
Under review as submission to TMLR

Guiding Online Reinforcement Learning with Action-Free
Offline Pretraining

Anonymous authors
Paper under double-blind review

Abstract

Offline RL methods have been shown to reduce the need for environment interaction by
training agents using offline collected episodes. However, the action information in offline
episodes can be difficult or even impossible to collect in some practical cases. This paper
investigates the problem of using action-free offline datasets to improve online reinforcement
learning. We introduce Action-Free Guide (AF-Guide), a method to extract task-relevant
knowledge from separate action-free offline datasets. AF-Guide employs an Action-Free
Decision Transformer (AFDT) that learns from such datasets to plan the next states, given
desired future returns. In turn, AFDT guides an online-learning agent trained by “Guided
Soft Actor-Critic” (Guided SAC). Experiments show that AF-Guide can improve RL sample
efficiency and performance. Our code is in the supplementary and will be made publicly
available.

1 Introduction

Training a reinforcement learning (RL) agent from scratch can be a challenging task that requires time-
consuming exploration of its environment. Offline RL methods pretrain RL agents via offline collected
episodes to reduce the number of interactions with the environment in the subsequent online fine-tuning
stage. Traditional offline RL methods, however, require offline data with action labels (e.g., motor torques),
which can be difficult or even impossible to collect in practice. Nevertheless, even “action-free” data that
lacks action labels may hold valuable algorithmic information about consequences of agent movements (e.g.,
environmental transitions) (Schmidhuber, 2015; 2018), which should be extracted to facilitate the RL agent’s
task.

In this paper, we utilize action-free offline reinforcement learning datasets to guide online RL and name this
setting RL with Action-Free Offline Pretraining (AFP-RL). We propose Action-Free Guide (AF-Guide), a
method that improves online training by learning to plan good target states from action-free offline datasets.
AF-Guide comprises two main components: an Action-Free Decision Transformer (AFDT), and a Guided
Soft Actor-Critic (Guided SAC). AFDT, a variant of the Upside Down RL (Schmidhuber, 2019) model
Decision Transformer (Chen et al., 2021), is trained on an offline dataset without actions to plan the next
states based on the past states and the desired future returns. Guided SAC, a variation of SAC (Haarnoja
et al., 2018a;b), follows the planning of AFDT by maintaining an additional Q function that fits a guiding
reward built from the negative discrepancy between the planned state and the achieved state with zero
discount factor. An overview of our method is summarized in Fig.1. Our experimental results demonstrate
that AF-Guide can significantly improve sample efficiency during online training by utilizing action-free
offline datasets.

Our contribution can be summarized as follows:

• We propose RL with Action-Free Offline Pretraining (AFP-RL), a novel setting to study how to
guide online RL with offline datasets that do not contain explicit action labels.

1

Under review as submission to TMLR

ENV

Guided Soft Actor-Critic

Action-Free
Offline Dataset

Action-Free Decision Transformer

𝑠!

𝑠!"#

Environment
Reward 𝑟!,#

Guiding
Reward 𝑟$,#

𝑎!

�̃�!"#

"𝑅#
Train Train+ Policy

Guiding
Q function 𝑄$

Environment
Q function 𝑄!

Action-Free
Decision Transformer

−𝑳𝟐

Figure 1: An overview of AF-Guide. Action-Free Decision Transformer (AFDT) is trained on the action-free
offline dataset to plan the next state s̃t+1 given previous states and the desired return-to-go R̂t. The guiding
reward rg is formed based on the negative L2 distance between the planned state s̃t+1 and the real state
st+1. In addition to SAC’s original Q function denoted as Qe that fits the environment reward re, Guided
SAC has an additional Q function Qg to fit the guiding reward rg with zero discount factor to discard the
future return. The policy is trained by the weighted sum over the two Q functions.

• We present Action-Free Guide (AF-Guide), a method that pretrains a model which can extract
knowledge from the action-free offline dataset and conduct state-space planning to guide online
policy learning.

• Experimental results show that AF-Guide can benefit from the action-free offline dataset to improve
sample efficiency and performance during online training.

