
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS GEOMETRY PROBLEMS SOLVING EMPLOY-
ING GPT-4 VISION WITH FEW-SHOT PROMPTING: AN
EMPIRICAL STUDY OF WHAT MATTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Few-shot prompting methods can significantly improve the ability of Large Lan-
guage Models (LLMs) in mathematical reasoning, including geometry prob-
lem solving (GPS). GPT-4 Vision (GPT-4V), as a leading example of LLMs,
also demonstrates significant improvements. This tremendous achievement is
mainly attributed to prompting methods like ”Chain-of-Thought” and ”Program-
of-Thought,” which leverage the in-context learning ability of the model com-
bined with few-shot prompting to solve new problems. Despite the success of
these prompting methods, it remains understood what the GPT-4V model learns
from the demonstrations that leads to improved performance. In this paper, we
evaluated the answering accuracy of GPT-4V with few-shot prompting on five
geometric problem datasets and conducted a series of detailed analyses. Firstly,
through ablation experiments with valid and invalid demonstrations, we found
that the model’s performance improvement is not due to the quality of the demon-
stration, but rather to the input format, output format, and logic and structure of
the demonstration. Secondly, by analyzing the reasoning and computational re-
quirements of GPS, and verifying experimental results, we found that GPS tasks
emphasize reasoning ability more than computational power. Finally, our analysis
of various prompt methods revealed that existing approaches are not effective at
improving model performance concerning problem length and geometric shape.
Therefore, specialized prompt methods could be designed to enhance the model’s
performance in these aspects, or fine-tuning the model by adding geometric prob-
lem data with longer lengths or mixed geometric shapes could optimize its per-
formance. Overall, developing an LLM that fully adapts to GPS tasks represents
a key research direction. The source code will be made available in a GitHub
repository.

1 INTRODUCTION

It is widely consensus that leveraging the reasoning and in-context learning capabilities of large
language models (LLMs) Zhang et al. (2023a); Kandpal et al. (2023); Shi et al. (2023); Ye et al.
(2023b), combined with few-shot prompting, can significantly improve their performance in math-
ematical reasoning Yin et al. (2023); Gao & Das (2024); Firdaus et al. (2023); Liu et al. (2023);
Wu et al. (2023b). In mathematical reasoning research, geometry problem solving (GPS) Gao et al.
(2023a); Chang et al. (2022); Ning et al. (2023); Peng et al. (2023); Sun et al. (2024a) is crucial
as it demands higher levels of specialized knowledge and comprehensive skills Lu et al. (2024),
showcasing the potential of large language models more effectively Zhang et al. (2024). Therefore,
exploring methods to solve geometry problems using LLMs with few-shot prompting, along with
an in-depth analysis of key factors, can provide essential guidance and insights for future research
in the GPS field.

Currently, we know very little about what LLMs have learned from prompting methods Chen et al.
(2023b); Wu et al. (2023a); Wang et al. (2023a); Gao et al. (2023c); Hu et al. (2024). The most direct
way for LLMs to improve their ability to solve geometric problems is by providing a small number of
examples, which prompts the model to answer new questions based on these examples. The current
prompt methods are mainly divided into two categories: ”Chain-of-Thought” Wei et al. (2022);

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Zhou et al. (2023); Jiang et al. (2023); Wang et al. (2023b); Mondal et al. (2024) and ”Program-of-
Thought” Chen et al. (2023a); Gao et al. (2023b); Ye et al. (2023a); Imani et al. (2023). The ”Chain-
of-Thought” methods utilize the model’s extensive pre-training parameters (’memory’) Li et al.
(2023); Zhong et al. (2024) combined with provided demonstrations to guide the model in reasoning
the answer step by step Gao et al. (2023b). In contrast, the ”Program-of-Thought” methods leverage
the model’s code generation ability to use external tools for performing complex computations Chen
et al. (2023a). While these methods have shown some success in enhancing the model’s problem-
solving ability, the key factors driving this improvement remain unknown. To deeply analyze the
auxiliary effect of prompting methods on LLMs, we research several key issues: Firstly, are valid
demonstrations of ”Chain-of-Thought” reasoning or ”Program-of-Thought” computation important
for guiding GPT-4V in GPS tasks? Secondly, are the ”Program-of-Thought” computation methods
superior to the ”Chain-of-Thought” reasoning methods in GPS tasks? Finally, what other aspects
need to be considered when using prompting methods to solve geometric problems, beyond the
reasoning process and computation methods?

We have conducted a series of detailed experimental designs and analyses to address the aforemen-
tioned key issues Wang et al. (2023a); Gao et al. (2023c). First, to evaluate the impact of including
only valid demonstrations on model performance, we conducted ablation experiments using eight
different prompting methods. Meanwhile, each method included invalid demonstrations, allowing
us to assess the model’s ability to learn between valid and invalid demonstrations. From the experi-
mental results, we found that the improvement in the model’s performance is not related to the value
of the demonstration, but rather to the input format, output format, and the logic and structure of the
demonstration. Second, to evaluate whether solving geometric problems is important for improving
reasoning or computational abilities, we analyzed the reasoning and computational requirements
from the domain knowledge and the complexity of the geometric problems themselves. By com-
paring the experimental results of two types of prompting methods, we found that solving most
geometric problems requires a stronger emphasis on reasoning ability, while only a few geomet-
ric problems require complex computational power. Therefore, in GPS tasks, ”Chain-of-Thought”
reasoning methods are superior to ”Program-of-Thought” computation methods. Finally, we an-
alyzed the effect of various prompting methods on the problem length and the geometric shapes
involved. The analysis of experimental results showed that these prompting methods did not signif-
icantly improve these aspects. This indicates that specialized prompting methods could be designed
to improve the model’s performance in these aspects, or fine-tuning the model can be achieved by
adding problem data with longer lengths or mixed geometric shapes to optimize its performance.

Overall, our research and analysis of LLMs with few-shot prompting to solve geometric problems re-
vealed that the model can learn the prompting framework, including the input format, output format,
and answering ideas, from the demonstrations. However, the specific answer process still depends
on the problem’s content and relies on ”memory” to generate an answer. Therefore, proposing a
large language model that fully adapts to GPS tasks is a key research direction.

2 RELATED WORK

2.1 CHAIN-OF-THOUGHT METHODS

The Chain-of-Thought methods involve a series of reasoning prompts that divide a problem into mul-
tiple intermediate steps, gradually solving each step to obtain the final answer ultimately. Among
these methods, chain-of-thought prompting (CoT) Wei et al. (2022), as shown in Figure 1 (a),
has achieved remarkable results in solving general reasoning tasks. However, its performance di-
minishes when tackling problems with higher reasoning difficulty. To address this issue, the least-
to-most prompting (LtM) Zhou et al. (2023) method is proposed. LtM decomposes a complex
problem into a series of easier subproblems and solves them sequentially, using the answers from
previous subproblems to assist in solving subsequent ones. To clarify the solution process, the
plan-and-solve prompting (PS) method Wang et al. (2023b) is proposed. PS solves new problems
through a series of simple trigger sentences (such as ’give’, ’plan’, ’calculation’, and ’answer’).
The standard CoT method follows a roughly linear reasoning approach but often forgets previous
intermediate results during the process. The residual connection prompting (RP) method Jiang
et al. (2023) mitigates this issue by reintroducing the results of previous steps as prerequisites for
subsequent steps, thereby reducing the model’s tendency to forget.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Comparison of the implementation process of two types of prompting methods. (a) Chain-
of-Thought methods rely entirely on the GPT-4V’ ”memory” for step-by-step reasoning and calcu-
lation; (b) Program-of-Thought methods generate programs and use external tools for more precise
computation.

