
Policy Regularization with Dataset Constraint
for Offline Reinforcement Learning

Yuhang Ran * 1 Yi-Chen Li * 1 Fuxiang Zhang 1 2 Zongzhang Zhang 1 Yang Yu 1 2

Abstract

We consider the problem of learning the best pos-
sible policy from a fixed dataset, known as offline
Reinforcement Learning (RL). A common taxon-
omy of existing offline RL works is policy regu-
larization, which typically constrains the learned
policy by distribution or support of the behavior
policy. However, distribution and support con-
straints are overly conservative since they both
force the policy to choose similar actions as the be-
havior policy when considering particular states.
It will limit the learned policy’s performance, es-
pecially when the behavior policy is sub-optimal.
In this paper, we find that regularizing the policy
towards the nearest state-action pair can be more
effective and thus propose Policy Regularization
with Dataset Constraint (PRDC). When updating
the policy in a given state, PRDC searches the
entire dataset for the nearest state-action sample
and then restricts the policy with the action of
this sample. Unlike previous works, PRDC can
guide the policy with proper behaviors from the
dataset, allowing it to choose actions that do not
appear in the dataset along with the given state. It
is a softer constraint but still keeps enough con-
servatism from out-of-distribution actions. Em-
pirical evidence and theoretical analysis show
that PRDC can alleviate offline RL’s fundamen-
tally challenging value overestimation issue with
a bounded performance gap. Moreover, on a set of
locomotion and navigation tasks, PRDC achieves
state-of-the-art performance compared with ex-
isting methods. Code is available at https:
//github.com/LAMDA-RL/PRDC.

*Equal contribution 1National Key Laboratory for Novel Soft-
ware Technology, Nanjing University 2Polixir Technologies. Cor-
respondence to: Zongzhang Zhang <zzzhang@nju.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
Online Reinforcement Learning (RL) has shown remark-
able success in a variety of domains such as games (Silver
et al., 2017), robotics (Li et al., 2021), and recommendation
systems (Chen et al., 2018). However, learning an optimal
policy online demands continual and possibly huge envi-
ronmental interactions because of trial-and-error (Sutton &
Barto, 2018). For expense or safety concerns, this may be
impractical in real-world applications. On the other hand,
offline RL learns from a fixed, previously collected dataset,
thus eliminating the need for additional interactions dur-
ing training. Due to the promise of turning datasets into
powerful decision-making engines, offline RL has attracted
significant interest in recent years (Levine et al., 2020).

One of the fundamental challenges of offline RL is value
overestimation in Out-Of-Distribution (OOD) actions (see
Section 2.3). According to the methodology of dealing with
OOD actions, existing works on offline RL could be roughly
categorized into the following two taxonomies (Jin et al.,
2021): (i) Pessimistic value-based approaches that learn an
underestimated or conservative value to discourage choosing
OOD actions (Kumar et al., 2020; Yu et al., 2021; An et al.,
2021; Lyu et al., 2022; Yang et al., 2022). (ii) Regularized
policy-based approaches that constrain the policy to avoid
visiting the states and actions that are less covered by the
dataset (Fujimoto et al., 2019; Nair et al., 2020; Kostrikov
et al., 2021a;b; Fujimoto & Gu, 2021; Wu et al., 2022).

Our work focuses on policy regularization. Generally, pre-
vious policy regularization approaches have constrained the
learned policy by either the distribution (Wu et al., 2019)
or the support (Kumar et al., 2019) of the behavior policy.
Considering a particular state, however, distribution and
support constraints are overly conservative since they both
restrict the policy by actions from the behavior policy. It
will limit the performance of the policy, especially when
the actions from the behavior policy in the dataset are not
optimal for the given state. Nevertheless, there are far more
actions in the dataset than in a particular state. A natural
question thus arises: Can we guide the policy by all actions
in the dataset rather than the limited ones in a given state?

It motivates us to propose a new approach on policy regular-

1

https://github.com/LAMDA-RL/PRDC
https://github.com/LAMDA-RL/PRDC

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

ization. When updating the policy in a particular state, our
method will search the dataset for the nearest neighbor of
the state-action pair, where the action comes from the pol-
icy’s prediction. Then we will constrain the policy toward
the action of the nearest neighbor. This novel constraint
can be interpreted as minimizing the point-to-set distance
between the state-action pair and the dataset. Thus it is
neither a distribution constraint nor a support constraint but
a dataset constraint method.

One benefit of our proposed dataset constraint is that it can
relieve excessive pessimism from sub-optimal behaviors of
the behavior policy, allowing the policy to choose better
actions that do not appear in the dataset along with the given
state but still keeping sufficient conservatism from OOD
actions. We name our method Policy Regularization with
Dataset Constraint (PRDC). PRDC can be combined with
any actor-critic algorithm, and we instantiate a practical
algorithm upon TD3 (Fujimoto et al., 2018) with a highly ef-
ficient implementation (Section 3). Empirical evidence and
theoretical analysis show that PRDC is able to effectively al-
leviate the fundamentally challenging value overestimation
issue of offline RL with a bounded performance gap (Sec-
tion 3). On the Gym and AntMaze tasks from D4RL (Fu
et al., 2020), PRDC achieves state-of-the-art performance
compared with previous methods (Section 5).

2. Preliminaries
This section will briefly introduce the background, problem
setting, and some notations.

2.1. Reinforcement Learning

We consider the infinite-horizon Markov Decision Process
(MDP) defined by a tuple (S,A, p0,P, r, γ), where S is
the state space, A is the action space, p0 is the initial state
distribution, P : S ×A → ∆S is the transition function1,
r : S → R is the reward function, and γ ∈ [0, 1) is a
discount factor. This paper considers deterministic poli-
cies and continuous state and action spaces. We assume
∀(s, a) ∈ S ×A, |r(s)| ≤ Rmax, and a ∈ [−A,A].

Given the MDP and the agent’s policy π : S → A, the
whole decision process runs as follows: At time step t ∈ N,
the agent perceives the environment state st; then decides
to take action at = π(st), resulting in the environment to
transit to the next state st+1 and return a reward r(st) to the
agent. Let J(π) be the expected discounted reward of π,

J(π) = E

[∞∑
t=0

γtr(st)

]
, (1)

where the expectation takes over the randomnesses of the

1We use ∆X to denote the set of distributions over X .

initial state distribution p0 and the transition function P .
The objective of RL is to learn an optimal policy π∗ that has
maximal expected discounted reward, i.e.,

π∗ = argmax
π

J(π).

Let Qπ : S ×A → R be the state-action value function (or
Q-function),

Qπ(s, a) = E

[∞∑
t=0

γtr(st)

∣∣∣∣s0 = s, a0 = a

]
.

We further define the occupancy measure dπ : S → R of π,

dπ(s′) = (1− γ)

∫
S

∞∑
t=0

γtp0(s)p(s→ s′, t, π)ds,

where p(s → s′, t, π) denotes the density at state s′ after
taking t steps from state s under policy π. Then Equation (1)
could be reformulated (Xiong et al., 2022) as

J(π) =
1

1− γ
Es∼dπ(s)[r(s)]. (2)

2.2. Offline Reinforcement Learning

As stated in the above subsection, the classical setting of RL
requires interactions with the environment during training.
However, interaction is sometimes not allowed, especially
when the task demands highly in safety or cost. To this end,
offline RL, a.k.a., batch RL or data-driven RL, considers
learning in an offline manner. Formally speaking, let D =
{(s, a, s′, r, d)} denote the set of transitions collected by a
behavior policy µ, where s, a, s′, and r are state, action, next
state, and reward, respectively; d is a done flag indicating
whether s′ is a terminal state2. The goal of offline RL is
to learn the best possible policy from D without further
interactions (Ernst et al., 2005).

