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ABSTRACT

As recommender systems become widely deployed in different domains, they
increasingly influence their users’ beliefs and preferences. Auditing recommender
systems is crucial as it not only ensures the improvement of recommendation algo-
rithms but also provides ways to assess and address ethical concerns surrounding
them. In this work, we view recommender system auditing from a causal lens and
provide a general recipe for defining auditing metrics. Under this general causal
auditing framework, we categorize existing auditing metrics and identify gaps
in them—notably, the lack of metrics for auditing user agency while accounting
for the multi-step dynamics of the recommendation process. We leverage our
framework and propose two classes of such metrics: future- and past-reachability
and stability, that measure the ability of a user to influence their own and other
users’ recommendations, respectively. We provide both a gradient-based and a
black-box approach for computing these metrics, allowing the auditor to compute
them under different levels of access to the recommender system. Empirically,
we demonstrate the efficacy of methods for computing the proposed metrics and
inspect the design of recommender systems through these proposed metrics.

1 INTRODUCTION

Recommender systems actively shape people’s online experiences by determining which information
(e.g., social media posts and job postings) is most visible to them. These socio-technical systems
have the potential to influence individuals’ choices and beliefs as well as public opinion at large
which can have tangible ethical impact (Milano et al., 2020a; Burki, 2019; Rafailidis & Nanopoulos,
2016). Monitoring recommender systems for potential harmful effects is a difficult task, requiring
careful design of evaluation metrics and auditing frameworks.

Traditional metrics for evaluating recommender systems are often correlational in nature, focusing
on the system’s ability to recommend content perceived as relevant by the users based on their past
behavior. However, these metrics tend to overlook critical ethical concerns, particularly how these
systems interact with and shape user beliefs and preferences over time, raising concerns about user
agency and the extent to which users control their own online experiences.

Metrics for measuring user agency are inherently causal because they involve answering what-if
questions. For example, the question “Do users have agency over their recommendations?” requires
causal reasoning on the behavior of the recommender system under user behavior shift (Dean et al.,
2020; Akp, 2022). Instead of pure prediction, we are interested in the effect of interventions. While
some causal auditing metrics have been proposed (Dean et al., 2020; Curmei et al., 2021), a principled
framework for reasoning about them in recommender system audits is still lacking.

We present a causal graphical model to capture the dynamics of general recommender systems
including matrix factorization and neural network-based models (Section 3.1). This causal model
allows us to provide a general recipe for defining causal metrics for auditing recommender systems,
and categorize existing auditing metrics based on interventions and outcomes of interest (Section 3.2).

Addressing the lack of metrics for measuring user agency, we use the unified causal framework to
formalize two classes of metrics of user agency: past- and future-reachability (Section 4.1), which
extends the one defined in Dean et al. (2020) as well as past- and future-stability (Section 4.2) Reach-
ability measures a user’s ability to be recommended (or reach) a desired item under modifications to
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their future or historical ratings. Stability measures how sensitive a user’s recommendations are to
edits made by adversarial users to their own ratings.

Next, we provide both a gradient-based and a black-box approach for computing these user-agency
metrics. When the recommender system is learned through matrix factorization, under mild as-
sumptions, we show that the corresponding optimization objectives for these metrics have a special
structure that can be leveraged to obtain the optimum efficiently (Section 5). Using the proposed
metrics, we inspect how the stochasticity of recommendations and the nature of the recommender
system (sequence-dependent versus not) may influence user agency. We find, on average, an increase
in the stability of a user’s recommendations but smaller upgrades in reachability as the stochasticity
of the system decreases; and that a standard matrix factorization based recommender system is less
stable but facilitates better reachability for users as compared to a deep recurrent recommender
network (Section 6). We summarize our contributions as follows:

• We provide a general causal framework for defining new causal metrics and categorizing existing
metrics for auditing recommender systems in a principled manner (Section 3);

• Using our proposed framework, we develop two classes of metrics for measuring user agency while
accounting for the dynamics of the recommendation process: past- and future-reachability and
stability (Section 4). We provide effective ways to compute the metrics, allowing the auditor to
have different levels of access to the systems (Section 5).

• Empirically, we investigate two common classes of recommender systems in terms of our proposed
user agency metrics and found that higher stochasticity in a recommender system will help with
stability but harm reachability (Section 6).

2 RELATED WORK

Prior works on ethical issues in recommender systems have identified several areas of concerns
including fairness, inappropriate content, privacy, autonomy and personal identity, opacity, and wider
social effects (Milano et al., 2020b). A variety of metrics have been proposed to address measures of
fairness (Patro et al., 2022; Chen et al., 2020), moral appropriateness of content (Tang & Winoto,
2015), stability (Adomavicius & Zhang, 2012), and diversity (Nguyen et al., 2014; Silveira et al.,
2019; Parapar & Radlinski, 2021). Most of these metrics rely on observational quantities under a fixed
recommendation policy and neglect the effects of users’ behaviors, preferences, or the recommender
system itself. Studying user agency requires answering causal questions pertaining to how a
recommender would respond to interventions made in the user’s behavior over time, which cannot be
answered by association-based metrics alone. Therefore, the metrics we formalize are interventional
and counterfactual. Interventional metrics quantify the effect of hypothetical changes to specific
parts of the recommender system. Counterfactual metrics evaluate how the system would behave if
interventions were performed in hindsight while taking into account what actually happened.

Recently there have been works taking a step towards defining interventional metrics (e.g., (Dean
et al., 2020; Curmei et al., 2021; Chen et al., 2020)) by considering the effect of specific interventions
on the recommender system’s behavior. Dean et al. (2020); Curmei et al. (2021) take the intervention
to be users’ own feedback and the outcome of interest to be the recommendation they receive,
allowing their proposed metric to answer questions concerning user agency. However, existing causal
metrics are often limited in the kind of interventions they consider, with few works tapping into
new types of interventions and ethical concerns. In addition, most are one-step metrics, ignoring the
recommender-user interaction dynamics over time. Separately, another line of work integrates causal
approaches into recommender systems, often proposing new causality-based models focusing on
estimating the direct effect of recommendations on user engagement (Schnabel et al., 2016; Sharma
et al., 2015; Sato et al., 2020). These metrics fall under the interventional layer of Pearl’s causal
hierarchy, and choose the intervention to be the recommendations themselves, and the outcome of
interest in this case is commonly the user feedback (Chen et al., 2020).

3 A CAUSAL PERSPECTIVE ON AUDITING RECOMMENDER SYSTEMS

We first provide a general recommender system setup (Section 3.1), its corresponding causal graph
(Figure 1), and an example illustrating the general setup. We then contextualize existing metrics for
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auditing recommender systems using this causal framework and provide a general recipe for one to
develop new auditing metrics (Section 3.2).

3.1 RECOMMENDER SYSTEM SETUP

D−i,t o⋆
i

Oi,tAi,t

Hi,t Hi,t+1

Figure 1: Causal graph representing
a general recommender system at
time t, specifically pertaining to a
user i’s interactions with the system.
Here, D−i,t denotes the interaction
history of all users besides i upto t,
Ai,t denotes the set of recommen-
dations i receives at t, Hi,t denotes
i’s interaction history upto t, Oi,t de-
notes i’s feedback at this time and
o∗i denotes i’s true preference.

We consider the setting where there are n users and a set
of items V to recommend. Each user i ∈ [n] has an unob-
served vector o⋆

i ∈ R|V| indicating the user’s initial (true)
preference (i.e., ratings) for all items V . At each time step
t ∈ [T ], a recommender system presents a recommenda-
tion (set) Ai,t ⊆ V to user i. In turn, the user provides
their feedback/ratings Oi,t ∈ (R ∪ {unrated})|V| for the rec-
ommendation where Oi,t[k] is the k-th entry of user’s rat-
ing vector, Oi,t[k] = unrated for k /∈ Ai,t, and Oi,t[k] ∈
(R ∪ {unrated}) indicates user’s choice of rating or not rating
for item k ∈ Ai,t. The user-recommender interaction history
is denoted by Hi,t = (Ai,1,Oi,1, · · · ,Ai,t−1,Oi,t−1) and
we use Dt = {Hi,t}i∈[n] to denote the interaction history for
all users, or in other words, the training dataset for the recom-
mender at time t. It is worth noting that both Ai,t and Oi,t are
random variables depending on previous user-recommender
interactions. More specifically, the recommendation Ai,t de-
pends on the training set Dt; the user rating Oi,t is a function
of the user’s true initial preference o⋆

i , their interaction history
Hi,t, and possibly other users’ feedback in D−i,t. Finally, we
let D−i,t denote Dt \Hi,t and use O−i to refer to user ratings
for users [n] \ {i}. When clear from the context, we omit the
subscript i or t for discussing the corresponding quantity for
all users or time steps. For any variable or function y, we use
yt1:t2 to refer to yt1 , · · · , yt2 .

