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ABSTRACT

Few-shot prompting methods can significantly improve the ability of Large Lan-
guage Models (LLMs) in mathematical reasoning, including geometry prob-
lem solving (GPS). GPT-4 Vision (GPT-4V), as a leading example of LLMs,
also demonstrates significant improvements. This tremendous achievement is
mainly attributed to prompting methods like ”Chain-of-Thought” and ”Program-
of-Thought,” which leverage the in-context learning ability of the model com-
bined with few-shot prompting to solve new problems. Despite the success of
these prompting methods, it remains understood what the GPT-4V model learns
from the demonstrations that leads to improved performance. In this paper, we
evaluated the answering accuracy of GPT-4V with few-shot prompting on five
geometric problem datasets and conducted a series of detailed analyses. Firstly,
through ablation experiments with valid and invalid demonstrations, we found
that the model’s performance improvement is not due to the quality of the demon-
stration, but rather to the input format, output format, and logic and structure of
the demonstration. Secondly, by analyzing the reasoning and computational re-
quirements of GPS, and verifying experimental results, we found that GPS tasks
emphasize reasoning ability more than computational power. Finally, our analysis
of various prompt methods revealed that existing approaches are not effective at
improving model performance concerning problem length and geometric shape.
Therefore, specialized prompt methods could be designed to enhance the model’s
performance in these aspects, or fine-tuning the model by adding geometric prob-
lem data with longer lengths or mixed geometric shapes could optimize its per-
formance. Overall, developing an LLM that fully adapts to GPS tasks represents
a key research direction. The source code will be made available in a GitHub
repository.

1 INTRODUCTION

It is widely consensus that leveraging the reasoning and in-context learning capabilities of large
language models (LLMs) Zhang et al. (2023a); Kandpal et al. (2023); Shi et al. (2023); Ye et al.
(2023b), combined with few-shot prompting, can significantly improve their performance in math-
ematical reasoning Yin et al. (2023); Gao & Das (2024); Firdaus et al. (2023); Liu et al. (2023);
Wu et al. (2023b). In mathematical reasoning research, geometry problem solving (GPS) Gao et al.
(2023a); Chang et al. (2022); Ning et al. (2023); Peng et al. (2023); Sun et al. (2024a) is crucial
as it demands higher levels of specialized knowledge and comprehensive skills Lu et al. (2024),
showcasing the potential of large language models more effectively Zhang et al. (2024). Therefore,
exploring methods to solve geometry problems using LLMs with few-shot prompting, along with
an in-depth analysis of key factors, can provide essential guidance and insights for future research
in the GPS field.

Currently, we know very little about what LLMs have learned from prompting methods Chen et al.
(2023b); Wu et al. (2023a); Wang et al. (2023a); Gao et al. (2023c); Hu et al. (2024). The most direct
way for LLMs to improve their ability to solve geometric problems is by providing a small number of
examples, which prompts the model to answer new questions based on these examples. The current
prompt methods are mainly divided into two categories: ”Chain-of-Thought” Wei et al. (2022);
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Zhou et al. (2023); Jiang et al. (2023); Wang et al. (2023b); Mondal et al. (2024) and ”Program-of-
Thought” Chen et al. (2023a); Gao et al. (2023b); Ye et al. (2023a); Imani et al. (2023). The ”Chain-
of-Thought” methods utilize the model’s extensive pre-training parameters (’memory’) Li et al.
(2023); Zhong et al. (2024) combined with provided demonstrations to guide the model in reasoning
the answer step by step Gao et al. (2023b). In contrast, the ”Program-of-Thought” methods leverage
the model’s code generation ability to use external tools for performing complex computations Chen
et al. (2023a). While these methods have shown some success in enhancing the model’s problem-
solving ability, the key factors driving this improvement remain unknown. To deeply analyze the
auxiliary effect of prompting methods on LLMs, we research several key issues: Firstly, are valid
demonstrations of ”Chain-of-Thought” reasoning or ”Program-of-Thought” computation important
for guiding GPT-4V in GPS tasks? Secondly, are the ”Program-of-Thought” computation methods
superior to the ”Chain-of-Thought” reasoning methods in GPS tasks? Finally, what other aspects
need to be considered when using prompting methods to solve geometric problems, beyond the
reasoning process and computation methods?

We have conducted a series of detailed experimental designs and analyses to address the aforemen-
tioned key issues Wang et al. (2023a); Gao et al. (2023c). First, to evaluate the impact of including
only valid demonstrations on model performance, we conducted ablation experiments using eight
different prompting methods. Meanwhile, each method included invalid demonstrations, allowing
us to assess the model’s ability to learn between valid and invalid demonstrations. From the experi-
mental results, we found that the improvement in the model’s performance is not related to the value
of the demonstration, but rather to the input format, output format, and the logic and structure of the
demonstration. Second, to evaluate whether solving geometric problems is important for improving
reasoning or computational abilities, we analyzed the reasoning and computational requirements
from the domain knowledge and the complexity of the geometric problems themselves. By com-
paring the experimental results of two types of prompting methods, we found that solving most
geometric problems requires a stronger emphasis on reasoning ability, while only a few geomet-
ric problems require complex computational power. Therefore, in GPS tasks, ”Chain-of-Thought”
reasoning methods are superior to ”Program-of-Thought” computation methods. Finally, we an-
alyzed the effect of various prompting methods on the problem length and the geometric shapes
involved. The analysis of experimental results showed that these prompting methods did not signif-
icantly improve these aspects. This indicates that specialized prompting methods could be designed
to improve the model’s performance in these aspects, or fine-tuning the model can be achieved by
adding problem data with longer lengths or mixed geometric shapes to optimize its performance.

Overall, our research and analysis of LLMs with few-shot prompting to solve geometric problems re-
vealed that the model can learn the prompting framework, including the input format, output format,
and answering ideas, from the demonstrations. However, the specific answer process still depends
on the problem’s content and relies on ”memory” to generate an answer. Therefore, proposing a
large language model that fully adapts to GPS tasks is a key research direction.