2.2 PROGRAM-OF-THOUGHT METHODS

The Program-of-Thought methods involve a series of computational prompts that utilize the pow-
erful code-generation capabilities of LLMs to solve complex computational problems. Although
LLMs excel at gradually decomposing problems using Chain-of-Thought methods, they often en-
counter logical and arithmetic errors when solving individual subproblems, even if the overall de-
composition is correct. To overcome these issues, two representative methods have been proposed:
program-of-thought (PoT) Chen et al. (2023a) and program-aided language (PAL) Gao et al.
(2023b), as shown in Figure 1 (b). Both methods separate reasoning from computation by placing
each computational step into an external code executor (such as a Python interpreter) for execu-
tion. The key difference is that PoT describes each step entirely in the programming language,
while PAL integrates both natural language and programming language. To improve the effective-
ness in solving search constraint problems, the satisfiability-aided language (SATLM) Ye et al.
(2023a) is proposed. This method converts natural language reasoning problems into satisfiability
(SAT) problems and then obtains answers by using an SAT solver. To enhance the credibility of
LLMs-generated answers, MathPromoter (MP) Imani et al. (2023) uses hint techniques to gener-
ate multiple algebraic expressions and Python functions, solving the same mathematical problem
with different approaches. The consensus among these solutions serves as the final answer, thereby
increasing the confidence in the output.

3 BACKGROUND & STUDY FORMULATION

There is a wide consensus that Language Models are Few-Shot LearnersBrown et al. (2020); Wu
et al. (2023a), and GPT-4V is no exception Sun et al. (2024b); Jin et al. (2024), as reflected in nu-
merous studies. In this section, we first defined two types of prompting methods, Chain-of-Thought
Reasoning and Program-of-Thought Computation, and then detailed the input format, output format,
and the logic and structure of the demonstration.

3.1 CHAIN-OF-THOUGHT REASONING

In the realm of ultra-large-scale unsupervised deep learning, large models are often perceived as
black boxes Rai et al. (2023), with their reasoning and decision-making processes being difficult to
explain Wang et al. (2023c). This lack of transparency poses a challenge to the credibility of the
model results. However, the introduction of the few-shot chain-of-thought method offers a potential

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

solution Wei et al. (2022); Zhou et al. (2023); Jiang et al. (2023); Wang et al. (2023b); Mondal et al.
(2024). This method breaks down logical reasoning problems into multiple steps, generating results
with a clear logical context. This approach improves the interpretability of the model, allowing
humans to understand the derivation process of the answer. Thus, the chain-of-thought reasoning
method marks a crucial milestone in enhancing the success of LLMs.

Specifically, few-shot chain-of-thought reasoning involves LLMs solving a new problem p by fol-
lowing few-shot demonstrations < pk · Rk · ak > and generating an answer a with a reasoning
process R. The standard implementation process is as follows:

GPT {[S, (< p1 ·R1 · a1 >, · · · , < pk ·Rk · ak >)]⊕ p} →< R, a > (1)

where S is a system prompt used to guide the model in generating specific information or completing
specific tasks when answering problems. In (a) Chain-of-Thought of Figure 1, we used the system
prompt Solve the question through step-by-step reasoning following the given examples. Addition-
ally, k represents the number of demonstrations, typically an integer not less than 0. When k = 0, it
indicates the zero-shot prompting method; when k = 1, it indicates the one-shot prompting method;
and when k ≥ 2, it indicates the few-shot prompting method.

RE (< R, a >) → a (2)

Due to the concatenation of reasoning and the answer in the results generated by the LLM, we
generally use Regular Expressions (RE) to extract the pure answer. For example, in (a) Chain-of-
Thought of Figure 1, the output R is: ”Since line AC=6in, and this is a regular polygon, therefore,
the perimeter of the regular polygon is 6+6+6=18in. The answer is 18.” Here, the answer a is 18,
and the regular expression we used is: r ”The answer is (\d+)”.

3.2 PROGRAM-OF-THOUGHT COMPUTATION

Even with chain-of-thought reasoning, LLMs do not truly understand mathematical logic or the
fundamental concepts of addition, subtraction, multiplication, and division Zhong et al. (2024);
Zhou et al. (2024). Instead, they rely on prior knowledge to mimic problem-solving processes,
much like ”drawing a dipper with a gourd as a model” (a Chinese idiom meaning to imitate without
understanding). Therefore, for tasks requiring precise arithmetic, professional computing tools are
still necessary, leading to the development of program-of-thought computing Chen et al. (2023a);
Gao et al. (2023b); Ye et al. (2023a); Imani et al. (2023).

Specifically, few-shot program-of-thought computation is a method where LLMs solve a new prob-
lem p by following few-shot demonstrations < pk · Ck > and generating an answer a using the
program C they generate. The standard implementation process is as follows:

GPT {[S, (< p1 · C1 >, · · ·< pk · Ck >)]⊕ p} → C (3)

where S is a system prompt designed to guide the model in generating specific information or
completing particular tasks when solving problems. In (b) Program-of-Thought of Figure 1, the
system prompt Generate a code block following the given examples to solve the question is used.
Here, k represents the number of demonstrations provided.

Interpreter (C) → a (4)

The core idea of the program-of-thought method for achieving precise arithmetic computation is to
input the generated program or code block C into a program interpreter, using professional tools
for high-precision computation. For example, in (b) Program-of-Thought of Figure 1, the output C
is a solution function code block written in Python. We used a Python interpreter to execute this
function, obtaining the final answer 18.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Details of datasets being tested. The ”total” represents the problem number of questions in
an original dataset, and the ”sample” represents the number of problems sampled from a dataset in
a test.

Dataset Total Sample Average problem words Average knowledge

GEOS 186 62 24.7 1.3
Geometry3K 3002 1000 12.2 1.6

GeoQA 4998 1666 52.5 2.1
GeoQA+ 7528 2510 54.5 1.8
PGPS9K 9022 2800 17.8 1.7

3.3 RESEARCH QUESTIONS

In the prompting methods discussed above, valid reasoning or program examples are provided as
demonstrations to illustrate how GPT-4V derives the generated answer to a new problemWu et al.
(2023b); Lu et al. (2024). Despite the impressive performance of various prompting methods in
mathematical reasoning tasks, we are interested in exploring the following questions:

• Q1: Do valid demonstrations of chain-of-thought reasoning or program-of-thought com-
putation matter for guiding GPT-4V in performing GPS tasks? If not, what does GPT-4V
learn to obtain the answer?

• Q2: Is the program-of-thoughts computation superior to chain-of-thought reasoning
prompting method in GPS task? If not, what characteristics in geometry problems would
cause this phenomenon to occur?

• Q3: What other aspects need to be considered when using prompting methods to solve
geometry problems, besides the reasoning process and computation methods?