We use the Structural Causal Model (SCM) framework (Pearl, 2009) to capture the causal relationships
among these variables, with further details provided in Appendix A. The causal graph for the
recommender system is given in Fig. 1. We provide a concrete example:

Example 1. In the basic form of a score-based recommender system, the initial preference vector o⋆
i

is the user’s true ratings for item set V , the recommendation Ai,t is a singleton*, and the user rating
is given by Oi,t = o⋆

i [Ai,t]. To determine the recommendation Ai,t, a recommendation algorithm
first predicts a score per user-item pair (i, j), indicating the predicted user preference on item j ∈ V
for user i ∈ [n]. To learn the scoring function, one rely on the dataset Dt and may use approaches
like matrix factorization (more details in Section 5). Finally, given the score, a recommendation
algorithm may recommend differently, e.g., deterministically according to the highest score on unseen
items for the user, or stochastically among the top scoring items.

From an auditor’s perspective, one may be interested in defining metrics to measure how the ratings
among users correlate with each other (associational metrics), how the recommendation algorithm
may cause the popularity of an item (interventional metrics), or how much change a user can make
over their recommendations had they behaved differently under the same historical recommender
(counterfactual metrics). Hereafter, we provide a discussion of associational, interventional, and
counterfactual metrics for auditing a recommender system, categorizing existing metrics using this
causal framework, and illustrating how one can use this unifying perspective to define new metrics.

3.2 CAUSAL PERSPECTIVE ON AUDITING RECOMMENDER SYSTEMS

Existing auditing metrics often focus on the association between variables concerning different
qualities of recommendations under the current system. Metrics like item diversity, average ratings, or
popularity, are of this kind since they are defined over the observational distribution P({Ai,t,Oi,t})
(e.g., (Abdollahpouri et al., 2019; Rastegarpanah et al., 2019)).

*With some abuse of notation, we say Ai,t ∈ V in this case.
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When defining interventional and counterfactual metrics, one needs to be explicit about the in-
tervention to apply, the outcome one cares about, and the distributions involved in obtaining the
metric. More specifically, to define a metric of causal nature, one needs to specify the following three
quantities of interests: (i) the intervention; (ii) the (random) outcome of interest; and (iii) a metric (or
in other words, a functional) that maps the random outcome of interest to a real value. This process
allows us to categorize existing causal metrics used for auditing recommender systems based on the
nature of the intervention and outcome of interest:

• Recommendation Ai as intervention: In this case, the auditor interrogates the effect of changing the
recommendation algorithm. Often, the outcome of interest is user ratings Oi, and the corresponding
interventional distribution is P(Oi|do(A)) (e.g., exposure bias (Chen et al., 2023)). This quantity is
often at the core of a recommendation algorithm and is studied the most, as recommender systems
use predicted user preferences to make recommendations, through optimizing the recommendations
against user interests, e.g., maxai P(Oi|do(A = ai))

†.
• Other user’s data D−i as intervention: Here, the auditor may want to investigate under the current

recommender system, what would happen to a particular user (or a particular group of users) if
other users have changed their behavior. For example, in measuring conformity bias (i.e., how
other users’ ratings may influence the user’s reaction to the same item) (Chen et al., 2023), the
auditor inspects whether the probability of the user’s own rating change as one intervenes on other
user’s historical ratings/data. The corresponding interventional distribution is P(Oi|do(D−i)).

• User’s own reaction Oi (or Hi) as intervention: The auditor may be interested in inspecting the
amount of change a user’s own reaction may cause in their recommendations. In this case, The
outcome of interest, as we will discuss in Section 4, can be the user’s recommendation (Dean et al.,
2020), i.e., the distribution of interest is P(Ai|do(Oi)).

With this perspective and the proposed three-step recipe for defining new metrics, an auditor can
identify gaps in existing metrics and define new ones. As an example, in Section 4, we define a
suite of user-centric causal metrics using this framework. Finally, there is often less discussion on
counterfactual metrics in auditing recommender systems, since it involves inspecting quantities that
are hard (if not impossible) to obtain in practice. We provide more discussion on this in Section 4.
We also note that the aforementioned metrics are only example metrics that one can categorize using
this framework. There are other metrics that fit in this framework (e.g., selection bias and position
bias (Chen et al., 2023)) that we do not go into details.

4 USER-CENTRIC CAUSAL METRICS FOR AUDITING USER AGENCY

While much attention has been given to auditing various ethical concerns of recommender systems,
there has been comparatively little work conducted on measuring user agency. This gap is partic-
ularly notable given the rich line of qualitative work emphasizing the importance of user agency
(Milano et al., 2020a). User agency is a user’s power over their own recommendations compared to
recommendations being driven by external forces like other users’ behaviors or algorithmic profiling
(de Vries, 2010). It can be compromised in various ways, several of which we target with the metrics
we propose. First, recommender systems can enforce filter bubbles that restrict users from diverse
content feeds and amplify biases (Milano et al., 2020b). Second, recommendation algorithms can be
vulnerable to strategic behavior and adversarial attacks that alter recommendations for unrelated users
(Milano et al., 2020b). For example, consider content duplication attacks on e-commerce platforms
(Fröbe et al., 2020). In this setting, providers game the recommendation system by duplicating item
listings with little to no changes to maximize the probability of recommendation. Maintaining user
agency over their own recommendations in this scenario requires recommendation stability. The
user-centric causal metrics we define in this section are designed with the intent of quantifying user
agency from these two separate viewpoints: reachability measures the extent to which a user can
escape filter bubbles (Section 4.1), while stability assesses the influence that other strategic users can
have on this user’s recommendations (Section 4.2).

When defining these metrics, we take the interventions as user’s feedback Oi or other user’s feedback
O−i, and the outcome of interests as their recommendations Ai. We call these metrics user-centric
since the interventions are user feedback (actions that users can take), and the outcome of interest is

†On a separate note, an active line of work has centered around using observational data to estimate this
quantity, e.g., Schnabel et al. (2016).
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the user’s own recommendations (that are consumed by the user). In Section 4.1, we extend existing
metrics for auditors to measure the autonomy an user can have regarding their own recommendations;
In Section 4.2, we develop new metrics for auditors to measure the influence a user’s choice can have
on other users’ recommendations. Throughout, we provide both interventional and counterfactual
metrics and discuss how these metrics connect to the dynamics of the recommendation process.

4.1 PAST- AND FUTURE-REACHABILITY

A recent line of work develops metrics for inspecting user agency, with the most relevant work
introducing the concept of (maximum) stochastic recheability (Curmei et al., 2021; Dean et al.,
2020). Conceptually, stochastic reachability measures the maximum change in recommendation
probability on item j for user i upon modifying their ratings for a predefined set of items a, e.g.,
historical recommendations or unseen items for the user. Under our framework, the original maximum
stochastic recheability for a user-item pair (i, j) at time t can be rewritten as:

max
f∈F

EAi,t
[P(Ai,t+1 = j|do(Oi,t = f(Ai,t)))] ,

where F is the set of all measurable functions that map a recommendation set a to a user rating vector
o, and a is a fixed set of (recommendation) items that can be randomly generated from the unseen or
historically recommended set. By rewriting the original stochastic reachability using our framework,
we identify that the original metric allows the auditor to inspect user agency for a single time step
and the intervention is specific to user ratings for a particular set of predefined recommendations
a (that are not determined by the dynamics of the recommendation process). In does not allow an
auditor to inspect user agency under the natural evolution of a recommender system as users apply
interventions over time. To this end, we introduce the following (maximum) future-k reacheability.

Definition 4.1 (future-k reachability). For any user i ∈ [n] and item j ∈ V , at time t ∈ N+, their
maximum future-k reachability for k ∈ N+ is given by

max
f1:k∈Fk

EAi,t:t+k−1
[P(Ai,t+k = j|do(Oi,t = f1(Ai,t)), . . . , do(Oi,t+k−1 = fk(Ai,t+k−1))] ,

(1)
where the expectation is over the recommendation trajectory Ai,t:t+k−1 and Fk = F × · · · × F .