2.3. Value Overestimation Issue of Offline RL

We often use the following one-step Temporal Difference
(TD) update (Sutton & Barto, 2018) to approximate Qπ ,

Q̂π(s, a)← Q̂π(s, a) + ηδt, (3)

where δt =
[
r(s) + γ(1− d)Q̂π(s′, a′)− Q̂π(s, a)

]
, a′ =

π(s′) and η is a hyper-parameter controlling the step size.
With sufficiently enough samples, Q̂π will converge to Qπ

(Singh et al., 2000). But in offline RL, the dataset D is lim-
ited, with partial coverage of the state-action space. Thus,
(s′, a′) may not exist in D (a.k.a., distribution shift) because
a′ is predicted by the learned policy π, not the behavior

2In infinite-horizon MDPs, we also use d to denote whether s′

is an absorbing state since there may be no terminal states.

2

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

Nearest Neighbor

: Forward Pass : Back Propagation

Point-to-set Distance

Concatenate

Dataset

Figure 1. Illustration of the forward calculation and back propaga-
tion of our proposed policy regularization with dataset constraint.

policy µ. If Q̂π(s′, a′) is overestimated, the error will con-
tinuously backpropagate to the updates of Q̂π, eventually
causing Q̂π to have overly large outputs for any input state-
action. It is known as the value overestimation issue. Policy
regularization (Wu et al., 2019) has been proven to be ef-
fective in tackling the value overestimation issue. We can
broadly categorize existing works on policy regularization
into distribution constraint and support constraint.

3. Our Method
We now introduce our method, Policy Regularization with
Dataset Constraint (PRDC). First, we will begin by defining
our proposed dataset constraint objective. Then, we will
instantiate a practical algorithm. Finally, we will give a
theoretical analysis of why PRDC works in offline RL and
a bound of the performance gap.

3.1. Dataset Constraint

The basic motivation of our Dataset Constraint (DC) is to
allow the policy π to choose optimal actions from all actions
in the offline dataset D. Since either distribution constraint
or support constraint regularizes π by only selecting actions
from the same state in the dataset, DC empowers a better
generalization ability on π. However, as claimed in Sec-
tion 2.3, we still have to impose enough conservatism on π
to avoid the value overestimation issue. This trade-off needs
to be carefully balanced.

Definition 3.1 (Point-to-set distance). Given the offline
dataset D, for any state-action pair (s, a) ∈ S × A, we
define its point-to-set distance to D as

dβD(s, a) = min
(ŝ,â)∈D

∥(βs)⊕ a− (βŝ)⊕ â∥,

where ⊕ denotes the vector concatenation operation and β
is a hyper-parameter trading off the differences in s and a.

Based on Definition 3.1, we give the following objective:

min
ϕ
LDC(ϕ) := Es∼D

[
dβD (s, πϕ(s))

]
, (4)

where ϕ denotes parameters of the policy πϕ. Figure 1 illus-
trates the forward calculation and back propagation when
using stochastic gradient descent (Ruder, 2016) to optimize
Equation (4). That is, we will regularize πϕ by minimizing
the distance between (s, πϕ(s)) and its nearest neighbor in
D. This is essentially different from the distribution con-
straint and the support constraint, where the former forces π
to be similar to µ and the latter requires π(s) to be supported
by µ(·|s), since the state of the retrieved nearest neighbor
may not be the same as the given state.

We note that β is a key hyper-parameter, controlling the
strength of conservatism. Intuitively, when β →∞ or the
state space is high-dimensional (e.g., image), Equation (4)
will be dominated by the difference in s, and it reduces to be-
havioral cloning (Pomerleau, 1991), which has been proved
to be effective on some tasks in TD3+BC (Fujimoto & Gu,
2021); when β → 0, Equation (4) will ignore the difference
in s and it reduces to regularizing π such that π(s) is close
to at least one action in D. However, in-distribution actions
are coupled with states. Thus this reduced regularization
may not sufficiently constrain the policy from OOD actions.
With a proper β, our state-aware regularization will allow
π to learn optimal actions from a different state but still
maintain enough conservatism.

3.2. A Practical Algorithm

Equation (4) can be combined with any modern actor-critic
algorithm, such as TD3 (Fujimoto et al., 2018) or SAC
(Haarnoja et al., 2018). In this paper, we choose TD3 due to
its simplicity and high performance.

Let θ1, θ2, ϕ be the parameters of TD3’s two Q-networks
and the policy network, respectively; and θ′1, θ

′
2, ϕ

′ denote
the corresponding target networks’ parameters. TD3 uses
the following TD error to update Qθ1 and Qθ2 :

LTD(θi) = E(s,a,r,s′,d)∼D

[
(Qθi(s, a)− y(r, s′, d))

2
]
,

(5)
where y(r, s′, d) = r + γ(1 − d)mini Qθ′

i
(s′, a′), a′ =

clipA(πϕ′(s′) + ϵ), ϵ ∼ clipc(N (0, σ̃2))3, i ∈ {1, 2}.
σ̃ and c are two hyper-parameters for exploration. To update
the policy πϕ, TD3 uses the loss below:

LTD3(ϕ) = Es∼D,ã=πϕ(s)[−Qθ1(s, ã)]. (6)

Combining Equation (4) and Equation (6), we get the fol-
lowing policy update loss for offline RL:

LPRDC(ϕ) = λLTD3(ϕ) + LDC(ϕ). (7)

Following TD3+BC (Fujimoto & Gu, 2021), we set λ =
αN∑

si,ai
Q(si,ai)

with α a hyper-parameter and N the batch

size. The pseudo-code is summarized in Algorithm 1.

3The function clipX(·) clips its input into [−X,X].

3

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

Algorithm 1 PRDC
1: Input: Initial policy parameters ϕ, Q-function parame-

ters θ1, θ2, offline dataset D, hyper-parameters α, β, τ .
2: Set θ′1 ← θ1, θ′2 ← θ2, ϕ′ ← ϕ.
3: for step t = 1 to T do
4: Sample a mini-batch of transitions {(s, a, r, s′, d)}

from D.
5: Update θi, i ∈ {1, 2} using gradient descent with

Equation (5).
6: Use KD-Tree to find the nearest neighbor in D of

every (s, πϕ(s)).
7: Update ϕ using gradient descent with Equation (7).
8: Update target network with θ′1 ← τθ1 + (1− τ)θ′1,

θ′2 ← τθ2 + (1− τ)θ′2, ϕ′ ← τϕ+ (1− τ)ϕ′.
9: end for

Remark 3.2 (Highly efficient implementation). Our method
requires searching (s, πϕ(s))’s nearest neighbor inD, which
will be time-consuming if D is large. To speed up the
search, we use KD-Tree (Bentley, 1975). KD-Tree has a
time complexity ofO(M log |D|) for every nearest neighbor
retrieval in average, where M is the feature dimension size.
It can greatly improve the run time.

