A similar argument applies to any MB ∈ B(B,α). Indeed,

qMB ≥ qB − α ≥ qB − δ(1− cos∠BAq) ≥ r⋆q (∆)− δ,

and again α < δ implies MB ∈ Φ(q, r⋆q (∆)). Thus B(A,α) and B(B,α) lie in Φ(q, r⋆q (∆)),
completing the proof.

E Proof of Theorem 6

Theorem (Theorem 6 Restatement). Let X ⊂ Rn be a bounded convex set equipped with the
Euclidean metric such that dimX > 0, and let ϵ ≥ 0. Then, for all sufficiently small δ > 0, the
space X is not (ϵ, δ)-pseudo-finite, except in the case where ϵ = 0 and dimX = 1.

Proof. Since the reconstruction game is played entirely within the space X—in the sense that all
queries, the final guess, and the secret point lie in X—we may assume without loss of generality that
X ⊂ Rn, where n = dim(X) is the affine dimension of X .

We begin with the special and simple case where ϵ = 0 and dimX = 1. In this case, X is an interval
with endpoints a, b; without loss of generality, we assume that both a, b ∈ X . (The cases where X
is half-open or open can be handled similarly.) If δ ≥ (b− a)/2, then the optimal error equals the
diameter of the space, and the reconstructor can trivially achieve it by outputting any point in X
without submitting any queries. Otherwise, if δ < (b − a)/2, the reconstructor submits a single
query at one of the endpoints, say q1 = a, and receives a r1). The feasible region then becomes an
interval of length at most 2δ, and by guessing its midpoint, the reconstructor achieves the optimal
approximation error of δ.

The remaining cases—when either ϵ > 0 or dimX ≥ 2—are more challenging and constitute the
core of the proof. We divide the proof into two cases: one where ϵ = 0, and one where ϵ > 0. In both
cases, the proof follows a similar strategy. We show that for all sufficiently small δ > 0, there exists a
responder strategy that guarantees, for every number of rounds T , that the feasible region contains an
extremal simplex ∆T whose Chebyshev radius is strictly greater than the optimal value OPT(ϵ, δ).
This suffices to prove that the optimal error cannot be attained in finite time.

More precisely, we show that for each t = 0, 1, . . . , T , the responder can ensure that the feasible
region contains an αt-neighborhood of a regular simplex ∆t of diameter exactly (2 + ϵ)δ, where the
neighborhood is defined as the union of all balls of radius αt centered at the vertices of ∆t. Since

such a neighborhood contains a regular simplex of diameter (2 + ϵ)δ +
√

2(n+1)
n αt, it follows that

the Chebyshev radius of the feasible region is strictly greater than OPT(ϵ, δ), which corresponds to
the Chebyshev radius of a regular simplex of diameter (2 + ϵ)δ.

The proof proceeds inductively. We assume that after t rounds, the feasible region contains an αt-
neighborhood of a regular simplex ∆t of diameter (2+ϵ)δ, and we show that for any query qt+1 ∈ X ,
there exists a response such that the updated feasible region contains an αt+1-neighborhood of some
(possibly different) regular simplex ∆t+1 of the same diameter. Moreover, αt+1 = fϵ,δ(αt), where
the function fϵ,δ is defined by:

fϵ,δ(α) =

{
α2

2·81 δ , ϵ = 0,
(1+ϵ)2−1
2(1+ϵ)2 · α, ϵ > 0.

Thus, the responder can recursively maintain an αt-neighborhood of a regular simplex throughout the
game, where αt = f

(t)
ϵ,δ (α0), and α0 is the maximum value such that X contains an α0-neighborhood

of a regular simplex of diameter (2 + ϵ)δ. This completes the high-level argument. To complete
the inductive proof, it remains to establish the base case and then develop the tools needed for the
inductive step.

Base Case. Since X is a bounded convex subset of Rn with nonempty interior, it follows that
for any ϵ > 0, there exists a sufficiently small δ > 0 and some α0 > 0 such that X contains an
α0-neighborhood of a regular simplex ∆0 with diameter (2 + ϵ)δ. This establishes the base case for
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our induction: at round t = 0, the feasible region contains a neighborhood ∆0
α0

⊆ X that satisfies
the required conditions.

Inductive Step. The remainder of the proof develops the geometric tools needed to carry out the
inductive step, namely to show that such a neighborhood can be maintained (with decreasing radius)
after each query. We now introduce the some notation used throughout the argument.

Notation 18. Let 0 < α ≤ δ, and let ∆ = {A0, A1, . . . , An} be a regular simplex in Rn of
diameter (2+ ϵ)δ. We define the α-neighborhood of ∆, denoted ∆α, as the union of closed Euclidean
balls of radius α centered at the vertices of ∆.

A query point q ∈ Rn is called good (with respect to ∆ and α) if there exists a response r such that
the entire neighborhood ∆α is contained in the feasible region Φ(q, r); otherwise, q is called bad.

We will use the special response r = r⋆q (∆) defined in Lemma 14 to ensure that the neighbor-
hood ∆αt+1

remains feasible; this choice will be sufficient for our inductive argument.

E.1 Case ϵ > 0 (translation strategy)

Assume the responder receives the query q, and has so far managed to keep the α-neighborhood of
a regular simplex ∆ ⊂ Rn, with edge length (2 + ϵ)δ, inside the feasible region. Without loss of
generality, we may assume that 4α ≤ (2 + ϵ)δ.

In this subsection, we will show that when ϵ > 0, there exists another regular simplex ∆′ with the
same edge length such that

∆′
α′ ⊂ ∆α, ∆′

α′ ⊂ Φ(q, r⋆q (∆
′)), where α′ =

(1 + ϵ)2 − 1

2(1 + ϵ)2
α.

This will be sufficient to establish the induction step for the case ϵ > 0.

In the terminology of Notation 18, the query point q may be either good or bad with respect to the
simplex ∆ and neighborhood α′. If q is good, we are done by simply taking ∆′ := ∆.

If the point q is bad, we will use the decomposition of the neighborhood sustained by the an-
swer r⋆q (∆), as described in Remark 15, in order to construct a new simplex.

