
DrawEduMath: Evaluating Vision Language
Models with Expert-Annotated Students’

Hand-Drawn Math Images

Sami Baral□∗ Li Lucy△∗

Ryan Knight+ Alice Ng= Luca Soldaini÷

Neil T. Heffernan□ Kyle Lo÷

□Worcester Polytechnic Institute △University of California Berkeley
+Insource Services =Teaching Lab ÷Allen Institute for AI

Abstract

In real-world settings, vision language models (VLMs) should robustly handle
naturalistic, noisy visual content as well as domain-specific language and concepts.
For example, K-12 educators using digital learning platforms may need to examine
and provide feedback across many images of students’ math work. To assess the
potential of VLMs to support educators in settings like this one, we introduce

DrawEduMath, an English-language dataset of 2,030 images of students’ hand-
written responses to K-12 math problems. Teachers provided detailed annotations,
including free-form descriptions of each image and 11,661 question-answer (QA)
pairs. These annotations capture a wealth of pedagogical insights, ranging from
students’ problem-solving strategies to the composition of their drawings, diagrams,
and writing. We evaluate VLMs on teachers’ QA pairs, as well as 44,362 syn-
thetic QA pairs derived from teachers’ descriptions using language models (LMs).
We show that even state-of-the-art VLMs leave much room for improvement on

DrawEduMath questions. We also find that synthetic QAs, though imperfect, can
yield similar model rankings as teacher-written QAs. We release DrawEduMath
to support the evaluation of VLMs’ abilities to reason mathematically over images
gathered with educational contexts in mind.

Heffernan-WPI-Lab/DrawEduMath
allenai/DrawEduMath

1 Introduction

As AI models demonstrate growing proficiency in mathematical reasoning, there is a corresponding
rise in AI-powered tools designed to enhance math education [21, 12, 14, 34]. For example, AI
systems have the potential to provide immediate feedback on students’ work [5], or shed insight on
common misconceptions [16]. These trends prompt critical questions about the ability of current
models to handle real-world math problems, such as those encountered in classrooms and tutoring
sessions, as opposed to curated problems found in popular benchmarks like GSM8k [8] and MATH
[19]. We present DrawEduMath, a collection of 2,030 images of K-12 math problems paired with
images of handwritten, hand-drawn responses to these problems by real student users of an online
learning platform. This collection encompasses a diverse array of mathematical concepts, educational
standards, and problem types. We supplement all images with the following:
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38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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LM Rewrites 
Descriptions into QA

Teachers Describe Students’ Responses

Q: What word did the student 
write on the left-hand side of the 
image?

A: Syrup

Q: How are the two number lines 
arranged in the image?

A: On top of each other

Q: Does each number line have 
arrows at the ends?

A: Yes

Q: What are the labels on the tick 
marks of the bottom number line?

A: 0, 6, 9, 12, 14

Q: Which tick mark has the 
student drawn a circle around on 
each number line?

A: The second tick mark

Q: Does the recipe 
maintain the ratio of 9 
cups of seeds to 6 
tablespoons of syrup?

A: The recipe doesn't 
maintain the ratio of 9 
cups of seeds to 6 
tablespoons of syrup.

Q: Is the recipe smaller 
than 9 cups of seeds 
and 6 tablespoons of 
maple syrup?

A: The recipe is smaller 
than 9 cups of seed and 
6 tablespoons of maple 
syrup.

Q: What recipe did the 
student come up with?

A: The recipe the 
student came up with 
is 6 cups of seed and 3 
tbsp of maple syrup. 

Q: What type of 
diagram did the 
student include to 
support their answer?

A: The diagram used 
to support their 
answer is a double-
number line.

Q: What are the labels on the tick 
marks of the top number line?

A: 0, 3, 6, 9, 12

Teachers Write QA

This is a natural handwritten image. On the left-hand side of the image, the student wrote the word 
syrup. Next to that, there are two horizontal number lines which are arranged on top of each other. 
Each number line has arrows at each end and has tick marks that are aligned between the two 
numbers, between the two number lines. The numbers on the top of the number, the tick marks on 
the top of the number line are labeled 0, 3, 6, 9, 12, and the tick marks on the bottom number line are 
labeled 0, 6, 9, 12, and 14. The student has drawn a circle around the second tick mark on each 
number line.

Figure 1: Each image in our dataset is a concatenation of a math problem on the left with a student
response on the right. Teachers describe the student’s response to the problem, and then a model,
such as GPT-4o shown here, writes QA pairs extracted from facets of the description. More example
images, along with teacher-written QA, are shown in Figure 3.

1. Detailed descriptions provided by teachers, capturing all elements of the student’s hand-
written responses, including the students’ approach, possible misconceptions, and mistakes
made during problem-solving.

2. Question-answer (QA) pairs, some of which are written by teachers and some generated
through an LM-based pipeline. The latter involves identifying key facets in teachers’
descriptions and restructuring them into questions and answers.

3. Metadata for each image, encompassing the type of problem, corresponding educational
standards or grade level, topical categories, and other relevant information.

In this work, we detail our benchmark creation process (§3), which aims to balance educators’
expertise and the scalability of LM-based data generation and judgement (§4). We then use

DrawEduMath to evaluate the capabilities of current VLMs to interpret the content of students’
handwritten responses (§6). We find that though models can identify superficial aspects of images
such as paper type and drawing medium, they struggle on questions related to the correctness of
students’ responses. In addition, closed models such as Claude and GPT-4o tend far outperform
open-source Llama 3.2-11B. Overall, we hope that this work will facilitate further research on VLMs’
abilities to support students’ math learning in diverse, real-world educational settings.