2 RELATED WORK

2.1 CHAIN-OF-THOUGHT METHODS

The Chain-of-Thought methods involve a series of reasoning prompts that divide a problem into mul-
tiple intermediate steps, gradually solving each step to obtain the final answer ultimately. Among
these methods, chain-of-thought prompting (CoT) Wei et al. (2022), as shown in Figure 1 (a),
has achieved remarkable results in solving general reasoning tasks. However, its performance di-
minishes when tackling problems with higher reasoning difficulty. To address this issue, the least-
to-most prompting (LtM) Zhou et al. (2023) method is proposed. LtM decomposes a complex
problem into a series of easier subproblems and solves them sequentially, using the answers from
previous subproblems to assist in solving subsequent ones. To clarify the solution process, the
plan-and-solve prompting (PS) method Wang et al. (2023b) is proposed. PS solves new problems
through a series of simple trigger sentences (such as ’give’, ’plan’, ’calculation’, and ’answer’).
The standard CoT method follows a roughly linear reasoning approach but often forgets previous
intermediate results during the process. The residual connection prompting (RP) method Jiang
et al. (2023) mitigates this issue by reintroducing the results of previous steps as prerequisites for
subsequent steps, thereby reducing the model’s tendency to forget.
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Figure 1: Comparison of the implementation process of two types of prompting methods. (a) Chain-
of-Thought methods rely entirely on the GPT-4V’ ”memory” for step-by-step reasoning and calcu-
lation; (b) Program-of-Thought methods generate programs and use external tools for more precise
computation.

2.2 PROGRAM-OF-THOUGHT METHODS

The Program-of-Thought methods involve a series of computational prompts that utilize the pow-
erful code-generation capabilities of LLMs to solve complex computational problems. Although
LLMs excel at gradually decomposing problems using Chain-of-Thought methods, they often en-
counter logical and arithmetic errors when solving individual subproblems, even if the overall de-
composition is correct. To overcome these issues, two representative methods have been proposed:
program-of-thought (PoT) Chen et al. (2023a) and program-aided language (PAL) Gao et al.
(2023b), as shown in Figure 1 (b). Both methods separate reasoning from computation by placing
each computational step into an external code executor (such as a Python interpreter) for execu-
tion. The key difference is that PoT describes each step entirely in the programming language,
while PAL integrates both natural language and programming language. To improve the effective-
ness in solving search constraint problems, the satisfiability-aided language (SATLM) Ye et al.
(2023a) is proposed. This method converts natural language reasoning problems into satisfiability
(SAT) problems and then obtains answers by using an SAT solver. To enhance the credibility of
LLMs-generated answers, MathPromoter (MP) Imani et al. (2023) uses hint techniques to gener-
ate multiple algebraic expressions and Python functions, solving the same mathematical problem
with different approaches. The consensus among these solutions serves as the final answer, thereby
increasing the confidence in the output.

3 BACKGROUND & STUDY FORMULATION

There is a wide consensus that Language Models are Few-Shot LearnersBrown et al. (2020); Wu
et al. (2023a), and GPT-4V is no exception Sun et al. (2024b); Jin et al. (2024), as reflected in nu-
merous studies. In this section, we first defined two types of prompting methods, Chain-of-Thought
Reasoning and Program-of-Thought Computation, and then detailed the input format, output format,
and the logic and structure of the demonstration.

3.1 CHAIN-OF-THOUGHT REASONING

In the realm of ultra-large-scale unsupervised deep learning, large models are often perceived as
black boxes Rai et al. (2023), with their reasoning and decision-making processes being difficult to
explain Wang et al. (2023c). This lack of transparency poses a challenge to the credibility of the
model results. However, the introduction of the few-shot chain-of-thought method offers a potential
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solution Wei et al. (2022); Zhou et al. (2023); Jiang et al. (2023); Wang et al. (2023b); Mondal et al.
(2024). This method breaks down logical reasoning problems into multiple steps, generating results
with a clear logical context. This approach improves the interpretability of the model, allowing
humans to understand the derivation process of the answer. Thus, the chain-of-thought reasoning
method marks a crucial milestone in enhancing the success of LLMs.

Specifically, few-shot chain-of-thought reasoning involves LLMs solving a new problem p by fol-
lowing few-shot demonstrations < pk · Rk · ak > and generating an answer a with a reasoning
process R. The standard implementation process is as follows:

GPT {[S, (< p1 ·R1 · a1 >, · · · , < pk ·Rk · ak >)]⊕ p} →< R, a > (1)

where S is a system prompt used to guide the model in generating specific information or completing
specific tasks when answering problems. In (a) Chain-of-Thought of Figure 1, we used the system
prompt Solve the question through step-by-step reasoning following the given examples. Addition-
ally, k represents the number of demonstrations, typically an integer not less than 0. When k = 0, it
indicates the zero-shot prompting method; when k = 1, it indicates the one-shot prompting method;
and when k ≥ 2, it indicates the few-shot prompting method.

RE (< R, a >) → a (2)

Due to the concatenation of reasoning and the answer in the results generated by the LLM, we
generally use Regular Expressions (RE) to extract the pure answer. For example, in (a) Chain-of-
Thought of Figure 1, the output R is: ”Since line AC=6in, and this is a regular polygon, therefore,
the perimeter of the regular polygon is 6+6+6=18in. The answer is 18.” Here, the answer a is 18,
and the regular expression we used is: r ”The answer is (\d+)”.

3.2 PROGRAM-OF-THOUGHT COMPUTATION

Even with chain-of-thought reasoning, LLMs do not truly understand mathematical logic or the
fundamental concepts of addition, subtraction, multiplication, and division Zhong et al. (2024);
Zhou et al. (2024). Instead, they rely on prior knowledge to mimic problem-solving processes,
much like ”drawing a dipper with a gourd as a model” (a Chinese idiom meaning to imitate without
understanding). Therefore, for tasks requiring precise arithmetic, professional computing tools are
still necessary, leading to the development of program-of-thought computing Chen et al. (2023a);
Gao et al. (2023b); Ye et al. (2023a); Imani et al. (2023).