Let us remind the reader that, by Lemma 15, there is a formula for the radius α⋆ of the neighbor-
hood ∆α⋆ , which corresponds to the feasible region after answering with r⋆q (∆). Remark 15 states
that this radius can be decomposed into two nonnegative terms.

In the case ϵ > 0, the second term will be of particular interest:

α⋆ = α1 + α2, α2 =
(1 + ϵ)2 − 1

(1 + ϵ)2 + 1
· inf
x∈∆

distX(x, q).

Since we assumed that the query q is bad with respect to the simplex ∆ and neighborhood α′, it
follows that

α′ >
(1 + ϵ)2 − 1

(1 + ϵ)2 + 1
· inf
x∈∆

distX(x, q).

In particular, this implies

distX(B, q) < α′ · (1 + ϵ)2 + 1

(1 + ϵ)2 − 1
=

(1 + ϵ)2 + 1

2(1 + ϵ)2
· α = α− α′,

where B := argminx∈∆ distX(x, q) is the closest vertex of ∆ to the query point q.

Define the shifted simplex ∆′ := ∆+ v⃗, where the vector v⃗ is in the same direction as the vector
−→
qB,

and its length is

∥v⃗∥ = α− α′ =
2(1 + ϵ)2

(1 + ϵ)2 − 1
α′ − α′ =

(1 + ϵ)2 + 1

(1 + ϵ)2 − 1
· α′.

In the degenerate case when q = B, choose any vector v⃗ of that length.
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The shifted neighborhood satisfies ∆′
α′ ⊂ ∆α. Assume x ∈ ∆′

α′ ; then there exists a shifted vertex
A′ := A+ v⃗ (that is, A′ is the image of A under translation by the vector v⃗) such that x ∈ B(A′, α′).

Let us denote by B′ the point obtained by shifting the vertex B of ∆ (the one closest to q) by the
vector v⃗.

We claim that B′ is the nearest vertex of the translated simplex ∆′ to the query point q. This follows
from the triangle inequality and the bounds

distX(B, q) ≤ α− α′, α <
(2 + ϵ)δ

4

Indeed, consider any other vertex C ′ = C + v⃗ of ∆′, where C ̸= B. Then:

distX(q, C ′) ≥ distX(q, C)− ∥v⃗∥ = distX(q, C)− (α− α′).

On the other hand, we have

distX(q, C) ≥ distX(C,B)− distX(q,B) ≥ (2 + ϵ)δ − (α− α′).

Combining these inequalities gives

distX(q, C ′) ≥ (2 + ϵ)δ − 2(α− α′).

Meanwhile, the distance from q to B′ satisfies

distX(q,B′) ≤ distX(q,B) + (α− α′) ≤ 2(α− α′).

Since we assumed α < (2+ϵ)δ
4 , it follows that

distX(q,B′) ≤ 2(α− α′) < (2 + ϵ)δ − 2(α− α′) ≤ distX(q, C ′),

which confirms that B′ is indeed the closest vertex of ∆′ to q.

Since B + v⃗ is the vertex of the new simplex ∆′ closest to q, we have

distX(q,B + v⃗) ≥ ∥v⃗∥ =
(1 + ϵ)2 + 1

(1 + ϵ)2 − 1
· α′.

Therefore, by Remark 15 (which follows from Lemma 14), the entire neighborhood ∆′
α′ is contained

in the feasible region:
∆′
α′ ⊂ Φ(q, r⋆q (∆

′)).

This completes the argument.

E.2 Case ϵ = 0 (rotation strategy)

The strategy for handling the case ϵ = 0 will be similar. Assume the responder receives a query q,
and that the α-neighborhood of a regular simplex ∆, with edge length 2δ, is contained in the feasible
region. Without loss of generality we may assume that α < δ

4 .

We will again show that there exists another regular simplex ∆′, with the same edge length, such that

∆′
α′ ⊂ ∆α, ∆′

α′ ⊂ Φ(q, r⋆q (∆
′)), where α′ =

α2

81 · 2δ
.

In the case ϵ > 0, the α′-good points were those whose distances to the simplex ∆ were sufficiently
big. Obviously, when ϵ = 0, this method of locating good points no longer works: for example,
the entire line passing through two vertices A and B of the simplex ∆ consists of α-bad points for
any α > 0.

Note also that in our earlier argument—where we moved the simplex so that a previously bad point
would become good with respect to the shifted simplex—we did not require a full characterization of
bad points. It was enough to identify a property shared by all bad points and then move the simplex
so that the given point no longer satisfies that property.

The same strategy applies in the case ϵ = 0, using Lemma 17. Let B := argminAi∈∆ distX(q, Ai)
be the nearest vertex of ∆ to the query point q, and let A := argmaxAi∈∆ distX(q, Ai) be the
farthest.
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By Lemma 17, if the point q is bad, then the angle between the vectors
−−→
AB and

−→
Aq—that is, the

angle ∠qAB—must be sufficiently small. Why is this the case?

Note that since B is closer to q than A, the angle ∠qAB lies in the interval [0, π/2). Over this
interval, the cosine function decreases from 1 to 0. Therefore, if the point q is α′-bad, we must have

cos(
−−→
AB,

−→
Aq) > 1− α′

δ
=⇒ ∠BAq < arccos

(
1− α′

δ

)
.

The regions consisting of points satisfying ∠BAq < arccos
(
1− α′

δ

)
are illustrated in Figure 6.

(a) Two-dimensional case (b) Three-dimensional case

Figure 6: All bad points lie in the orange region

The proof proceeds as follows. We assume that the point q satisfies

∠BAq < arccos

(
1− α′

δ

)
.

Otherwise, by the argument above, the point q is α′-good, and we can provide the answer using
Lemma 17.

We then construct a isometry γ such that the transformed point q′ := γ(q) no longer satisfies this
property. That is, let A′ and B′ be the farthest and nearest9 vertices of ∆ with respect to q′. Then the
angle ∠B′A′q′ satisfies

∠B′A′q′ ≥ arccos

(
1− α′

δ

)
.