In this case, the intervention ft′(Ai,t+t′−1) would affect the distribution of Ai,t+t′ , the recommen-
dations in the next time step. This metric formalizes a notion of reachability where the user can
arbitrarily change the rating of the recommended item, but the item trajectory (the sequence of items
they choose to rate) follows the (future) dynamics of the recommender system itself.

In parallel, we define another metric that quantifies reachability under edits to the history over
the past k time steps, thus allowing the auditor to inspect user agency retrospectively. Consider a
recommender system at time t, that we call the factual recommender system. We denote the factual
trajectory for a user i over the past k time steps by h⋆

i,t−k: = (a⋆i,t−k,o
⋆
i,t−k, · · · ,a⋆i,t−1,o

⋆
i,t−1).

Now, consider a counterfactual recommender system that is retrained at time t by modifying the
ratings in h⋆

i,t−k: to a counterfactual history hi,t−k:, while keeping everything else the same as the
factual recommender system.

Definition 4.2 (Past-k reachability). For any user i ∈ [n] and item j ∈ V , at time t ∈ N+, their
maximum past-k reachability for k ∈ N+ is given by

max
f1:k∈Fk

Eh⋆
i,t−k:

[P(Ai,t = j|do(Hi,t−k: = hi,t−k:))] , (2)

where hi,t−k: = (a⋆i,t−k, f1(a
⋆
i,t−k), · · · ,a⋆i,t−1, fk(a

⋆
i,t−1)), Ai,t denotes the counterfactual rec-

ommendation under the edited history hi,t−k:. The expectation is taken over the ‘factual’ history
h⋆
i,t−k: and the edited history hi,t−k: depends on the factual history h⋆

i,t−k:.

This metric is a counterfactual quantity (Pearl, 2009, Ch. 7) as it involves random variables from
both the factual and counterfactual recommender systems. Informally, in past-k reachability, we
maximize the counterfactual recommendation probability where the item trajectory is fixed to the
factual trajectory, but the ratings can be arbitrarily edited. By contrast, in the future-k metric, the
trajectory follows the recommender dynamics (instead of being set to the factual trajectory).
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4.2 PAST- AND FUTURE-(IN)STABILITY

We introduce a new class of metrics that allow the auditor to measure the influence other users have
on a particular user’s recommendations. In addition to their own feedback and the recommendation
algorithm itself, a user’s autonomy is also influenced by other users’ feedback to the recommender
systems. The class of (in)stability metrics we define below allows auditors to inspect user agency
through this angle.
Definition 4.3 (Future k-(In)stability). Given user i1, i2 ∈ [n] such that i1 is the user of interest and
i2 is the user who can update their feedback, at time t ∈ N+, user i1’s future-k maximum instability
with respect to user i2 for k ∈ N+ is given by

max
f1:k∈Fk

EAi2,t:t+k−1

[
d(P(Ai1,t+k|

do(Oi2,t = f1(Ai2,t)), . . . , do(Oi2,t0+k−1 = fk(Ai2,t+k−1))),P(Ai1,t+k))

]
, (3)

where d : ∆×∆→ R≥0 measures the distance between two probability distributions.

In this case, an auditor seeks to intervene on the ratings given by user i2 and observe how these
interventions affect the recommendations received by user i1, following the dynamics of the recom-
mendation process. The metric is defined as the deviance between the recommendation distribution
before and after the intervention. This allows the auditor to measure how unstable (or in another way,
how manipulatable) the recommendation for user i1 can be with respect to user i2’s feedback.

Similar to the past-k reachability metric (see Defn. 4.2), we now define a counterfactual past-k stability
metric which quantifies the stability of user i1 under edits to the history of user i2. Informally, we
seek to maximally change the recommendation probability of item j for user i1 by editing the ratings
of user i2, while keeping their item trajectory to the factual one.
Definition 4.4 (Past k-(In)stability). Let h⋆

i2,t−k: = (a⋆i2,t−k,o
⋆
i2,t−k, · · · ,a⋆i2,t−1,o

⋆
i2,t−1) denote

the factual recommendation history for user i2. We define user i1’s past-k maximum instability with
respect to user i2 for k ∈ N+ as

max
f1:k∈Fk

Eh⋆
i2,t−k:

[d (P(Ai1,t = j|do(Hi2,t−k: = hi2,t−k:)),P(Ai1,t = j))] , (4)

where hi2,t−k: = (a⋆i2,t−k, f1(a
⋆
i2,t−k), · · · ,a⋆i2,t−1, fk(a

⋆
i2,t−1)) is the edited counterfactual history

(which depends on the factual history h⋆
i2,t−k:), and Ai1,t is the counterfactual recommendation.

While both interventional and counterfactual metrics measures different aspects of user agency, there
is a distinction in their scope:

• Past-/counterfactual metrics focus on how user behavior (e.g., the items a user chose to rate)
contributes to the recommendations they receive in the present. For example, consider a social
media user who primarily receives recommendations for cat videos in the present. Counterfactual
metrics help us understand whether the narrowness in the recommendations can be attributed to the
recommendation system, or the user’s behavior in the past, which imply vastly different conclusions
in terms of user agency. If engaging with cat videos unfavorably in the past would have led to more
diverse recommendations in the present, the observed narrow recommendations do not imply a
violation of user agency.

• Future-/interventional metrics focus on the user’s radius of influence on recommendations in the
future. Assume the user who likes cat videos adjusts their preferences and now shows interest in
dog videos. Interventional metrics help us understand the ability of changed user behavior to steer
upcoming recommendations. If alterations in behavior (engaging with more dog videos) do not
lead to diversification of recommendations away from only cat content, we can conclude that there
is a violation of user agency for their own recommendations.

Though both reachability and stability are measures of user agency, the two metrics focus on different
aspects of it: stability focuses on the influences of behavior changes of other users, while reachability
focuses on influences of the individual at hand. Empirically, in our experiments with embedding-
based recommender systems, we observe a trade-off between these two metrics (Section 6). Further
investigation into this trade-off is an interesting direction for future work.

In the following, we provide an operationalized procedure for computing these user-centric metrics;
the exact implementation details can be found in Section 6 and Appendix D.
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5 OPERATIONALIZED PROCEDURE FOR COMPUTING USER AGENCY METRICS

When computing the user-centric causal metrics, we need to consider two aspects: (i) whether the
auditor can intervene on the recommender system, i.e., if they have access to the interventional
distribution; and (ii) whether they can obtain gradients of the objective functions in equation 1-
equation 4. By obtaining the gradients, the metrics can be computed through methods like gradient
descent. Similar to Dean et al. (2020), we consider cases where the auditor can apply intervention
on the recommender system, thus addressing concerns around (i). We provide methods that allow
auditors to have different levels of access to the internals of the system (e.g., they may not directly
have access to the required gradients). Before delving into our methods, we first provide a high-level
discussion on the required gradients. Consider the case where the auditor aims to compute equation 1
when k = 1, we need

∇f1EAi,t
[P(Ai,t+1 = j|do(Oi,t = f1(Ai,t)))]

=
∑
ai,t

P(Ai,t = ai,t)∇f1P(Ai,t+1 = j|do(Oi,t = f1(ai,t))),

where ∇f1 refers to gradient with respect to the parameters of f1 and the equality holds because of
Fubini’s theorem. In this case, the auditor needs to effectively compute∇f1P(Ai,t+1 = j|do(Oi,t =
f1(ai,t))) for all ai,t ⊂ V . In the following, we first discuss cases where the auditor has access to the
actual gradients. We show that under mild conditions, for matrix factorization based recommender
systems, the objective in equation 2 is concave and equation 4 is quasi-convex and has its optimum at
extreme points (Section 5.1). For cases where the auditor only has access to zeroth-order information
of the system, we provide an effective approach for approximating the required gradient (Section 5.2).
We show simplified form of the gradients we require access to for future-k reachability/stability in
Appendix G, similar to the one step gradient above.

5.1 WHITE-BOX ACCESS

In the most desirable setting, the auditor has what we term as white-box access to the recommender
system. In this case, the auditor has access to the gradient of the interventional distribution of interest.
We consider two types of score-based systems where the recommendation probability is given by

P(Ai,t+1 = j|do(Oi,t = f1(ai,t))) ∝ exp(βp⊤
i qj), (5)

where β > 0 controls the stochasticity of the system, the user embedding pi and item embedding qj

depend on the intervention Oi,t (and O−i,t). The two types of systems learn pi and qj differently—
one uses matrix factorization and the other uses an LSTM-based approach. For more details, we refer
the readers to Appendix B.1.