2 Related Work

Offline Reinforcement Learning Offline reinforcement learning methods learn policies using pre-
collected episodes from unknown behavior policies. Many offline RL methods, such as CQL (Kumar et al.,
2020), IQL (Kostrikov et al., 2021), AWAC (Nair et al., 2020), BCQ (Fujimoto et al., 2019), and COMBO
(Yu et al., 2021), have been developed from off-policy algorithms, with additional constraints to avoid out-of-
distribution actions that are not covered by the dataset. Recently, Decision Transformer (Chen et al., 2021)
and Trajectory Transformer (Janner et al., 2021) convert the offline RL problem as a context-conditioned
sequential modeling problem and generate good actions by either conditioning on desired future return fol-
lowing Upside Down Reinforcement Learning framework (Schmidhuber, 2019) or searching for a good rollout
with a high future return. In our AFP-RL setting, datasets do not contain actions. In this case, learning
an offline policy directly is infeasible. Our method AFDT-Guide instead leverages action-free data to plan
good target states and guide online training for improved performance.

Imitation Learning from Observation The target of imitation learning from observation is to learn
a policy through state-only action-free demonstrations from experts. imitation Learning from observation
methods can be broadly classified into different categories. Methods like GSP (Pathak et al., 2018) and BCO
(Torabi et al., 2018a) train an inverse dynamic model to infer the expert actions given state transitions.
Reward-based methods like DeepMimic (Peng et al., 2018) and Context-Aware Translation (Liu et al., 2018)
create surrogate reward functions to guide online training. Other methods like GAIfO (Torabi et al., 2018b),
IDDM (Yang et al., 2019), MobILE (Kidambi et al., 2021) employ adversarial learning. The difference
between imitation learning from observation and our setting AFP-RL is similar to the difference between
imitation learning and offline RL. In imitation learning from observation, the dataset is collected by an expert
policy, and agents are trained to directly imitate the collected episodes. In contrast, episodes in AFP-RL are

2

Under review as submission to TMLR

collected by behavior policies that may be suboptimal. As a result, directly imitating these episodes would
lead to suboptimal performance.

Motion Forecasting Motion forecasting is the task of predicting the future motion of agents given past
and context information. It helps autonomous systems like autonomous driving and robotics to foresee and
avoid potential risks like collisions in advance. Recent methods for motion forecasting have explored various
architectural designs. For example, Social-LSTM (Alahi et al., 2016) and Trajectron++ (Salzmann et al.,
2020) are based on RNN. Social-GAN (Gupta et al., 2018) and HalentNet (Zhu et al., 2021) benefit from gen-
erative adversarial training. Social-STGCNN (Mohamed et al., 2020) and Social-Implicit (Mohamed et al.,
2022) predict the future via spatial-temporal convolution. AgentFormer (Yuan et al., 2021), mmTransformer
(Liu et al., 2021), and ST-Transformer (Aksan et al., 2021) are models based on Transformer architecture
(Vaswani et al., 2017) designed for pedestrian or vehicle trajectory prediction. Our state-planner AFDT is
a Transformer model. Instead of simply predicting the future states conditioned on the past, AFDT plans
the future states by additionally conditioned on the desired future return.

3 Background

Soft Actor-Critic (SAC) SAC is an actor-critic RL approach based on the maximum entropy framework
(Haarnoja et al., 2018a;b), which involves optimizing a Q network Qe

1 and the policy network π. The Q
function Qe is learned with the following objective

min
Qe

EDonline∥Qe(st, at) − Qtarget
e,t ∥2

2 (1)

where Donline ≜ {(st, at, re,t, st+1)} with state st, action at, environment reward re,t, and next state st+1, is
the online replay buffer. Qtarget

e,t is the target Q value computed as follows

Qtarget
e,t = re,t + γEπ [Qe(st+1, at+1) − α log π(at+1|st+1)] (2)

Here, γ is the discount factor and α is the temperature parameter to weight the entropy. The policy network
is learned by the following objective

min
π

Est∼Donline,at∼π [α log(π(at|st)) − Qe(st, at)] (3)