4 EXPERIMENTAL SETUP

4.1 DATASETS & IN-CONTEXT EXEMPLARS

The goal of our experiment is to analyze which factors are important for using prompting methods
with few-shot demonstrations to assist LLMs in solving geometric problems. Therefore, the dataset
used in our experiment includes five publicly available geometric problem datasets. The detailed
introduction is as follows: (1) GEOS Seo et al. (2015): the dataset contains simple middle school
geometry problems with geometric shapes. (2) Geometry3K Lu et al. (2021): the dataset contains
numerous geometry problems where semantic information is scarce and most values need to be
obtained from images. (3) GeoQA Chen et al. (2021): the dataset contains rich semantic information
for middle and high school geometry problems. (4)GeoQA+ Cao & Xiao (2022): the dataset is based
on GeoQA, which adds more diverse types of geometry problems and forms an enhanced benchmark
dataset. (5) PGPS9K Zhang et al. (2023b): the dataset has both fine-grained graph annotations and
interpretable solution programs, and a small portion of the dataset comes from Geometry3K. Due
to budget considerations, we sample a certain number of questions from the five geometric problem
datasets being tested, and the number of samples is shown in Table 1.

Since our testing task only involved solving geometric problems, the five datasets share the same
problem-prompting template. The only difference is that the demonstrations of the solving pro-
cess for the same problem are designed based on different prompt methods, including CoTWei
et al. (2022), LtMZhou et al. (2023), PSWang et al. (2023b), RPJiang et al. (2023), PoTChen et al.
(2023a), PALGao et al. (2023b), SATLMYe et al. (2023a), and MathprompterImani et al. (2023).

4.2 EVALUATION

We employed the GPT-4V API (gpt-4-turbo) 1, the mature GPT-4 Turbo model with vision capabil-
ities, for our experiment. To evaluate the performance of GPT-4V with few-shot prompts, we used
two strategies: (1) Average answering accuracy: we randomly sampled problems and tested the

1https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

model for M rounds, taking the average accuracy as the performance metric. (2) Self-consistency
answering accuracy: we evaluated performance with self-consistency decoding Wang et al. (2023d);
Weng et al. (2023) by uniformly sampling and aggregating the most consistent answer from the N
candidate answers. According to the usual research settings Gao et al. (2023b); Wang et al. (2023d);
Weng et al. (2023); Imani et al. (2023), M and N are set to 40, and the temperature T is set to 0.

5 HOW MUCH DOES VALID DEMONSTRATION MATTER? (Q1)

Intuitively, one of the most critical aspects of a demonstration is its logical validity and sound rea-
soning. If we provide a demonstration with invalid reasoning steps and computational processes, we
would expect GPT-4V to fail to answer properly and potentially experience little to no improvement,
or even a decrease in accuracy, compared to standard answering accuracy. This is because we are
guiding GPT-4V to answer in the wrong way, which could be detrimental rather than beneficial.
To test this intuition, we propose a series of studies where we construct invalid demonstrations for
various prompting methods and measure their influence on model behavior.

5.1 CONSTRUCTING INVALID DEMONSTRATIONS

We have set valid and invalid prompting demonstrations for eight prompting methods Wang et al.
(2023a), as shown in Appendix A. Specifically, valid demonstrations are the standard solving pro-
cesses that can obtain a standard answer for the demonstration problem; invalid demonstrations are
not relevant to the demonstration problem (including numerical and textual descriptions), and the
standard answer cannot be obtained.

For example, the demonstration geometry problem in Appendix A is From the image, you can see
that the shorter base of the trapezoid is 6ft, the longer base is 16ft, and the height is 12ft. Find
the area of the trapezoid. For the representative prompting method in the Chain of Thought Rea-
soning series, CoT prompting method, we have designed a valid solving demonstration for solving
the geometry problem based on the method: In this image, since the trapezoid has a longer base
(base1) with a length of 16 and a shorter base (base2) with a length of 6. The height, which is the
perpendicular distance between the two bases, is given as 12. To find the area of a trapezoid, you
can use the formula: Area = 1/2 * (base1 + base2) * height = 1/2 * (16 + 6) * 12=132. The area
of the trapezoid is 132. The answer is 132. Meanwhile, based on previous research, we have set up
a completely invalid demonstration, as shown in Appendix A.

5.2 RESULTS & ANALYSIS

Results. Figure 2 shows the answering accuracy of GPT-4V with one-shot demonstrations for solv-
ing geometric problems under different prompting settings (valid and invalid). From the comparison
of the valid-invalid experimental results, it can be seen that invalid prompting settings have both
an increase and a decrease compared to valid ones. The most significant increase is LtM with the
invalid prompting setting, in the Average answering accuracy of Geometry3K datasets, which in-
creased by 7.2% compared to that with the valid. The most significant decrease is PoT with the
invalid prompting setting, in the Average answering accuracy of GeoQA+ datasets, which decreased
by 6.3% compared to that with the valid. More detailed experimental data is presented in Appendix
C. Additionally, we present GPT-4V’s answer accuracy with one-shot demonstrations in Appendix
B and with three-shot demonstrations in Appendix D.

Analysis. On the one hand, through a comparative analysis of valid and invalid demonstrations,
we found that invalid prompting settings have both an increase and a decrease compared to valid
ones. This indicates that there is no correlation between the prompting validity and the answering
accuracy. In other words, valid demonstrations do not matter for GPT-4V with few-shot prompting
in GPS tasks. Moreover, this increase or decrease is not particularly significant, indicating that the
influence of valid and invalid demonstrations in guiding GPT-4V are consistent, and proving that
GPT-4V has learned the same content from both valid and invalid prompting settings, including
input format, output format, and logical thinking. On the other hand, compared to the standard GPT-
4V, we found that various prompting methods have obvious improvements in GPS tasks. Moreover,
we found that the self-consistency strategy has a higher answering accuracy and a smaller increase
or decrease compared to the average evaluation strategy. This situation arises because the self-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Average answering accuracy of prompting methods with valid and invalid prompting demonstrations

(b) Self-consistency answering accuracy of prompting methods with valid and invalid prompting demonstrations

Figure 2: Comparison of the answering accuracy of GPT-4V employing prompt methods for geom-
etry problems between valid and invalid prompting demonstrations.

consistency strategy is also a prompting method, which guides GPT-4V to find consensus from
multiple candidates’ answers. This indicates that the self-consistency prompting method is more
stable and reliable in the GPS task.

5.3 SUMMARY

Based on the experimental results and further analysis in this section, we have summarized two
points: in GPS tasks, firstly, the valid demonstrations do not matter for GPT-4V with few-shot
prompting, but GPT-4V can learn input format, output format, and logical thinking from the demon-
strations. Secondly, although the prompting method significantly improves the performance of GPT-
4V, the effects achieved by various prompt methods are different. Among them, the self-consistency
strategy overcomes the instability of the model itself to obtain more accurate and reliable answers.
However, in GPS tasks, we need to consider more how to improve the reasoning and computing ca-
pabilities of GPT-4V. Therefore, we need to further analyze a question: Is the ”Program-of-Thought
Computation” superior to the ”Chain-of-Thought Reasoning” prompting methods in GPS task? If
not, what characteristics in geometric problems would cause this phenomenon to occur?

6 WHICH A SERIES PROMPTING METHOD MATTERS MORE? (Q2)

We tested two types of prompting methods - ”Chain-of-Thought Reasoning” and ”Program-of-
Thought Computation”. Intuitively, in GPS tasks, “Chain of Thought Reasoning”, which relies
solely on memory to solve problems, seems to have no advantage. Instead, the “Program of Thought
Computing”, which uses tools to enhance performance, can obtain more accurate answers. To test
this intuition, we design a series study where we have provided basic evidence for evaluating two
types of prompting methods by analyzing the reasoning and computational requirements in GPS
tasks.