3.3. Theoretical Analysis

We will begin with a quantitative analysis of why our
method, PRDC, can alleviate the value overestimation issue.
Then we will give a performance gap between the learned
policy πϕ and the behavior policy µ.

Definition 3.3 (Lipschitz function). A function f from S ⊂
Rm into Rn is called a Lispschitz function if there is a real
constant K ≥ 0 such that

∥f(x)− f(y)∥ ≤ K∥x− y∥,

for all x, y ∈ S. K is called the Lipschitz constant. Unless
explicitly stated, we onward use ∥ · ∥ to denote the L2 norm.

We make the following assumptions about the Q-function,
the behavior policy µ, and the transition function P .

Assumption 3.4. Suppose that the Q-function we learn is a
Lipschitz function with KQ the Lispchitz constant, i.e.,

∥Q(s1, a1)−Q(s2, a2)∥ ≤ KQ∥s1 ⊕ a1 − s2 ⊕ a2∥,

for all (s1, a1), (s2, a2) ∈ S ×A.

Assumption 3.5. Suppose that µ is deterministic and a
Lipschitz function with Kµ the Lispchitz constant, i.e.,

∥µ(s1)− µ(s2)∥ ≤ Kµ∥s1 − s2∥,

for all s1, s2 ∈ S.

Assumption 3.6. ∀a1, a2 ∈ A, there exists a positive con-
stant KP such that

∥P(s′|s, a1)− P(s′|s, a2)∥ ≤ KP∥a1 − a2∥,

for any s, s′ ∈ S.

Since we often use neural networks or linear models to
parameterize the value function and policy, Assumption 3.4
and Assumption 3.5 can be easily satisfied (Gouk et al.,
2021). Assumption 3.6 is standard in the theoretical studies
of RL (Dufour & Prieto-Rumeau, 2013).

Theorem 3.7. Let maxs∈S dβD(s, πϕ(s)) ≤ ϵ, which can
be achieved by PRDC. Then with Assumption 3.4 and As-
sumption 3.5, we have

∥Q(s, πϕ(s))−Q(s, µ(s))∥ ≤ ((Kµ + 2)/β + 1)KQϵ,
(8)

for any s ∈ S.

The proof is in Appendix A. Recall that the one-step TD
update in Equation (3) requires Q̂π(s′, π(s′)) to be an ap-
proximately correct estimate of Qπ(s′, π(s′)). (Li et al.,
2022) has shown that Q̂π will have low approximation er-
rors on in-distribution samples. Although (s′, µ(s′)) may
not exist in D, we could still treat it as an in-distribution
sample since s′ ∈ D and D is constructed by µ. That is,

Q̂π(s′, µ(s′)) ≈ Qπ(s′, µ(s′)). (9)

Suppose that µ satisfies Assumption 3.5, and both Qπ and
Q̂π satisfies Assumption 3.4. Then with Theorem 3.7, we
have that

Q̂π(s′, π(s′)) ≈ Q̂π(s′, µ(s′)), (10)

Qπ(s′, π(s′)) ≈ Qπ(s′, µ(s′)). (11)

Combining Equation (9), Equation (10), and Equation (11),
we get Q̂π(s′, π(s′)) ≈ Qπ(s′, π(s′)). We thus conclude
that PRDC can alleviate the value overestimation issue.

Theorem 3.8 (Performance gap of PRDC). With Assump-
tion 3.5 and Assumption 3.6, let maxs∈S dβD(s, πϕ(s)) ≤ ϵπ
and maxs∈S |π∗(s)− µ(s)| ≤ ϵopt, which can be achieved
by PRDC. Then we have

|J(π∗)− J(π)| ≤ CKPRmax

1− γ

[
(1 +

Kµ

β
)ϵπ + ϵopt

]
,

(12)
where C is a positive constant.

We defer the proof to Appendix A. From Theorem 3.8, we
see that the performance gap is inversely related to β. How-
ever, as discussed in 3.1, a small β may not keep the pol-
icy from OOD actions and thus degrades the performance.
With a proper β, our method can reach higher performance

4

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

than TD3+BC (corresponding to β → ∞). Moreover, for
any state s, if we assume that there exists another state-
action pair (s̃, ã) ∈ D such that ã is the optimal action
for state s, then with a properly selected β, we can get
that (s̃, ã) = argmin(ŝ,â)∈D dβD(s, π(s)), where we use
(ŝ, â) ∈ D to denote all the state-action pairs in D. Regular-
izing π(s) toward ã will eventually give us an optimal policy.
That is, we can obtain a zero performance gap between π∗

and π under the assumption above.

4. Related Work
Policy regularization is a typical way in offline RL to avoid
OOD actions. The basic idea is to augment an actor-critic
algorithm with a penalty measuring the divergence of the
policy from the offline dataset (Kostrikov et al., 2021a).
One of the first policy regularization methods in offline RL
is BCQ (Fujimoto et al., 2019). BCQ firstly uses CVAE
(Sohn et al., 2015) to fit the behavior policy µ and then
learns the policy π, which has a similar distribution to that
of µ. Nevertheless, the fitting error will backpropagate to π
and eventually affect π’s performance. TD3+BC (Fujimoto
& Gu, 2021) adds a behavioral cloning (Pomerleau, 1991)
term to the policy improvement loss of TD3 (Fujimoto et al.,
2018), successfully constraining π without an explicit fit
of µ. Although simple, TD3+BC achieves competitive re-
sults on the Gym-MuJoCo suite of the D4RL benchmark
(Fu et al., 2020), compared with state-of-the-art methods.
TD3+BC shows that even a simple regularization term can
achieve superior performance, which greatly inspires the
designation of our method.

Both BCQ and TD3+BC constrain π to match µ’s distri-
bution. However, distribution constraint limits π’s perfor-
mance since it cannot distinguish the optimal actions from
the poor ones. To this end, BEAR (Kumar et al., 2019) uses
the maximum mean discrepancy divergence (MMD) (Gret-
ton et al., 2012) with a Gaussian kernel as the f -divergence
to constrain π. Empirically, they found that when computing
MMD over a small number of samples, the sampled MMD
between µ and π was similar to the MMD between the sup-
ports of µ and π. In their experiments, they showed that this
support constraint could find optimal policies even when
the offline dataset D was composed of several sub-optimal
behaviors. Our method motivates from a quite different
perspective. It is neither a distribution constraint method
nor a support constraint method. Instead, we constrain π
with the whole dataset D. Moreover, we want to learn op-
timal actions from all those in D instead of just those in a
particular state. For a thorough overview of existing offline
RL methods and their difference from ours, we recommend
referring to (Prudencio et al., 2022).

Apart from policy regularization, there are also some works
associated with dataset constraint. (Goyal et al., 2022) aug-

mented an RL agent with a retrieval process (parameterized
as a neural network) that has direct access to a dataset of
experiences. They tested the retrieval process in multi-task
offline RL settings, showing that it could learn good task
representations. However, it is about something other than
regularizing the policy from OOD actions. (Humphreys
et al., 2022) proposed to search the dataset for the current
state’s nearest neighbor, which would be fed as an additional
input into the policy and value networks. They use SCaNN
(Guo et al., 2020) for fast approximate nearest-neighbor
retrieval, while we use KD-Tree to speed up the retrieval for
the exact nearest neighbor.