Notice that it would be sufficient to construct such an isometry: if the point γ(q) is α′-good with
respect to the simplex ∆, then the original point q is α′-good with respect to the transformed simplex
∆′ := γ−1(∆). Once such a rotation is constructed, the remaining task is to argue that ∆′

α′ ⊂ ∆α.

Denote by a := α
2δ and b := α′

2δ the normalized neighborhood radii.

The main challenge in constructing such an isometry is that, if we are not careful—say, we transform
the space in a way that ensures ∠BAq′ ≥ arccos

(
1− α′

δ

)
—the point q′ may still turn out to be bad.

This can happen because the isometry might unintentionally change the identity of the farthest or
nearest vertex of the simplex with respect to q′.

9We will even prove that the transformation preserves the identities of the nearest and farthest vertices.
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This is why in Lemma 23 we constructed a small enough isometry R2θ for the specific query q
such that it does not change the identity of the farthest or nearest vertex of the simplex with respect
to R2θ[q].

Define θ := arccos(1− 2b), and consider the rotation R2θ, defined at the beginning of Appendix F.2
(see Equation 4), associated with the query q and the simplex ∆. Recall that this rotation acts on the
plane Π := span(A,B,Q)—where Q is the centroid of the remaining vertices in ∆ \ {A,B}—by
rotating around the point A through an angle of 2θ. On the orthogonal complement Π⊥, it acts as the
identity: R2θ

∣∣
Π⊥ = IdΠ⊥ .

Since we assumed that the point q is α′-bad, we must have

∠BAq < arccos (1− 2b) = θ.

Notice also that, since we assumed α < δ
4 , it follows that α′ < δ

32·81 . Therefore,

1− 2 · α
′

2δ
= 1− 1

32 · 81
> cos

( π
18

)
,

which ensures that θ < π
18 . This inequality can be verified using standard analysis tools, such as

Taylor expansions of the cosine function.

Hence, we may apply Lemma 23, which states that the farthest and nearest vertices with respect to
q′ := R2θ(q) are preserved under this isometry whenever θ ≤ π

18 :

arg min
Ai∈∆

distX(Ai, q
′) = B, arg max

Ai∈∆
distX(Ai, q

′) = A.

Moreover, Lemma 23 also states that ∠q′AB > θ, and hence q′ is α′-good with respect to the
simplex ∆.

The remaining task is to show that ∆′
α′ ⊂ ∆α.

The largest displacement under the rotation R−1
2θ occurs in the plane ABQ. Since all vertices of the

simplex, except for A, are equidistant from the origin A, the point B is therefore the farthest from its
image γ(B). Hence, to verify that ∆′

α′ ⊂ ∆α, it suffices to show that

B(B′, α′) ⊂ B(B,α).

Formally, this implication is proved in Lemma 24.

To verify that B(B′, α′) ⊂ B(B,α), we apply the Law of Cosines to the triangle △BAR2θ(B),
where both sides distX(A,B) and distX(A,R2θ(B)) equal 2δ, and the angle at vertex A is 2θ. This
gives:

distX(B,R2θ(B))2 = 4δ2 + 4δ2 − 8δ2 cos(2θ) = 8δ2(1− cos(2θ)),

so
distX(B,R2θ(B)) = 2δ

√
2(1− cos(2θ)).

Thus, we require:

α− α′ ≥ 2δ ·
√
2− 2 cos(2θ) ⇐⇒ a− b ≥

√
2(1− cos(2θ)).

Using the identity cos(2θ) = 2 cos2 θ − 1 = 2(1− 2b)2 − 1, we compute:

1− cos(2θ) = 1−
[
2(1− 2b)2 − 1

]
= 8b(1− b).

Thus, the condition becomes:
a− b ≥

√
16b(1− b).

Since a > b, we can safely square both sides:

(a− b)2 ≥ 16b(1− b) ⇐⇒ 17b2 − (16 + 2a)b+ a2 ≥ 0.

The discriminant of the quadric polynomial f(b) = 17b2 − (16 + 2a)b+ a2 is

D

4
= (8 + a)2 − 17a2.
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Since a < (8+a)+
√

(8+a)2−17a2

17 , the inequality a− b ≥ 4
√
b− b2 holds only when

0 < b ≤
(8 + a)−

√
(8 + a)2 − 17a2

17
.

Finally, note:

(8 + a)−
√
(8 + a)2 − 17a2

17
=

a2

(8 + a) +
√
(8 + a)2 − 17a2

>
a2

81
= b,

which confirms the condition, completing the argument.

F Technical Results

For completeness, we collect in this appendix several arguments deferred from the main text. We
begin in Appendix F.1 with a topological result establishing the right-continuity of eX(α) on totally
bounded metric spaces. In Appendix F.2 we turn to geometric techniques involving rotations of
regular simplices, which play an essential role in the proof of Theorem 6. Finally, in Appendix F.3
we give detailed proofs of the illustrative examples that were sketched in Section 2.

F.1 Right-Continuity of eX

We start by fixing notation. For a subset S in a metric space (X,distX), the Chebyshev radius of S,
denoted r(S), and the diameter of S, denoted diamS, are given by

r(S) = inf
q∈X

sup
x∈S

distX(x, q), diamS = sup
x,y∈S

distX(x, y).

Recall that the number eX(α) is intuitively the maximal radius of an enclosing ball over all sets with
diameter at most α— and formally defined as

eX(α) := sup
S⊆X

diam(S)≤α

r(S).

Our goal in this section is to show that eX is right-continuous for every totally bounded metric
space X .

Let (X, d) be a metric space. Consider the set of compact subsets of the space X , denoted by K(X).
Given two nonempty compact subsets A,B ⊆ X , their Hausdorff distance is defined as

distK(X)(A,B) := max

{
sup
a∈A

inf
b∈B

distX(a, b), sup
b∈B

inf
a∈A

distX(a, b)

}
.

Intuitively, this measures how far the sets are from being contained in each other’s neighborhoods.
The space (K(X),distK(X)) is known in the literature as the hyperspace of X .