6.1 STATISTICAL REQUIREMENTS

Reasoning. The reasoning requirements for solving a geometric problem are positively correlated
with the domain knowledge involved in the problem, so, the more domain knowledge the problem
involves, the more reasoning steps are required. For example, the domain knowledge involved in
problem p in Figure 1 is only one - ”Isosceles (Equilateral) Triangle”, so the reasoning requirements
for the problem are not significant. From the analysis of the average domain knowledge (Average

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

knowledge) in Table 1, the average domain knowledge of all four datasets exceeded 1.5, indicating
the existence of geometric problems involving many domain knowledge, further proving that GPS
has a clear reasoning requirement. In Appendix E, we further refined the distribution of domain
knowledge involved in the problem. We analyzed and found that problems involving more than 2
domain knowledge accounts for a considerable proportion, with 71.4% in the GeoQA dataset and
40.9% in the GeoQA+ dataset. Specifically, in the GeoQA dataset, 9.4% of the questions involve
domain knowledge exceeding 4. This indicates that GPS tasks require complex reasoning to be
completed.

Computation. The computational requirements for solving geometric problems are related to multi-
digit arithmetic. Multi-digit arithmetic refers to arithmetic operations involving numbers. For ex-
ample, the numerical values involved in solving the problem p5 in Appendix F include 222, and
38707.567, where the largest number 38707.567 is a 5-digit number and the smallest number 222 is
a 3-digit number. Therefore, we take 5 (the largest) as the multi-digit. Additionally, we consider the
arithmetic computation of decimals numerical values as 0-digit. For example, the numerical values
involved in solving the problem p0 in Appendix F include 4

7 , 5
7 , and 0.429, which are regarded as

decimals. Therefore, we take 0 (the decimals) as the multi-digit. In Figure 3, we statistically an-
alyzed the distribution of problems with different multi-digit arithmetic in five datasets. We found
that the biggest computational requirement in these datasets is also in the five-digit arithmetic, and
the vast majority (over 98%) of problems are lower than 3-digit arithmetic. Therefore, the GPS task
requires a small amount of computation.

6.2 RESULTS & ANALYSIS

Figure 3: Statistical analysis of computational re-
quirements for different datasets.

Results. Figure 2 shows the answering ac-
curacy of GPT-4V with two-shot prompting
methods by two evaluation strategies (aver-
age and self-consistency answering accuracy).
Firstly, two different background colors repre-
sent different prompting methods: the white
background in the table represents the ”Chain-
of-Thought Reasoning” series methods (CoT,
LtM, PS, and RP), the gray background repre-
sents the ”Program-of-Thought Computation”
series methods (PoT, PAL, SATLM, and Math-
prompter). By comparing the accuracy of these
two series methods, it can be seen that the for-
mer has a significant advantage in GPS tasks.
For example, in the evaluation of the average
answering accuracy, the RP method with in-
valid reasoning (44.9%) on the GeoQA dataset
improved the accuracy by 22.3% compared
to the PAL method with invalid computation
(22.6%). Meanwhile, in the evaluation of the self-consistency answering accuracy, the RP method
with valid reasoning (53.1%) on the GEOS dataset improved the accuracy by 22.5% compared to
the PAL method with invalid computation (30.6%). This indicates that the method of enhancing rea-
soning ability is more effective for GPS tasks than computation. Furthermore, we also found that the
SATLM and Mathprompt prompting methods (belonging to the ”Program of Thought Calculation”
series methods) exceeded some of the ”Chain-of-Thought Reasoning” series methods. For exam-
ple, in the self-consistency accuracy evaluation of the PGPS9K dataset, the Mathprompt prompting
method with invalid computation (40.4%) outperforms all ”Chain-of-Thought Reasoning” methods.
In addition, by comparing the answering accuracy on two similar datasets (GeoQA and GeoQA+),
we found that the accuracy on the GeoQA dataset was lower than that on the GeoQA+ dataset,
whether it was the standard GPT (25.4% and 26.5%) or human performance (61.2% and 66.4%).
However, after using the prompting method, except for PoT and PAL methods, the accuracy in the
GeoQA dataset is generally higher than that in the GeoQA+ dataset.

Analysis. On the one hand, according to numerous research analyses, the ”Program-of-Thought
Computation” series methods are better at handling the problem with large numbers than the ”Chain-
of-Thought Reasoning” methods, such as 134672 × 98564=?. But does the GPS task require this

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ability? From the analysis in Figure 3, we find that the GPS task requires a small amount of compu-
tation. Therefore, there is a phenomenon that the answering accuracy of the ”Chain-of-Thought Rea-
soning” methods is higher than the ”Program-of-Thought Computation” series methods. However, it
is an exception in SATLM and Mathprompt promotion methods, as these two methods are different
from PoT and PAL methods (belonging to the ”Program of Thought Calculation” series methods)
that rely entirely on the programs for reasoning and computation. On the contrary, they separate
the reasoning and computation processes, and the two parts complement each other. Therefore,
SATLM and Mathprompt promotion methods surpass some of the ”Chain-of-Thought Reasoning”
methods. On the other hand, as shown in Appendix E, most problems in the GeoQA dataset require
complex reasoning processes, therefore there is a high demand for reasoning ability. Moreover, in
the comparison between two similar datasets (GeoQA and GeoQA+) in experimental results, we
found that compared to the GeoQA+ dataset, most prompting methods showed a more significant
improvement in the GeoQA dataset. This indicates that these methods greatly cater to the complex
reasoning requirement of the GeoQA dataset.

6.3 SUMMARY

Based on the mutual verification between GPS task requirements and experimental results, we sum-
marize as follows: Firstly, compared to computational requirements, the reasoning requirements
are higher. Therefore, the “Chain of Thought Reasoning” series methods (CoT, LtM, PS, and RP
) and some “Program of Thought Computing” methods (SATLM and Mathprompter) that guide
model reasoning cater to complex reasoning requirements and have more significant improvement
effects. Secondly, separating computation from reasoning and using the reasoning process to guide
precise computation is an optimal prompting method, such as the SATLM and Mathprompter meth-
ods.Besides reasoning and computational requirements, what other factors can affect the effective-
ness of solving geometric problems?

7 WHAT OTHER ASPECTS ALSO MATTER? (Q3)

Figure 4: Answering accuracy of GPT-
4V with different prompting under different
problem lengths, in the GeoQA dataset.

To analyze whether other aspects besides reasoning
and computing requirements would affect the ability
of GPT-4V with few-shot prompting to solve geo-
metric problems, we mainly completed two evalua-
tions: geometry problem length and geometry shape.

7.1 GEOMETRY PROBLEM LENGTH

The length of geometric problems represents the
number of word tokens in the problem text. For ex-
ample, in Appendix F, p0: find x. This problem con-
tains two words, ”find” and ”x”, and its length is 2.
Intuitively, as the problem length increases, the more
semantic information the model needs to understand,
the more difficult it is to answer the problem, and
the lower the accuracy of the answer. Conversely,
the higher the accuracy of the answer. However, in
GPS tasks, a lot of information is contained in geo-
metric shapes, and the information contained in the
text is limited, resulting in shorter problem lengths,
such as p3 in Appendix F. So for solving geometric
problems, we need to distinguish it from general mathematical reasoning tasks, provide a specific
relationship between the problem length and the answering accuracy, and analyze which range of
problem length can obtain the optimal answering accuracy.