To obtain the gradient ∇f1 exp(βp
⊤
i qj), we need to know how the systems updates their user and

item embeddings when user ratings change. For matrix factorization models, when computing
reachability (i.e., when users change their own ratings), we assume item embedding {qj}j∈V are
fixed and user embedding pi is updated according to the matrix factorization objective. Effectively,
we are assuming that the user’s own ratings only affects their own embedding. The closed form of
the update can be found in Appendix B.2. Under this assumption, we have the below result.

Proposition 5.1. In matrix factorization, the past-k reachability objective (equation 2) is concave
in the parameters of f1:k if item embeddings {qj}j∈V are fixed and pi is updated according to the
matrix factorization objective when the ratings Oi change.

For computing stability (i.e., when other users change their ratings), we assume the user embedding
{pi}i∈[n] are fixed and item embedding qj is updated according to the matrix factorization objective.
Effectively, we are assuming that other users affect user i’s recommendation through item embeddings.
The closed form of the update can be found in Appendix B.2. Under this assumption, we have that
past-k stability is obtained at boundary points.

Proposition 5.2. In matrix factorization, the past-k stability objective (equation 4) is quasi-convex
in the parameters of f1:k and achieves its optimal value at a boundary point of the domain, if user
embeddings {pi}i∈[n] are fixed and item embeddings {qj}j∈V are updated according to the matrix
factorization objective when user i2’s ratings Oi2 are changed, d is the L2 distance.

7
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We note that the definitions of the proposed metrics don’t require any specific assumptions on how the
recommender is trained and we only consider one fixed embedding here for ease of operationalization,
borrowing this approach from (Yao et al., 2021; Curmei et al., 2021; Dean et al., 2020). In our
experiment, we also consider user embedding pi and item embedding qj to be the output of an LSTM
that takes in user and item history, respectively. In this case, if the auditor has the corresponding
LSTM, they may obtain gradient of pi and qj with respect to user history (Section 6).

5.2 BLACK-BOX ACCESS

In certain cases, the auditor can only obtain the output of a recommender through querying the system
with different inputs, but no direct access to the recommendation mechanism itself (thus no access to
the required gradients). In this case, we leverage the traditional toolkit to estimate the gradient using
finite difference methods (e.g., (Malladi et al., 2023)):

∇θP(Ai,t+1 = j|do(Oi,t = fθ(ai,t)))

≈ 1

2ϵ
|P(Ai,t+1 = j|do(Oi,t = fθ+ϵz(ai,t)))− P(Ai,t+1 = j|do(Oi,t = fθ−ϵz(ai,t)))|,

where θ ∈ Rd, ϵ > 0 is a perturbation scale, and z ∼ N (0, Id). For more details on using zeroth-order
information for neural network optimization, we refer the readers to (Malladi et al., 2023).

6 EXPERIMENTS

We conduct experiments to show how our proposed metrics of reachability and stability vary for
different recommender systems, across different time horizons and as the stochasticity of the rec-
ommender system changes. Since these metrics are meant to be proxies of user agency, we show
how our the aforementioned experimental parameters affect user agency, by observing how these
measurements change as we change these parameters.

6.1 EXPERIMENTAL SETUP

Dataset. Our experiments are based on the publicly available MovieLens-1M Dataset (Harper &
Konstan, 2015) which contains 1,000,209 total ratings given by 6,040 users on 3,706 movies (Table I
includes dataset summary statistics). The ratings are integer values between 1 and 5, both inclusive.

Recommender Systems. We perform experiments with a Matrix Factorization (MF) recommender
system (Koren et al., 2009) from Surprise(Hug, 2020) and a Recurrent Recommender Network (Wu
et al., 2017) (additional details about these recommender systems and implementation details on
both reachability and stability are included in Appendix D). For future-facing metrics, we use a
deterministic item selection policy that always recommends the top-1 item. For past-facing metrics,
we use the stochastic softmax policy in equation 5.

Experimental Parameters. There are two main parameters for the metrics:

• Time Horizon t: We compare t = 1 and t = 5 to demonstrate how longer time horizons increase
both user ’reach’ to items and adversarial manipulation of recommendations. While we tested
t = 1, 2, 3, 4, 5, we present t = 1 vs t = 5 to highlight the contrast between short and long-term
user agency effects.

• Stochasticity (β):We compare β = 0.8 and β = 5 to illustrate how higher β values increase both
user ’reach’ to items and potential for adversarial manipulation. While we tested multiple β values,
we present these two to highlight the contrast between short and long-term user agency effects.

Additional plots with different experimental parameters can be found in the Appendix F.

6.2 COMPARISON AMONG METRICS AND ALGORITHMS

Algorithm comparisons. We demonstrate that zeroth order optimization techniques with black-
box access as described in Section 5 can serve as a viable optimization strategy. We use the ratio
between the final probability of an item being recommended to a user after intervention and the
initial probability of the item being recommended to the user before any intervention to measure the
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gain in reachability. This has been referred to as “Lift” in (Curmei et al., 2021), while the initial
probability of the item being recommended to the user before any intervention is termed “baseline
reachability.” We compare the mean values of Lift obtained for both past-5 and future-5 reachability
and stability using gradient descent with those obtained using black box access (see Figure 2a for
these comparisons). For reachability, gradient descent (GD) outperforms black box access, but black
box access still obtains a solution with Lift > 1. For stability, black box access converges to the same
solution as GD. For stability, we also plot the value obtained by exhaustively searching the extreme
points of the rating domain, represented by “Oracle” in 2b.

(a) Mean value of reachability lift (b) Mean values of instability

Figure 2: Computing reachability (2a) and stability (2b) with black-box or gradient (GD) access.

Metric comparisons. Allowing both past and future edits for longer time horizons lead to higher
gains in reachability compared to shorter time horizons as the user has more freedom to change their
ratings. Meanwhile, allowing edits over a longer time horizon decreases the stability of a user’s
recommendations on average. We observe that most user-adversary pairs have instability values close
to 0 or 1, indicating a duality where a user’s recommended list is either heavily affected by the actions
of an adversary or is minimally affected by them. Figure 3 shows these results.

Figure 3: Comparisons between future reachability and past instability for two different values of
time horizon for both MF and RRN. Both reachability and instability increase with longer horizons.

6.3 INVESTIGATING THE DESIGN OF RECOMMENDER SYSTEMS

Stochasticity. A higher β leads to less stochastic recommendations. The plot in Figure 4 shows the
past-5 reachability of multiple user-item pairs for β = 0.8 and β = 5. We observe higher values of

9
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Lift (gain in reachability) for lower stochasticity. Moreover, these values are higher for items with
high baseline reachability values in both cases, as the points move away from the y = x line for
higher baseline reachability. For β = 5, we observe multiple Lift values of the order of 103 but for
β = 0.8, we only see lift values slightly greater than 1 for the most part, or of the order of 10 at best.

As we increase β, or decrease the stochasticity of the system, user recommendations tend to become
more stable, as shown in Figure 5a where we plot mean values of instability for multiple user-
adversary pairs and varying β from 0.2 to 6 in discrete steps. The intuition for this is that a lower
stochasticity implies that the user is pushed more towards deterministic recommendations, and in the
most extreme case, their recommendation list is perfectly stable, with the entire probability distribution
of recommendation being concentrated on one item. We also plot histograms for instability values
(Figure 5b) at β = 0.8 and β = 5 and see that a greater percentage of items for β = 5 have their
instability values concentrated around 0 than do for β = 0.8, which matches the prior observation.

Figure 4: Scatterplot of Past-5-Reachability for a MF based recommender as β varies.
Nature of Recommender Systems We observe that the MF-based recommender system has higher
reachability than the RNN one when averaged over a large number of user-item pairs. On the other
hand, the RNN consistently has higher stability than the MF-based system when averaged over a
large number of (user-user) pairs. The differences in the two rows in Figure 3 illustrate this, as
the reachability scale for the RNN is lower than that for the MF recommender and there is no
concentration of instability values around 1 like there is for the MF recommender. We infer that the
MF-based system facilitates more reachability but is less stable than its RNN counterpart.

(a) Past Instability values (MF) as β varies (b) Past Instability (MF) for β = 0.8, 5.