5. Experiments
In this section, we will conduct extensive evaluations of the
empirical performance of our method, PRDC. We would
like to answer the following questions:

(i) How does PRDC perform on the generally used bench-
marks? (Section 5.1)

(ii) Can PRDC learn optimal actions, even when they only
come with different states in the dataset? (Section 5.2)

(iii) Does PRDC really alleviate the value overestimation
issue? (Section 5.3)

(iv) How does the additional hyper-parameter β influence
PRDC’s performance? (Section 5.4)

Due to the nearest neighbor searching operation in Equa-
tion (4), PRDC may be time-consuming if not implemented
well. Therefore, we present an empirical comparison of the
running time of PRDC and existing methods (Section 5.5).

5.1. Main Results on Benchmark

First,we choose a set of locomotion and navigation tasks
from the D4RL benchmark (Fu et al., 2020) to be the testbed
of performance comparison. All datasets take the ”-v2”
version. Below is a brief introduction to the baselines:

• BC (Pomerleau, 1991), which uses mean squared error
(MSE) minimization to regress the behavior policy.

• BCQ (Fujimoto et al., 2019), which firstly uses CVAE
(Sohn et al., 2015) to fit µ and then learns a π similar to µ.

• BEAR (Kumar et al., 2019), which regularizes the policy
with its MMD with a Gaussian kernel to the behavior policy.

• AWAC (Nair et al., 2020), which applies a KL divergence
constraint in the policy improvement step.

• CQL (Kumar et al., 2020), which learns a conservative
Q-function that lower-bounds the policy’s true value.

• IQL (Kostrikov et al., 2021b), which uses expectile regres-

5

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

Table 1. Average normalized score over the final 10 evaluations and 5 seeds. Scores with the highest mean are highlighted.

Task Name BC BCQ BEAR AWAC CQL IQL TD3+BC SPOT PRDC (Ours)

halfcheetah-random 0.2 8.8 15.1 — 20.0 11.2 11.0 — 26.9± 1.0
hopper-random 4.9 7.1 14.2 — 8.3 7.9 8.5 — 26.8± 9.3
walker2d-random 1.7 6.5 10.7 — 8.3 5.9 1.6 — 5.0± 1.2
halfcheetah-medium 42.6 47.0 41.0 43.5 44.0 47.4 48.3 58.4 63.5± 0.9
hopper-medium 52.9 56.7 51.9 57.0 58.5 66.2 59.3 86.0 100.3± 0.2
walker2d-medium 75.3 72.6 80.9 72.4 72.5 78.3 83.7 86.4 85.2± 0.4
halfcheetah-medium-replay 36.6 40.4 29.7 40.5 45.5 44.2 44.6 52.2 55.0± 1.1
hopper-medium-replay 18.1 53.3 37.3 37.2 95.0 94.7 60.9 100.2 100.1± 1.6
walker2d-medium-replay 26.0 52.1 18.5 27.0 77.2 73.8 81.8 91.6 92.0± 1.6
halfcheetah-medium-expert 55.2 89.1 38.9 42.8 91.6 86.7 90.7 86.9 94.5± 0.5
hopper-medium-expert 52.5 81.8 17.7 55.8 105.4 91.5 98.0 99.3 109.2± 4.0
walker2d-medium-expert 107.5 109.5 95.4 74.5 108.8 109.6 110.1 112.0 111.2± 0.6
antmaze-umaze 65.0 73.0 56.7 84.8 88.2 91.3 93.5 98.8± 1.0
antmaze-umaze-diverse 55.6 61.0 61.0 49.3 43.3 66.7 54.6 40.7 90.0± 6.8
antmaze-medium-play 0.0 0.0 0.0 0.0 65.2 70.4 0.0 74.7 82.8± 4.8
antmaze-medium-diverse 0.0 0.0 8.0 0.7 54.0 74.6 0.0 79.1 78.8± 6.9
antmaze-large-play 0.0 6.7 0.0 0.0 18.8 43.5 0.0 35.3 54.8± 10.9
antmaze-large-diverse 0.0 2.2 0.0 1.0 31.6 45.6 0.0 36.3 50.0± 5.4

sion4 to learn the policy without evaluating OOD actions.

• TD3+BC (Fujimoto & Gu, 2021), which adds an addi-
tional BC regularization term to TD3’s policy update loss.

• SPOT (Wu et al., 2022), which explicitly models the
support set of π and presents a density-based regularization.

We then train PRDC for 1M steps over five seeds on every
dataset, with the implementation details deferred to Ap-
pendix B. The average normalized scores in the final ten
evaluations are shown in Table 1, where we use the scores
from (Prudencio et al., 2022) for AWAC, the scores from
(Wu et al., 2022) for SPOT, and all other baselines take the
results reported in (Li et al., 2022). From Table 1, we can
see that PRDC performs well and achieves state-of-the-art
performance in 13 out of 18 total tasks.

5.2. Generalization

To test whether PRDC can learn optimal actions even when
they do not appear with the current state but only with differ-
ent states in the dataset, we create a lineworld environment
inspired by (Kumar, 2019). It is a deterministic environ-
ment, with 102 cells of length 1 connected from left to right.
The state space is continuous and in [0, 101]5, where the
initial state randomly falls at [0, 1]. The action space is also

4See http://www.sp.unipg.it/surwey/events/
28-tutorial.html for a tutorial on expectile regression.

5We use [a, b] to denote the set {x|a ≤ x ≤ b, x ∈ R} and
(a, b] to denote the set {x|a < x ≤ b, x ∈ R}.

Table 2. Accomplishments of BEAR, TD3+BC, and PRDC on
lineworld-easy, lineworld-medium, lineworld-hard and lineworld-
superhard.

√
means accomplish, while × means not.

BEAR TD3+BC PRDC
lineworld-easy

√ √ √

lineworld-medium ×
√ √

lineworld-hard × ×
√

lineworld-superhard × ×
√

continuous and in [−1, 1], where a positive action means the
agent goes right and a negative action means it goes left. At
every step, the reward is 100 if the agent reaches the goal,
i.e., its state falls at (100, 101]; otherwise the reward is 0.
The episode ends only if the agent reaches the goal or the
episode length exceeds 105.

We collect four datasets on lineworld. They are named
lineworld-easy, lineworld-medium, lineworld-hard, and
lineworld-superhard in order based on their difficulties. A
visual illustration and description of them are in Figure 2.
We then train BEAR, TD3+BC, and PRDC for 10k steps on
each of the four datasets and evaluate the learned policies
for ten episodes over five seeds when the training finishes.
Moreover, the method accomplishes the task only when the
learned policy successfully reaches the goal in all the 5×10
evaluations. The result is shown in Table 2, where we can
see that only PRDC can always learn an optimal policy even
on the most difficult lineworld-superhard task.