A classical result states that K(X) is compact whenever X is compact (see Theorem 3.5 Illanes and
Jr. [1999]). Consequently, every sequence of compact subsets admits a subsequence that converges in
the Hausdorff metric, which implies the right-continuity of eX(α). The proof is given below.
Lemma 19. Let X be a compact metric space. Then the function eX(α) is right-continuous.

Proof. Observe that any subset S ⊂ X has the same diameter and Chebyshev radius as its closure.
Hence, in the definition of eX(α), it suffices to consider closed subsets, which are compact since X
is compact:

eX ((2 + ϵ)δ) = sup
S⊂X compact

diam(S)≤(2+ϵ)δ

r(S).

Both the Chebyshev radius and the diameter are continuous functions on K(X). Indeed, for any two
compact sets A,B ∈ K(X),

|diamA− diamB| ≤ 2 · distK(X)(A,B), |r(A)− r(B)| ≤ distK(X)(A,B).
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Now take any decreasing sequence βn → β. Notice that the function eX(α) is non-decreasing,
and hence the sequence eX(βn) is non-increasing. To prove the result, we need to show that
eX(βn) → eX(β).

Suppose, for contradiction, that there exists γ > 0 such that for any natural number n ∈ N,
eX(βn) > eX(β) + γ.

Then, for each natural number n, we can find a set Sn of diameter at most βn such that

r(Sn) > eX(β) +
γ

2
.

Since K(X) is compact, there exists a convergent subsequence of compacts subsets Sm(n) → S
in the Hausdorff metric. Continuity of the diameter implies diamS ≤ β, and continuity of the
Chebyshev radius gives r(Sm(n)) → r(S). Hence,

r(S) ≥ eX(β) +
γ

2
,

contradicting the definition of eX(β). This proves the claim.

Lemma 20. For a totally bounded metric space X , the function eX is right-continuous.

Proof. A standard extension of the Heine–Borel theorem states that a metric space is compact if and
only if it is complete and totally bounded (see Munkres [2000][Theorem 45.1]). The completion X̂ of
a totally bounded space X is complete by construction and remains totally bounded, hence compact.
Because X is dense in X̂ , every subset of X can be approximated arbitrarily well by subsets of X̂
(and vice-versa), so eX = eX̂ . Lemma 19 now applies to X̂ , yielding the desired right-continuity for
eX .

F.2 Geometric tools for Euclidean simplices

This section presents the geometric constructions that, while essential, would otherwise disrupt the
logical flow of Theorem 6 in which they are applied.

Let ∆ = {Ai}ni=0 be a regular simplex10 in Rn with edge length 2δ. To distinguish two specific
vertices, set

A := A1, B := A2.

Let Q denote the centroid of the remaining vertices:

Q =
1

n− 1

∑
C∈∆\{A,B}

C.

Consider the rotation
R2θ : Rn → Rn

that fixes the vertex A, acts in the plane Π = span{A,B,Q} as a rotation by angle 2θ around A in
the direction from

−−→
AB to

−→
AQ along the smaller angle between them, and acts as the identity on the

orthogonal complement Π⊥.

If we place the point A at the origin and choose an orthonormal basis d⃗1, . . . , d⃗n such that
span{d⃗1, d⃗2} = Π, and

−−→
AB = k · d⃗1 with k > 0,

−→
AQ = k1d⃗1 + k2d⃗2 with k1, k2 > 0,

then11, the rotation R2θ is represented in this basis by the matrix

R2θ =


cos(2θ) − sin(2θ) 0 · · · 0
sin(2θ) cos(2θ) 0 · · · 0

0 0 1 0
...

...
. . .

0 0 0 1

 . (4)

10We use ∆ to denote the discrete set of n+ 1 vertices of the regular simplex, rather than its convex hull.
11Notice that such a basis exists because ∠BAQ ≤ π

2
.
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The upper-left 2× 2 block corresponds to a counterclockwise rotation in the plane Π, and the rest
acts as the identity on Π⊥.

This transformation is a Euclidean isometry: it preserves all distances and acts as a rotation in the
ABQ-plane while leaving the orthogonal directions unchanged.

Remark 21. Given two vectors v1 :=
−−→
NM and v2 :=

−−→
NK for some points {N,M,K}, we will

often refer to cos∠MNK as cos(v1, v2). This emphasizes the computational role of the cosine as
the inner product between the normalized vectors v1 and v2:

cos∠MNK =
v1
∥v1∥

· v2
∥v2∥

.

The following lemma is a basic yet useful observation.
Lemma 22. Let Π be a plane, and let A,B ∈ Π be two distinct points. Fix any point q ∈ Rn, distinct
from A, and let Hq denote the orthogonal projection of q onto Π. Then,

0 < cos∠qAB ≤ cos∠HqAB, if ∠qAB < π
2 ,

0 > cos∠qAB ≥ cos∠HqAB, if ∠qAB > π
2 ,

cos∠qAB = cos∠HqAB = 0, if ∠qAB = π
2 .

Proof. Since the cosine between two vectors can be computed via their inner product (see Remark 21),
the key observation is that

−−→
AB ·

−→
Aq =

−−→
AB ·

−−→
AHq,

because the vectors
−−→
AB and

−−→
Hqq are orthogonal. Indeed, since Hq is the projection of q onto the

plane Π, the vector
−−→
Hqq is orthogonal to every vector in Π, including

−−→
AB.

Hence, −−→
AB ·

−→
Aq =

−−→
AB ·

−−→
AHq.

Now, if Hq ̸= A (the case Hq = A is trivial), we compute:

cos(
−→
Aq,

−−→
AB) =

−→
Aq

∥Aq∥
·

−−→
AB

∥AB∥
=

−−→
AHq ·

−−→
AB

∥Aq∥ · ∥AB∥

=

(
∥AHq∥
∥Aq∥

)
·

( −−→
AHq

∥AHq∥
·

−−→
AB

∥AB∥

)

= cos(
−−→
AHq,

−−→
AB) · ∥AHq∥

∥Aq∥
.

Since AHq is the projection of Aq onto the plane Π, we have

0 ≤ ∥AHq∥
∥Aq∥

≤ 1,

with equality only if q ∈ Π.