Specifically, few-shot program-of-thought computation is a method where LLMs solve a new prob-
lem p by following few-shot demonstrations < pk · Ck > and generating an answer a using the
program C they generate. The standard implementation process is as follows:

GPT {[S, (< p1 · C1 >, · · ·< pk · Ck >)]⊕ p} → C (3)

where S is a system prompt designed to guide the model in generating specific information or
completing particular tasks when solving problems. In (b) Program-of-Thought of Figure 1, the
system prompt Generate a code block following the given examples to solve the question is used.
Here, k represents the number of demonstrations provided.

Interpreter (C) → a (4)

The core idea of the program-of-thought method for achieving precise arithmetic computation is to
input the generated program or code block C into a program interpreter, using professional tools
for high-precision computation. For example, in (b) Program-of-Thought of Figure 1, the output C
is a solution function code block written in Python. We used a Python interpreter to execute this
function, obtaining the final answer 18.
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Table 1: Details of datasets being tested. The ”total” represents the problem number of questions in
an original dataset, and the ”sample” represents the number of problems sampled from a dataset in
a test.

Dataset Total Sample Average problem words Average knowledge

GEOS 186 62 24.7 1.3
Geometry3K 3002 1000 12.2 1.6

GeoQA 4998 1666 52.5 2.1
GeoQA+ 7528 2510 54.5 1.8
PGPS9K 9022 2800 17.8 1.7

3.3 RESEARCH QUESTIONS

In the prompting methods discussed above, valid reasoning or program examples are provided as
demonstrations to illustrate how GPT-4V derives the generated answer to a new problemWu et al.
(2023b); Lu et al. (2024). Despite the impressive performance of various prompting methods in
mathematical reasoning tasks, we are interested in exploring the following questions:

• Q1: Do valid demonstrations of chain-of-thought reasoning or program-of-thought com-
putation matter for guiding GPT-4V in performing GPS tasks? If not, what does GPT-4V
learn to obtain the answer?

• Q2: Is the program-of-thoughts computation superior to chain-of-thought reasoning
prompting method in GPS task? If not, what characteristics in geometry problems would
cause this phenomenon to occur?

• Q3: What other aspects need to be considered when using prompting methods to solve
geometry problems, besides the reasoning process and computation methods?

4 EXPERIMENTAL SETUP

4.1 DATASETS & IN-CONTEXT EXEMPLARS

The goal of our experiment is to analyze which factors are important for using prompting methods
with few-shot demonstrations to assist LLMs in solving geometric problems. Therefore, the dataset
used in our experiment includes five publicly available geometric problem datasets. The detailed
introduction is as follows: (1) GEOS Seo et al. (2015): the dataset contains simple middle school
geometry problems with geometric shapes. (2) Geometry3K Lu et al. (2021): the dataset contains
numerous geometry problems where semantic information is scarce and most values need to be
obtained from images. (3) GeoQA Chen et al. (2021): the dataset contains rich semantic information
for middle and high school geometry problems. (4)GeoQA+ Cao & Xiao (2022): the dataset is based
on GeoQA, which adds more diverse types of geometry problems and forms an enhanced benchmark
dataset. (5) PGPS9K Zhang et al. (2023b): the dataset has both fine-grained graph annotations and
interpretable solution programs, and a small portion of the dataset comes from Geometry3K. Due
to budget considerations, we sample a certain number of questions from the five geometric problem
datasets being tested, and the number of samples is shown in Table 1.

Since our testing task only involved solving geometric problems, the five datasets share the same
problem-prompting template. The only difference is that the demonstrations of the solving pro-
cess for the same problem are designed based on different prompt methods, including CoTWei
et al. (2022), LtMZhou et al. (2023), PSWang et al. (2023b), RPJiang et al. (2023), PoTChen et al.
(2023a), PALGao et al. (2023b), SATLMYe et al. (2023a), and MathprompterImani et al. (2023).

4.2 EVALUATION

We employed the GPT-4V API (gpt-4-turbo) 1, the mature GPT-4 Turbo model with vision capabil-
ities, for our experiment. To evaluate the performance of GPT-4V with few-shot prompts, we used
two strategies: (1) Average answering accuracy: we randomly sampled problems and tested the

1https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
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model for M rounds, taking the average accuracy as the performance metric. (2) Self-consistency
answering accuracy: we evaluated performance with self-consistency decoding Wang et al. (2023d);
Weng et al. (2023) by uniformly sampling and aggregating the most consistent answer from the N
candidate answers. According to the usual research settings Gao et al. (2023b); Wang et al. (2023d);
Weng et al. (2023); Imani et al. (2023), M and N are set to 40, and the temperature T is set to 0.

5 HOW MUCH DOES VALID DEMONSTRATION MATTER? (Q1)

Intuitively, one of the most critical aspects of a demonstration is its logical validity and sound rea-
soning. If we provide a demonstration with invalid reasoning steps and computational processes, we
would expect GPT-4V to fail to answer properly and potentially experience little to no improvement,
or even a decrease in accuracy, compared to standard answering accuracy. This is because we are
guiding GPT-4V to answer in the wrong way, which could be detrimental rather than beneficial.
To test this intuition, we propose a series of studies where we construct invalid demonstrations for
various prompting methods and measure their influence on model behavior.

5.1 CONSTRUCTING INVALID DEMONSTRATIONS

We have set valid and invalid prompting demonstrations for eight prompting methods Wang et al.
(2023a), as shown in Appendix A. Specifically, valid demonstrations are the standard solving pro-
cesses that can obtain a standard answer for the demonstration problem; invalid demonstrations are
not relevant to the demonstration problem (including numerical and textual descriptions), and the
standard answer cannot be obtained.

For example, the demonstration geometry problem in Appendix A is From the image, you can see
that the shorter base of the trapezoid is 6ft, the longer base is 16ft, and the height is 12ft. Find
the area of the trapezoid. For the representative prompting method in the Chain of Thought Rea-
soning series, CoT prompting method, we have designed a valid solving demonstration for solving
the geometry problem based on the method: In this image, since the trapezoid has a longer base
(base1) with a length of 16 and a shorter base (base2) with a length of 6. The height, which is the
perpendicular distance between the two bases, is given as 12. To find the area of a trapezoid, you
can use the formula: Area = 1/2 * (base1 + base2) * height = 1/2 * (16 + 6) * 12=132. The area
of the trapezoid is 132. The answer is 132. Meanwhile, based on previous research, we have set up
a completely invalid demonstration, as shown in Appendix A.