2 Related Work

AI for Math Education. The advent of large language models (LLMs) has transformed online
learning platforms [1, 11, 44, 18] by introducing automated tools for error identification [16, 43, 37],
feedback provision [30], student response scoring [4], and curriculum adaptation [28], primarily for
typed answers. However, most math instruction in traditional classrooms still relies on handwritten
problem-solving, posing challenges due to the unstructured nature of handwritten content and a
lack of annotated datasets [3]. Existing math datasets, such as GSM8k [8] or MATH [19], focus on
K-12 content but often lack input from educators, leaving a gap in aligning AI research with the
classroom realities. While the recent advancements in multimodel LLM capabilities allow for the
interpretation of complex images [46], their effectiveness in understanding student handwritten math
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Math Domain Images Example Words or Phrases in Teachers’ Annotations of Images
Ratios & Proportions 29.9% proportional relationship, cups, proportional reasoning, 4x, equivalent ratios, corresponding values,

scoops, double number, multiplicative relationship, proportional line
Geometry 24.4% xyz, x’y’z’, isosceles triangle, perpendicular bisector, rigid transformation, equilateral triangle,

original triangle, two quadrilaterals, equilateral triangles, original image
Expressions & Equations 14.7% negative infinity, connected rectangles, x+1, 5x, x., number line, arrow pointing, horizontal rectangle
The Number System 9.5% vertical number, shaded sections, five sections, negative integers, negative numbers, algorithm

subtraction, incorrect representation, positive numbers, rectangular model, division algorithm
Number & Operations,
Fractions

6.6% fraction strips, whole numbers, fractional parts, rectangular fraction, equivalent fractions, mark,
identical rectangles, horizontal rectangle, equivalent fraction, tick

Table 2: The top five most frequent math domains, as defined by CCSS, that appear DrawEduMath.
Example words or phrases were obtained by applying the phrasemachine text analysis tool [17] on
teachers’ descriptions and answers. The examples shown have the highest TF-IDF scores within each
domain and occur across at least two problems’ images. Percentages show the relative frequency of
each domain across all annotated images.

remains uncertain. This paper aims to address this gap by contributing a benchmark created by real
students and teachers.

Vision-language Evaluation and Benchmarks. The growth of pretrained VLMs accompanies the
growth of vision-language benchmarks, e.g. MMMU [45], DocVQA [32], and VQA [15]. Within
the domain of math, notable examples include MathVista [25], GeoQA [7], Geometry3k [26], and
MathVerse [46]. Many of these prior visual math benchmarks, however, focus on images where
mathematical information is shown in a standardized or typed manner. In contrast, the images
in our dataset consist mostly of handwriting and drawings across different paper, lighting, and
digitization types. In addition, our focus on problem solving strategies and pedagogy allows our
annotations to go beyond optical character recognition emphasized in previous handwritten datasets
[9, 29, 24, 48, 35, 31, 13].

3 The DrawEduMath Dataset

Our dataset begins by sampling images of K-12 students’ responses to math problems, followed by
two rounds of annotation by teachers. During annotation, we ask teachers to both describe students’
responses and write a few QA pairs for each image. Overall, teachers’ annotations mention a variety
of K-12 mathematical concepts and representations (Table 2). In total, this process yields 2,030
described images and 11,661 teacher-written QA pairs (Table 3, Table 6).

3.1 Sampling Students’ Math Images
Students’ Math Images

# of annotated images 2,030
# of math problems 188
Avg # of images per problem 12.64
% of problems in Grades 2-5 34.6
% of problems in Grades 6-8 81.4
% of problems in High School 10.1
# of math standards covered 86
# of math domains covered 12

Table 1: Key data statistics pertaining to students’
math images included in DrawEduMath.

Our dataset consists of 2,030 images of U.S.-
based students’ handwritten math responses to
188 math problems spanning Grade 2 through
high school (Table 1). These images were ini-
tially collected on the ASSISTments [18] on-
line learning platform, where students receive
feedback from teachers on assigned work. The
problems that accompany each student response
are drawn from three overlapping1 open educa-
tional resources (OER): Eureka Math, Open Up
Resources, and Illustrative Math. Metadata linked to these problems include Common Core State
Standards (CCSS) labels, which indicate specific K-12 math skills or concepts targeted in problems
[39]. Initially, the data provided by the learning platform comprised approximately 60,000 images
across 188 problems, with an average of 300 images per problem. From this, we randomly sampled
15 images per problem. To ensure student privacy, undergraduate research assistants cropped the
images to include only the math content and removed any personally identifiable information, such as
students’ hands, by covering them with dark rectangles. Our use of these images was deemed exempt
from review by our institution’s institutional review board; see more discussion in §9.

1OER materials may reuse or adapt problems from each other; hence, some problems in our dataset appear
across more than one content source.
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3.2 Collecting Teachers’ Annotations

Figure 2: For some annotators, their
recorded descriptions of images are longer
or require less time than typed ones. Anno-
tation length is calculated based on white-
spaced-separated tokens.

We hired three NYC-based math teachers from Teach-
ing Lab, a nonprofit professional learning organization,
to describe each image. We paid teachers over $200
USD per hour. Each teacher had at least 6 years of
experience in math education, with two teachers spe-
cializing in middle school and one teacher in grades
5-12. Teachers annotated images on a custom website,
and were asked to describe an image as thoroughly
as possible so that another teacher could recreate it
without viewing it. The annotation website presented
an image concatenating the original problem with a
student’s response, followed by a text box for typed
notes and a speech recording module. Teachers also
noted whether an image is too blurry for annotation and
flagged any PII, adding an extra security layer to our
initial PII removal process §3.1.

Some annotations were obtained by transcribing record-
ings of teachers’ spoken descriptions, while others were
typed into an text box. We offered the option of both annotation modalities because spoken de-
scriptions are sometimes faster to obtain and result in longer annotations [38, 10], but typing gives
teachers the flexibility to annotate in noisy environments and reduces the risk of transcription errors;
see comparison in Figure 2. We obtained similar amounts of typed and recorded image descriptions
(Table 3). Full annotation instructions, a screenshot of our setup, and additional details on our data
collection process can be found in Appendix A.1.

Over the course of two months, teachers annotated 2,376 images of students’ responses. After
removing images that were deemed too blurry or failed a secondary PII check, our final dataset
consists of 2,030 images paired with math teachers’ descriptions.

3.3 Revising and Augmenting Annotations
Teachers’ Annotations

First round

Avg minutes spent per image 2.0
Total words in descriptions 228k
Avg description length 111.1
% of descriptions typed 46.7
% of descriptions transcribed 53.3

Second round

Avg minutes spent per image 4.3
Total words in descriptions 222k
Avg description length 109.5
% of descriptions left unchanged 94.2
Median edit distance of changed descriptions 48.5
# of teacher-written QA pairs 11,661
Avg # of teacher-written QA per image 5.74
Avg length of teacher-written questions 12.7
Avg length of teacher-written answers 16.2

Table 3: Key data statistics pertaining to
the collection of teachers’ language for

DrawEduMath. Word counts and text
lengths are determined using white-space
delineated tokens.