Figure 5: Effect of varying stochasticity on past-stability for a MF recommender system.

Conclusion. This paper presents a causal framework to formalize interventional and counterfactual
metrics to audit recommender systems in a principled manner. Addressing the problem of user
agency, we present the metrics of reachability and stability to quantify a user’s agency over their
recommendations under edits to their own or a different user’s history. In our experiments, we
find that with more stochasticity, users’ agency towards their own recommendation increases as
indicated by the increase of reachability. However, higher stochasticity also allows other users’ to
potentially have more control over the systems, indicated by lower stability of the system. Comparing
recommendation algorithms, we observed that MF has higher reachability than the RNN, suggesting
that more complex models may allow less user agency in some aspects, which could be attributed to
the fact that small changes to a dataset have low influence on large-scale deep learning systems.

10
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Ethics Statement: Our paper develops a causal framework for auditing recommender systems
for ethical concerns, primarily related to user agency. Because recommender systems control the
information users see to a large extent, they have the potential to influence their ideologies and
behavior in the long run. Users can get caught in filter bubbles that only serve to reinforce their
biases and insulate them from opposing viewpoints. Additionally, users may be vulnerable to their
recommendations being manipulated by third parties. For instance, a third party looking to propagate
their viewpoint might coordinate their interactions with the recommender system in a manner that
induces certain items/posts to be rank highly in the recommendation lists of some target set of users.
As detailed in the paper, both these scenarios imply a lack of user agency and the metrics we propose
quantify this so that these issues can potentially be identified.

Reproducibility: We link a rough version of the code we use for our experiments as supplementary
material and additionally detail the algorithms we implement in Appendix C.
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A STRUCTURAL CAUSAL MODELS

In this work, we use the SCM framework (Pearl, 2009) to model causal relationships. An SCM is
a tupleM = (U,V,F ,P(U)), where U and V are the sets of exogenous and endogenous nodes.
An SCM implies a directed acyclic graph (DAG) G over the nodes V with Pai denoting the parents
of node Vi ∈ V. Each Vi ∈ V is generated using the structural equation Vi := fi(Pai, Ui), where
Pai ⊂ V, Ui ∈ U, and fi ∈ F . The joint distribution P(U) induces the observational distribution
P(V). An interventional distribution is generated by the (modified) SCMMx = (U,V,Fx,P(U)),
whereFx is the set of functions obtained by replacing the structural equation for X ∈ V with X := x.
Informally, it represents the state of the system after intervening on X and setting it to x, denoted by
do(X = x). SCMs also allow us to compute counterfactual quantities that express what would have
happened, had we set the node X to x, given that the (factual) event E occurred. Counterfactuals
distributions are generated using the SCMMcf := (U,V,Fx,P(U|E)).

B DETAILS FOR SECTION 5

B.1 SCORE-BASED RECOMMENDER SYSTEMS

Given data of T time steps,

min
f∈F,g∈G

∑
t∈[T ]

∑
i∈[n]

(oi,t[j]− f(hi,t)
⊤g(hv

j,t))
2 +Ω(f, g), (6)

where hv
j,t is the rating history for item j so far. In matrix factorization, the user representation

f(hi,t) = pi ∈ Rd and item representation g(hv
j,t) = pj ∈ Rd are learnable constant vectors.

Another setting could be that f, g are both neural networks, e.g., LSTMs, that map user and item
history to a d-dimensional vector. In both cases, the regularizer Ω(f, g) are the norms of the
user and item vectors. Once a score ŝi,j,t = f̂(hi,t)

⊤ĝ(hv
j,t) is learned using the dataset dt, the

recommendation probability P(Ai,t = j|do(Dt = dt)) for example can be a pointmass I{j =
argmaxj∈V ŝi,j,t}, or follows a softmax policy eβŝi,j,t/(

∑
l e

βŝi,l,t) for β ≥ 0 controlling how
stochastic one wants the recommender to be.

B.2 PROOFS

For the proofs, we consider a matrix factorization model with learned user factors given by P ∈
Rn×d and learned item factors given by Q ∈ Rm×d.

Proof of Proposition 5.1. For a fixed factual recommendation trajectory h⋆
i,t−k: =

(a⋆i,t−k,o
⋆
i,t−k, · · · ,a⋆i,t−1,o

⋆
i,t−1), the optimization problem in equation 2 is

max
o1:k∈Rk

P(Ai,t = j|A⋆
i,t−k = a⋆i,t−k, do(Oi,t−k = o1), . . . ,A

⋆
i,t−1 = a⋆i,t−1, do(Oi,t−1 = ok)),

In this setting, the user i modifies the ratings o1:k for the items in the factual trajectory a⋆i,t−k:t−1.
Since retraining the entire recommender system is not feasible after every user interaction, we make
the following simplifying assumption for how the user vector is updated after a rating ok is modified.

Assumption: After each rating user i modifies, the user vector Pi (the ith row of P ) is updated but Q
is kept unchanged. The objective of matrix factorization is to solve following expression, where R is
the user-item rating matrix:

min
P,Q
∥PQT −R∥22

Under this assumption, the updated user vector after every interaction is given by:

Pi = argmin
p′

∑
v∈V

(p′TQv −Riv)
2

where V is the subset of items the user i has interacted with. Every interaction adds an additional
element to V and populates Riv. After k timesteps(from t− k to t− 1), this optimization problem
has a simple closed-form solution given by:

Pi = (QT
ratedQrated)

−1QT
ratedRrated,
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where

Qrated =


Qa⋆

i,1

Qa⋆
i,2

...
Qa⋆

i,t−1

 , Rrated =



Ri,1

...
Ri,t−k−1

o1

o3

...
ok


.

Qrated ∈ R(t−1)×d is a matrix whose rows are the item vectors of the items rated by the user upto
time t and Rupdated is a column vector of size t0 − 1 which represents all the corresponding ratings
given to these items by the user i up to time t with the last k ratings being replaced by o1,o2, . . .ok

as discussed above.

We assume a stochastic β-softmax selection rule given by:

P(Ai,t0 = j) =
eβsij∑

k∈V eβsik

where sij = PT
i Qj is the predicted rating for the interaction between user i and item j. In this case,

P(Ai,t = j|A⋆
i,t−k = a⋆i,t−k, do(Oi,t−k = o1), . . . ,A

⋆
i,t−1 = a⋆i,t−1, do(Oi,t−1 = ok)) =

eβP
T
i Qj∑

k∈V eβP
T
i Qk

Maximizing this is equivalent to maximizing the logarithm of this quantity, given by:

βPT
i Qj − LSE

k ∈ V
(βPT

i Qk)

where LSE denotes the log-sum-exponential. We can rewrite the objective as:

max
o1,...k∈Rk

βPT
i Qj − LSE

k ∈ V
(βPT

i Qk) = min
o1,...k∈Rk

−βPT
i Qj + LSE

k ∈ V
(βPT

i Qk)

We can see that PT
i Qj is a linear function in all o1, . . .ok since every Qj is independent of

o1,o2 . . .ok.

Let o = [o1, . . .ok]
T . Then, for some bk ∈ Rt and ck ∈ R∀k ∈ V , the objective becomes:

min
o1,...k∈Rk

LSE
k ∈ V

(
β(bTk o+ ck)

)
− β(bTj o+ cj)

This is convex because log-sum-exp is a convex function, affine functions are convex, and the
composition of a convex and an affine function is convex.

Lemma B.1. Let f : Rn → R be a convex function with only one root, i.e., f(x0) = 0 for some
x0 ∈ Rn. Then, g(x) = [f(x)]2 is a quasi-convex function. Proof: To prove that g(x) is quasi-
convex, we need to show that for any α ∈ R, the sublevel set Sα = {x ∈ Rn|g(x) ≤ α} is a convex
set.