5.2 RESULTS & ANALYSIS

Results. Figure 2 shows the answering accuracy of GPT-4V with one-shot demonstrations for solv-
ing geometric problems under different prompting settings (valid and invalid). From the comparison
of the valid-invalid experimental results, it can be seen that invalid prompting settings have both
an increase and a decrease compared to valid ones. The most significant increase is LtM with the
invalid prompting setting, in the Average answering accuracy of Geometry3K datasets, which in-
creased by 7.2% compared to that with the valid. The most significant decrease is PoT with the
invalid prompting setting, in the Average answering accuracy of GeoQA+ datasets, which decreased
by 6.3% compared to that with the valid. More detailed experimental data is presented in Appendix
C. Additionally, we present GPT-4V’s answer accuracy with one-shot demonstrations in Appendix
B and with three-shot demonstrations in Appendix D.

Analysis. On the one hand, through a comparative analysis of valid and invalid demonstrations,
we found that invalid prompting settings have both an increase and a decrease compared to valid
ones. This indicates that there is no correlation between the prompting validity and the answering
accuracy. In other words, valid demonstrations do not matter for GPT-4V with few-shot prompting
in GPS tasks. Moreover, this increase or decrease is not particularly significant, indicating that the
influence of valid and invalid demonstrations in guiding GPT-4V are consistent, and proving that
GPT-4V has learned the same content from both valid and invalid prompting settings, including
input format, output format, and logical thinking. On the other hand, compared to the standard GPT-
4V, we found that various prompting methods have obvious improvements in GPS tasks. Moreover,
we found that the self-consistency strategy has a higher answering accuracy and a smaller increase
or decrease compared to the average evaluation strategy. This situation arises because the self-
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(a) Average answering accuracy of prompting methods with valid and invalid prompting demonstrations

(b) Self-consistency answering accuracy of prompting methods with valid and invalid prompting demonstrations

Figure 2: Comparison of the answering accuracy of GPT-4V employing prompt methods for geom-
etry problems between valid and invalid prompting demonstrations.

consistency strategy is also a prompting method, which guides GPT-4V to find consensus from
multiple candidates’ answers. This indicates that the self-consistency prompting method is more
stable and reliable in the GPS task.

5.3 SUMMARY

Based on the experimental results and further analysis in this section, we have summarized two
points: in GPS tasks, firstly, the valid demonstrations do not matter for GPT-4V with few-shot
prompting, but GPT-4V can learn input format, output format, and logical thinking from the demon-
strations. Secondly, although the prompting method significantly improves the performance of GPT-
4V, the effects achieved by various prompt methods are different. Among them, the self-consistency
strategy overcomes the instability of the model itself to obtain more accurate and reliable answers.
However, in GPS tasks, we need to consider more how to improve the reasoning and computing ca-
pabilities of GPT-4V. Therefore, we need to further analyze a question: Is the ”Program-of-Thought
Computation” superior to the ”Chain-of-Thought Reasoning” prompting methods in GPS task? If
not, what characteristics in geometric problems would cause this phenomenon to occur?

6 WHICH A SERIES PROMPTING METHOD MATTERS MORE? (Q2)

We tested two types of prompting methods - ”Chain-of-Thought Reasoning” and ”Program-of-
Thought Computation”. Intuitively, in GPS tasks, “Chain of Thought Reasoning”, which relies
solely on memory to solve problems, seems to have no advantage. Instead, the “Program of Thought
Computing”, which uses tools to enhance performance, can obtain more accurate answers. To test
this intuition, we design a series study where we have provided basic evidence for evaluating two
types of prompting methods by analyzing the reasoning and computational requirements in GPS
tasks.

6.1 STATISTICAL REQUIREMENTS

Reasoning. The reasoning requirements for solving a geometric problem are positively correlated
with the domain knowledge involved in the problem, so, the more domain knowledge the problem
involves, the more reasoning steps are required. For example, the domain knowledge involved in
problem p in Figure 1 is only one - ”Isosceles (Equilateral) Triangle”, so the reasoning requirements
for the problem are not significant. From the analysis of the average domain knowledge (Average

7
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knowledge) in Table 1, the average domain knowledge of all four datasets exceeded 1.5, indicating
the existence of geometric problems involving many domain knowledge, further proving that GPS
has a clear reasoning requirement. In Appendix E, we further refined the distribution of domain
knowledge involved in the problem. We analyzed and found that problems involving more than 2
domain knowledge accounts for a considerable proportion, with 71.4% in the GeoQA dataset and
40.9% in the GeoQA+ dataset. Specifically, in the GeoQA dataset, 9.4% of the questions involve
domain knowledge exceeding 4. This indicates that GPS tasks require complex reasoning to be
completed.

Computation. The computational requirements for solving geometric problems are related to multi-
digit arithmetic. Multi-digit arithmetic refers to arithmetic operations involving numbers. For ex-
ample, the numerical values involved in solving the problem p5 in Appendix F include 222, and
38707.567, where the largest number 38707.567 is a 5-digit number and the smallest number 222 is
a 3-digit number. Therefore, we take 5 (the largest) as the multi-digit. Additionally, we consider the
arithmetic computation of decimals numerical values as 0-digit. For example, the numerical values
involved in solving the problem p0 in Appendix F include 4

7 , 5
7 , and 0.429, which are regarded as

decimals. Therefore, we take 0 (the decimals) as the multi-digit. In Figure 3, we statistically an-
alyzed the distribution of problems with different multi-digit arithmetic in five datasets. We found
that the biggest computational requirement in these datasets is also in the five-digit arithmetic, and
the vast majority (over 98%) of problems are lower than 3-digit arithmetic. Therefore, the GPS task
requires a small amount of computation.

6.2 RESULTS & ANALYSIS

Figure 3: Statistical analysis of computational re-
quirements for different datasets.