Now observe that for any angle ϕ ≤ π,

cosϕ < 0 ⇐⇒ ϕ >
π

2
.

Thus, the product cos(
−−→
AHq,

−−→
AB) · ∥AHq∥

∥Aq∥ is: - smaller than cos(∠HqAB) if ∠qAB < π
2 , - larger if

∠qAB > π
2 , and - equal when the angle is π

2 , since then both cosines vanish.

This completes the proof.

Lemma 23 (Rotation in the ABQ-plane keeps near/far order). Assume for a query point q ∈ Rn, the
nearest and farthest points are B and A respectively; that is:

B = argminAi∈∆distX(q, Ai), A = argmaxAi∈∆distX(q, Ai).
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Then, for any angle θ < π
18 whenever ∠BAq ≤ θ the isometry R2θ preserves both the nearest and

the farthest vertices of ∆ with respect to q:

B = argminAi∈∆distX(R2θq, Ai), A = argmaxAi∈∆distX(R2θq, Ai).

Moreover, the rotated point q′ := R2θq satisfies

∠q′AB > θ.

Proof. We will show that the nearest point B remains the nearest, and that the farthest point A
likewise remains the farthest, whenever ∠qAB ≤ π

18 . Finally, we will establish that ∠q′AB > θ.

Our argument will be carried out in an explicit orthonormal basis adapted to the geometry of the
simplex.

Coordinates in an orthonormal basis.

To simplify the calculations, we first scale the simplex A1A2 . . . An+1 by a factor of 1/(2δ). We
then embed it in Rn+1 by mapping the ith vertex to 1√

2
ei. Throughout, we set A := A1 and B := A2.

In these coordinates,
−−→
AB = 1√

2
(−1, 1, 0, . . . , 0),

−→
AQ = 1√

2

(
−1, 0, 1

n−1 , . . . ,
1

n−1

)
.

Next, we introduce the two unit vectors spanning the affine plane ABQ, which will play a key role in
defining the rotation R2θ (see (4)).

Writing the plane as
ABQ = A+ ⟨d⃗1, d⃗2⟩,

with Minkowski addition and linear span, we take

d⃗1 :=
−−→
AB, d⃗2 :=

√
n−1

2(n+1)

(
−1,−1, 2

n−1 , . . . ,
2

n−1

)
.

A direct check confirms that {d⃗1, d⃗2} is orthonormal. Moreover

2
−→
AQ−

−−→
AB =

√
n+1
n−1 d⃗2, =⇒ 2

−→
AQ =

√
n+1
n−1 d⃗2 + d⃗1.

Completing the basis. Pick an orthonormal completion {d⃗i}ni=3 of {d⃗1, d⃗2}. A convenient choice is

d⃗3 :=

−−→
QA3

∥QA3∥
= γ

(
0, 0, n−2

n−1 ,−
1

n−1 , . . . ,−
1

n−1

)
, γ :=

√
n−1
n−2 ,

and analogous definitions for i ≥ 4.

With this basis, for any 3 ≤ i ≤ n+ 1 we have

−−→
AAi =

1
2

(√
2(n−2)
n−1 d⃗i +

√
n+1
n−1 d⃗2 + d⃗1

)
.

Coordinates of the query point. Let q satisfy ∠qAB ≤ θ and write

−→
Aq =

n∑
i=1

zi d⃗i, so that
z1√∑n
i=1 z

2
i

= cos(∠qAB) ≥ cos θ. (5)

In particular, z1 ≥ (cos θ/ sin θ) |z2|.
Observe that for any vertex Ai of the simplex and for any point C, one has

|AC| ≥ |AiC| ⇐⇒ 2
−→
AC ·

−−→
AAi ≥ 1, (6)

since
∥
−−→
AiC∥2 = ∥

−→
AC −

−−→
AAi∥2 = ∥

−→
AC∥2 − 2

−→
AC ·

−−→
AAi + 1.
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Moreover, for any point C with coordinates
−→
AC =

∑n
i=1 yidi, a straightforward calculation shows

that
−→
AC ·

−−→
AAi =

1
2

(√
2(n−2)
n−1 yi +

√
n+1
n−1 y2 + y1

)
. (7)

Step I: the farthest point remains the farthest when ∠qAB ≤ π
8 .

Because R2θ acts as a planar rotation in ⟨d⃗1, d⃗2⟩ and fixes the orthogonal complement, we have

−→
Aq′ = (cos 2θ z1 − sin 2θ z2)d⃗1 + (cos 2θ z2 + sin 2θ z1)d⃗2 +

n∑
i=3

zi d⃗i.

Fix any n+ 1 ≥ i ≥ 3. By Eq. (6) and Eq. (7), to show that |Aq| ≥ |Aiq| implies |Aq′| ≥ |Aiq′|, it
suffices to verify that the inequality√

2(n−2)
n−1 zi +

√
n+1
n−1 z2 + z1 ≥ 1

implies √
2(n−2)
n−1 zi +

√
n+1
n−1

(
cos 2θ z2 + sin 2θ z1

)
+ (cos 2θ z1 − sin 2θ z2) ≥ 1.

For this implication to hold, it suffices to verify(√
n+1
n−1 sin 2θ + cos 2θ − 1

)
z1 ≥

(√
n+1
n−1 (1− cos 2θ) + sin 2θ

)
z2,

or, equivalently (using the double-angle identities),

(
√

n+1
n−1 cos θ − sin θ) z1 ≥ (

√
n+1
n−1 sin θ + cos θ) z2.

Because z1 ≥ (cos θ/ sin θ)|z2| (see Eq. (5)), it is enough to verify(√
n+1
n−1 cos θ − sin θ

)
cos θ
sin θ ≥

√
n+1
n−1 sin θ + cos θ,

which in turn is equivalent to √
n+1
n−1 cos 2θ − sin 2θ ≥ 0.

The latter holds for every 0 < θ ≤ π
8 , completing the proof.

Step II: the nearest point remains the nearest when ∠qAB ≤ π
18 .

We will prove that whenever ∠q′AB ≤ π
6 , all distances |Aiq′| for Ai /∈ {A,B} are greater than

|Bq′|. To that end, let us denote the angle ∠q′AB by ϕ and fix any n+ 1 ≥ i ≥ 3.