Upside Down Reinforcement Learning and Decision Transformer Traditional Reinforcement
Learning methods are trained to predict future rewards (e.g., a Q function) first and convert the prediction
into rewarding actions. In contrast, Upside Down Reinforcement Learning (UDRL) (Schmidhuber, 2019)
framework takes desired future rewards as inputs to generate actions. As an instance of UDRL in the offline
RL setting, Decision Transformer (DT) (Chen et al., 2021) is trained in the offline dataset to regress the
current action at conditioned on the past K states st−k:t, actions at−k:t−1, and the future returns (named
Return-To-Go, RTG) R̂t−k:t, with R̂t =

∑T
t′=t rt′ . The architecture of DT is based on the language model

GPT (Radford et al., 2018). When evaluated in an environment, the model is provided with an initial state
s0 and a desired initial RTG R̂0 to generate the first action. After executing the action at in the environment
and observing the reward rt and the next state st+1, the RTG is updated by R̂t+1 = R̂t − rt. The executed
action at, the current return-to-go R̂t+1, and the current state st+1 are then fed back into DT to infer the
next action. Given a high initial RTG R̂0, DT is able to generate good actions that lead to high future
returns. Due to the dependence of standard DT on action labels, it can not be directly applied for Action
Free Pretraining.

4 Action-Free Guide

Action-Free Offline Pretraining In the setting of Reinforcement Learning with Action-Free Offline
Pretraining (AFP-RL), an action-free offline dataset, D = {τ1, τ2, ..., τN }, is provided to boost the online

1We use the subscript e to denote notations related to the environment reward, and will use g to differentiate the notations
related to the guiding reward (see 4.2).

3

Under review as submission to TMLR

𝑠! 𝑠!"#

𝑠!$# 𝑠!"𝑅!$# "𝑅!

Action-Free Decision Transformer ……

Return-to-goState

emb. + pos. enc

linear decoder

Figure 2: Action-Free Decision Transformer. The next state is planned given previous states and a desired
return-to-go.

training in the environment. The trajectories in the dataset have been pre-collected in the environment by
behavior policies that are unknown to the agent. Each trajectory, τ , contains states and rewards in the
format τ = (s0, r0, s1, r1, ..., sT , rT), with T time steps. Unlike traditional offline RL, where the policy is
learned directly from the offline dataset, it is infeasible to learn a policy from an action-free offline dataset as
it lacks the necessary action information. However, such a dataset still contains valuable information about
the agent’s movements and the environment’s dynamics. Our proposed setting, AFP-RL, aims to leverage
this information to improve online training.

Methodology Overview Our method, Action-Free Guide (AF-Guide), utilizes knowledge from action-
free offline datasets by training an Action-Free Decision Transformer (AFDT) on these datasets to plan the
next states that lead to high future returns. Then, the online agents, trained by Guided Soft Actor-Critic
(Guided SAC), follow the planning with an additional Q function optimized for a new guiding reward. The
overall methodology is illustrated in Fig.1.

4.1 Action-Free Decision Transformer

Action-Free Guide(AF-Guide) can be considered as a variant of the UDRL model Decision Transformer
(DT) (Chen et al., 2021) that we designed to operate on action-free offline datasets. Unlike DT, which
predicts actions based on past RTGs, states, and actions, AFDT plans the next state based on previous
states and RTGs only. The overall architecture of AFDT is illustrated in Fig.2. AFDT takes K steps of
input, consisting of 2K tokens, where each step contains a state and an RTG. Similar to DT, states and RTGs
are first mapped to token embedding via separate single-layer state and return-to-go encoders Embeds and
EmbedR. The positional embedding mapped from time steps t by a single-layer temporal encoder Embedt is
then added to the token embedding to include temporal information, followed by layer normalization. These
token embeddings are then processed by a GPT model (Radford et al., 2018). The next states are generated
from the processed RTG tokens through a single-layer decoder Preds. Note that we don’t predict the next
state st+1 directly, but rather predict the state change ∆st+1 = st+1 − st first and add it back to st to
obtain st+1. This is a common practice in motion forecasting (e.g., Mohamed et al. (2020); Salzmann et al.
(2020)) to improve the prediction accuracy and has been observed to improve the performance of our model
in experiments. The algorithm of AFDT is listed in Algo.1.