Results. Figure 2 shows the answering ac-
curacy of GPT-4V with two-shot prompting
methods by two evaluation strategies (aver-
age and self-consistency answering accuracy ).
Firstly, two different background colors repre-
sent different prompting methods: the white
background in the table represents the ”Chain-
of-Thought Reasoning” series methods (CoT,
LtM, PS, and RP), the gray background repre-
sents the ”Program-of-Thought Computation”
series methods (PoT, PAL, SATLM, and Math-
prompter). By comparing the accuracy of these
two series methods, it can be seen that the for-
mer has a significant advantage in GPS tasks.
For example, in the evaluation of the average
answering accuracy, the RP method with in-
valid reasoning (44.9%) on the GeoQA dataset
improved the accuracy by 22.3% compared
to the PAL method with invalid computation
(22.6%). Meanwhile, in the evaluation of the self-consistency answering accuracy, the RP method
with valid reasoning (53.1%) on the GEOS dataset improved the accuracy by 22.5% compared to
the PAL method with invalid computation (30.6%). This indicates that the method of enhancing rea-
soning ability is more effective for GPS tasks than computation. Furthermore, we also found that the
SATLM and Mathprompt prompting methods (belonging to the ”Program of Thought Calculation”
series methods) exceeded some of the ”Chain-of-Thought Reasoning” series methods. For exam-
ple, in the self-consistency accuracy evaluation of the PGPS9K dataset, the Mathprompt prompting
method with invalid computation (40.4%) outperforms all ”Chain-of-Thought Reasoning” methods.
In addition, by comparing the answering accuracy on two similar datasets (GeoQA and GeoQA+),
we found that the accuracy on the GeoQA dataset was lower than that on the GeoQA+ dataset,
whether it was the standard GPT (25.4% and 26.5%) or human performance (61.2% and 66.4%).
However, after using the prompting method, except for PoT and PAL methods, the accuracy in the
GeoQA dataset is generally higher than that in the GeoQA+ dataset.

Analysis. On the one hand, according to numerous research analyses, the ”Program-of-Thought
Computation” series methods are better at handling the problem with large numbers than the ”Chain-
of-Thought Reasoning” methods, such as 134672 × 98564=?. But does the GPS task require this
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ability? From the analysis in Figure 3, we find that the GPS task requires a small amount of compu-
tation. Therefore, there is a phenomenon that the answering accuracy of the ”Chain-of-Thought Rea-
soning” methods is higher than the ”Program-of-Thought Computation” series methods. However, it
is an exception in SATLM and Mathprompt promotion methods, as these two methods are different
from PoT and PAL methods (belonging to the ”Program of Thought Calculation” series methods)
that rely entirely on the programs for reasoning and computation. On the contrary, they separate
the reasoning and computation processes, and the two parts complement each other. Therefore,
SATLM and Mathprompt promotion methods surpass some of the ”Chain-of-Thought Reasoning”
methods. On the other hand, as shown in Appendix E, most problems in the GeoQA dataset require
complex reasoning processes, therefore there is a high demand for reasoning ability. Moreover, in
the comparison between two similar datasets (GeoQA and GeoQA+) in experimental results, we
found that compared to the GeoQA+ dataset, most prompting methods showed a more significant
improvement in the GeoQA dataset. This indicates that these methods greatly cater to the complex
reasoning requirement of the GeoQA dataset.

6.3 SUMMARY

Based on the mutual verification between GPS task requirements and experimental results, we sum-
marize as follows: Firstly, compared to computational requirements, the reasoning requirements
are higher. Therefore, the “Chain of Thought Reasoning” series methods (CoT, LtM, PS, and RP
) and some “Program of Thought Computing” methods (SATLM and Mathprompter) that guide
model reasoning cater to complex reasoning requirements and have more significant improvement
effects. Secondly, separating computation from reasoning and using the reasoning process to guide
precise computation is an optimal prompting method, such as the SATLM and Mathprompter meth-
ods.Besides reasoning and computational requirements, what other factors can affect the effective-
ness of solving geometric problems?

7 WHAT OTHER ASPECTS ALSO MATTER? (Q3)

Figure 4: Answering accuracy of GPT-
4V with different prompting under different
problem lengths, in the GeoQA dataset.

To analyze whether other aspects besides reasoning
and computing requirements would affect the ability
of GPT-4V with few-shot prompting to solve geo-
metric problems, we mainly completed two evalua-
tions: geometry problem length and geometry shape.

7.1 GEOMETRY PROBLEM LENGTH

The length of geometric problems represents the
number of word tokens in the problem text. For ex-
ample, in Appendix F, p0: find x. This problem con-
tains two words, ”find” and ”x”, and its length is 2.
Intuitively, as the problem length increases, the more
semantic information the model needs to understand,
the more difficult it is to answer the problem, and
the lower the accuracy of the answer. Conversely,
the higher the accuracy of the answer. However, in
GPS tasks, a lot of information is contained in geo-
metric shapes, and the information contained in the
text is limited, resulting in shorter problem lengths,
such as p3 in Appendix F. So for solving geometric
problems, we need to distinguish it from general mathematical reasoning tasks, provide a specific
relationship between the problem length and the answering accuracy, and analyze which range of
problem length can obtain the optimal answering accuracy.

The answering accuracy of different problem lengths is shown in Figure 4. The experimental results
were obtained using the average answering accuracy as an evaluation strategy employing GPT-4V
with two-shot PAL and COT at different problem lengths. In addition, to highlight the effectiveness
of the prompting method, we also used the standard GPT-4V (without any prompting) as the base-
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line. From Figure 4, we can see that regardless of whether there is prompting or not, the accuracy
trend in answering at different problem lengths is consistent. And the higher accuracy is concen-
trated between problem lengths of (40, 50). This indicates that the problem length is unrelated to
the method with or without prompting, but only to the model’s ability to understand semantic infor-
mation.

7.2 GEOMETRY SHAPE

The fundamental reason why geometric problems differ from general mathematical reasoning prob-
lems is that many geometric problems contain abstract geometric shapes, which also pose a huge
challenge in GPS tasks - cognitive geometric shapes. To analyze the cognitive ability of GPT-4V
towards different geometric shapes, we evaluated the answering accuracy of GPT-4V with different
prompting under different geometric shapes in the Geometry3K dataset. The experimental results
are shown in Figure 5.

Figure 5: Answering accuracy of GPT-4V
with different prompting under different ge-
ometry shapes, in the Geometry3K dataset.