6

http://www.sp.unipg.it/surwey/events/28-tutorial.html
http://www.sp.unipg.it/surwey/events/28-tutorial.html

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

… Goal

0 1 2 3 100 101

: action “left”

(a) lineworld-easy

… Goal

0 1 2 3 100 101

: action “right”

(b) lineworld-medium

… Goal

0 1 2 3 100 101

(c) lineworld-hard

… Goal

0 1 2 3 100 101

(d) lineworld-superhard

Figure 2. Compositions of four lineworld datasets. In all of the four datasets, the actions are in {−1,+1}. (a) lineworld-easy: the
states are in {0, 1, 2, 3, · · · , 100}, where at each state, the ratio of action −1 and +1 is 1 : 99. (b) lineworld-medium: The states are in
{1, 3, 5, 7, · · · , 99}, where at each state, the ratio of action −1 and +1 is 1 : 1. (c) lineworld-hard: the states are in {1, 3, 5, 7, · · · , 99},
where at each state, the ratio of action −1 and +1 is 99 : 1. (d) lineworld-superhard: the states are in {0, 1, 2, 3, · · · , 100}. If the states
are in {1, 3, 5, 7, · · · , 99}, the ratio of action −1 and +1 is 99 : 1. If the states are in {0, 2, 4, 6, · · · , 100}, all actions are −1. In all the
four datasets, we collect 100 samples for every state if there has actions.

Goal…

0 1 2 3 100 101

(a) BEAR on lineworld-medium

Goal…

0 1 2 3 100 101

(b) TD3+BC on lineworld-hard

Goal…

0 1 2 3 100 101

(c) PRDC on lineworld-superhard

Figure 3. Visualization of the learned policy by BEAR, TD3+BC, and PRDC on selected tasks. (a) On the lineworld-medium task, BEAR
outputs [−ϵ, ϵ] whatever the input state is, where ϵ is a small positive number. (b) On the lineworld-hard task, TD3+BC always outputs
−1. (c) On the lineworld-superhard task, PRDC always outputs +1. That is, only PRDC has learned an optimal policy.

The policies learned by all three methods are visualized in
Figure 3. BEAR fails on line-medium where the ratio of
action−1 and +1 is 1 : 1. BEAR always outputs actions ap-
proaching 0, the average of−1 and +1. The MMD distance
minimization objective in BEAR will converge to action 0 if
not combined with RL optimization. While in this lineworld
environment, the reward is sparse, and the regularization
is too conservative. Thus the RL optimization may make
little difference. The same reason applies to why TD3+BC
always outputs actions approaching −1 on lineworld-hard,
where the ratio of action −1 and +1 is 99 : 1. On the other
hand, PRDC can learn an optimal policy that always outputs
action +1. But from Figure 2(d), we see that there are no
action +1 if the state is in {0, 2, 4, · · · , 100} and it only
comes with states in {1, 3, 5, · · · , 99}. Thanks to the softer
nearest neighbor regularization, PRDC can learn optimal
actions even when they never occur with the current state.

5.3. Value Estimation Error

As discussed in Section 2.3, value overestimation is a detri-
mental issue in offline RL. Theoretical analysis in Sec-
tion 3.3 has shown that PRDC can alleviate this issue. Here
is some empirical evidence. Since PRDC is built upon TD3,

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

50

100

150

200

250

300

Es
tim

at
ed

 V
al

ue

PRDC (estimated)
PRDC (true)
TD3 (estimated)
TD3 (true)

Figure 4. Comparison of PRDC’s estimated value, PRDC’s true
value, TD3’s estimated value, and TD3’s true value.

we train PRDC and TD3 on the hopper-medium-v2 dataset
for 1M steps. During training, we randomly sample 10
states from the initial state distribution every 5k steps and
predict actions on these states by the current policy. We then
get these state-action pairs’ mean estimated Q-value. True
values are gotten by Monte Carlo roll out (Sutton & Barto,
2018). The result is shown in Figure 4, where we see that
our proposed point-to-set distance regularization effectively
improves the value overestimation problem.

7

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

0 2 4 6 8 10
Mean Point-to-set Distance

0

10

20

30

40

50

60
N

or
m

al
iz

ed
 R

et
ur

n
AWAC
TD3+BC
CQL
IQL

Figure 5. Normalized returns and mean point-to-set distances of
baseline methods during training.

Regarding the point-to-set distance, we also observe an in-
teresting phenomenon. We re-train AWAC, CQL, TD3+BC,
and IQL on the hopper-medium-v2 dataset for 3k steps.
All methods take the implementations from https://
github.com/tinkoff-ai/CORL. During training,
we evaluate the policy every 100 steps. We collect all the
generated state-action pairs in the evaluation and calculate
their mean point-to-set distance with β = 1. Figure 5
illustrates the result. From it we can observe an inverse
relationship between the policy’s normalized return and the
mean point-to-set distance, which empirically motivates us
that the point-to-set distance minimization objective is a
reasonable target. Moreover, we speculate that this inverse
relationship exists because a small mean point-to-set dis-
tance corresponds to an accurate value function, on which
the policy update will return us a safely improved policy.

5.4. Sensitivity on the Hyper-parameter β

The hyper-parameter β controls how much conservatism is
imposed when updating policy. To see how it influences
the policy’s performance, we conduct an ablation study
of β on the hopper, halfcheetah, and walker2d datasets.
We train PRDC on each dataset for 1M steps with β ∈
{0.1, 1, 2, 5, 10, 1000} and keep other hyper-parameters the
same. Section 5.4 shows some of the results, with the com-
plete results deferred to Appendix C.

From Section 5.4, we can see: (i) When β is 0.1, PRDC
performs bad. It is because a small β will ignore the differ-
ence in the state when searching for the nearest neighbor.
However, in-distribution actions are coupled with states.
Thus just constraining the policy to output an action that has
occurred in the dataset may not be enough to avoid OOD
actions. (ii) When β is 1000, PRDC performs not well.
A large β is too conservative. (iii) When β ∈ {1, 2, 5},
PRDC performs well. We also observe that PRDC has high
performance in a wide range of β on all datasets, meaning
we do not need much effort to tune it.

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n = 0.1

 = 1
 = 2
 = 5
 = 10
 = 1000

Figure 6. Performances of PRDC on hopper-medium-v2 with dif-
ferent β, a hyper-parameter in Definition 3.1.

5.5. Run Time

Time complexity is also a challenge in offline RL. We run
PRDC and baselines on the same dataset and machine for
1M steps. Baseline implementations are the same as those
in Section 5.3. The result is shown in Figure 7, where
we can read that PRDC runs at an acceptable speed and
even performs faster than CQL on the hopper-medium-v2
dataset. Thanks to KD-Tree, we have a highly efficient
implementation of PRDC.

0 1 2 3 4 5
Time (h)

TD3+BC

AWAC

IQL

PRDC

CQL

Figure 7. Run time of PRDC and baselines on hopper-medium-v2.

6. Discussion
Currently, the dataset constraint is implemented as the near-
est neighbor restriction. However, our fundamental idea of
dataset constraint is to leverage as much information as pos-
sible while constraining the policy into the dataset. To this
end, one direct idea is to search for more than one nearest
neighbor and use them together to construct a new constraint.
Nevertheless, how to aggregate multiple nearest neighbors
needs further consideration. We made a naive attempt by
regularizing the policy towards the k nearest neighbors’ av-
erage action with different k ∈ {1, 2, 4}. Due to the space
limit, we defer the result to Figure 9 in Appendix C. From
Figure 9, we see that this average action restriction does
not improve or even hurt the performance, perhaps due to

8

https://github.com/tinkoff-ai/CORL
https://github.com/tinkoff-ai/CORL

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

the non-optimal ones in actions of the k nearest neighbors.
Indeed, the aggregation of regularization on multiple near-
est neighbors is a promising direction worth in-depth study.
Moreover, parameterizing the searching process as a neural
network and learning to retrieve information optimally from
the dataset is also worth investigating.