The answering accuracy of different problem lengths is shown in Figure 4. The experimental results
were obtained using the average answering accuracy as an evaluation strategy employing GPT-4V
with two-shot PAL and COT at different problem lengths. In addition, to highlight the effectiveness
of the prompting method, we also used the standard GPT-4V (without any prompting) as the base-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

line. From Figure 4, we can see that regardless of whether there is prompting or not, the accuracy
trend in answering at different problem lengths is consistent. And the higher accuracy is concen-
trated between problem lengths of (40, 50). This indicates that the problem length is unrelated to
the method with or without prompting, but only to the model’s ability to understand semantic infor-
mation.

7.2 GEOMETRY SHAPE

The fundamental reason why geometric problems differ from general mathematical reasoning prob-
lems is that many geometric problems contain abstract geometric shapes, which also pose a huge
challenge in GPS tasks - cognitive geometric shapes. To analyze the cognitive ability of GPT-4V
towards different geometric shapes, we evaluated the answering accuracy of GPT-4V with different
prompting under different geometric shapes in the Geometry3K dataset. The experimental results
are shown in Figure 5.

Figure 5: Answering accuracy of GPT-4V
with different prompting under different ge-
ometry shapes, in the Geometry3K dataset.

The experimental results were obtained using the av-
erage answering accuracy as an evaluation strategy
employing GPT-4V with 2-shot PAL and COT at
different geometry shapes. In addition, to highlight
the effectiveness of the prompting method, we also
used the standard GPT-4V (without any prompting)
as the baseline. From Figure 5, we can see that GPT-
4V has strong cognitive abilities for shapes such
as squares, rectangles, and parallelograms. Among
them, the accuracy of the CoT prompting method
for answering problems involving parallelograms
reached 28%.This indicates that the current GPT-
4V has good cognitive abilities for simple geometric
shapes, but there is still a lot of room for improve-
ment. Furthermore, there is no correlation between
the use of prompting methods and the improvement
of answering accuracy.

7.3 SUMMARY

Based on the experimental analysis of geometric problem length and geometric shape, we summa-
rize as follows: Firstly, compared to the standard GPT-4V, the existing prompting methods do not
significantly improve the accuracy of answering for a certain problem length or geometric shape.
This also provides a starting idea for our future innovative prompting methods. For example, we
provide a targeted prompting method for particularly long problems; Alternatively, we can provide
visual cues for a certain geometric shape to make it easier for the model to recognize the shape and
enhance its cognitive effect. Secondly, the most important thing is to enhance the model’s ability to
solve geometric problems. Fine-tuning methods are recommended to improve the performance of
the model while ensuring that the visual features of geometric shapes and the semantic information
of longer problem texts can be fully understood.

8 CONCLUSION

In this paper, we aim to better understand what GPT-4V has learned from the few-shot demonstra-
tions, we conducted a series of experiments and detailed analysis. We find that: (1) The model’s
performance improvement is not due to the quality of the demonstration, but rather to the input
format, output format, and the logic and structure of the demonstration; (2) GPS tasks emphasize
reasoning ability more than computational power; (3) Specialized prompting methods could be de-
signed to enhance the model’s performance. Overall, developing an LLM that fully adapts to GPS
tasks represents a key research direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
and Arvind Neelakantan. Language models are few-shot learners. In Advances in Neural Infor-
mation Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020 (NeurIPS-2020), 2020.

Jie Cao and Jing Xiao. An augmented benchmark dataset for geometric question answering through
dual parallel text encoding. In Proceedings of the 29th International Conference on Computa-
tional Linguistics (COLING-2022), pp. 1511–1520, 2022.

Tyler A. Chang, Zhuowen Tu, and Benjamin K. Bergen. The geometry of multilingual language
model representations. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing (EMNLP-2022), pp. 119–136, 2022.

Jiaqi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang, and Lingbo Liu. Geoqa: A geometric
question answering benchmark towards multimodal numerical reasoning. In Findings of the As-
sociation for Computational Linguistics (ACL-2021), volume ACL/IJCNLP 2021, pp. 513–523,
2021.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. Transactions on
Machine Learning Research (TMLR-2023), 2023a.

Yuyan Chen, Qiang Fu, Yichen Yuan, Zhihao Wen, Ge Fan, and Dayiheng Liu. Hallucination
detection: Robustly discerning reliable answers in large language models. In Proceedings of the
32nd ACM International Conference on Information and Knowledge Management (CIKM-2023),
pp. 245–255, 2023b.

Mauzama Firdaus, Gopendra Vikram Singh, Asif Ekbal, and Pushpak Bhattacharyya. Multi-step
prompting for few-shot emotion-grounded conversations. In Proceedings of the 32nd ACM Inter-
national Conference on Information and Knowledge Management (CIKM-2023), pp. 3886–3891,
2023.

Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun Zhong, Yufei Wang, and Lanqing
Hong. G-llava: Solving geometric problem with multi-modal large language model. CoRR,
abs/2312.11370, 2023a.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, and Pengfei Liu. PAL: program-aided language
models. In International Conference on Machine Learning (ICML-2023), volume 202, pp. 10764–
10799, 2023b.

Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan Wang, Hongyu Zhang, and Michael R.
Lyu. What makes good in-context demonstrations for code intelligence tasks with llms? In
38th IEEE/ACM International Conference on Automated Software Engineering (IEEE-2023), pp.
761–773, 2023c.

Xiang Gao and Kamalika Das. Customizing language model responses with contrastive in-context
learning. In Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-
2024), pp. 18039–18046, 2024.

Wenbo Hu, Yifan Xu, Yi Li, Weiyue Li, Zeyuan Chen, and Zhuowen Tu. Bliva: A simple multi-
modal llm for better handling of text-rich visual questions. In Proceedings of Thirty-Eighth AAAI
Conference on Artificial Intelligence (AAAI-2024), pp. 2256–2264, 2024.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. In Proceedings of The 61st Annual Meeting of the Association for Computa-
tional Linguistics: Industry Track (ACL-2023), pp. 37–42, 2023.

Song Jiang, Zahra Shakeri, Aaron Chan, Maziar Sanjabi, and Hamed Firooz. Resprompt: Residual
connection prompting advances multi-step reasoning in large language models. CoRR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qiao Jin, Fangyuan Chen, Yiliang Zhou, Ziyang Xu, Justin M. Cheung, Robert Chen, Ronald M.
Summers, and Justin F. Rousseau. Hidden flaws behind expert-level accuracy of gpt-4 vision in
medicine. CoRR, abs/2401.08396, 2024.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
models struggle to learn long-tail knowledge. In International Conference on Machine Learning
(ICML-2023), volume 202, pp. 15696–15707, 2023.

Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin Wang, Michal Lukasik, Andreas Veit, Felix X.
Yu, and Sanjiv Kumar. Large language models with controllable working memory. In Findings
of the Association for Computational Linguistics (ACL-2023), pp. 1774–1793, 2023.

Jingping Liu, Tao Chen, Zujie Liang, Haiyun Jiang, and Yanghua Xiao. Hierarchical prompt tuning
for few-shot multi-task learning. In Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management (CIKM-2023), pp. 1556–1565, 2023.

Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun Zhu.
Inter-gps: Interpretable geometry problem solving with formal language and symbolic reasoning.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (ACL-2021), pp. 6774–
6786, 2021.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. In International Conference on Learning Representations
(ICLR-2024), 2024.