The experimental results were obtained using the av-
erage answering accuracy as an evaluation strategy
employing GPT-4V with 2-shot PAL and COT at
different geometry shapes. In addition, to highlight
the effectiveness of the prompting method, we also
used the standard GPT-4V (without any prompting)
as the baseline. From Figure 5, we can see that GPT-
4V has strong cognitive abilities for shapes such
as squares, rectangles, and parallelograms. Among
them, the accuracy of the CoT prompting method
for answering problems involving parallelograms
reached 28%.This indicates that the current GPT-
4V has good cognitive abilities for simple geometric
shapes, but there is still a lot of room for improve-
ment. Furthermore, there is no correlation between
the use of prompting methods and the improvement
of answering accuracy.

7.3 SUMMARY

Based on the experimental analysis of geometric problem length and geometric shape, we summa-
rize as follows: Firstly, compared to the standard GPT-4V, the existing prompting methods do not
significantly improve the accuracy of answering for a certain problem length or geometric shape.
This also provides a starting idea for our future innovative prompting methods. For example, we
provide a targeted prompting method for particularly long problems; Alternatively, we can provide
visual cues for a certain geometric shape to make it easier for the model to recognize the shape and
enhance its cognitive effect. Secondly, the most important thing is to enhance the model’s ability to
solve geometric problems. Fine-tuning methods are recommended to improve the performance of
the model while ensuring that the visual features of geometric shapes and the semantic information
of longer problem texts can be fully understood.

8 CONCLUSION

In this paper, we aim to better understand what GPT-4V has learned from the few-shot demonstra-
tions, we conducted a series of experiments and detailed analysis. We find that: (1) The model’s
performance improvement is not due to the quality of the demonstration, but rather to the input
format, output format, and the logic and structure of the demonstration; (2) GPS tasks emphasize
reasoning ability more than computational power; (3) Specialized prompting methods could be de-
signed to enhance the model’s performance. Overall, developing an LLM that fully adapts to GPS
tasks represents a key research direction.
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A VALID AND INVALID DEMONSTRATIONS

As shown in Table 2, the rows with a white background represent the Chain-of-Thought Reasoning
methods, while the rows with a gray background represent the Program-of-Thought Computation
methods. The demonstration problem is: From the image, you can see that the shorter base of the
trapezoid is 6ft, the longer base is 16ft, and the height is 12ft. Find the area of the trapezoid. And
the standard answer is: 132.

Table 2: A pair of Valid and invalid demonstrations for different prompt methods in our experiment.

Prompting Valid Invalid

CoT In this image, since the trapezoid has a longer base (base1) with a
length of 16 and a shorter base (base2) with a length of 6. The height,
which is the perpendicular distance between the two bases, is given as
12. To find the area of a trapezoid, you can use the formula: Area =
1/2 * (base1 + base2) * height = 1/2 * (16 + 6) * 12=132. The area of
the trapezoid is 132. The answer is 132.

The image shows an equilateral triangle, which means all three sides
are equal in length. Since one of the sides BC is given as 6 inches,
the other two sides (AB and AC) are also 6 inches each. To find the
perimeter of the polygon, we sum the lengths of all sides: Perimeter =
AB + BC + AC=6+6+6=18. The answer is 18.

LtM Let’s break down this problem: 1. What information can we obtain
from the graph? 2. How to use this information to calculate the area
of this trapezoid? 1. The length of the longer base of this trapezoid
is 16, the length of the shorter base is 6, and the height between the
longer and shorter base is 12. 2. According to the area formula of the
trapezoid, the area of this trapezoid is 0.5 * (16+6) * 12=132. The
answer is 132.

A: Let’s break down this problem:1.What information can we obtain
from the graph? 2. How to use this information to calculate the mea-
sure of the perimeter of the regular polygon. 1. A regular triangle with
one of the sides, AC, is given as 6 inches 2. Regular triangle, also
known as an equilateral triangle, which means all three sides are equal
in length. Since one of the sides, AC is given as 6 inches, the other two
sides are also 6 inches each. We sum the lengths of all sides: Perimeter
= AC + AB + BC=6+6+6=18. The answer is 18.

PS Given: A trapezoidal with a longer base length of 16, a shorter base
length of 6, and a height of 12. Plan: We need to calculate the area
of this trapezoid. Calculation: the area formula of the trapezoid is 0.5
* (longer base+shorter base) * height; the area of the trapezoid is 0.5
* (16+6) * 12=132. Answer: the area of the trapezoid is 132. The
answer is 132.

Given: A regular triangle with one of the sides, AC, is given as 6
inches. Calculation: a regular triangle is also known as an equilateral
triangle, which means all three sides are equal in length; since one
of the sides AC is given as 6 inches, the other two sides are also 6
inches each. We sum the lengths of all sides: Perimeter = AC + AB
+ BC=6+6+6=18. Answer: The perimeter of the triangle is 18. The
answer is 18.

RP According to the image, the length of the longer base of this trape-
zoid is 16, the length of the shorter base is 6, and the height be-
tween the upper and shorter base is 12. According to the area formula
of the trapezoid, the area of the trapezoid is equal to 0.5 * (longer
base+shorter base) * height. So the area of this trapezoid is 0.5 *
(16[longer base]+6[shorter base]) * 12[height]=132. The answer is
132.

The image shows an equilateral triangle, which means all three sides
are equal in length. Since the first side AC is given as 6 inches, the
second and third sides (AB and BC) are also 6 inches each. To find the
perimeter of the polygon, we sum the lengths of all sides: Perimeter
= AC + AB+ BC=6 [the first side]+6 [the second side]+6 [the third
side]=18. The answer is 18.