Although we have shown that an efficient implementation
can effectively speed up PRDC in Figure 7, the nearest
neighbor retrieval may still be a bottleneck to minimizing
run time, especially when the dataset is large or the states are
high-dimensional images. Some ideas from existing studies
may help. For example, we can learn a low-dimensional
representation, which is then used to calculate the point-to-
set distance. We can also use methods like SCaNN for fast
approximate nearest neighbor retrieval.

These further discussions are beyond the scope of this paper,
and we leave them for future works.

7. Conclusion
We propose dataset constraint, a new type of policy regu-
larization method. Unlike the commonly used distribution
constraint and support constraint, which limit the policy to
actions that have occurred with the current state, the pro-
posed dataset constraint is less conservative and allows the
policy to learn from all actions in the dataset. Empirical and
theoretical evidence shows that the dataset constraint can
effectively alleviate offline RL’s fundamentally challenging
value overestimation issue. It is simple and effective with
new state-of-the-art performance on the D4RL (Fu et al.,
2020) benchmark but only one additional hyper-parameter
compared to (Fujimoto & Gu, 2021). Overall, this is the first
attempt to constrain the policy from a dataset perspective
in offline RL. We hope our work can inspire more relevant
research as stated in Section 6.

Acknowledgements
This work is supported by the National Key R&D Program
of China (2022ZD0114804), the National Science Founda-
tion of China (62276126), and the Fundamental Research
Funds for the Central Universities (14380010). The authors
would like to thank Chengxing Jia, Chenxiao Gao, Chenghe
Wang, and the anonymous reviewers for their support and
helpful discussions on improving the paper.

References
An, G., Moon, S., Kim, J., and Song, H. O. Uncertainty-

based offline reinforcement learning with diversified q-
ensemble. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 7436–7447, 2021.

Bentley, J. L. Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18
(9):509–517, 1975.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. OpenAI Gym.
arXiv Preprint arxiv:1606.01540, 2016.

Chen, S., Yu, Y., Da, Q., Tan, J., Huang, H., and Tang,
H. Stabilizing reinforcement learning in dynamic envi-
ronment with application to online recommendation. In
International Conference on Knowledge Discovery and
Data Mining (KDD), pp. 1187–1196, 2018.

Dufour, F. and Prieto-Rumeau, T. Finite linear program-
ming approximations of constrained discounted markov
decision processes. SIAM Journal on Control and Opti-
mization, 51(2):1298–1324, 2013.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. Journal of Machine Learn-
ing Research, 6:503–556, 2005.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4RL: Datasets for deep data-driven reinforcement
learning. arxiv Preprint arxiv:2004.07219, 2020.

Fujimoto, S. and Gu, S. S. A minimalist approach to offline
reinforcement learning. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), pp. 20132–20145,
2021.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing
function approximation error in actor-critic methods. In
International Conference on Machine Learning (ICML),
pp. 1582–1591, 2018.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Inter-
national Conference on Machine Learning (ICML), pp.
2052–2062, 2019.

Gouk, H., Frank, E., Pfahringer, B., and Cree, M. J. Regu-
larisation of neural networks by enforcing lipschitz conti-
nuity. Machine Learning, 110(2):393–416, 2021.

Goyal, A., Friesen, A. L., Banino, A., Weber, T., Ke, N. R.,
Badia, A. P., Guez, A., Mirza, M., Humphreys, P. C.,
Konyushkova, K., Valko, M., Osindero, S., Lillicrap,
T. P., Heess, N., and Blundell, C. Retrieval-augmented
reinforcement learning. In International Conference on
Machine Learning (ICML), pp. 7740–7765, 2022.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B.,
and Alexander, S. A kernel two-sample test. Journal of
Machine Learning Research, 13(1):723–773, 2012.

9

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

Guo, R., Sun, P., Lindgren, E., Geng, Q., Simcha, D., Chern,
F., and Kumar, S. Accelerating large-scale inference with
anisotropic vector quantization. In International Con-
ference on Machine Learning (ICML), pp. 3887–3896,
2020.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In International Con-
ference on Machine Learning (ICML), pp. 1856–1865,
2018.

Humphreys, P. C., Guez, A., Tieleman, O., Sifre, L., Weber,
T., and Lillicrap, T. Large-scale retrieval for reinforce-
ment learning. arxiv Preprint arxiv:2206.05314, 2022.

Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably
efficient for offline RL? In International Conference on
Machine Learning (ICML), pp. 5084–5096, 2021.

Kostrikov, I., Fergus, R., Tompson, J., and Nachum, O. Of-
fline reinforcement learning with fisher divergence critic
regularization. In International Conference on Machine
Learning (ICML), pp. 5774–5783, 2021a.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforce-
ment learning with implicit Q-learning. In International
Conference on Learning Representations (ICLR), 2021b.

Kumar, A. Data-driven deep reinforcement learning.
https://bair.berkeley.edu/blog/2019/
12/05/bear/, 2019.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.
Stabilizing off-policy Q-learning via bootstrapping error
reduction. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 11761–11771, 2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative Q-learning for offline reinforcement learning.
In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arxiv Preprint arxiv:2005.01643, 2020.

Li, J., Zhan, X., Xu, H., Zhu, X., Liu, J., and Zhang, Y.
Distance-sensitive offline reinforcement learning. In
NeurIPS’22 Workshop on Deep RL, 2022.

Li, Z., Cheng, X., Peng, X. B., Abbeel, P., Levine, S.,
Berseth, G., and Sreenath, K. Reinforcement learning
for robust parameterized locomotion control of bipedal
robots. In International Conference on Robotics and
Automation (ICRA), pp. 2811–2817, 2021.

Lyu, J., Ma, X., Li, X., and Lu, Z. Mildly conservative Q-
learning for offline reinforcement learning. arxiv Preprint
arxiv:2206.04745, 2022.

Nair, A., Dalal, M., Gupta, A., and Levine, S. Accelerating
online reinforcement learning with offline datasets. arxiv
Preprint arxiv:2006.09359, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. PyTorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems (NeurIPS), pp.
8024–8035. 2019.

Pomerleau, D. Efficient training of artificial neural networks
for autonomous navigation. Neural Computation, 3(1):
88–97, 1991.

Prudencio, R. F., Máximo, M. R. O. A., and Colombini,
E. L. A survey on offline reinforcement learning: Tax-
onomy, review, and open problems. arXiv Preprint
arxiv:2203.01387, 2022.

Ruder, S. An overview of gradient descent optimization
algorithms. arxiv Preprint arxiv:1609.04747, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T. P., Hui, F., Sifre, L.,
van den Driessche, G., Graepel, T., and Hassabis, D.
Mastering the game of Go without human knowledge.
Nature, 550(7676):354–359, 2017.