Debjyoti Mondal, Suraj Modi, Subhadarshi Panda, Rituraj Singh, and Godawari Sudhakar Rao.
Kam-cot: Knowledge augmented multimodal chain-of-thoughts reasoning. In Proceedings of
Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-2024), pp. 18798–18806, 2024.

Maizhen Ning, Qiu-Feng Wang, Kaizhu Huang, and Xiaowei Huang. A symbolic characters aware
model for solving geometry problems. In Proceedings of the 31st ACM International Conference
on Multimedia (ACM-2023), pp. 7767–7775, 2023.

Shuai Peng, Di Fu, Yijun Liang, Liangcai Gao, and Zhi Tang. Geodrl: A self-learning framework
for geometry problem solving using reinforcement learning in deductive reasoning. In Findings of
the Association for Computational Linguistics: ACL 2023 (ACL-2023), pp. 13468–13480, 2023.

Daking Rai, Yilun Zhou, Bailin Wang, and Ziyu Yao. Explaining large language model-based neural
semantic parsers. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence
(AAAI-2023), pp. 16308–16309, 2023.

Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Etzioni, and Clint Malcolm. Solving geome-
try problems: Combining text and diagram interpretation. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing (EMNLP-2015), pp. 1466–1476, 2015.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, and Ed H. Chi. Large
language models can be easily distracted by irrelevant context. In International Conference on
Machine Learning (ICML-2023), volume 202, pp. 31210–31227, 2023.

Kai Sun, Yushi Bai, and Nianyi Lin. Advancing geometric problem solving: A comprehensive
benchmark for multimodal model evaluation. CoRR, abs/2404.05091, 2024a.

Qi Sun, Xiao Cui, Wengang Zhou, and Houqiang Li. Exploiting gpt-4 vision for zero-shot point
cloud understanding. CoRR, abs/2401.07572, 2024b.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun.
Towards understanding chain-of-thought prompting: An empirical study of what matters. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (ACL-
2023), pp. 2717–2739, 2023a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, and Yunshi Lan. Plan-and-solve prompting: Im-
proving zero-shot chain-of-thought reasoning by large language models. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (ACL-2023), pp. 2609–
2634, 2023b.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large lan-
guage models are latent variable models: Explaining and finding good demonstrations for in-
context learning. In Advances in Neural Information Processing Systems 36: Annual Conference
on Neural Information Processing Systems (NeurIPS-2023), pp. 16308–16309, 2023c.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In Proceedings of The Eleventh International Conference on Learning Representations
(ICLR-2023), 2023d.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, and Brian Ichter. Chain-of-thought
prompting elicits reasoning in large language models. In Advances in Neural Information Process-
ing Systems 35: Annual Conference on Neural Information Processing Systems 2022 (NeurIPS-
2022), 2022.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and
Jun Zhao. Large language models are better reasoners with self-verification. In Findings of the
Association for Computational Linguistics (EMNLP-2023), pp. 2550–2575, 2023.

Wenhao Wu, Huanjin Yao, Mengxi Zhang, Yuxin Song, Wanli Ouyang, and Jingdong Wang.
Gpt4vis: What can GPT-4 do for zero-shot visual recognition? CoRR, abs/2311.15732, 2023a.

Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard
Peng, Qingyun Wu, and Chi Wang. An empirical study on challenging math problem solving
with gpt-4. CoRR, abs/2306.01337, 2023b.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Satlm: Satisfiability-aided language models
using declarative prompting. In Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023 (NeurIPS-2023), 2023a.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Large language models
are versatile decomposers: Decomposing evidence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR-2023), pp. 174–184, 2023b.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. CoRR, abs/2306.13549, 2023.

Biao Zhang, Barry Haddow, and Alexandra Birch. Prompting large language model for machine
translation: A case study. In International Conference on Machine Learning (ICML-2023), vol-
ume 202, pp. 41092–41110, 2023a.

Duzhen Zhang, Yahan Yu, Chenxing Li, Jiahua Dong, Dan Su, Chenhui Chu, and Dong Yu. Mm-
llms: Recent advances in multimodal large language models. CoRR, abs/2401.13601, 2024.

Mingliang Zhang, Fei Yin, and Cheng-Lin Liu. A multi-modal neural geometric solver with textual
clauses parsed from diagram. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence (IJCAI-2023), pp. 3374–3382, 2023b.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the Thirty-Eighth AAAI Conference
on Artificial Intelligence (AAAI-2024), pp. 19724–19731, 2024.

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, and Xuezhi Wang. Least-to-
most prompting enables complex reasoning in large language models. In The Eleventh Interna-
tional Conference on Learning Representations (ICLR-2023), 2023.

Yujia Zhou, Qiannan Zhu, Jiajie Jin, and Zhicheng Dou. Cognitive personalized search integrating
large language models with an efficient memory mechanism. In Proceedings of the ACM on Web
Conference 2024 (WWW-2024), pp. 1464–1473, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A VALID AND INVALID DEMONSTRATIONS

As shown in Table 2, the rows with a white background represent the Chain-of-Thought Reasoning
methods, while the rows with a gray background represent the Program-of-Thought Computation
methods. The demonstration problem is: From the image, you can see that the shorter base of the
trapezoid is 6ft, the longer base is 16ft, and the height is 12ft. Find the area of the trapezoid. And
the standard answer is: 132.

Table 2: A pair of Valid and invalid demonstrations for different prompt methods in our experiment.

Prompting Valid Invalid

CoT In this image, since the trapezoid has a longer base (base1) with a
length of 16 and a shorter base (base2) with a length of 6. The height,
which is the perpendicular distance between the two bases, is given as
12. To find the area of a trapezoid, you can use the formula: Area =
1/2 * (base1 + base2) * height = 1/2 * (16 + 6) * 12=132. The area of
the trapezoid is 132. The answer is 132.

The image shows an equilateral triangle, which means all three sides
are equal in length. Since one of the sides BC is given as 6 inches,
the other two sides (AB and AC) are also 6 inches each. To find the
perimeter of the polygon, we sum the lengths of all sides: Perimeter =
AB + BC + AC=6+6+6=18. The answer is 18.

LtM Let’s break down this problem: 1. What information can we obtain
from the graph? 2. How to use this information to calculate the area
of this trapezoid? 1. The length of the longer base of this trapezoid
is 16, the length of the shorter base is 6, and the height between the
longer and shorter base is 12. 2. According to the area formula of the
trapezoid, the area of this trapezoid is 0.5 * (16+6) * 12=132. The
answer is 132.

A: Let’s break down this problem:1.What information can we obtain
from the graph? 2. How to use this information to calculate the mea-
sure of the perimeter of the regular polygon. 1. A regular triangle with
one of the sides, AC, is given as 6 inches 2. Regular triangle, also
known as an equilateral triangle, which means all three sides are equal
in length. Since one of the sides, AC is given as 6 inches, the other two
sides are also 6 inches each. We sum the lengths of all sides: Perimeter
= AC + AB + BC=6+6+6=18. The answer is 18.

PS Given: A trapezoidal with a longer base length of 16, a shorter base
length of 6, and a height of 12. Plan: We need to calculate the area
of this trapezoid. Calculation: the area formula of the trapezoid is 0.5
* (longer base+shorter base) * height; the area of the trapezoid is 0.5
* (16+6) * 12=132. Answer: the area of the trapezoid is 132. The
answer is 132.