PoT base1 = 16
base2 = 6
height = 12
area = 0.5 * (base1+base2) * height
ans=area

AC=6
AB=AC
BC=AC
Perimeter=AC+AB+BC
ans=Perimeter

PAL # solution in Python:
def solution():
Longer base = 16
Shorter base = 6
Height = 12
Area = 0.5 * (Shorter base+Longer base) * Height
return Area

# solution in Python:
def solution():
Line AC=6
Line AB=Line AC
Line BC=Line AC
Perimeter=Line AC+Line AB+Line BC
return Perimeter

SATLM Shorter base=6
Longer base=16
Height=12
Area=Variable()
Area=0.5 * (Shorter base+Longer base) * Height
result=Area
slove(result)

Line AC=6
Line AB=Line AC
Line BC=Line AC
Perimeter=Variable()
Perimeter=Line AC+Line AB+Line BC
result=Perimeter
slove(result)

MP Mapping={Shorter base:6,Longer base:16,Height:12}
# Algabraic answer
Answer=0.5 * (Shorter base+Longer base) * Height
# python code
def solution(Shorter base,Longer base,Height):
return 0.5 * (Shorter base+Longer base) * Height

Mapping={Line AC:6,Line AB:6,Line BC:6}
# Algabraic answer
Perimeter=Line AC+Line AB+Line BC
# python code
def solution(Line AC,Line AB,Line BC):
Return Line AC+Line AB+Line BC
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B ANSWERING ACCURACY COMPARISON OF GPT-4V WITH ONE-SHOT
DEMONSTRATIONS

We evaluate the answering accuracy of GPT-4V through the prompting methods with one valid and
one invalid demonstration (given in Table 2), respectively. As shown in Table 3, Compared to valid
demonstration, prompting methods with invalid demonstration can sometimes improve the accuracy
of GPT4-V answers, while at other times they can decrease them. For example, on the GeoQA+
dataset, the PS prompting method with a valid demonstration improved GPT-4V’s average answer
accuracy by 8.4% compared to an invalid demonstration, whereas it resulted in a 2.2% decrease on
the GeoQA dataset. This indicates that the effectiveness of the demonstration is not a factor that
affects the performance of the prompting method.

Table 3: Answering accuracy comparison of GPT-4V with one-shot valid and invalid demonstrations
for solving geometric problems under different prompting settings on the five benchmark datasets.

Prompting Setting GEOS Geometry3K GeoQA GeoQA+ PGPS9K

Average answering accuracy

CoT Valid Reasoning 30.2 21.5 30.5 23.1 22.1
Invalid Reasoning 31.7 20.4 26.2 22.5 23.1

LtM Valid Reasoning 28.6 21.2 30.5 20.1 20.5
Invalid Reasoning 30.7 23.5 26.5 25.0 20.5

PS Valid Reasoning 37.8 28 32.3 30.5 23.3
Invalid Reasoning 36.2 30 34.5 22.1 25

RP Valid Reasoning 31.9 31.5 32.5 25.3 28.5
Invalid Reasoning 37.3 30.5 38.5 28.5 22.3

PoT Valid Computation 20.1 16.2 19.3 20.5 17.6
Invalid Computation 21.3 15.6 20.2 20.2 11.6

PAL Valid Computation 20.8 16.4 20.3 19.3 11.9
Invalid Computation 19.1 17.5 21.5 18.8 11.1

SATLM Valid Computation 36.2 22.4 28.7 23.1 22.5
Invalid Computation 35.3 21.9 30.9 23.3 22.7

MP Valid Computation 36.2 32.5 33.5 27.4 22.3
Invalid Computation 42.2 34.2 36.5 29.7 23.5

Self-consistency answering accuracy

CoT Valid Reasoning 38.3 36.7 45.3 48.3 26.7
Invalid Reasoning 37.3 36.5 46.2 47.4 27.1

LtM Valid Reasoning 41.7 40.9 43.3 34.6 33.3
Invalid Reasoning 42.3 40.1 44.7 39.7 31.6

PS Valid Reasoning 43.7 31.4 37.8 35.8 25.9
Invalid Reasoning 44.5 31.9 35.3 35.3 29.1

RP Valid Reasoning 45.3 26.7 40.3 40.7 33.3
Invalid Reasoning 45.5 28.1 41.4 40.4 34.7

PoT Valid Computation 23.9 19.3 26.2 25.7 20.4
Invalid Computation 23.6 18.7 26.9 24.1 19.8

PAL Valid Computation 323.3 18.7 25.4 23.8 17.5
Invalid Computation 22.9 17.4 25.9 23.5 17.8

SATLM Valid Computation 33.9 31.7 39.5 38.4 31.7
Invalid Computation 34.7 30.1 39.2 38.7 32.4

MP Valid Computation 48.3 35.6 45.1 43.4 28.5
Invalid Computation 48.3 35.7 45.6 43.9 28.3
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C ANSWERING ACCURACY COMPARISON OF GPT-4V WITH TWO-SHOT
DEMONSTRATIONS

We evaluate the answering accuracy of GPT-4V through the prompting methods with two valid and
two invalid demonstrations, respectively. As shown in Table 4, Compared to valid demonstration,
prompting methods with invalid demonstration can sometimes improve the accuracy of GPT4-V
answers, while at other times they can decrease them. For example, on the Geometry3K dataset, the
CoT prompting method with a valid demonstration increased GPT-4V’s average answer accuracy by
1.3% compared to an invalid demonstration, whereas it resulted in a 3.5% decrease on the PGPS9K
dataset. This indicates that the effectiveness of the demonstration is not a factor that affects the
performance of the prompting method.

Table 4: Answering accuracy comparison of GPT-4V with two-shot valid and invalid demonstrations
for solving geometric problems under different prompting settings on the five benchmark datasets.

Prompting Setting GEOS Geometry3K GeoQA GeoQA+ PGPS9K

Average answering accuracy

CoT Valid Reasoning 33.5 22.5 32.5 31.3 21.5
Invalid Reasoning 35.1 21.2 29.9 34.8 25.0

LtM Valid Reasoning 35.6 23.5 34.1 31.5 27.8
Invalid Reasoning 36.8 30.7 36.5 31.7 25.9

PS Valid Reasoning 38.7 30.6 37.4 33.9 29.2
Invalid Reasoning 36.3 27.8 36.9 37.5 30.6

RP Valid Reasoning 40.7 31.5 41.5 40.3 30.5
Invalid Reasoning 41.8 30.1 44.9 38.7 27.8

PoT Valid Computation 27.8 20.2 25.2 26.5 18.2
Invalid Computation 29.1 18.4 24.5 20.2 21.4

PAL Valid Computation 25.2 18.9 22.7 23.5 21.9
Invalid Computation 29.6 24.7 22.6 28.3 18.6