During a second data collection phase, teachers aug-
mented and revised existing annotations. This second
phase of annotation required twice as much time per
example than the first one (Table 3). So, to complete
this phase, we recruited five additional teachers from
the same professional learning organization as we did
in §3.2. Each of these additional teachers had at least 9
years of experience in math education spanning the UK
and several U.S. states, including two from the NYC
area. Grade level expertise among these five teachers
include one in 9-12, one in 5-12, two in K-8, and one
in K-12.

Revising Teachers’ Initial Descriptions. During re-
annotation, teachers were allowed to revise the image’s
description, to correct possible transcription errors or
other clarity issues that arose during initial annotations.
The vast majority (>90%) of image descriptions were
not edited, and when edits were made, the Levenshtein
distance between old and new descriptions was typically small (Table 3). Through qualitative
inspection of edits, most were typo corrections, e.g. rose → rows or three four → three fourths.

Adding Teacher-written QA. The main part of our second annotation round focuses on augmenting
descriptions with questions teachers may ask about students’ responses. We asked teachers to come
up with questions that they would naturally ask when examining student responses and were provided
with example topics, such as whether the student demonstrated a mathematical concept or made
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The error the student made 
in their response is marking 
each part 1/4.

What errors does the student make in their response?

The error the student made 
was labeling the parts 1/4 
and not shading.

The error the student made 
is representing this problem 
with 1/2.

Figure 3: Examples of teacher’s answers to a question asking about possible errors in students’
responses to math problems. All three examples of students’ hand-drawn responses are for the same
math problem asking students to draw and shade units on fraction strips to show 4 thirds, shown on
the left.

a common error for a problem type. This top-down data collection approach in this second round
complements the bottom-up, description-based approach emphasized in the first round §3.2, and may
cater more towards potential uses of VLM-based systems for educators.

First, teachers propose questions based on math problems in our dataset. Given a problem, teachers
write up to five questions they may have about any student’s response to that problem (Figure 1).
Then, we present teachers with images of students’ responses annotated in §3.2, and ask them to write
answers to each problem-specific question based on what they observe in each student’s response.
Two additional questions, What errors does the student make in their response? and What strategy
does the student use to solve the problem? were answered for all problems and student responses
(Figure 3), and teachers also had the option to add up to two additional image-specific question-answer
pairs. Across all 2,030 images, teachers augmented our DrawEduMath with 11,661 QA pairs.

4 Scaling Data with Synthetic QAs

Descriptions → Synthetic QA pairs
# of Claude-generated QA pairs 21,089

Avg # of Claude’s QA per image 10.3
Avg length of Claude’s questions 10.6
Avg length of Claude’s answers 2.2

# of GPT-4o-generated QA pairs 23,273
Avg # of GPT-4o’s QA per image 11.5
Avg length of GPT-4o’s questions 10.4
Avg length of GPT-4o’s answers 3.0

Table 4: Key data statistics pertaining to
synthetic QA pairs in DrawEduMath.
Word counts for determining lengths are
based on white-space delineated tokens.

Writing numerous QA pairs for visual benchmark cre-
ation is more time-intensive than describing images in
a free-form manner (Table 3). Inspired by [6], who in-
troduce a scalable workflow for generating VQA bench-
marks from image captions, we use LMs to transform
teachers’ descriptions into synthetic QAs.

Transforming Descriptions to QA Pairs. We
prompt Claude-3.5 Sonnet and GPT-4o to first decom-
pose captions into “facets”, or atomicized snippets of in-
formation, and rewrite these facets into question-answer
(QA) pairs [6] (Figure 1). The prompts were iteratively
refined with input from an expert teacher to enhance
the quality of the generation responses. Specifically,
the models were instructed to generate self-contained facets and corresponding QA pairs, avoiding
open-ended questions or those with multiple correct answers. The full prompt we used for this data
transformation step can be found in Appendix B.

We obtain a total of 44,362 synthetically created QA pairs (Table 4). On average, LM-generated QA
had much shorter answers than those written by teachers, due to instructions preferring conciseness
included in our description-to-QA prompt. Shorter answers are more suitable for reference-based
evaluation with lightweight metrics such as string or ngram matching, but longer answers by teachers
contain more rich and detailed information.

Quality Assessment of Synthetic QA. Two annotators examined a sampled set of QA pairs
outputted from our description-to-QA pipeline to assess their quality. These annotators have com-
plementary backgrounds, both of which are valuable for examining the application of VLMs for
education: one has worked as a K-12 math teacher (Evaluator A), and another has worked on
technology applications for educators (Evaluator B). For each image and QA pair, we ask: 1) Can
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this question be answered by the provided image? and 2) Is the provided answer correct? 100 QA
pairs were randomly sampled, evenly split between GPT-4o and Claude 3.5, with annotators each
reviewing 50 pairs. Instructions for synthetic QA assessment can be found in Appendix D.1.

Despite some variability in annotators’ judgments, the majority of QA pairs are answerable and
correct (Table 5).

Can this Q be answered? Is the provided A correct?
A B A B

Yes 50 41 Yes 47 43
No 0 9 No 3 7

Table 5: Quality assessment of questions (Q)
and answers (A) extracted by Claude & GPT-
4o from teachers’ descriptions of students’ re-
sponses.

From qualitative inspection, unanswerable ques-
tions tend to be those where the referent of mentions
is ambiguous without additional context. For ex-
ample, a question may ask, Where does the second
arrow point?, but it may be unclear which of the
overlapping arrows in the image is the “second” one.
So, “unanswerability” relates to the extent to which
one infers ambiguous referents through pragmatic
convention; for example, the first piece in a row of
rectangles may be the one furthest left, and the first
triangle in a geometric transformation may be the preimage. As for incorrect answers, Evaluator B
marked some answers as incorrect due to the question being unanswerable. A few incorrect answers
emerged from what appeared to be genuine annotation mistakes. For example, in one case, the anno-
tator excluded the label on one tick mark in their annotation, and so the extracted QA’s answer missed
one value. Overall, we hope our inclusion of teachers’ original descriptions in DrawEduMath can
facilitate future improvements to the scaling of VQA benchmark creation.