By Eq. (6), the claim is equivalent to the scalar-product inequality
−→
Aq′ ·

−−→
BA ≤

−→
Aq′ ·

−−→
AiA,

and by Eq. (7), in our orthonormal coordinates, this becomes
−→
Aq′ ·

−−→
AB = z1 ≥ 1

2

(√
2(n−2)
n−1 zi +

√
n+1
n−1 z2 + z1

)
=

−→
Aq′ ·

−−→
AAi,

or, equivalently,

z1 ≥
√

2(n−2)
n−1 zi +

√
n+1
n−1 z2. (8)

Assume ∠q′AB = ϕ ≤ π/6. Then, by Eq. (5),

z1 ≥ cosϕ

sinϕ

√
z22 + z2i ≥

√
3 ·
√
z22 + z2i ,

where the last inequality uses cosϕ
sinϕ ≥ cos(π/6)

sin(π/6) =
√
3, which holds for all 0 < ϕ ≤ π/6.
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We will now prove that

3z22 + 3z2i ≥
(√

2(n−2)
n−1 zi +

√
n+1
n−1 z2

)2

.

Expanding the right-hand side, this is equivalent to

n+ 1

n− 1
z2i +

2(n− 2)

n− 1
z22 ≥ 2

√
2(n− 2)(n+ 1)

(n− 1)2
ziz2,

which is always true by the inequality U2 + S2 ≥ 2US, applied with

U =

√
n+ 1

n− 1
zi, S =

√
2(n− 2)

n− 1
z2.

Putting these estimates together, we obtain

z1 ≥
√
3z22 + 3z2i ≥

√
2(n−2)
n−1 zi +

√
n+1
n−1 z2,

which is exactly (8). Hence |Bq′| ≤ |Aiq′| whenever ∠q′AB ≤ π/6.

Consequence for the rotated point. If the rotation parameter satisfies θ ≤ π/18, then the rotated point
q′ obeys ∠BAq′ ≤ π/6; therefore the point B remains the nearest after rotation.

Hence, if the angle θ ≤ π
18 , the angle ∠BAq′ ≤ π

6 and the point B still remains the nearest.

Step III: proving ∠q′AB > θ

It remains to verify that the rotation R2θ sufficiently increases the angle, i.e., that ∠BAq′ ≥ θ.

To show that decompose the vector
−→
Aq as

−→
Aq =

−−→
AHq +

−−→
Hqq,

where Hq is the projection of q onto the plane Π. Denote R2θ[Hq] by H ′
q. Since R2θ is not only an

isometry, but by construction also a linear transformation with placing the point A as the origin:
−→
Aq′ = R2θ[

−→
Aq] = R2θ[

−−→
AHq] +R2θ[

−−→
Hqq] =

−−→
AH ′

q +R2θ[
−−→
Hqq].

Since the rotation R2θ preserves the vectors orthogonal to Π, it also preserves
−−→
Hqq. Hence (see

Fig. 7):
−→
Aq′ =

−−→
AH ′

q +
−−→
Hqq,

and moreover, H ′
q is the projection of q′ onto the plane Π.

To see that ∠q′AB ≥ θ, note that the cosine function is decreasing on the interval [0, π]. Therefore,
it suffices to show that

cos(∠q′AB) ≤ cos θ.

For this purpose, we will use Lemma 22, which formalizes the observation that projecting a point
onto a plane either increases or decreases the cosine of an angle, depending on whether the angle
is acute or obtuse. Specifically, if ∠qAB < π

2 , then cos∠qAB ≥ cos∠HqAB, and the inequality
is reversed when the angle is obtuse.12 However, to apply this lemma correctly, one must verify
that either the original angle or its projection is acute or obtuse, as the conclusion depends on this
distinction.

By Lemma 22, we have cos∠HqAB ≥ cos∠qAB, since ∠qAB ≤ θ < π
2 . Therefore, using again

that cosine is decreasing on the interval [0, π], it follows that ∠HqAB ≤ θ.

12It also shows that the projected angle is acute or obtuse if and only if the original angle was acute or obtuse.
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Figure 7: Rotation and vector decomposition of
−→
Aq.

Using the triangle inequality for angles, and the fact that ∠HqAH
′
q = 2θ, we deduce:

∠H ′
qAB ≤ ∠HqAH

′
q + ∠HqAB ≤ 2θ + θ = 3θ <

π

2
,

∠H ′
qAB ≥ ∠HqAH

′
q − ∠HqAB ≥ 2θ − θ = θ.

Therefore, applying Lemma 22 once again, we conclude:

cos∠q′AB ≤ cos∠H ′
qAB ≤ cos θ.

Lemma 24. Suppose α′, α > 0 are such that R−1
2θ

[
B(B,α′)

]
⊂ B(B,α). Then

R−1
2θ

[
∆α′

]
⊂ ∆α.

Proof. Denote the simplex R−1
2θ

[
∆
]

by ∆′. To ensure the inclusion ∆′
α′ ⊂ ∆α, it suffices to check

that no vertex of the simplex moves by more than α− α′ under the rotation R2θ.

Let C be any vertex distinct from A and B. Then the point C does not lie in the affine plane ABQ.
Denote by B′ := R2θB, by C ′ := R2θC, and by Q′ := R2θQ. The point C is projected onto Q.13

Then,

cos(
−→
AQ,

−−→
AQ′) =

−→
AQ ·

−−→
AQ′

∥AQ∥2
= cos 2θ,

due to the construction of the rotation. On the other hand, since
−→
AQ ⊥

−−→
QC, one has:

cos(
−→
AC,

−−→
AC ′) =

−→
AQ ·

−−→
AQ′ + ∥CQ∥2

∥AQ∥2 + ∥CQ∥2
≥

−→
AQ ·

−−→
AQ′

∥AQ∥2
= cos 2θ,

since adding the same positive value to both the numerator and denominator of a ratio in (0, 1] does
not decrease the ratio. Now,

∥BB′∥2 − ∥CC ′∥2 = ∥
−−→
AB −

−−→
AB′∥2 − ∥

−→
AC −

−−→
AC ′∥2

= 2
(−→
AC ·

−−→
AC ′ −

−−→
AB ·

−−→
AB′

)
= 2∥

−−→
AB∥2

(
cos(

−→
AC,

−−→
AC ′)− cos 2θ

)
> 0,

which shows that indeed ∥CC ′∥ < ∥BB′∥.
13But this fact is not essential; the argument still holds without requiring that the projection coincides with Q.
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F.3 Examples

We begin by analyzing the game on the real line.