SATLM Valid Computation 31.5 27.0 32.7 31.9 24.5
Invalid Computation 36.4 24.9 33.5 31.5 25.7

MP Valid Computation 35.1 26.7 33.5 30.5 29.5
Invalid Computation 39.5 29.7 37.1 29.6 26.9

Self-consistency answering accuracy

CoT Valid Reasoning 49.8 30.2 45.2 44.5 38.2
Invalid Reasoning 49.9 31.7 44.3 44. 4 39.9

LtM Valid Reasoning 50.3 35.9 45.8 46.8 38.7
Invalid Reasoning 46.7 34.5 46.1 44.9 35.5

PS Valid Reasoning 50.7 38.2 47.4 46.2 38.4
Invalid Reasoning 49.5 37.3 47.6 46.3 39.2

RP Valid Reasoning 53.1 38.9 49.5 47.7 39.4
Invalid Reasoning 52.4 39.7 49.0 46.9 38.1

PoT Valid Computation 32.5 30.0 30.8 31.1 27.1
Invalid Computation 31.4 29.3 30.6 31.3 25.7

PAL Valid Computation 31.8 29.2 30.6 32.4 29.9
Invalid Computation 30.6 28.8 31.9 32.7 29.3

SATLM Valid Computation 42.6 30.7 47.8 42.2 32.9
Invalid Computation 41.7 31.2 48.6 41.5 33.7

MP Valid Computation 49.7 35.1 48.9 47.7 39.9
Invalid Computation 49.5 34.5 48.6 48.1 40.4
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D ANSWERING ACCURACY COMPARISON OF GPT-4V WITH THREE-SHOT
DEMONSTRATIONS

We evaluate the answering accuracy of GPT-4V through the prompting methods with three valid and
three invalid demonstrations, respectively. As shown in Table 5, Compared to valid demonstration,
prompting methods with invalid demonstration can sometimes improve the accuracy of GPT4-V
answers, while at other times they can decrease them. For example, on the GeoQA+ dataset, the
SATLM prompting method with a valid demonstration increased GPT-4V’s self-consistency answer
accuracy by 0.3% compared to an invalid demonstration, whereas it resulted in a 0.8% decrease on
the GeoQA dataset. This indicates that the effectiveness of the demonstration is not a factor that
affects the performance of the prompting method.

Table 5: Answering accuracy comparison of GPT-4V with three-shot valid and invalid demonstra-
tions for solving geometric problems under different prompting settings.

Prompting Setting GEOS Geometry3K GeoQA GeoQA+ PGPS9K

Average answering accuracy

CoT Valid Reasoning 36.5 32.1 35.4 33.1 23.9
Invalid Reasoning 36.2 27.5 41.1 29.2 23.5

LtM Valid Reasoning 38.4 28.5 34.5 29.5 24.5
Invalid Reasoning 40.1 32.2 34.1 27.8 22.5

PS Valid Reasoning 39.2 31.7 33.8 32.5 27.5
Invalid Reasoning 40.1 36.4 38.5 30.7 26.5

RP Valid Reasoning 34.1 25.9 34.6 28.8 29.9
Invalid Reasoning 38.7 33.5 37.5 26.3 28.2

PoT Valid Computation 28.7 22.1 26.8 26.5 20.3
Invalid Computation 29.1 18.4 24.5 20.2 22.7

PAL Valid Computation 25.8 19.7 26.5 25.5 25.9
Invalid Computation 29.2 25.5 25.5 27.5 20.5

SATLM Valid Computation 34.6 34.7 31.5 27.5 20.6
Invalid Computation 36.8 27.5 34.2 29.1 27.5

MP Valid Computation 32.9 34.6 35.7 28.4 24.5
Invalid Computation 34.6 30.5 39.1 31.4 24.1

Self-consistency answering accuracy

CoT Valid Reasoning 50.4 32.3 47.5 47.1 39.6
Invalid Reasoning 51.1 32.4 47.1 46.7 39.7

LtM Valid Reasoning 51.4 35.1 48.9 47.1 40.1
Invalid Reasoning 52.1 35.9 48.4 46.3 40.5

PS Valid Reasoning 52.3 39.4 47.5 47.1 39.5
Invalid Reasoning 52.5 40.8 46.1 47.3 40.9

RP Valid Reasoning 55.7 40.9 50.1 49.3 49.1
Invalid Reasoning 55.4 40.4 50.6 49.4 39.9

PoT Valid Computation 35.7 30.4 36.8 34.3 29.5
Invalid Computation 35.4 30.9 36.9 33.8 29.1

PAL Valid Computation 34.8 29.6 30.7 32.9 29.3
Invalid Computation 34.9 30.1 30.1 32.7 30.2

SATLM Valid Computation 47.3 34.7 44.9 44.1 31.5
Invalid Computation 47.2 35.9 45.7 43.8 31.9

MP Valid Computation 52.9 39.5 50.4 49.3 39.9
Invalid Computation 53.6 39.1 50.9 49.8 38.7
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E THE DISTRIBUTION OF THE DOMAIN-KNOWLEDGE NUMBER

(a) GeoQA (b) GeoQA+

Figure 6: The distribution of the number of problems involving knowledge from different domains
in two datasets, GeoQA and GeoQA+. DK i indicates that answering a geometry problem requires
at least i domain knowledge.

F CASE ANALYSIS OF COMPUTATIONAL REQUIREMENTS

Table 6: Case analysis of computational requirements for different geometry problems.

ID Problems Numerical values Multi-digittext image answer

p0 Find x. 0.429 4
7 , 5

7 , 0.429 0

p1 Each pair of polygons is
similar. Find the scale fac-
tor from polygon ADCB to
polygon PSRQ.

2.0 1.4, 0.7, 2.2, 3.2, 2 1

p2 Find the area of the shaded
region. Assume that all
polygons that appear to be
regular are regular.

18.491 3, 18.491 2

p3 Find the measure of angle 1. 112.0 34, 72, 112 3

p4 Find the area of the rhom-
bus.

1200.0 20, 30, 1200 4

p5 Find the area of the circle. 38707.567 222, 38707.567 5
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