5 Building a Taxonomy of Question Types

To document what types of questions show up in DrawEduMath and better understand which
questions may be more difficult for models than others, we group questions into several categories.
We defined question categories in an iterative manner mixing qualitative and quantitative approaches,
akin to [36], who reframe content analysis into pattern detection, refinement, and confirmation steps.
During pattern detection, we qualitatively code a combined pool of generated and teacher-written
questions. To efficiently observe a range of common yet distinctive question patterns during this
coding step, we sampled ten questions from clusters of questions’ sentence embeddings [42].2 We
obtained these clusters using k-means with k=30, and embed questions after masking out their
nouns,3 so that we can examine problem-agnostic question patterns shared across different math
domains. For example, questions that start with How many..., Into how many..., and What is the total...
would occur in the same embedding cluster.

Next, for category refinement and confirmation, we recoded our observations into possible question
types for GPT-4o to categorize. We iterated over question types and categorization prompts by
running GPT-4o on smaller samples of 500 to 2000 questions. Proposing more fine-grained or more
numerous question categories led to less cleanly delineated outputs, and so we aimed for category
definitions that led to reasonable groupings. Our final prompt can be found in Appendix B.

Our resulting taxonomy of questions separates them into seven categories: 1) higher-level under-
standing of math content, 2) low-level content composition & positioning, 3) writing & labels, 4)
problem solving steps, strategy, & solution, 5) counting content, 6) image creation & medium, and
7) correctness & errors (Table 6). In particular, the first two categories are designed to separate out
questions that involve some mathematical reasoning from those that do not. For example, What is the
slope of the line requires knowing what a slope is and how it’s depicted in a graph, while questions
that differentiate left from right pertain to more basic spatial understanding.

As shown in Table 6, (1) we find little difference in QA generation behavior between our two choices
of LM, and (2) teachers’ questions focus more on students’ problem-solving steps and response
correctness, while synthetic questions have a different emphasis.4 An eighth category, “Other”, which

2Specifically, the all-mpnet-base-v2 embedding model.
3Nouns were detected using a spaCy part-of-speech tagger.
4The percentages for teacher QA shown in Table 6 do not include the two questions answered across all

images.
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Question Type Claude GPT-4o Teacher Examples
Higher-level
understanding of
math

26.7% 25.7% 18.8% What type of mathematical representation has the student drawn on the paper?
What is the slope of the line passing through (0,-5) and (4,-4)? Is the student’s
image a third or a half of the original ratio to get 1 batch of light yellow paint?

Low-level
composition and
positioning

21.9% 20.0% 11.4% In the third row, where does the student place the number 3? Does the tens
place in 15,420 line up beneath the tens place in 1542? Are the two pieces in
the student’s tape diagram equal or unequal in size?

Writing and
labels

14.6% 16.1% 17.3% What number is written in front of Pam’s rectangle, after the label ‘Pam’? What
range of numbers is labeled on each number line? What did the student label
the top of the rectangle?

Problem solving
steps, strategy,
and solution

9.2% 10.5% 23.2% How does placing 26 directly above 25 help the student? Does the student start
solving the problem with exact calculations or estimations? What method is the
student using to prove that 3/50 equals 0.06?

Counting content 10.5% 9.1% 5.7% What is the total number of shaded-in pieces? How many tick marks are in
between 2 and 3? How many rows and columns does the array have?

Image creation
and medium

15.0% 16.0% 0.0% Is the student work drawn on graph paper or blank paper? On what surface is
the image drawn? Are both triangles in the image pre-printed or is one drawn
by the student?

Correctness and
errors

1.7% 1.5% 23.0% Does the student get the correct or incorrect answer when adding 30 and 15
together? Did the student keep track of where all the vertices are supposed to
be after rotation? Did the student correctly apply the scale factor of 1/2?

Table 6: The most common question types in our visual QA benchmark, along with examples of
questions categorized within each type. The percentages shown are the proportion of questions
across all images within each QA-writing (Claude-generated, GPT-4o-generated, or teacher-written)
workflow.

we asked GPT-4o to use if a question fits into none of the provided categories, only makes up 0.4%,
1.1%, 0.6% of Claude, GPT-4o, and teacher-written questions, respectively.

6 Evaluating Vision Language Models with DrawEduMath

GPT-4o QA Claude QA Teacher QA

Model BERT ROUGE-L LLM Human BERT ROUGE-L LLM Human BERT ROUGE-L LLM Human
(n=31) (n=31) (n=63)

GPT-4o 0.835 0.544 0.700 0.742 0.843 0.599 0.743 0.677 0.752 0.199 0.628 0.524
Claude 3.5 Sonnet 0.856 0.537 0.697 0.871 0.883 0.608 0.732 0.742 0.754 0.202 0.657 0.587

Gemini 1.5 Pro 0.815 0.461 0.627 0.774 0.826 0.514 0.665 0.581 0.711 0.118 0.490 0.365
Llama 3.2-11B V 0.731 0.174 0.368 0.387 0.729 0.176 0.408 0.323 0.785 0.253 0.296 0.127

Table 7: Overall evaluation results for models across different VQA datasets generated by GPT4o,
Claude, and human teachers. The table presents evaluations using automated metrics (BERTSCORE,
ROUGEL), as well as assessments from LLMs and human evaluators. Bold is the max score across
each metric.

Experimental Setup. To assess the capability of recent visual language models (VLMs) in inter-
preting students’ handwritten math work, we run several VLMs on DrawEduMath. We experiment
with four VLMs: three commercial models—GPT-4o, Claude 3.5 Sonnet [2], and Gemini 1.5 Pro
[41]—alongside open-source Llama 3.2-11B Vision [33]. To select a prompt for running our experi-
ments, we iterated over three possible prompts for each model on samples of data and selected the
best-performing prompt across them. Our final prompt asks a model to succinctly answer a given
question based on the student’s response in a provided image (Appendix C).

Automatic Evaluation. To compare VLMs’ answers against gold ones, we employ three automatic
metrics: (i) ngram matching via ROUGE-L [23], (ii) answer embedding similarity via BERTSCORE5

[47], and (iii) LLM-based similarity judgements using Mixtral 8x22B [20]. Our prompt for the latter
can be found in Appendix C, and asks models to rate the level of similarity between two answers
given a question on a scale of 1 (Quite different answers) to 4 (Basically the same). When reporting
results, we binarize these outputs so that 1-2 is counted as incorrect, and 3-4 are counted as correct.