Training At each training step, a batch of trajectories truncated to length K is randomly sam-
pled from the dataset. Each trajectory contains states and precomputed RTGs, represented as τ =
(st−K+1, R̂t−K+1, ..., st, R̂t). The model is trained autoregressively with L1 loss to predict the next state
from the processed RTG token at each time step, using a causal mask to mask out future information.

4

Under review as submission to TMLR

Algorithm 1 Action-Free Guide

Input: states s, returns-to-go R̂, time steps t, tem-
poral encoder Embedt(·), state encoder Embeds(·),
return-to-go encoder EmbedR(·), state decoder
Preds(·)
get positional embedding for each time step

ft = Embedt(t)
compute the state and return-to-go embeddings

fs, fR̂ = Embeds(s) + ft, EmbedR(R̂) + ft

send to transformer in the order (s0, R̂0, s1, R̂1, ...)

foutput = Transformer(stack(fs, fR̂))
predict the state change
∆s = Preds(unstack(foutput.states))
Output: ∆s + s

Algorithm 2 Compute Guiding Reward

Input: states s1:t, return-to-go R̂1:t, policy π, state
standard deviation σD, environment env, AFDT with
context length K
repeat

get AFDT’s prediction of the next state
s̃t+1 = AFDT(st−K+1:t, R̂t−K+1,t)
apply the policy in the environment for one step

at = π(st)
st+1, re = env.step(at)
compute current guiding reward using Eq.4

rg= −∥ 1
σD

⊙ (s̃t+1 − st+1)∥2
update return-to-go (same as DT) and time step

R̂t+1 = R̂t - re

t = t + 1
until Episode is finished

4.2 Guided Soft Actor-Critic

Now we illustrate how to use the AFDT model to benefit the learning of Soft Actor-Critic (SAC) (Haarnoja
et al., 2018a;b). As AFDT can conduct planning in the state space and infer the subsequent states that
lead to a high future return, our idea is to guide the agent to follow AFDT’s planning. Our method, named
Guided SAC, contains the following three main procedures.

Guiding Reward We first design a guiding reward rg,t, which is the negative discrepancy between the
planned state s̃t+1 inferred by AFDT and the actual state st+1 ∼ P(·|st, at) achieved by the agent:

rg,t = −∥ 1
σD

⊙ (s̃t+1 − st+1)∥2 (4)

where σD is the standard deviation of the states over the entire offline dataset D and is used to normalize
the different-scale state values on different dimensions. By maximizing the guiding reward rg,t, the policy is
encouraged to reach states that are close to AFDT’s planning. The process to compute the guiding reward
with the AFDT model is summarized in Algo.2.

Guiding Q Function We then use the guiding reward rg,t to learn the Q function. A common practice
to include a new reward is simply adding the new reward to the original environment reward re,t with a
coefficient β, like rt = re,t + βrg,t, and use a single Q network Q to approximate the long-term future return
(Schmidhuber, 1990; 1991; Houthooft et al., 2016; Pathak et al., 2017; Tao et al., 2020). However, this is not
the case for the guiding reward, where the current action should only be responsible for the next immediate
result rather than all the future results. Assume a robot gets stuck at step t + 1 due to a bad action at

at step t. A good AFDT will give the robot a low guidance reward at step t and predict a static future,
resulting in high future guidance rewards for getting the robot stuck in the same state. More generally, as
AFDT replans the target states at every timestep, an agent missing the planned state s̃t due to a bad action
at−1 can still reach the replanned state s̃t+1 at the next step and receive a high guiding reward rg,t, which
is not desirable. Hence, the action at should not be rewarded by rg,t+1 as it didn’t reach the original plan
s̃t. Therefore, to prevent the guiding reward from misleading the agent, it is more reasonable to discard the
future return for the Q value calculation of the current action.