Example (Example 7 from the Introduction). Let ϵ > 0 and δ ≥ 0. Then, for any number T of
queries,

OPTR(T, ϵ, δ) = +∞.

Proof. The idea of the proof is straightforward: since the space is unbounded, the responder
can—already in the first round—return an arbitrarily large answer. This ensures that the initial
feasible region is as large as desired. Then, over the course of T interactions, the responder can
control how fast the region shrinks, ensuring that the final feasible region remains arbitrarily large.

Let us elaborate.

At the start of the game, for any large number L0 > 0 and any query q ∈ R, the responder may
answer with

rq :=
1 + ϵ

(1 + ϵ)2 − 1
(L0 − (2 + ϵ)δ) ,

which results in a feasible region that includes two intervals of length L0.

Now fix an interval [a, b] of length L, and suppose the reconstructor asks a query q ∈ R. The
responder then answers with

rq :=
max{|q − b|, |q − a|} − δ

1 + ϵ
.

This response places the point in [a, b] that is farthest from q right on the boundary of the feasible
region Φ(q, rq). In particular, this implies that every point x ∈ [a, b] satisfies |x− q| ≤ (1+ ϵ)rq + δ.

Assume without loss of generality that max{|q − b|, |q − a|} = |q − b|, i.e., q ≤ a+b
2 . On the other

hand, all points x ∈ [a, b] satisfying

|x− q| ≥ |b− q| − (2 + ϵ)δ

(1 + ϵ)2

also satisfy (1 + ϵ) · |x− q|+ δ ≥ rq . Thus, all such points lie within Φ(q, rq).

The length of the subinterval of [a, b] consisting of such points is

((1 + ϵ)2 − 1)|b− q|+ (2 + ϵ)δ

(1 + ϵ)2
≥ ((1 + ϵ)2 − 1) · |b− a|

2(1 + ϵ)2
=

((1 + ϵ)2 − 1)

2(1 + ϵ)2
· |b− a|.

Hence, on each round, the responder can reduce the feasible region’s length by a constant multiplica-
tive factor c := (1+ϵ)2−1

2(1+ϵ)2 . Starting from an interval of arbitrary length L0, the feasible region after T
rounds can still have length at least cT · L0, which diverges as L0 → ∞.

Therefore,
OPTR(T, ϵ, δ) = +∞.

The next example demonstrates that when ϵ = 0, the real line is (ϵ, δ)−pseudo-finite for every δ > 0:

Example 25 (Pseudo-finiteness on the real line). For every δ ≥ 0, the real line R with its usual
metric is (0, δ)-pseudo-finite.

Proof. The optimal reconstructor strategy is to ask two query points q1, q2 ∈ R with q2 − q1 > 2δ.
Let the answers of the responder be r1, r2.

Intuitively, each answer restricts the secret to intervals of length 2δ centered at qi ± ri. Because the
distance between the center of the leftmost interval and the center of the rightmost interval exceeds 2δ,
at most two of the four candidate intervals overlap, and their intersection has diameter 2δ, attaining
the optimal error (see Figure 8).
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Formally, the feasible regions are

Φ(q1, r1) = B (q1 − r1, δ) ∪B (q1 + r1, δ) ,

Φ(q2, r2) = B (q2 − r2, δ) ∪B (q2 + r2, δ) .

Assume there are two points x, y in the intersection Φ(q1, r1) ∩ Φ(q2, r2), such that y − x > 2δ.
These points cannot lie in the same ball of radius δ, hence

x ∈ B (q1 − r1, δ) , y ∈ B (q1 + r1, δ) ,

and also
x ∈ B (q2 − r2, δ) , y ∈ B (q2 + r2, δ) .

Therefore, the balls with larger and smaller centers must overlap:

|q2 + r2 − (q1 + r1)| < 2δ, and |q2 − r2 − (q1 − r1)| < 2δ.

On the other hand,

|q2 − q1 + r2 − r1|+ |q2 − q1 + r1 − r2| ≥ 2|q2 − q1| > 4δ,

which leads to a contradiction. Hence the result.

R
q1 q2

|q1 − q2| > 2δ

r1 r1 r2 r2

feasible x

Figure 8: With |q1 − q2| > 2δ, only the red interval [q1 + r1 − δ, q1 + r1 + δ] and the blue interval
[q2 − r2 − δ, q2 − r2 + δ] intersect, pinning the secret point to their (purple) overlap.

The following simple observation shows that in bounded metric spaces, the reconstruction game
becomes trivial whenever (2 + ϵ)δ exceeds the diameter of the space.
Example 26. Any bounded metric space X with diam(X) ≤ (2 + ϵ)δ is (ϵ, δ)-pseudo-finite. Indeed,
in this regime, the responder can maintain the entire space as feasible throughout the interaction by
consistently replying with the constant value δ. As a result, the optimal reconstruction error is simply
the Chebyshev radius of X , which the reconstructor can achieve without submitting any queries.

The next two examples concern noiseless responders (i.e., ϵ = δ = 0):
Example 27. The Euclidean space Rn is (0, 0)-pseudo-finite. Indeed, any point x ∈ Rn is uniquely
determined by its distances to the n+ 1 vertices of a non-degenerate n-simplex [Blumenthal, 1970,
§2].

The same holds for any subset of Rn that contains such a simplex. However, even in the noiseless
setting (ϵ, δ) = (0, 0), pseudo-finiteness does not hold in all metric spaces—even if the space is
totally bounded:
Example 28. Let X = {0, 1}N be the space of infinite binary sequences, equipped with the standard
ultrametric: the distance between two sequences α = (αi)i∈N and β = (βi)i∈N is defined as
d(α, β) = 2−j , where j is the first index for which αj ̸= βj . Then X is a compact (and hence totally
bounded) metric space that is not (0, 0)-pseudo-finite.