Human Evaluation. To validate our use of reference-based automatic metrics, 5 authors annotated
a random sample of 500 QA responses, where 50% are teacher-written QA, 25% are Claude-generated

5With distilbert-base-uncased embedding model.
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GPT-4o Claude 3.5 Sonnet Gemini 1.5 Pro Llama 3.2-11B V

Question Type

Correctness & errors 0.525 0.559 0.491 0.610 0.601 0.440 0.402 0.276
Counting content 0.642 0.671 0.516 0.667 0.602 0.578 0.247 0.265

Higher-level understanding 0.696 0.599 0.642 0.605 0.632 0.484 0.333 0.350
Image creation & medium 0.886 -∗ 0.805 -∗ 0.795 -∗ 0.589 -∗

Low-level characteristics 0.674 0.624 0.635 0.660 0.566 0.457 0.402 0.369
Problem strategy & solution 0.758 0.719 0.660 0.740 0.716 0.539 0.406 0.307

Writing & labels 0.711 0.606 0.647 0.620 0.615 0.499 0.338 0.216

Table 8: Comparison of model performance across various question types for GPT4o, Claude3.5
Sonnet, Gemini1.5 Pro, and Llama3.2-11B V. The evaluation includes the average scores from our
LLM evaluator across QA pairs generated synthetically by GPT4o and Claude3.5 combined ( ) or
by teachers ( ). Examples of each question type listed above can be found in Table 6. The max
score is bolded and the min is underlined across each QA and VLM. *For teacher-written QA, this
question type had too few examples for robust performance estimates.

QA, and 25% are GPT-4o-generated QA. We stratify sample examples across all four VLMs. Then,
annotators complete two tasks. First, given a question and a VLM’s answer, we ask: Is the provided
answer correct? Second, given the gold answer and the VLM’s answer, we ask: Do these two answers
match? Full instructions can be found in Appendix D.2. We ask these questions to identify cases
where VLMs give correct answers that differ from gold standards, which we find only occurs in 36
out of 500 examples (7.2%).

Assessing Our Automatic Metrics. We compute Spearman correlations between automatic and
human estimates of models’ performance across teacher-, Claude-, and GPT-4o-generated QA sets
and models, and find that LLM-based judgements are most similar to that of humans (ρ = 0.801),
followed by ROUGE-L (ρ = 0.472) and then BERTSCORE (ρ = 0.348). In addition, across all 500
human-annotated model responses, binarized LLM-based judgements achieve a high accuracy of
0.896 and F1 score of 0.907 with respect to matching the human judgment.6

Results and Findings. We observe a range of performance across VLMs, most notably a gap
between Llama 3.2 compared to closed-source alterantives (Table 7). BERTSCORE and ROUGE-L
are able to differentiate models when judging synthetic QA, but they are less able to do so with
teacher-written QA. According to our LLM-based evaluator, all three QA sets rank models similarity.
In addition, questions pertaining to the correctness and errors tend to be most challenging for models,
across both synthetic and teacher-written QA (Table 8). Thus, though synthetic QA can be noisy (§4),
it can illuminate some differentiation of models’ abilities.

Our human evaluation of models’ responses surfaced a few additional observations around why and
how models made errors. One common error involved models not being able to interpret dark images,
even though their contents were visible to human annotators. Interestingly, we also found cases
where models would answer a question correctly mathematically, but incorrectly with respect to the
students’ response. For example, to the question Which whole number corresponds to 18/6 on the
number line?, all VLMs responded with 3, even though the students’ number line shows 18/6 aligned
with 2. Altogether, the wide range of questions and student responses in our dataset can surface
failure modes such as these.

7 Conclusion

Our work introduces a new dataset and benchmark, DrawEduMath, built upon teachers’ annotations
of K-12 students’ handwritten responses to math problems. Overall, we hope our work will inspire
further research for improving VLMs’ capabilities in interpreting and supporting students’ math
learning in diverse real-world educational settings.

8 Limitations

QA Quality and Utility. Our paper involves the lengthy and careful collection of data from teachers,
with the goal of creating a benchmark to assess VLMs’ abilities to interpret students’ handwritten

6Generally, false positives (n = 46) are more common than false negatives (n = 6).
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work. However, every benchmark has a ceiling, and ours is no exception. The synthetic QA we
created from teachers’ descriptions can contain errors (§4), and ensuring that teachers’ annotations
are completely typo-free would require additional rounds of time-intensive proofreading. In addition
to these issues, we made two qualitative observations that speak towards potential limitations of

DrawEduMath for assessing models’ visual understanding of students’ handwritten work. First,
we observed that some questions extracted from teachers’ descriptions did not target content specific
to the students’ response, and instead may test for general mathematical knowledge, e.g. What is a
right angle? Second, models’ performance on some questions, such as the strategy the student used
to solve a problem, should be weighed more heavily than performance on other questions, such as the
type of paper used. We mitigate this concern by proposing a taxonomy of question types, to allow
for more nuance than simply reporting model performance on aggregate. However, we encourage
future work to aim for finer-grained categories to yield richer and more useful insights into model
performance.

9 Ethical Considerations

Risks and Harms of AI in Education. In the context of educational applications, AI models
and systems may be viewed as inherently beneficial or for “social good.” However, given the high-
stakes nature of K-12 pedagogy, the deployment of VLMs, and AI generally, in education should
carefully consider potential risks for harm [22]. For example, some pedagogical paradigms may
have disproportionate influence on data availability and the design of technologies, thus perpetuating
practices that may not cater towards a variety of learners [27]. We acknowledge that the images in our
dataset, which is based on U.S.-centric Common Core math problems, may not cover the many varied
ways in which students practice or learn math. In addition, we advocate for co-design of evaluative
resources with in-domain experts, such as the K-12 teachers in our work.

Data Privacy and Use. Our research has been overseen by our Institutional Review Board (IRB).
Since some students’ images might have PII (i.e., the students name might have been written on the
piece of paper), we conducted extensive rounds of personally identifiable information (PII) removal,
detailed in §3.1. ASSISTments, an online teaching platform, has a history of publishing data (with
PII removed) from the platform for academic use [18]. We coordinated closely with ASSISTments,
the license owner of the images, to establish clear boundaries on data usage and to develop our public
release strategy.

10 Acknowledgements

We would like to thank Doug Jaffe, Laurence Holt, and Cristina Heffernan for their valuable feedback
on the project. We would also like to thank some of our funding from NSF (1931523) and, IES
(R305N210049 and R305T240029), the Jaffe Foundation, the Bill & Melinda Gates Foundation, and
the Tools Competition.

References
[1] John R Anderson, Albert T Corbett, Kenneth R Koedinger, and Ray Pelletier. Cognitive tutors:

Lessons learned. The journal of the learning sciences, 4(2):167–207, 1995.