Given: A regular triangle with one of the sides, AC, is given as 6
inches. Calculation: a regular triangle is also known as an equilateral
triangle, which means all three sides are equal in length; since one
of the sides AC is given as 6 inches, the other two sides are also 6
inches each. We sum the lengths of all sides: Perimeter = AC + AB
+ BC=6+6+6=18. Answer: The perimeter of the triangle is 18. The
answer is 18.

RP According to the image, the length of the longer base of this trape-
zoid is 16, the length of the shorter base is 6, and the height be-
tween the upper and shorter base is 12. According to the area formula
of the trapezoid, the area of the trapezoid is equal to 0.5 * (longer
base+shorter base) * height. So the area of this trapezoid is 0.5 *
(16[longer base]+6[shorter base]) * 12[height]=132. The answer is
132.

The image shows an equilateral triangle, which means all three sides
are equal in length. Since the first side AC is given as 6 inches, the
second and third sides (AB and BC) are also 6 inches each. To find the
perimeter of the polygon, we sum the lengths of all sides: Perimeter
= AC + AB+ BC=6 [the first side]+6 [the second side]+6 [the third
side]=18. The answer is 18.

PoT base1 = 16
base2 = 6
height = 12
area = 0.5 * (base1+base2) * height
ans=area

AC=6
AB=AC
BC=AC
Perimeter=AC+AB+BC
ans=Perimeter

PAL # solution in Python:
def solution():
Longer base = 16
Shorter base = 6
Height = 12
Area = 0.5 * (Shorter base+Longer base) * Height
return Area

solution in Python:
def solution():
Line AC=6
Line AB=Line AC
Line BC=Line AC
Perimeter=Line AC+Line AB+Line BC
return Perimeter

SATLM Shorter base=6
Longer base=16
Height=12
Area=Variable()
Area=0.5 * (Shorter base+Longer base) * Height
result=Area
slove(result)

Line AC=6
Line AB=Line AC
Line BC=Line AC
Perimeter=Variable()
Perimeter=Line AC+Line AB+Line BC
result=Perimeter
slove(result)

MP Mapping={Shorter base:6,Longer base:16,Height:12}
Algabraic answer
Answer=0.5 * (Shorter base+Longer base) * Height
python code
def solution(Shorter base,Longer base,Height):
return 0.5 * (Shorter base+Longer base) * Height

Mapping={Line AC:6,Line AB:6,Line BC:6}
Algabraic answer
Perimeter=Line AC+Line AB+Line BC
python code
def solution(Line AC,Line AB,Line BC):
Return Line AC+Line AB+Line BC

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B ANSWERING ACCURACY COMPARISON OF GPT-4V WITH ONE-SHOT
DEMONSTRATIONS

We evaluate the answering accuracy of GPT-4V through the prompting methods with one valid and
one invalid demonstration (given in Table 2), respectively. As shown in Table 3, Compared to valid
demonstration, prompting methods with invalid demonstration can sometimes improve the accuracy
of GPT4-V answers, while at other times they can decrease them. For example, on the GeoQA+
dataset, the PS prompting method with a valid demonstration improved GPT-4V’s average answer
accuracy by 8.4% compared to an invalid demonstration, whereas it resulted in a 2.2% decrease on
the GeoQA dataset. This indicates that the effectiveness of the demonstration is not a factor that
affects the performance of the prompting method.

Table 3: Answering accuracy comparison of GPT-4V with one-shot valid and invalid demonstrations
for solving geometric problems under different prompting settings on the five benchmark datasets.

Prompting Setting GEOS Geometry3K GeoQA GeoQA+ PGPS9K

Average answering accuracy

CoT Valid Reasoning 30.2 21.5 30.5 23.1 22.1
Invalid Reasoning 31.7 20.4 26.2 22.5 23.1

LtM Valid Reasoning 28.6 21.2 30.5 20.1 20.5
Invalid Reasoning 30.7 23.5 26.5 25.0 20.5

PS Valid Reasoning 37.8 28 32.3 30.5 23.3
Invalid Reasoning 36.2 30 34.5 22.1 25

RP Valid Reasoning 31.9 31.5 32.5 25.3 28.5
Invalid Reasoning 37.3 30.5 38.5 28.5 22.3

PoT Valid Computation 20.1 16.2 19.3 20.5 17.6
Invalid Computation 21.3 15.6 20.2 20.2 11.6

PAL Valid Computation 20.8 16.4 20.3 19.3 11.9
Invalid Computation 19.1 17.5 21.5 18.8 11.1

SATLM Valid Computation 36.2 22.4 28.7 23.1 22.5
Invalid Computation 35.3 21.9 30.9 23.3 22.7

MP Valid Computation 36.2 32.5 33.5 27.4 22.3
Invalid Computation 42.2 34.2 36.5 29.7 23.5

Self-consistency answering accuracy

CoT Valid Reasoning 38.3 36.7 45.3 48.3 26.7
Invalid Reasoning 37.3 36.5 46.2 47.4 27.1

LtM Valid Reasoning 41.7 40.9 43.3 34.6 33.3
Invalid Reasoning 42.3 40.1 44.7 39.7 31.6

PS Valid Reasoning 43.7 31.4 37.8 35.8 25.9
Invalid Reasoning 44.5 31.9 35.3 35.3 29.1

RP Valid Reasoning 45.3 26.7 40.3 40.7 33.3
Invalid Reasoning 45.5 28.1 41.4 40.4 34.7

PoT Valid Computation 23.9 19.3 26.2 25.7 20.4
Invalid Computation 23.6 18.7 26.9 24.1 19.8

PAL Valid Computation 323.3 18.7 25.4 23.8 17.5
Invalid Computation 22.9 17.4 25.9 23.5 17.8

SATLM Valid Computation 33.9 31.7 39.5 38.4 31.7
Invalid Computation 34.7 30.1 39.2 38.7 32.4

MP Valid Computation 48.3 35.6 45.1 43.4 28.5
Invalid Computation 48.3 35.7 45.6 43.9 28.3

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C ANSWERING ACCURACY COMPARISON OF GPT-4V WITH TWO-SHOT
DEMONSTRATIONS

We evaluate the answering accuracy of GPT-4V through the prompting methods with two valid and
two invalid demonstrations, respectively. As shown in Table 4, Compared to valid demonstration,
prompting methods with invalid demonstration can sometimes improve the accuracy of GPT4-V
answers, while at other times they can decrease them. For example, on the Geometry3K dataset, the
CoT prompting method with a valid demonstration increased GPT-4V’s average answer accuracy by
1.3% compared to an invalid demonstration, whereas it resulted in a 3.5% decrease on the PGPS9K
dataset. This indicates that the effectiveness of the demonstration is not a factor that affects the
performance of the prompting method.

Table 4: Answering accuracy comparison of GPT-4V with two-shot valid and invalid demonstrations
for solving geometric problems under different prompting settings on the five benchmark datasets.