Due to the reason above, we set up an additional independent Guiding Q function Qg which is optimized in
the same way as the original Q function Qe (see Eq.1), but the target Q value only involve the immediate
reward rg,t without future information, which is computed as follows:

Qtarget
g,t = rg,t (5)

5

Under review as submission to TMLR

Compared to Eq.2, here the Q target of the current action is removed from the future information by setting
the discount factor γ to zero. Our ablation study in the experiment section demonstrates that the Guiding
Q function is crucial to effective guidance.

Combined Q function We finally replace the Q function Qe in Eq.3 with the following combined Q
function to guide the policy learning:

Q(st, at) = Qe(st, at) + βQg(st, at) (6)

where β is the coefficient. Note that when β = 0, Guided SAC degenerates to a standard SAC trained using
environment rewards re and the corresponding Q function Qe only.

5 Experiments

In this section, we demonstrate the effectiveness of our approach AF-Guide for utilizing action-free offline
reinforcement learning datasets in online reinforcement learning through experimental evaluation. Further-
more, we provide evidence for the validity of our design choices for the two components of AF-Guide,
Action-Free Decision Transformer, and Guided SAC, through three ablation studies.

Action-Free D4RL Benchmark To evaluate methods on AFP-RL, we adapt the widely-used offline RL
benchmark D4RL (Fu et al., 2020) to the action-free reinforcement learning setting and denote it as Action-
Free D4RL. The original D4RL benchmark provides offline datasets collected using various strategies across
different environments. These episodes in the original D4RL datasets include state, action, and reward se-
quences. To create our action-free offline RL datasets, we remove the action labels from the original datasets.
We evaluate six environments, including three locomotion tasks (Hopper, Halfcheetah, Walker2d), two ball
maze environments (Maze2d-Medium, Maze2d-Large), and one robot ant maze environment (Antmaze-
Umaze). For each locomotion task, we test our method on three different datasets: Medium, Medium-Replay,
and Medium-Expert. For the environment Antmaze-Umaze, we test on two datasets: Antmaze-Umaze and
Antmaze-Umaze-Diverse. There is only one dataset for each ball maze environment, where the ball navigates
to random goal locations. Details of the datasets can be found in the supplementary.

Implementation Details The training of AF-Guide contains two stages: an offline stage training AFDT
using the offline dataset and an online stage training Guided SAC in the environment. We follow the default
hyperparameters used in DT paper (Chen et al., 2021) for AFDT. The context length K is set to 20. The
batch size for AFDT training is 64 and the learning rate is 1e-4 with AdamW optimizer. In the online training
stage, we set RTG R̂ to 6000, 3600, and 5000 for Halfcheetah, Hopper, and Walker2d, respectively, the same
as the values used in the original DT paper. The robot ant maze environment and the ball maze environments
are not used in the original DT paper. We set R̂ to 1 and 5000, separately. For the hyperparameters of
Guided SAC, we follow the default setting of SAC in the widely used Stable Baseline 3 (Raffin et al., 2021)
implementation. The batch size is 256 and the learning rate is 3e-4 with Adam optimizer. The discount
factor for the environment reward is 0.99. The coefficient of the Guided Q function β in Eq.6 is set to 3.
More details can be found in the supplementary.

5.1 Main Experiments

Experimental results are presented in Fig.3. We run each experiment four times and report the average and
the standard deviation band. Our method AF-Guide , using knowledge learned from the action-free offline
dataset, outperforms SAC in all the evaluated environments. In the tasks of Halfcheetah and Walker2d,
AF-Guide shows a significant advantage in learning speed compared to SAC across all three datasets. In
Halfcheetah, AF-Guide demonstrates a significant improvement of 50% at 500k steps with a performance of
6000 compared to 4000 achieved by SAC alone. Similarly, in Walker2d, AF-Guide improves the performance
by 50% at 1M steps, from 2000 to 3000. Additionally, we observe that different offline datasets do not
result in significant performance differences. In the tasks of Hopper, Maze2d-Medium, and Maze2d-Large,
while both AF-Guide and SAC reach similar performance at 500k steps, AF-Guide converges faster. In the