1. If α < 0, the sublevel set Sα is empty because [f(x)]2 ≥ 0 for all x ∈ Rn. An empty set is
convex by definition.

2. If α = 0, the sublevel set S0 = {x0} because f(x0) = 0 and [f(x)]2 > 0 for all x ̸= x0. A
singleton set is convex.

3. If α > 0, consider the sublevel set Sα = {x ∈ Rn|[f(x)]2 ≤ α}. We can rewrite this as:

Sα = {x ∈ Rn| −
√
α ≤ f(x) ≤

√
α},

which is a convex set for any convex f .
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Proof of Proposition 5.2. For a fixed factual recommendation trajectory h⋆
i2,t−k: =

(a⋆i2,t−k,o
⋆
i2,t−k, · · · ,

a⋆i2,t−1,o
⋆
i2,t−1), the optimization problem in equation 4 can be written as:

max
o1,...k∈Rk

d(P(Ai1,t|A⋆
i2,t−k = a⋆i2,t−k, do(Oi2,t−k = o1), . . . ,A

⋆
i2,t−1 = a⋆i2,t−1, do(Oi2,t−1 = ok)),P(Ai1,t))

In this setting, the user i2 modifies the ratings of the factual item trajectory a⋆i2,t−k:t−k+1. Since
retraining the entire recommender system is not feasible after every user interaction, we make the
following simplifying assumption for how the item vector is updated after a rating ok is modified.

Assumption: After i2 rates an item j, the item vector Qj(the jth row of Q) is updated but P is kept
unchanged. Similar to the proof past-k reachability, the updated item vector for an item j rated by i2
is given by:

Qj = (PT
ratedPrated)

−1PT
ratedRrated,

where

Prated =



Pµ∗
j,1

...
Pi2

...
Pµ∗

j,t−1

 , Rrated =


Rj,1

...
ot

...
Rj,t−1

 .

Here, Prated is a matrix ∈ R(t−1)×d whose rows are the user vectors of the users that rated the item j
up to t, that is represented by µ∗

j,t; with user i2 rating it at t− k+ t− 1 and Rrated is a column vector
of size t− 1 that represents all the corresponding ratings given by these users to j, with the rating at
time t+ k′ − 1 being replaced with ok′+k.

We assume a stochastic β-softmax selection rule given by:

P(Ai,t0 = j) =
eβsij∑

k∈V eβsik

where sij = PT
i Qj is the predicted rating for the interaction between user i and item j.

The L2 distance metric is defined as the defined as the L2 distance between the discrete probability
probability distributions of i1’s next recommended item before and after i2’s modifies their ratings.

f(o) =
∑
j∈V

(
P
(
Ai1,t0 = j | A⋆

i2,t0−k = a⋆i2,t0−k, do (Oi2,t0−k = o1) , . . . ,A
⋆
i2,t0−1 = a⋆i2,t0−1,

do (Oi2,t0−1 = ok)
)
− P (Ai1,t0 = j)

)2

We note that the predicted rating of a user-item interaction only changes when the item is one of
the items for which the user i2 modifies their ratings. In this case, we can see that the predicted
rating given by i1 on an item i2 rates ok is a linear function in ok. Our objective can be written as
f(o) =

∑
j∈V gj(o), where

gj(o) =

(
eβ(ci1jok+di1j)∑

k∈V eβ(ci1kok+di1k)
− P(Ai1,t0 = j)

)2

We can rewrite this as:

gj(r) =

(
eβ(ci1jok+di1j)∑

k∈V eβ(ci1kok+di1k)
− Cj

)2

where Cj = P (Ai1,t0 = j) is a constant. Now, let’s consider the function:

hj(o) =
eβ(ci1jok+di1j)∑

k∈V eβ(ci1kok+di1k)
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This function is the softmax function, which is known to be convex (Boyd and Vandenberghe, 2004).
Next, consider the function:

lj(o) = hj(o)− Cj

The difference of a convex function and a constant is also convex (Boyd and Vandenberghe, 2004).
Therefore, lj(o) is convex. Finally, let’s look at:

gj(o) = (lj(o))
2

Each lj is a monotonic convex function with exactly one root. By Lemma B.1, each gj(o) is
quasiconvex. Now, we can write the stability objective function as:

f(o) =
∑
j∈V

gj(o)

The sum of quasiconvex functions is also quasiconvexconvex (Boyd and Vandenberghe, 2004). Since
f(r) is quasiconvex, in practice, if we optimize each ok in the interval [a, b] ⊂ R, the maximum
value of f(r) is attained at an extreme point of [a, b] (Boyd and Vandenberghe, 2004). In other
words, the stability objective is quasiconvex and achieves its optimal value at a boundary point of the
domain.

C ALGORITHM DETAILS

• Past Reachability: Details provided in 1. We use a model trained up to time t0 − k, and
then aim to optimize the user’s ratings for the factual next k items with the objective of
maximizing the probability of recommending to item to be reached after k steps, with a
stochastic recommendation policy given by:

P(Ai,t0 = j) =
eβsij∑

k∈V eβsik

where sij is the predicted rating for the interaction between user i and item j. This is a
stochastic selection rule controlled by a parameter of stochasticity β to select items after the
recommender system ranks them. There are k parameters of optimization, where k is the
time horizon, corresponding to the user’s action at each time step.

• Future Reachability: Details provided in 2. We use a model trained up to time t0 and
the user follows the recommendations given by a deterministic recommender system that
returns the top-1 item that the user hasn’t already rated based on predicted score, with the
same objective mentioned above. There are k × |V | parameters of optimization here, where
|V | is the size of the item vocabulary. The (k ·m + t)th parameter represents the user’s
action if they were to be recommended item m at time t0 + t.

• Past Stability: Details provided in 3. We use a model trained up to time t0 − k, and then
aim to optimize the adversary’s ratings for the factual next k items with the objective of
maximally changing the user’s recommended list, with the same stochastic recommendation
policy mentioned above. We use Hellinger Distance as our distance metric. There are k
parameters of optimization, where k is the time horizon, corresponding to the adversary’s
action at each time step.

• Future Stability: Details provided in 4. We use a model trained up to time t0 and the
adversary follows the recommendations given by a deterministic recommender system that
returns the top-1 item that the user hasn’t already rated based on predicted score, with the
same objective mentioned above. There are k × |V | parameters of optimization here, where
|V | is the size of the item vocabulary. The (k ·m+ t)th parameter represents the adversary’s
action if they were to be recommended item m at time t0 + t.

Note: We use a deterministic selection rule for computing future based metrics because it does not
suffer from too much variation across epochs, unlike the stochastic selection rule, which would
require an even larger parameter space to account for every possible item sequence.

D EXPERIMENTAL DETAILS

Dataset Summary Statistics The table below shows some dataset summary statistics.
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Algorithm 1: past-k reachability
Input: User i, Item to be reached j, Time Horizon k
Output: Optimal ratings for history items

1 initialize chosen ratings o for history items as their factual ratings; for epoch← 1 to nepochs do
2 o clamped between [1,5]
3 for timestep← 1 to k do
4 next item m← historical item at t0 − t+ timestep
5 Update user vector based on (item, rating) pair (m,otimestep)
6 Compute P(Ai,t0 = j)
7 Backpropagate to chosen ratings o

Algorithm 2: future-k reachability
Input: User i, Item to be reached j, Time Horizon k
Output: Optimal ratings for future items

1 initialize parameter space R of size k · |V | randomly; for epoch← 1 to nepochs do
2 o clamped between [1,5]
3 initialize reachability_vals of size num_samples
4 for avg← 1 to nnum_samples do
5 for timestep← 1 to k do
6 next item m← top-1 item in recommended list
7 Update user vector based on (item, rating) pair (m, Rk·m+timestep)
8 reachability_valsavg ← P(Ai,t0 = j)

9 Compute mean of reachability_vals
10 Backpropagate to parameter space R

Algorithm 3: past-k stability
Input: User i1, Adversary i2, Time Horizon k
Output: Optimal ratings for history items

1 initialize chosen ratings o for history items as their factual ratings;
2 i1’s initial preferences l1← recsys(i1, item vectors)
3 for epoch← 1 to nepochs do
4 o clamped between [1,5]
5 for timestep← 1 to k do
6 next item m← historical item at t0 − t+ timestep
7 Update item vector for m based on (user, rating) pair (i2,otimestep)
8 i1’s final preferences l2← recsys(i1, item vectors)
9 Compute distance d(l1, l2)

10 Backpropagate this to chosen ratings o
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Algorithm 4: future-k stability
Input: User i1, Adversary i2, Time Horizon k
Output: Optimal ratings for future items

1 initialize parameter space R of size k · |V | randomly
2 i1’s initial preferences l1← recsys(i1, item vectors)
3 for epoch← 1 to nepochs do
4 o clamped between [1,5]
5 initialize stability_vals of size num_samples
6 for avg← 1 to nnum_samples do
7 for timestep← 1 to t do
8 next item m← top-1 item in recommended list
9 Update item vector for m based on (user, rating) pair (i2,Rk·m+timestep)

10 i1’s final preferences l2← recsys(user vector, item vectors)
11 stability_valsavg ← d(l1, l2), d=distance metric
12 Compute mean of stability_vals
13 Backpropagate this to parameter space R

Data set ML 1M
Users 6040
Items 3706
Ratings 1000209
Density (%) 4.47%

Table I: Statistics and performance metrics for the ML 1M dataset.