Prompting Setting GEOS Geometry3K GeoQA GeoQA+ PGPS9K

Average answering accuracy

CoT Valid Reasoning 33.5 22.5 32.5 31.3 21.5
Invalid Reasoning 35.1 21.2 29.9 34.8 25.0

LtM Valid Reasoning 35.6 23.5 34.1 31.5 27.8
Invalid Reasoning 36.8 30.7 36.5 31.7 25.9

PS Valid Reasoning 38.7 30.6 37.4 33.9 29.2
Invalid Reasoning 36.3 27.8 36.9 37.5 30.6

RP Valid Reasoning 40.7 31.5 41.5 40.3 30.5
Invalid Reasoning 41.8 30.1 44.9 38.7 27.8

PoT Valid Computation 27.8 20.2 25.2 26.5 18.2
Invalid Computation 29.1 18.4 24.5 20.2 21.4

PAL Valid Computation 25.2 18.9 22.7 23.5 21.9
Invalid Computation 29.6 24.7 22.6 28.3 18.6

SATLM Valid Computation 31.5 27.0 32.7 31.9 24.5
Invalid Computation 36.4 24.9 33.5 31.5 25.7

MP Valid Computation 35.1 26.7 33.5 30.5 29.5
Invalid Computation 39.5 29.7 37.1 29.6 26.9

Self-consistency answering accuracy

CoT Valid Reasoning 49.8 30.2 45.2 44.5 38.2
Invalid Reasoning 49.9 31.7 44.3 44. 4 39.9

LtM Valid Reasoning 50.3 35.9 45.8 46.8 38.7
Invalid Reasoning 46.7 34.5 46.1 44.9 35.5

PS Valid Reasoning 50.7 38.2 47.4 46.2 38.4
Invalid Reasoning 49.5 37.3 47.6 46.3 39.2

RP Valid Reasoning 53.1 38.9 49.5 47.7 39.4
Invalid Reasoning 52.4 39.7 49.0 46.9 38.1

PoT Valid Computation 32.5 30.0 30.8 31.1 27.1
Invalid Computation 31.4 29.3 30.6 31.3 25.7

PAL Valid Computation 31.8 29.2 30.6 32.4 29.9
Invalid Computation 30.6 28.8 31.9 32.7 29.3

SATLM Valid Computation 42.6 30.7 47.8 42.2 32.9
Invalid Computation 41.7 31.2 48.6 41.5 33.7

MP Valid Computation 49.7 35.1 48.9 47.7 39.9
Invalid Computation 49.5 34.5 48.6 48.1 40.4

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D ANSWERING ACCURACY COMPARISON OF GPT-4V WITH THREE-SHOT
DEMONSTRATIONS

We evaluate the answering accuracy of GPT-4V through the prompting methods with three valid and
three invalid demonstrations, respectively. As shown in Table 5, Compared to valid demonstration,
prompting methods with invalid demonstration can sometimes improve the accuracy of GPT4-V
answers, while at other times they can decrease them. For example, on the GeoQA+ dataset, the
SATLM prompting method with a valid demonstration increased GPT-4V’s self-consistency answer
accuracy by 0.3% compared to an invalid demonstration, whereas it resulted in a 0.8% decrease on
the GeoQA dataset. This indicates that the effectiveness of the demonstration is not a factor that
affects the performance of the prompting method.

Table 5: Answering accuracy comparison of GPT-4V with three-shot valid and invalid demonstra-
tions for solving geometric problems under different prompting settings.

Prompting Setting GEOS Geometry3K GeoQA GeoQA+ PGPS9K

Average answering accuracy

CoT Valid Reasoning 36.5 32.1 35.4 33.1 23.9
Invalid Reasoning 36.2 27.5 41.1 29.2 23.5

LtM Valid Reasoning 38.4 28.5 34.5 29.5 24.5
Invalid Reasoning 40.1 32.2 34.1 27.8 22.5

PS Valid Reasoning 39.2 31.7 33.8 32.5 27.5
Invalid Reasoning 40.1 36.4 38.5 30.7 26.5

RP Valid Reasoning 34.1 25.9 34.6 28.8 29.9
Invalid Reasoning 38.7 33.5 37.5 26.3 28.2

PoT Valid Computation 28.7 22.1 26.8 26.5 20.3
Invalid Computation 29.1 18.4 24.5 20.2 22.7

PAL Valid Computation 25.8 19.7 26.5 25.5 25.9
Invalid Computation 29.2 25.5 25.5 27.5 20.5

SATLM Valid Computation 34.6 34.7 31.5 27.5 20.6
Invalid Computation 36.8 27.5 34.2 29.1 27.5

MP Valid Computation 32.9 34.6 35.7 28.4 24.5
Invalid Computation 34.6 30.5 39.1 31.4 24.1

Self-consistency answering accuracy

CoT Valid Reasoning 50.4 32.3 47.5 47.1 39.6
Invalid Reasoning 51.1 32.4 47.1 46.7 39.7

LtM Valid Reasoning 51.4 35.1 48.9 47.1 40.1
Invalid Reasoning 52.1 35.9 48.4 46.3 40.5

PS Valid Reasoning 52.3 39.4 47.5 47.1 39.5
Invalid Reasoning 52.5 40.8 46.1 47.3 40.9

RP Valid Reasoning 55.7 40.9 50.1 49.3 49.1
Invalid Reasoning 55.4 40.4 50.6 49.4 39.9

PoT Valid Computation 35.7 30.4 36.8 34.3 29.5
Invalid Computation 35.4 30.9 36.9 33.8 29.1

PAL Valid Computation 34.8 29.6 30.7 32.9 29.3
Invalid Computation 34.9 30.1 30.1 32.7 30.2

SATLM Valid Computation 47.3 34.7 44.9 44.1 31.5
Invalid Computation 47.2 35.9 45.7 43.8 31.9

MP Valid Computation 52.9 39.5 50.4 49.3 39.9
Invalid Computation 53.6 39.1 50.9 49.8 38.7

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E THE DISTRIBUTION OF THE DOMAIN-KNOWLEDGE NUMBER

(a) GeoQA (b) GeoQA+

Figure 6: The distribution of the number of problems involving knowledge from different domains
in two datasets, GeoQA and GeoQA+. DK i indicates that answering a geometry problem requires
at least i domain knowledge.

F CASE ANALYSIS OF COMPUTATIONAL REQUIREMENTS

Table 6: Case analysis of computational requirements for different geometry problems.

ID Problems Numerical values Multi-digittext image answer

p0 Find x. 0.429 4
7 , 5

7 , 0.429 0

p1 Each pair of polygons is
similar. Find the scale fac-
tor from polygon ADCB to
polygon PSRQ.

2.0 1.4, 0.7, 2.2, 3.2, 2 1

p2 Find the area of the shaded
region. Assume that all
polygons that appear to be
regular are regular.

18.491 3, 18.491 2

p3 Find the measure of angle 1. 112.0 34, 72, 112 3

p4 Find the area of the rhom-
bus.

1200.0 20, 30, 1200 4

p5 Find the area of the circle. 38707.567 222, 38707.567 5

18

	Introduction
	Related work
	Chain-of-Thought methods
	Program-of-Thought methods

	Background & Study Formulation
	Chain-of-Thought Reasoning
	Program-of-Thought Computation
	Research questions

	Experimental Setup
	Datasets & In-context Exemplars
	Evaluation

	How Much Does Valid Demonstration Matter? (Q1)
	Constructing invalid demonstrations
	Results & Analysis
	Summary

	Which a Series Prompting Method Matters More? (Q2)
	Statistical requirements
	Results & Analysis
	Summary

	What Other Aspects Also Matter? (Q3)
	Geometry Problem Length
	Geometry Shape
	Summary

	Conclusion
	Valid and invalid demonstrations
	Answering accuracy comparison of GPT-4V with one-shot demonstrations
	Answering accuracy comparison of GPT-4V with two-shot demonstrations
	Answering accuracy comparison of GPT-4V with three-shot demonstrations
	The distribution of the domain-knowledge number
	Case analysis of computational requirements