[2] AI Anthropic. The Claude 3 model family: Opus, Sonnet, Haiku. Claude-3 Model Card, 1,
2024.

[3] Sami Baral, Anthony Botelho, Abhishek Santhanam, Ashish Gurung, Li Cheng, and Neil Hef-
fernan. Auto-scoring student responses with images in mathematics. International Educational
Data Mining Society, 2023.

[4] Sami Baral, Anthony F Botelho, John A Erickson, Priyanka Benachamardi, and Neil T Heffer-
nan. Improving automated scoring of student open responses in mathematics. International
Educational Data Mining Society, 2021.

[5] Anthony Botelho, Sami Baral, John A Erickson, Priyanka Benachamardi, and Neil T Heffernan.
Leveraging natural language processing to support automated assessment and feedback for

9



student open responses in mathematics. Journal of computer assisted learning, 39(3):823–840,
2023.

[6] Soravit Changpinyo, Doron Kukliansy, Idan Szpektor, Xi Chen, Nan Ding, and Radu Soricut.
All you may need for VQA are image captions. In Marine Carpuat, Marie-Catherine de Marn-
effe, and Ivan Vladimir Meza Ruiz, editors, Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 1947–1963, Seattle, United States, July 2022. Association for Computational
Linguistics.

[7] Jiaqi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang, Lingbo Liu, Eric Xing, and Liang
Lin. GeoQA: A geometric question answering benchmark towards multimodal numerical
reasoning. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Findings of
the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 513–523, Online,
August 2021. Association for Computational Linguistics.

[8] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

[9] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: Extending
mnist to handwritten letters. In 2017 International Joint Conference on Neural Networks
(IJCNN), pages 2921–2926, 2017.

[10] Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park,
Mohammadreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, Jiasen Lu, Taira Anderson,
Erin Bransom, Kiana Ehsani, Huong Ngo, YenSung Chen, Ajay Patel, Mark Yatskar, Christopher
Callison-Burch, Andrew Head, Rose Hendrix, Favyen Bastani, Eli VanderBilt, Nathan Lambert,
Yvonne Chou, Arnavi Chheda, Jenna Sparks, Sam Skjonsberg, Michael Schmitz, Aaron Sarnat,
Byron Bischoff, Pete Walsh, Christopher Newell, Piper Wolters, Tanmay Gupta, Kuo-Hao
Zeng, Jon Borchardt, Dirk Groeneveld, Jennifer Dumas, Crystal Nam, Sophie Lebrecht, Caitlin
Wittlif, Carissa Schoenick, Oscar Michel, Ranjay Krishna, Luca Weihs, Noah A. Smith, Hanna
Hajishirzi, Ross Girshick, Ali Farhadi, and Aniruddha Kembhavi. Molmo and pixmo: Open
weights and open data for state-of-the-art multimodal models. 2024.

[11] David Ebert. Graphing projects with desmos. The Mathematics Teacher, 108(5):388–391, 2014.

[12] Bill & Melinda Gates Foundation. Ai-powered innovations in mathematics teaching and
learning: Request for information. 2024. Accessed: 2024-09-19.

[13] Philippe Gervais, Asya Fadeeva, and Andrii Maksai. Mathwriting: A dataset for handwritten
mathematical expression recognition, 2024.

[14] Google. Google learnlm and gemini: How google’s generative ai is transforming learning, 2023.
Accessed: 2024-09-19.

[15] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the
v in vqa matter: Elevating the role of image understanding in visual question answering. In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 6325–6334.
IEEE Computer Society, 2017.

[16] Ashish Gurung, Sami Baral, Morgan P Lee, Adam C Sales, Aaron Haim, Kirk P Vanacore,
Andrew A McReynolds, Hilary Kreisberg, Cristina Heffernan, and Neil T Heffernan. How
common are common wrong answers? crowdsourcing remediation at scale. In Proceedings of
the Tenth ACM Conference on Learning@ Scale, pages 70–80, 2023.

[17] Abram Handler, Matthew Denny, Hanna Wallach, and Brendan O’Connor. Bag of what? simple
noun phrase extraction for text analysis. In David Bamman, A. Seza Doğruöz, Jacob Eisenstein,
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A Annotation Details

A.1 First Round

Figure 4 shows our data collection interface. Our instructions state:

Instructions: Please describe out loud the Student Response on the right side of each image.

The Problem is provided on the left for context. If the Student Response is for a subproblem of a
problem, the subproblem will be contained in a red box.

If you encounter issues that severely affect the quality of your recording, write "rerecord" in the Notes
space so we mark it for re-annotation.

Press "Record" to start your recording.

In addition to the description of the image, we ask teachers to answer two binary yes-no questions: Is
the Student Response too blurry or unreadable? and Does the Student Response include sensitive or
personally identifiable information? Examples of this information include students’/teachers’ names,
emails, parts of people’s hands/faces, or parts of homes/classrooms. Out of 2,376 annotated images,
334 images were deemed too blurry and 4 images were removed by the secondary PII check. Other
descriptions were not included in our final set of 2,030 due to transcription errors and annotation
mistakes marked by teachers themselves.

The interface shown in Figure 4 evolved over the course of our two-month annotation period. After one
week of annotations, we added the blurriness and PII questions so that teachers could communicate
such properties via the interface instead of messaging project authors. In addition, we added a timer at
the bottom of the page to track how long each annotation took, and added a notes box underneath the
image. Initially, teachers were asked to describe all images out loud and submit a recording. Three
weeks after starting annotations, we gave teachers the option to either record or type their description
in the provided text box. Teachers requested this flexibility because they sometimes annotated in
noisy environments. All recordings were transcribed automatically using OpenAI’s Whisper [40].

A.2 Second Round

A.2.1 Writing Problem-specific Questions

For writing problem-specific questions, we redesign our data collection website from Appendix A.1
with a different set of instructions:

Instructions: The image below shows a math problem. If there are multiple problems in the image,
the focus on the one boxed in red.

What are some questions a teacher may ask about students’ responses to this problem?

Propose five or fewer questions. Write one question per line.

Questions should be self-contained. If you want to add follow-up questions to a question, try to write
those follow-ups as standalone questions, if possible.