Additional Recommender System Details: We choose 100 as the size of both user and item latent
vectors for matrix factorization.

For the Recurrent Recommender Network, we train two LSTMs in parallel: one that takes a user’s
item history as input and outputs a user vector and another that takes an item’s user history as input
and outputs an item vector.

The user’s item history is a list of the form [(item_idk, ratingk)] where k varies from 1 to n, if n is
the number of interactions the user has had upto this point.

Each LSTM has input size 2 and hidden size 100, and we choose the last hidden state as the user/item
vector.

Similar to general factorization based recommenders, the rating for a particular interaction is given
by the dot product of the user and item vector for the (user,item) pair involved in the interaction.

For training, we first sort every interaction in the dataset by timestep and attempt to predict the rating
for the next interaction based on interactions that have already taken place.

We train three versions of each recommender system: one with complete data, one with the last item
for each user left out and one with the last 5 items rated by each user left out in order to run our
experiments.

Updating the recommender system after every interaction: We acknowledge that re-training the
recommender system after every new user-item interaction is not feasible and is not done in practice
in commercial systems(Yao et al., 2021). Both matrix factorization and recurrent recommender
networks are inherently factorization based and create latent user and item representations that are
updated whenever the model retrains. Instead of retraining the model, for computing reachability
based metrics, we operate under the assumption that the item latent vectors remain fixed while we
update the user latent vectors by solving a closed form equation given in 7 for matrix factorization.
Similarly, for computing stability based metrics, we operate under the assumption that the user latent
vectors remain fixed while we update the item latent vectors by solving a closed form equation given
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in 8 for matrix factorization. We borrow this approach from (Yao et al., 2021).

p = argmin
p′

∑
v∈Vseen

(
p′T qv − rv

)2
(7)

q = argmin
q′

∑
u∈Useen

(
pTu q

′ − ru
)2

(8)

Here, p denotes the user latent vector and q denotes the item latent vector. Vseen is the list of items
the user has rated, rv is the rating given to item v. Similarly, Useen is the list of users the item has
been rated by and rv is the rating given by user u.

For the recurrent recommender network, this is even more straightforward as we leave the LSTM as
is and simply query it with the edited user/item history to obtain new user/item vectors

Settings for plots: Regarding the plots in 6,

• For reachability based metrics, we randomly choose 10% of users as set A and 10% of items
as set B and compute the reachability of every (user,item) pair in A×B.

• For stability based metrics, we randomly choose 20% of users and divide them equally
among set A and set B to serve as the primary user set and adversary set respectively. We
then compute the stability of every combination of (user,adversary) pair in A×B.

Compute Requirements We make use of 40G A6000 GPUs.

E METRICS FOR AGGREGATED GROUPS

As an additional experiment, we group items by their popularity and attempt to see if more popular
items are more reachable than less popular ones.

For this, we use the number of interactions an item is a part of in the training set as a proxy for it’s
popularity among users. We consider two groups of items:

• Set A consists of the 30 most popular items.

• Set B consists of items with intermediate popularity (30 items between 200th to 300th in
popularity).

We then randomly choose 10% of the total users as set C and compute the future reachability for
every (user,item) pair in C ×A and compare it to the future reachability of every (user,item) pair in
C ×B.

Figure 6: Future Reachability(MF) for popular items vs items with intermediate popularity
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Item Type Popular item Intermediate Item
Mean Lift 1.3735 1.1846
Lower Confidence Interval 1.0500 1.1361
Upper Confidence Interval 1.6971 1.2330

Table II: Future Reachability with Popular vs Intermediate Items

Observations: The baseline values for future reachability for popular and intermediate items were
observed to be similar on average. The results in Table II then show us that popular items have higher
values of max future reachability on average as compared to items with intermediate popularity.
We note that this difference is not as prominent when measuring past reachability instead of future
reachability.

We also group users by their activity and attempt to see if active users act as better adversaries on
average than inactive users, i.e., whether active users can cause a larger change in a random user’s
recommendation list than inactive users.

Using the number of ratings given by users as a proxy for their activity, we consider two groups of
users:

• Set A consists of the 30 most active users.
• Set B consists of users with intermediate activity (30 users between 200th to 300th in

activity).

We then randomly choose 10% of the remaining users as set C, to act as primary users and compute
the stability for every (user,adversary) pair in C × A and compare it to the reachability of every
(user,item) pair in C ×B. Figure 7 shows the resulting histogram for future instability.

Figure 7: Future Instability(MF) for Active vs Intermediate users

Adversary Active User Intermediate User
Mean 0.2962 0.1938
Lower Confidence Interval 0.2395 0.1549
Upper Confidence Interval 0.3527 0.2327

Table III: Future Instability with Active vs Intermediate Adversaries

Observations: These results show us that active users introduce more instability on average as
compared to users with intermediate levels of activity. We note that this effect is not as prominent
when measuring past stability instead of future stability.

We perform both these experiments on the Matrix Factorization based recommender system.
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F SELECTED FIGURES WITH ADDITIONAL PARAMETER VALUES

1) Scatterplot for reachability with additional time horizons, for comparison β = 0.8

Figure 8: Future Reachability: Time horizon = 1 vs Time horizon = 2 vs Time horizon = 5

Figure 9: Future Reachability: Time horizon = 1 vs Time horizon = 3 vs Time horizon = 5
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Figure 10: Past Reachability: Time horizon = 1 vs Time horizon = 2 vs Time horizon = 5

Figure 11: Past Reachability: Time horizon = 1 vs Time horizon = 3 vs Time horizon = 5
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2) Scatterplots for past stability with different stochasticities

Figure 12: β = 0.4 vs β = 0.8

3) Mean Past Instability as a function of time horizon

Figure 13: Mean Past Instability vs Time Horizon

4) Past stability for different time horizons β = 0.8

Figure 14: Time horizon=1 vs Time Horizon=2
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Figure 15: Time Horizon=2 vs Time Horizon=4

G GRADIENT EXPRESSIONS

In this section, we write out the gradient expressions for both reachability and stability for multiple
timesteps to give a better idea of the gradients one might need access to in a whitebox setting.

G.1 REACHABILITY GRADIENT

G.1.1 2 TIMESTEPS

• Gradient with respect to f1

∇f1EAi,t,Ai,t+1
[P (Ai,t+2 = j|do(Oi,t = f1(Ai,t)), do(Oi,t+1 = f2(Ai,t+1)))]

=
∑
ai,t

P (Ai,t = ai,t)∇f1

∑
ai,t+1

[P (Ai,t+1 = ai,t+1|do(Oi,t = f1(ai,t)))

P (Ai,t+2 = j|do(Oi,t+1 = f2(ai,t+1)), do(Oi,t = f1(ai,t)))]

• Gradient with respect to f2

∇f2EAi,t,Ai,t+1
[P (Ai,t+2 = j|do(Oi,t = f1(Ai,t)), do(Oi,t+1 = f2(Ai,t+1)))]

=
∑
ai,t

P (Ai,t = ai,t)
∑
ai,t+1

P (Ai,t+1 = ai,t+1|do(Oi,t = f1(ai,t)))

∇f2P (Ai,t+2 = j|do(Oi,t+1 = f2(ai,t+1)), do(Oi,t = f1(ai,t)))

G.1.2 3 TIMESTEPS

• Gradient with respect to f1

∇f1EAi,t,Ai,t+1,Ai,t+2
[P (Ai,t+3 = j|do(Oi,t = f1(Ai,t)),

do(Oi,t+1 = f2(Ai,t+1)), do(Oi,t+2 = f3(Ai,t+2)))]

=
∑
ai,t

P (Ai,t = ai,t)∇f1

∑
ai,t+1

[P (Ai,t+1 = ai,t+1|do(Oi,t = f1(ai,t)))∑
ai,t+2

P (Ai,t+2 = ai,t+2|do(Oi,t+1 = f2(ai,t+1)), do(Oi,t = f1(ai,t)))

P (Ai,t+3 = j|do(Oi,t+2 = f3(ai,t+2)),

do(Oi,t+1 = f2(ai,t+1)), do(Oi,t = f1(ai,t)))]
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• Gradient with respect to f2