6

Under review as submission to TMLR

0 1 2 3 4 5
step 1e5

0

2000

4000

6000

8000

re
tu

rn

AF-Guide (Medium)
AF-Guide (Medium-Expert)
AF-Guide (Medium-Replay)
SAC

(a) Halfcheetah

0 1 2 3 4 5
step 1e5

500

1000

1500

2000

2500

3000

3500

re
tu

rn

AF-Guide (Medium)
AF-Guide (Medium-Expert)
AF-Guide (Medium-Replay)
SAC

(b) Hopper

0.0 0.2 0.4 0.6 0.8 1.0
step 1e6

0

1000

2000

3000

4000

re
tu

rn

AF-Guide (Medium)
AF-Guide (Medium-Expert)
AF-Guide (Medium-Replay)
SAC

(c) Walker2d

0 1 2 3 4 5
step 1e5

0

100

200

300

400

500

re
tu

rn

AF-Guide
SAC

(d) Maze2d-Medium

0 1 2 3 4 5
step 1e5

0

100

200

300

400

500

600

700

re
tu

rn

AF-Guide
SAC

(e) Maze2d-Large

0.0 0.5 1.0 1.5 2.0 2.5
step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn

AF-Guide (Umaze)
AF-Guide (Diverse)
SAC

(f) Antmaze-Umaze

Figure 3: Experimental results of our methods. Utilizing the knowledge learned from the action-free offline
dataset, AF-Guide outperforms SAC in all evaluated locomotion and ball maze environments in terms of
learning speed. Furthermore, while SAC struggles to complete the task of Antmaze-Umaze due to the
challenging exploration, AF-Guide successfully solves it, owing to the guidance signals provided by AFDT.

task of Antmaze-Umaze, SAC is unable to complete it in 1M steps, whereas AF-Guide has an 80% success
rate when pretrained in the dataset Antmaze-Umaze and a 60% success rate in Antmaze-Umaze-Diverse.
This is likely due to the exploration challenge faced by SAC. The robot ant in Antmaze-Umaze has large
state/action spaces with 8 joints and only receives sparse rewards when reaching the target location. Thus,
the agent trained by SAC rarely receives any rewards during exploration. In contrast, our guiding reward
provides dense learning signals that guide the agent’s motion toward the target. Therefore, agents trained
by AF-Guide can successfully solve the maze here.

5.2 Ablation Study

Do we really need Guided SAC? Here, we investigate whether our Guided SAC with an additional
Q function is necessary to process the guiding reward rg, or if it can be simply added to the environment
reward and processed by SAC, referred to as ‘AF-Guide [SAC]’. This study is conducted in the locomotion
environments of Halfcheetah and Walker2d using the Medium dataset and the maze environment of Maze2d-
Medium. The results in Fig.4 reveal that AF-Guide [SAC] performs similarly to SAC in Maze2d-Medium
and does not work in Halfcheetah and Walker2d, indicating that the guiding reward rg does not help or
even hinders the training of SAC. In contrast, AF-Guide with Guided SAC benefits from the guiding reward
rg by ignoring guiding rewards in future steps and setting the corresponding discount factor to zero. This
is in line with our explanation in the guided soft actor-critic section that high future guiding rewards are
unrelated to the current action and should be ignored in the Q function and verifies the effectiveness of our
Guided SAC design.

Does AFDT plan better states than that from behavior policy? Here, we first trained an AFDT
in an ‘imitation’ style, denoted as AF-Imitation, by regressing future states without any RTG information

7

Under review as submission to TMLR

0 1 2 3 4 5
step 1e5

0

2000

4000

6000

8000

re
tu

rn

AF-Guide (Medium)
AF-Guide [SAC] (Medium)
SAC

(a) Halfcheetah

0.0 0.2 0.4 0.6 0.8 1.0
step 1e6

0

1000

2000

3000

4000

re
tu

rn

AF-Guide (Medium)
AF-Guide [SAC] (Medium)
SAC

(b) Walker2d

0 1 2 3 4 5
step 1e5

0

100

200

300

400

500

re
tu

rn

AF-Guide
AF-Guide [SAC]
SAC

(c) Maze2d-Medium

Figure 4: Ablation study on the guiding reward rg. ‘AF-Guide [SAC]’ denotes the variant adding guiding
reward to the environment reward and training with SAC. The results show that AF-Guide [SAC] performs
similarly to SAC in Maze2d-Medium, but does not work in Halfcheetah and Walker2d, which indicates that
simply adding the guiding reward is detrimental to the policy training and verifies the effectiveness of our
Guided SAC design.