Questions you ask might target:

• Words and numbers in the image (e.g., what labels are on the student’s number line?)
• Lines and shapes drawn (e.g., did the student redraw the triangles shown in the problem?)
• Mathematical concepts (e.g., what kind of model is drawn in the image?)
• The student’s approach (e.g., did the student use the standard algorithm?)
• Common errors that may arise (e.g. did the student ____ correctly?)
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Figure 4: A screenshot of our recording website, where teachers would view an image from our
dataset and either write or record a description of the student’s response. Typically, “unknown teacher
ID” would include the currently annotating teacher’s ID.

Then, we present teachers a text box to in which they may write their questions. There is no audio
recording option in this annotation step. Teachers can see the total time they have spent so far on a
problem image at the bottom of the page, like they did in the first phase.

A.2.2 Revising Annotations and Answering Teacher-written QA

Figure 5 shows what our annotation interface looks like for revising image descriptions and answering
teacher-written QA. Our instructions state:

Below is a description of the student’s response written or spoken by a teacher. You may edit this
description to correct any information that does not match the image.

{Text box}

Use the image of the student’s response to answer the following questions in full sentences. Please
rephrase the question in your answer, so that it is understandable without knowing the original
question. Scroll to view more questions, as well as the option to add more questions & answers.

At the end of the list of questions, four additional boxes were available for teachers to optionally add
two image-specific questions and answers (one box for the question, one box for the answer, two
pairs of QA total).
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Figure 5: A screenshot of the interface teachers used to write answers to teacher-written questions
about students’ responses. Typically, “unknown teacher ID” would include the currently annotating
teacher’s ID.

B Transforming Descriptions to QA Pairs

The first step in converting teachers’ descriptions of students’ responses into VQA pairs is decom-
posing the teacher-written captions into “facets”, which are atomic descriptions of the information
in the caption. Figure 6 shows our instruction prompt for the GPT4o and Claude 3.5 Sonnet, which
converts teacher-written annotations into atomic facets or topics. The prompt follows a few-shot
strategy, providing an example of a teacher-written caption and a list of atomic topics derived from it.
The examples used in the prompts were curated with the help of an expert teacher.

For QA pair generation, the decomposed facets were again passed to the LLMs, prompting them to
convert each facet into a QA pair. The prompt for this conversion is shown in Figure 7. Like the facet
decomposition process, the prompt uses a few-shot strategy, providing examples of facets and their
corresponding QA pairs, curated with the help of an expert teacher.

We map questions to question types using the prompt shown in Figure 8.

C Model Benchmarking and Evaluation Details

Four vision language models (VLMs), GPT-4o, Claude 3.5 Sonnet, Gemini 1.5 Pro and Llama
3.2-11B Vision Instruct, were evaluated on their ability to interpret images of students’ handwritten
responses using developed QA pairs. Each model was prompted with an image of a student’s response
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Decomposing captions to atomic facets

You are given a caption describing a student’s handwritten math image. This
caption is a paragraph long description about the image. Decompose this caption
into a list of atomic descriptions/facets, where each atomic description/facet
is about only one salient aspect of the image. Each atomic description/facet
should be self-contained and capture only one idea from the caption. One atomic
description/facet should not be a part of another atomic description/facet.
Anyone reading the atomic description/facet should be able to understand the idea
without needing to read the entire caption. The atomic descriptions/facets are
short sentences or clauses extracted, but not inferred, from the given caption.

Output your answer as a list of strings.

For example, given this caption :
{ Example of a teacher written caption}
Generate :
{ Example of a list of atomic facets}

Decompose this caption: {caption}

Figure 6: Prompt for decomposing teacher-written captions for images into atomic facets.

to a math problem and asked to answer a question from the generated QA pairs. The prompt used for
generating answers based on the handwritten responses is shown in Figure 9.

For the evaluation of these models, five authors evaluated a random sample of 500 questions paired
with the students’ handwritten images, comparing the model’s answer with the teacher’s. The
evaluation focused on: (i) the accuracy of the model-generated answer to the handwritten student
response, and (ii) the similarity between the teacher-provided and model-generated answers.

To scale up the evaluation, we employed an LLM to assess the similarity of answers. We prompted
the Mixtral 8x22B model to compare the two answers and provide a similarity score on a Likert scale.
The prompt used for this evaluation is shown in Figure 10. Additionally, two automated metrics,
BERTScore and ROUGEL were used to compare the answers.

D Human evaluation

D.1 Synthetic QA Quality Assessment

When assessing the quality of QA pairs are as follows, annotators are asked to select one bullet for
each task below. The numbers in parentheses accompanying each answer choice indicate the total
number of times that option was chosen by annotators across 100 QA pairs. This assessment step
was done by asking annotators to download Markdown files containing one image and QA pair each,
and mark x in checkboxes.

Task 1: Can this question be answered by the provided image?

Q: a sampled question Q
Response 1:

• Yes, the information in the images is sufficient to answer the question (85)
• No, the information in the images is not necessary to answer the question (6)
• No, the question is not answerable (9)

Task 2: Is the provided answer correct?

Q: Q
A: the answer to Q
Response 2:

• Yes, if an AI model returned this, I would trust it. (82)
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Conversion of atomic facets/topic to QA pairs

You are given a caption describing a student’s handwritten math image. You
are also given a list of short atomic descriptions derived from this caption.
Your task is to generate as many question-answer pairs as you can, with each
question focusing on a different atomic description from the provided list. Each
question must be directly relevant to its corresponding atomic description and
self-contained, meaning that it should be answerable using only the information
provided in that specific atomic description. Ensure each question is clear,
concise, specific and unambiguous. Provide answers that are concise, and
directly address the content of each atomic description. Avoid open-ended or
vague questions, and questions that can have multiple correct answers.
To avoid having questions with multiple correct answers possible, frame a
question as an alternative question with two mutually exclusive options, one
of the options being the answer.
Eg: Instead of generating open ended question as this: “Where is the purple
dot?”, generate close ended question such as: “Is the purple dot to the left or
right of the number line” , and instead of generating: “What type of content is
in the image?”, generate: “Is the content in the image hand-drawn or digital?”

Output your result as a list of JSON objects in the following format:
[{"question": ..., "answer":...}, {"question": ..., "answer":...},...]

For example,
Given the caption:
{ Example Caption }

And the atomic descriptions:
{ Example of a list of atomic facets }

Generate:
{ Example of a list of QA pairs }

Generate question and answer pairs given this image caption:{caption} and the
list of atomic descriptions: {facets}

Figure 7: Prompt for converting atomic facets to QA pairs.