∇f2EAi,t,Ai,t+1,Ai,t+2
[P (Ai,t+3 = j|do(Oi,t = f1(Ai,t)), do(Oi,t+1 = f2(Ai,t+1)), do(Oi,t+2 = f3(Ai,t+2)))]

=
∑
ai,t

P (Ai,t = ai,t)
∑
ai,t+1

P (Ai,t+1 = ai,t+1|do(Oi,t = f1(ai,t)))

∇f2

∑
ai,t+2

[P (Ai,t+2 = ai,t+2|do(Oi,t+1 = f2(ai,t+1)), do(Oi,t = f1(ai,t)))

P (Ai,t+3 = j|do(Oi,t+2 = f3(ai,t+2)), do(Oi,t+1 = f2(ai,t+1)), do(Oi,t = f1(ai,t)))]

• Gradient with respect to f3

∇f3EAi,t,Ai,t+1,Ai,t+2 [P (Ai,t+3 = j|do(Oi,t = f1(Ai,t)), do(Oi,t+1 = f2(Ai,t+1)), do(Oi,t+2 = f3(Ai,t+2)))]

=
∑
ai,t

P (Ai,t = ai,t)
∑
ai,t+1

P (Ai,t+1 = ai,t+1|do(Oi,t = f1(ai,t)))∑
ai,t+2

P (Ai,t+2 = ai,t+2|do(Oi,t+1 = f2(ai,t+1)), do(Oi,t = f1(ai,t)))

∇f3P (Ai,t+3 = j|do(Oi,t+2 = f3(ai,t+2)), do(Oi,t+1 = f2(ai,t+1)), do(Oi,t = f1(ai,t)))

G.1.3 T TIMESTEPS, GRADIENT WRT fk

∇fkEAi,t,...,Ai,t+T−1
[P (Ai,t+T = j|do(Oi,t = f1(Ai,t)), ..., do(Oi,t+T−1 = fT (Ai,t+T−1)))]

=
∑
ai,t

P (Ai,t = ai,t)
∑
ai,t+1

P (Ai,t+1 = ai,t+1|do(Oi,t = f1(ai,t))) · · ·∑
ai,t+k−1

P (Ai,t+k−1 = ai,t+k−1|do(Oi,t+k−2 = fk−1(ai,t+k−2)), ..., do(Oi,t = f1(ai,t)))

∇fk

∑
ai,t+k

[P (Ai,t+k = ai,t+k|do(Oi,t+k−1 = fk(ai,t+k−1)), ..., do(Oi,t = f1(ai,t)))

· · ·∑
ai,t+T−1

P (Ai,t+T = j|do(Oi,t+T−1 = fT (ai,t+T−1)), ..., do(Oi,t = f1(ai,t)))]

G.2 STABILITY GRADIENT

G.2.1 1 TIMESTEP

Gradient wrt f1

∇f1EAi2,t

[
d(P(Ai1,t+1|do(Oi2,t = f1(Ai2,t))),P(Ai1,t+1))

]
=
∑
ai2,t

P (Ai2,t = ai2,t)∇f1

[
d(P(Ai1,t+1|do(Oi2,t = f1(ai2,t))),P(Ai1,t+1))

]

G.2.2 2 TIMESTEPS

• Gradient wrt f1
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∇f1EAi2,t:t+1

[
d(P(Ai1,t+2|do(Oi2,t = f1(Ai2,t)), do(Oi2,t+1 = f2(Ai2,t+1))),P(Ai1,t+2))

]
=
∑
ai2,t

P (Ai2,t = ai2,t)∇f1

∑
ai2,t+1

[
P (Ai2,t+1 = ai2,t+1|do(Oi2,t = f1(ai2,t)))

d(P(Ai1,t+2|do(Oi2,t = f1(ai2,t)), do(Oi2,t+1 = f2(ai2,t+1))),P(Ai1,t+2))

]
• Gradient with f2

∇f2EAi2,t:t+1

[
d(P(Ai1,t+2|do(Oi2,t = f1(Ai2,t)), do(Oi2,t+1 = f2(Ai2,t+1))),P(Ai1,t+2))

]
=
∑
ai2,t

P (Ai2,t = ai2,t)
∑

ai2,t+1

P (Ai2,t+1 = ai2,t+1|do(Oi2,t = f1(ai2,t)))

∇f2

[
d(P(Ai1,t+2|do(Oi2,t = f1(ai2,t)), do(Oi2,t+1 = f2(ai2,t+1))),P(Ai1,t+2))

]
G.2.3 T TIMESTEPS. GRADIENT WRT fk

∇fkEAi2,t:t+T−1

[
d(P(Ai1,t+T |do(Oi2,t = f1(Ai2,t)), . . . , do(Oi2,t+T−1 = fT (Ai2,t+T−1))),P(Ai1,t+T ))

]
=
∑
ai2,t

P (Ai2,t = ai2,t)
∑

ai2,t+1

P (Ai2,t+1 = ai2,t+1|do(Oi2,t = f1(ai2,t))) · · ·∑
ai2,t+k−1

P (Ai2,t+k−1 = ai2,t+k−1|do(Oi2,t+k−2 = fk−1(ai2,t+k−2)), . . . , do(Oi2,t = f1(ai2,t)))

∇fk

∑
ai2,t+k

[
P (Ai2,t+k = ai2,t+k|do(Oi2,t+k−1 = fk(ai2,t+k−1)), . . . , do(Oi2,t = f1(ai2,t)))

· · ·
∑

ai2,t+T−1

d(P(Ai1,t+T |do(Oi2,t = f1(ai2,t)), . . . , do(Oi2,t+T−1 = fT (ai2,t+T−1))),P(Ai1,t+T ))

]

G.3 REACHABILITY GRADIENT COMPUTATION FOR DETERMINISTIC (TOP-1) ITEM CHOICE

In our experiments, we set the user to always select the top item recommended by the system. While
sampling items from a user’s preference distribution (e.g., using Gumbel-softmax) is possible, it
introduces more variability as user’s now interact with a more diverse variety of item sequences,
which necessitates additional parameter updates since our parameter space consists of a separate
parameter for every (item, timestep) tuple. Additionally, we demonstrate below how top-1 selection
affects gradient computation, with the subgradient of the item selection term reducing to 0, which is
not the case for Gumbel-softmax selection. Example of 2-step gradient computation with respect to
f1: From G.1.1,

∇f1EAi,t,Ai,t+1 [P (Ai,t+2 = j|do(Oi,t = f1(Ai,t)), do(Oi,t+1 = f2(Ai,t+1)))]

=
∑
ai,t

P (Ai,t = ai,t)∇f1

∑
ai,t+1

[P (Ai,t+1 = ai,t+1|do(Oi,t = f1(ai,t)))

P (Ai,t+2 = j|do(Oi,t+1 = f2(ai,t+1)), do(Oi,t = f1(ai,t)))]

We focus on the terms dependent on f1.

∇f1

∑
ai,t+1

[P (Ai,t+1 = ai,t+1|do(Oi,t = f1(ai,t))) P (Ai,t+2 = j|do(Oi,t+1 = f2(ai,t+1)), do(Oi,t = f1(ai,t)))]
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This can be written as:

∇f1

∑
k∈[n]

(
∏
l ̸=k

Ig(k,t)≥g(l,t))m(f1, f2)

Here [n] denotes the list of item ids(from 1 to n) and g is a function that takes an item and timestep
as arguments and returns the user’s preference score for that item at that timestep. The condition
specified by the product of indicator functions is simply that k is the item that the user has the
highest preference score for, in other words, k is the top-1 recommended item. We have also written
P (Ai,t+2 = j|do(Oi,t+1 = f2(ai,t+1)), do(Oi,t = f1(ai,t))) as a function of f1 and f2, m(f1, f2).
Using the product rule on this expression, we get,∑

k∈[n]

(
∏
l ̸=k

Ig(k,t)≥g(l,t)∇f1m(f1, f2) +m(f1, f2)∇f1(
∏
l ̸=k

Ig(k,t)≥g(l,t)))

This reduces to: ∑
k∈[n]

(
∏
l ̸=k

Ig(k,t)≥g(l,t)∇f1m(f1, f2))

as the 0 is a subgradient of the product of indicator functions with respect to f1. Therefore, in making
the simplification to users only choosing the top-1 item, we do away with the gradient propagation
path through the item choice itself.
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