0 1 2 3 4 5
step 1e5

0

2000

4000

6000

8000

re
tu

rn

AF-Guide (Medium-Replay)
AF-Guide [Imi] (Medium-Replay)
SAC

(a) Halfcheetah

0.0 0.2 0.4 0.6 0.8 1.0
step 1e6

0

1000

2000

3000

4000

5000

re
tu

rn

AF-Guide (Medium-Replay)
AF-Guide [Imi] (Medium-Replay)
SAC

(b) Walker2d

0 1 2 3 4 5
step 1e5

0

100

200

300

400

500

600

700

re
tu

rn

AF-Guide
AF-Guide [Imi]
SAC

(c) Maze2d-Large

Figure 5: Ablation study on the effectiveness of Action-Free Decision Transformer (AFDT). We train a
variant of AFDT by regressing the behavior policy trajectories and use this variant to guide the online
training, referred to as AF-Guide [Imi]. Compared to AF-Guide, AF-Guide [Imi] performs worse in Walker2d
and Maze2d-Large. This suggests that AFDT can infer the next states better than those collected by the
behavior policy.

in the offline dataset. Then, we learn a policy with the guidance of AF-Imitation, named ‘AF-Guide [Imi]’,
and evaluate it in Halfcheetah and Walker2d with the Medium-Replay dataset and also in Maze2d-Large.
Fig.5 demonstrates that AF-Guide [Imi] underperforms the original version in Walker2d and Maze2d-Large,
indicating that AFDT plans better next states than the behavior policy when conditioned on a proper RTG.
Additionally, AF-Guide [Imi] outperforms SAC in Halfcheetah and Walker2d, showing that AF-Imitation
still benefits policy training in some cases despite the suboptimal planning.

Can Action-Free Trajectory Transformer replaces Action-Free Decision Transformer? Guided
SAC is built on the predictions of AFDT, our action-free variant of the Decision Transformer (DT). In
theory, AFDT can be replaced by any other sequential-modeling-based offline RL method after removing
the action information. Here, we replaced AFDT with an action-free variant of Trajectory Transformer
(TT) (Janner et al., 2021) and evaluated it on locomotion tasks with the Medium dataset. We denote this
variant as AF-Guide [TT]. Details of AF-Guide [TT] is in the supplementary materials. Compared to DT
which plans in a UDRL style, TT rollouts the future via beam search and selects the highest return one.
Additionally, TT discretizes the state and action spaces to improve prediction accuracy. Results are shown
in Fig.6. AF-Guide [TT] performs worse than AF-Guide in Halfcheetah but shows a clear advantage over

8

Under review as submission to TMLR

0 1 2 3 4 5
step 1e5

0

2000

4000

6000

8000

re
tu

rn

AF-Guide (Medium)
AF-Guide [TT] (Medium)
SAC

(a) Halfcheetah

0 1 2 3 4 5
step 1e5

0

500

1000

1500

2000

2500

3000

3500

re
tu

rn

AF-Guide (Medium)
AF-Guide [TT] (Medium)
SAC

(b) Hopper

0.0 0.2 0.4 0.6 0.8 1.0
step 1e6

0

1000

2000

3000

4000

re
tu

rn

AF-Guide (Medium)
AF-Guide [TT] (Medium)
SAC

(c) Walker2d

Figure 6: Ablation study on using Action-Free Trajectory Transformer to guide the training (AF-Guide [TT]).
The results showed that AF-Guide [TT] had better performance in the Hopper and Walker2d tasks, but
performed worse in the Halfcheetah task. These results suggest that our pipeline is compatible with different
sequential-modeling-based offline RL methods, but the choice of method may impact performance depending
on the specific task.