Singh, S., Jaakkola, T. S., Littman, M. L., and Szepesvári,
C. Convergence results for single-step on-policy
reinforcement-learning algorithms. Machine Learning,
38(3):287–308, 2000.

Sohn, K., Lee, H., and Yan, X. Learning structured output
representation using deep conditional generative models.
In Advances in Neural Information Processing Systems
(NIPS), pp. 3483–3491, 2015.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction (Second Edition). MIT press, 2018.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics en-
gine for model-based control. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp.
5026–5033, 2012.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,

10

https://bair.berkeley.edu/blog/2019/12/05/bear/
https://bair.berkeley.edu/blog/2019/12/05/bear/

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020.

Wu, J., Wu, H., Qiu, Z., Wang, J., and Long, M. Supported
policy optimization for offline reinforcement learning.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 31278–31291, 2022.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arxiv Preprint
arxiv:1911.11361, 2019.

Xiong, H., Xu, T., Zhao, L., Liang, Y., and Zhang, W. Deter-
ministic policy gradient: Convergence analysis. In Con-
ference on Uncertainty in Artificial Intelligence (UAI), pp.
2159–2169, 2022.

Yang, R., Bai, C., Ma, X., Wang, Z., Zhang, C., and Han,
L. RORL: robust offline reinforcement learning via con-
servative smoothing. arxiv Preprint arxiv:2206.02829,
2022.

Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine, S.,
and Finn, C. COMBO: conservative offline model-based
policy optimization. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 28954–28967, 2021.

11

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

A. Proofs
Lemma A.1. For ∀a, b ∈ R+, the following inequality holds,√

a2 + b2 ≤ a+ b.

Lemma A.2 (Triangle inequality). For ∀x, y ∈ Rm, the following inequality holds,

∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Lemma A.3. For ∀(s, a), (ŝ, â) ∈ S ×A, if ∥(βs)⊕ a− (βŝ)⊕ â∥ ≤ ϵ, β > 0, ϵ > 0, then the following inequalities hold,

• ∥s− ŝ∥ ≤ ϵ/β,

• ∥a− â∥ ≤ ϵ,

• ∥s⊕ a− ŝ⊕ â∥ ≤ (1/β + 1)ϵ.

Proof. Since β > 0, we have
β∥s− ŝ∥ ≤ ∥(βs)⊕ a− (βŝ)⊕ â∥ ≤ ϵ.

By dividing both sides of the above inequality by β, we achieve ∥s− ŝ∥ ≤ ϵ/β. Similarly, we can get ∥a− â∥ ≤ ϵ. Thus,

∥s⊕ a− ŝ⊕ â∥ ≤ ∥s− ŝ∥+ ∥a− â∥ ≤ (1/β + 1)ϵ,

where the first inequality comes from Lemma A.1.

Theorem 3.7. Let maxs∈S dβD(s, πϕ(s)) ≤ ϵ, which can be achieved by PRDC. Then with Assumption 3.4 and Assump-
tion 3.5, we have

∥Q(s, πϕ(s))−Q(s, µ(s))∥ ≤ ((Kµ + 2)/β + 1)KQϵ, (8)

for any s ∈ S.

Proof. Let
(ŝ, â) = argmin

(ŝ,â)∈D
dβD(s, π(s)),

where â = µ(ŝ). By expanding the left side of Equation (8), we get

∥Q(s, πϕ(s))−Q(s, µ(s))∥ = ∥Q(s, πϕ(s))−Q(ŝ, â) +Q(ŝ, â)−Q(s, µ(s))∥
(i)

≤ ∥Q(s, πϕ(s))−Q(ŝ, â)∥+ ∥Q(ŝ, â)−Q(s, µ(s))∥
(ii)

≤ KQ(∥s⊕ π(s)− ŝ⊕ â∥+ ∥ŝ⊕ µ(ŝ)− s⊕ µ(s)∥)
(iii)

≤ KQ ((1/β + 1)ϵ+ ∥ŝ⊕ µ(ŝ)− s⊕ µ(s)∥)
(iv)

≤ KQ ((1/β + 1)ϵ+ ∥ŝ− s∥+ ∥µ(ŝ)− µ(s)∥)
(v)

≤ KQ ((1/β + 1)ϵ+ ∥ŝ− s∥+Kµ∥ŝ− s∥)
(vi)

≤ ((Kµ + 2)/β + 1)KQϵ.

Here, (i) is due to Lemma A.2; (ii) is due to Assumption 3.4; (iii) is due to Lemma A.3; (iv) is due to Lemma A.1; (v) is
due to Assumption 3.5; and (vi) is due to Lemma A.3.

Lemma A.4. For function f : S ⊂ Rm → R, we have that∣∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)|dx,

where a ≤ b, and [a, b] ⊆ S.

12

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

Proof. For any x ∈ S, the following inequality holds,

−|f(x)| ≤ f(x) ≤ |f(x)|.

Thus,

−
∫ b

a

|f(x)|dx ≤
∫ b

a

f(x)dx ≤
∫ b

a

|f(x)|dx.

Therefore, ∣∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)|dx.

Thus, we finish the proof.

Lemma A.5 (Lemma 1 of (Xiong et al., 2022)). With Assumption 3.6, the following inequality holds,∫
S
|dπ(s)− dµ(s)|ds ≤ CKP max

s∈S
∥π(s)− µ(s)∥,

where C is a positive constant.

Proof. Please see the appendix of (Xiong et al., 2022).

Lemma A.6. Let maxs∈S dβD(s, πϕ(s)) ≤ ϵ, which can be acvieved by PRDC. Then with Assumption 3.5, we have

∥π(s)− µ(s)∥ ≤ (1 +
1

Kµ
β)ϵ,∀s ∈ S,

Proof. We follow a similar proof of Theorem 3.7. Let

(ŝ, â) = argmin
(ŝ,â)∈D

dβD(s, π(s)),

where â = µ(ŝ). Then,
∥π(s)− µ(s)∥ = ∥π(s)− µ(ŝ) + µ(ŝ)− µ(s)∥

(i)

≤ ∥π(s)− µ(ŝ)∥+ ∥µ(ŝ)− µ(s)∥
(ii)

≤ ∥π(s)− µ(ŝ)∥+Kµ∥ŝ− s∥
(iii)

≤ (1 +
Kµ

β
)ϵ.

Here, (i) is due to Lemma A.2; (ii) is due to Assumption 3.5; and (iii) is due to Lemma A.3.

Theorem 3.8 (Performance gap of PRDC). With Assumption 3.5 and Assumption 3.6, let maxs∈S dβD(s, πϕ(s)) ≤ ϵπ and
maxs∈S |π∗(s)− µ(s)| ≤ ϵopt, which can be achieved by PRDC. Then we have

|J(π∗)− J(π)| ≤ CKPRmax

1− γ

[
(1 +

Kµ

β
)ϵπ + ϵopt

]
, (12)

where C is a positive constant.

Proof. With Lemma A.2, we have

|J(π∗)− J(π)| = |J(π∗)− J(µ) + J(µ)− J(π)|
≤ |J(π∗)− J(µ)|+ |J(π)− J(µ)|.