• Maybe, but could be better. If an AI model returned this, I’d tolerate it but still have doubts.
(8)

• No, I can see it trying but it’s wrong. If an AI model returned this, I would distrust it. (9)
• No, this is just irrelevant/weird. (1)

In the main paper, we binarize the responses to Task 1 by treating the first two options above as “Yes”
and the third as “No” to separate out answerable and unanswerable questions. We also binarize Task
2’s responses, by grouping “Yes” with “Maybe” and the two “No” together.

D.2 Evaluating Model Performance

We verify the utility of our automatic evaluation metrics as well as their ranking of models by evalu-
ating 500 model responses. Five annotators responded to the following questions in Markdown files
containing images. Note that Response 1 below has options similar to Response 2 in Appendix D.1.

Task 1: Is the provided answer correct?

Q: a sampled question Q
A: a model M’s answer to Q
Response 1:

• Yes, if an AI model returned this, I would trust it.
• Maybe, but could be better. If an AI model returned this, I’d tolerate it but still have doubts.
• No, I can see it trying but it’s wrong. If an AI model returned this, I would distrust it.
• No, this is just irrelevant/weird.

17



Task 2: Do these two answers match?

Q: Q
A (Teacher): Gold answer to Q
A (Model): M’s answer to Q
Response 2:

• Basically the same answer
• Similar but not same answer
• Neither similar nor different, not sure
• Quite different answers

We binarize the above responses in Task 1 into “correct” and “incorrect” by grouping “Yes” with
“Maybe” and the two “No” together. Similarly, we binarize the responses to Task 2 by grouping
“Basically the same” and “Similar” together, and grouping “Neither” and “Quite different” together.
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Categorizing questions into question types

You are categorizing questions related to assessing and understanding images
of students’ responses to math problems. You will receive a list of question
types lettered A to H, including examples of questions that fall within each type.
Your task is to assign an unlabeled question to a letter representing a question
type.

Here are all possible question types:
A. Questions around how the image or its contents were created, such as medium
or paper type. Examples: "Are the rectangles in the image hand-drawn or
computer-generated?", "Is the image of handwritten student work on a whiteboard
or on paper?", and "Is the student’s handwriting on lined paper or blank paper?".
B. Questions focusing on writing or labels in the image. Examples: "What is
the top of the rectangles labeled with?", "Are the x values from left to right
24, 48, 72, 96, and 108 or 24, 48, 72, 94, and 100?", "Are the disks on the board
numbered or unnumbered?", "Are every consecutive whole number labeled on the
y-axis or only some numbers?", "What fraction is written above the number 1?",
"According to the student’s note, is the table harder or easier to use?", and
"What equation is typed on the page?".
C. Questions inquiring about the low-level composition of drawings/diagrams,
including the positioning of content. These questions should only require
minimal understanding of math concepts. Examples: "Along the number line, has
the student drawn tick marks?", "Which digit in 26 has the student circled?",
"Are the lines completely straight or not entirely straight?", "What color is
the shaded piece in the bottom strip?", "Are the dots arranged randomly or in
groups?", "Are the vertical lines inside the rectangles equally spaced?", "Does
the second arrow go from -6 to +6 or from +6 to -6?", and "In the place value
chart, where does the student write the digit 7?".
D. Questions that involve enumerating visual content. Examples: "How many green
dots are drawn in a row?", "What is the total number of cells in the table?",
"According to the student’s actual drawing, how many groups and how many dots are
in each group?", and "Does the tape diagram drawn by the student have multiple
sections or just one section?".
E. Questions that involve higher-level understanding of math shown in the
student’s response, including knowing what specific content is intended to
represent. Examples: "What is the highest number on the tick marks?", "Are
coordinates given in the image?", "Are the numbers below the line whole numbers
or fractions?", "Which piece is shaded to represent 1 over 4?", "Are all the
angles in the image acute or obtuse?", "3 garlic cloves correspond to how many
tablespoons of olive oil?", "According to row 4, how much is charged for 6
lawns?", and "Is the purpose of this number line to show where to round 26 or
where to round 25?".
F. Questions pertaining to the student’s problem solving steps, strategy, or
solution. Examples: "How does the student demonstrate the multiplication in the
equation?", "What is the result of the butterfly method?", "To what number is the
student estimating 2,803?", "What is the result of 8 divided by 2?", "According
to the answer sentence, how many homework papers does Ms. McCarthy have left?",
and "According to the diagram, how much do three-sevenths equal?"
G. Questions that judge the correctness of the student’s work. Examples: "Does
the student correctly or incorrectly identify the base of the prism?", "Does
the student have any misconceptions regarding coordinate pairs?", and "Does the
student put the decimal in the correct place in the product?".
H. Other

Your response must begin with a capital letter ranging from A to H. For example:
Question: Did the student correctly draw two rows in their array?
Category: G.

Now, assign the following question to a question type that it fits best.
Remember to begin your response with a capital letter designating a question
type.
Question: question
Category:

Figure 8: Prompt for categorizing questions into question types.
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Generating answer for a question about student’s handwritten response

You will be provided an image containing two parts: a math problem on the left
side, and a student’s handwritten response to that problem on the right. Your
task is to answer a question about the student’s work on the image’s right side.
Your answer should be clear and concise. If possible, provide short answers that
are five words or less.
Do not solve the problem yourself; just answer the question based on the
student’s response in the provided image. Focus on the student’s work and not
on the problem that is provided on the left side.

For example,
Question: “What equation is written above the diagram?”
Your answer: “3x + 2 = 8”

Question: “How many boxes are the width and length of the graph?”
Your answer: “18 by 10”

Question: “What is drawn on the grid?”
Your answer: “A square”

Now, using an image of a math problem and student’s response, answer the
following question.
{question}
{image}

Figure 9: Prompt used with VLMs for answering question about the student’s handwritten response.

Comparing model’s answer with teacher provided answer

Given, Question: {question}
Answer 1: {teacher_a}
Answer 2: {model_a}

Rate the level of similarity between these two answers with respect to how well
they answer this question. The Likert rating options are:
4. Basically the same answer
3. Similar but not same answer
2. Neither similar nor different
1. Quite different answers

Provide both the Likert rating followed with an explanation as to why they are
similar. Format the output as a valid parsable JSON like:
{“rating”: 3, “reason”: “Because...”}

Figure 10: Prompt used for comparing model-generated answer with teacher-provided answer about
student handwritten responses.
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