Proof. We show that OPTX(T, 0, 0) ≥ 2−T−1 for every T , by explicitly constructing a responder
strategy. The goal is to preserve a feasible set of sequences that agree on at most T coordinates.

Assume that after round t, the responder has committed to at most the first t′ ≤ t bits of the secret
sequence. Given a query q = (qi)i∈N, the responder replies as follows:
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• If the prefix (q1, . . . , qt′) disagrees with the committed prefix, respond with the true distance
2−j , where j is the first index of disagreement.

• Otherwise, respond with r = 2−t
′−1, and define the next bit of the secret sequence as

αt′+1 := 1− qt′+1.

After T rounds, the responder has specified exactly T bits. Let the reconstructor return a sequence x̂.
Then the responder chooses a secret point x⋆ that agrees with x̂ on all bits except for bit T +1, which
is flipped. This implies that distX(x̂, x⋆) = 2−T−1, yielding the lower bound.

Remark: One can further show that this lower bound is tight, and that OPTX(T, 0, 0) = 2−T−1,
since every informative query forces the responder to reveal one additional bit.

We now present an example of a non–totally bounded metric space for which the function eX fails to
be right-continuous.

Example 29 (Failure of right-continuity of eX ). Recall that for a metric space (X,distX) the
function eX is defined by

eX(α) := sup{ r(S) : S ⊆ X, diam(S) ≤ α },

where the Chebyshev radius and diameter are

r(S) := inf
q∈X

sup
x∈S

distX(x, q), diam(S) := sup
x,y∈S

distX(x, y).

Let X = {xn, yn : n ∈ N} with metric

distX(xn, yn) = 1 + 1
n for each n, distX(u, v) = 2 for all other distinct u ̸= v.

Then eX is not right-continuous14.

Proof. If α ≤ 1, then any subset S ⊆ X with diam(S) ≤ α must be a singleton (since every
nontrivial distance is > 1), hence eX(α) = 0.

For each n, let Sn = {xn, yn}. Then diam(Sn) = 1 + 1
n . Moreover,

r(Sn) = inf
q∈X

max{distX(xn, q),distX(yn, q)} = min{ 1 + 1
n , 2 } = 1 + 1

n ,

because choosing q ∈ {xn, yn} yields value 1 + 1
n , while any q /∈ Sn is at distance 2 from both

points.

Note that any subset of X with at least three distinct points contains two points at distance 2, hence
has diameter 2. Therefore, for 1 + 1

n ≤ α < 1 + 1
n−1 the only nontrivial subsets with diam ≤ α are

the pairs Sk with k ≥ n, and thus

eX(α) = max
k≥n

r(Sk) = 1 + 1
n .

Consequently,

lim
α↓1

eX(α) = lim
n→∞

eX
(
1 + 1

n

)
= 1, while eX(1) = 0,

so eX is not right-continuous at α = 1.

We conclude the section by formally proving the equivalence between the Dinur–Nissim model and
the reconstruction game on the Boolean cube as referenced in Example 1.

Example 30 (Dinur–Nissim model). The counting-query game in the Dinur–Nissim model is equiva-
lent to the distance-based game on the Boolean cube with the Hamming metric, namely, every query
in one game can be simulated by at most two queries in the other.

14The space X is not totally bounded: for α ≤ 1 every α-ball contains at most one point (all nonzero distances
in X exceed 1), so no finite α-net exists; equivalently, the only α-cover is X itself, which is infinite.
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Proof. We show that the counting-query game is equivalent to the distance-based game on the Boolean
cube (with Hamming distance) by introducing an intermediate step: both games are equivalent to an
inner-product game played on {±1}n.

The inner-product game is defined as follows. The responder chooses a secret vector D′ =
(d′1, . . . , d

′
n) ∈ {±1}n. In each round, the reconstructor submits a query vector

w = (w1, . . . , wn) ∈ {±1}n,

and the responder replies with a noisy approximation of the inner product

⟨D′, w⟩ =
n∑
i=1

wid
′
i.

Step I: From the Dinur–Nissim model to the inner-product game. In the Dinur–Nissim model,
the dataset is a binary vector D = (d1, . . . , dn) ∈ {0, 1}n, and each query is a subset q ⊆ [n], whose
(noisy) answer is the count

aq =
∑
i∈q

di.

We can represent the subset q by its indicator vector vq ∈ {0, 1}n, so that aq = ⟨D, vq⟩. To simulate
this count using the inner-product game on {±1}n, consider the transformation

v 7→ 2v − 1,

which maps {0, 1}n to {±1}n. Let

D′ = 2D − 1 and wq = 2vq − 1.

Then we have the identity

⟨D′, wq⟩ = 4⟨D, vq⟩ − 2⟨D,1⟩ − 2|q|+ n.

Therefore, we can recover the original count ⟨D, vq⟩ by submitting two inner-product queries: one
with wq and one with the all-ones vector 1. A similar argument gives the reverse direction.

Step II: From the inner-product game to the distance-based game. Next, we show that the inner-
product game on {±1}n is equivalent to the distance game on {±1}n equipped with the Hamming
metric. On this space, one has the identity

distHam(x, y) =
1

4
∥x− y∥22 =

n

2
− 1

2
⟨x, y⟩.

Hence, given the inner product ⟨x, y⟩ one can recover the Hamming distance, and conversely, via
simple affine transformations. This correspondence between the models also modifies the noise
parameters, but only in a controlled manner. Since the simulation uses at most two queries and
involves only affine transformations, the noise in the simulated model increases by at most a constant
multiplicative factor.
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introduction and motivation.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not introduce models or datasets with high risk of misuse. No
safeguards are necessary.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use any external datasets or code

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new datasets, codebases, or pretrained models.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve human subjects or crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The study does not involve human subjects and does not require IRB review.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large language models were not used as a core component of the methodol-
ogy. Minor assistance in editing was provided post-development, which does not require
declaration.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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