(13)

13

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

We first bound |J(π)− J(µ)|. By taking into Equation (2), we get

|J(π)− J(µ)| =
∣∣∣∣ 1

1− γ
Es∼dπ(s)[r(s)]−

1

1− γ
Es∼dµ(s)[r(s)]

∣∣∣∣ds
=

1

1− γ

∣∣∣∣∫
S
(dπ(s)− dµ(s))r(s)ds

∣∣∣∣
(i)

≤ 1

1− γ

∫
S
|dπ(s)− dµ(s)||r(s)|ds

≤ Rmax

1− γ

∫
S
|dπ(s)− dµ(s)|ds.

(ii)

≤ CKPRmax

1− γ
max
s∈S
∥π(s)− µ(s)∥

(iii)

≤ CKPRmax

1− γ
(1 +

Kµ

β
)ϵπ.

(14)

Here, (i) is due to Lemma A.4; (ii) is due to Lemma A.5; and (iii) is due to Lemma A.6.

Similarly, we have that

|J(π∗)− J(µ)| ≤ CKPRmax

1− γ
ϵopt. (15)

Thus,

|J(π∗)− J(π)| ≤ CKPRmax

1− γ

[
(1 +

Kµ

β
)ϵπ + ϵopt

]
. (16)

The proof is finished.

B. Implementation Details
We implement PRDC based on the author-provided implementation of TD3+BC6, and the KD-tree implementation comes
from SciPy (Virtanen et al., 2020). The full hyper-parameters setting is in Table 3.

B.1. Software

We use the following software versions:

• Python 3.8

• MuJoCo 2.2.0 (Todorov et al., 2012)

• Gym 0.21.0 (Brockman et al., 2016)

• MuJoCo-py 2.1.2.14

• PyTorch 1.12.1 (Paszke et al., 2019)

B.2. Hardware

We use the following hardware:

• NVIDIA RTX A4000

• 12th Gen Intel(R) Core(TM) i9-12900K
6https://github.com/sfujim/TD3_BC

14

https://github.com/sfujim/TD3_BC

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

C. More Results
C.1. Sensitivity on the Hyper-paramter β

This section investigates how β influences the policy’s performance. On the hopper, halfcheetah, and walker2d (-random-
v2, -medium-replay-v2, -medium-v2, -medium-expert-v2) datasets, we train PRDC for 1M steps over 5 seeds with
β ∈ {0.1, 1, 2, 5, 10, 1000} and keep other hyper-parameters the same. The result is shown in Figure 8. Apart from the
discussion in Section 5.4, we notice that PRDC performs better on the random datasets when β ∈ {0.1, 1, 2} than when
β ∈ {5, 10, 1000}. The reason is that a bigger β makes the regularization in Equation (4) more like behavior cloning
(Pomerleau, 1991). However, on the random datasets, behavior cloning will return a poor policy. On the other hand, a
smaller β will leave more room for RL optimization.

C.2. k Nearest Neighbor Constraint

This section investigates whether more than one nearest-neighbor constraint can improve the policy’s performance. To this
end, we modify the regularization defined in Equation (4) to minimize the distance between π(s) and the average action of
(s, π(s))’s k nearest neighbors. That is, we define a new regularization as

min
ϕ
L(ϕ) := ∥π(s)− a∥, (17)

where a denotes the average action of (s, π(s))’s k nearest neighbors.

We choose k ∈ {1, 2, 4} and train PRDC for 1M steps on the hopper, halfcheetah, and walker2d (-random-v2, -medium-
replay-v2, -medium-v2, -medium-expert-v2) datasets. The result is shown in Figure 9, where we see that this average action
regularization does not improve the performance on almost the tasks. The learning curves become much more unstable,
where we speculate that it is because there are non-optimal ones in the actions of the k nearest neighbors.

Table 3. Full hyper-parameters setting of PRDC.

Hyper-parameters Value

Network

Actor learning rate 3× 10−4

Critic learning rate 3× 10−4 for MuJoCo
1× 10−3 for AntMaze

Batch size 256
Optimizer Adam
Q-network 3 layers ReLU activated MLPs with 256 units

Policy Network 3 layers ReLU activated MLPs with 256 units

TD3

Critic learning rate 0.99 for MuJoCo
0.995 for AntMaze

Number of iterations 106

Target update rate τ 0.005
Policy noise 0.2

Policy noise clipping 0.5
Policy update frequency 2

PRDC

Normalized state True
k 1

β
2.0 for MuJoCo

{2.0, 7.5, 15.0} for AntMaze {umaze, medium, large}

α
2.5 for MuJoCo

{2.5, 7.5, 20.0} for AntMaze {umaze, medium, large}

15

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

2

4

6

8

10

12

14

16

N
or

m
al

iz
ed

 R
et

ur
n

 = 0.1
 = 1
 = 2
 = 5
 = 10
 = 1000

(a) walker2d-random-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

5

10

15

20

25

30

35

N
or

m
al

iz
ed

 R
et

ur
n

(b) halfcheetah-random-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

5

10

15

20

25

30

N
or

m
al

iz
ed

 R
et

ur
n

(c) hopper-random-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

20

40

60

80

N
or

m
al

iz
ed

 R
et

ur
n

(d) walker2d-medium-replay-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

10

20

30

40

50

N
or

m
al

iz
ed

 R
et

ur
n

(e) halfcheetah-medium-replay-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

(f) hopper-medium-replay-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

20

40

60

80

N
or

m
al

iz
ed

 R
et

ur
n

(g) walker2d-medium-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

10

20

30

40

50

60

N
or

m
al

iz
ed

 R
et

ur
n

(h) halfcheetah-medium-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

(i) hopper-medium-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

(j) walker2d-medium-expert-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

20

40

60

80

N
or

m
al

iz
ed

 R
et

ur
n

(k) halfcheetah-medium-expert-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

(l) hopper-medium-expert-v2

Figure 8. Performances of PRDC with different β, a hyper-parameter in Definition 3.1.

16

Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

1

2

3

4

5

6

7

N
or

m
al

iz
ed

 R
et

ur
n

k = 1
k = 2
k = 4

(a) walker2d-random-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

5

10

15

20

25

30

N
or

m
al

iz
ed

 R
et

ur
n

(b) halfcheetah-random-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

5

10

15

20

25

30

N
or

m
al

iz
ed

 R
et

ur
n

(c) hopper-random-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

20

40

60

80

N
or

m
al

iz
ed

 R
et

ur
n

(d) walker2d-medium-replay-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

10

20

30

40

50

60

N
or

m
al

iz
ed

 R
et

ur
n

(e) halfcheetah-medium-replay-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

(f) hopper-medium-replay-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

20

40

60

80

N
or

m
al

iz
ed

 R
et

ur
n

(g) walker2d-medium-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

10

20

30

40

50

60

N
or

m
al

iz
ed

 R
et

ur
n

(h) halfcheetah-medium-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

(i) hopper-medium-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

0

20

40

60

80

100

120

N
or

m
al

iz
ed

 R
et

ur
n

(j) walker2d-medium-expert-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

20

30

40

50

60

70

80

90

N
or

m
al

iz
ed

 R
et

ur
n

(k) halfcheetah-medium-expert-v2

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training Steps

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

(l) hopper-medium-expert-v2

Figure 9. Performances of PRDC with k nearest neighbors constraint.

17