0 1 2 3 4 5
step 1e5

0

1000

2000

3000

4000

re
tu

rn

AF-Guide (Guided PPO)
PPO

(a) Halfcheetah

0 2 4 6 8
step 1e5

0

250

500

750

1000

1250

1500

1750

2000

re
tu

rn

AF-Guide (Guided PPO)
PPO

(b) Hopper

Figure 7: Combining AF-Guide with PPO speeds up the training in
the test environments Halfcheetah and Hopper.

Table 1: Training time of AF-
Guide [TT] and AF-Guide for 500k
steps in locomotion tasks on one A100
GPU. AF-Guide [TT] increases the
training time dramatically due to the
huge planning cost.

Env. AF-Guide [TT] AF-Guide
Halfcheetah ∼14 hours ∼1 hour
Hopper ∼10 hours ∼1 hour
Walker2d ∼20 hours ∼1 hour

AF-Guide in Hopper and Walker2d. This advantage of AF-Guide [TT] in Hopper and Walker2d may be due
to the better prediction quality from the discretization.

However, AF-Guide [TT] has a much longer training time due to the huge planning cost for the discretization
and the beam search. A brief training time comparison between AF-Guide and AF-Guide [TT] is shown
in Tab.1. AF-Guide [TT] is at least 10 times slower than AF-Guide in our experiments. Therefore, we use
DT in our final design. Experiments also show that our pipeline is compatible with different sequential-
modeling-based offline RL methods.

Can AF-Guide be applied to other RL methods besides SAC? Theoretically, AF-Guide can be
combined with other online RL algorithms that also have Q/value functions. In this ablation study, we
combine AF-Guide with PPO (Schulman et al., 2017) and name it Guided PPO. Similar to Guided SAC,
we introduce an independent guiding value function Vg where the target value only involves the immediate
guiding reward rg,t with zero discount factor. Experimental results in Fig.7 show that Guided PPO outper-
forms PPO in the test environments Halfcheetah and Hopper, demonstrating the effectiveness of the guiding
signals from AF-Guide in PPO.

9

Under review as submission to TMLR

5.3 Limitations

As an attempt to utilize action-free offline datasets for improved online learning, AF-Guide has some limi-
tations in its current form. Firstly, AF-Guide ’s current planning ability is limited by Decision Transformer.
As AF-Guide is agnostic to the planning model shown in our ablation study with Trajectory Transformer,
we believe AF-Guide can benefit from a more powerful planning model in the future. Secondly, the current
guiding reward is based on L2 distance, which may not be optimal in some state spaces where L2 distance
is not the best similarity metric, such as images. We believe that combining AF-Guide with more seman-
tically meaningful similarity metrics can extend its applications for vision, language, and other multimodal
problems in the future.

6 Conclusion

Our Action-Free Offline Pretraining (AFP-RL) improves online reinforcement learning (RL) by exploiting
“action-free” offline datasets that do not contain explicit labels of the actions executed by observed agents
(although they may contain implicit information about the consequences of such actions). Our Action-Free
Guide (AF-Guide) learns from such datasets to plan goal-conditional target states, thus guiding online RL
agents. Our experimental results demonstrate that AF-Guide yields better sample efficiency than the Soft
Actor Critic in various locomotion and maze environments, highlighting the benefits of incorporating action-
free offline datasets. We hope our work will encourage further research on action-free offline pre-training.

References
Emre Aksan, Manuel Kaufmann, Peng Cao, and Otmar Hilliges. A spatio-temporal transformer for 3d

human motion prediction. In 2021 International Conference on 3D Vision (3DV), pp. 565–574. IEEE,
2021.

Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese.
Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 961–971, 2016.

Nikhil Barhate. Minimal implementation of decision transformer. https://github.com/nikhilbarhate99/
min-decision-transformer, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Ar-
avind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling.
Advances in neural information processing systems, 34:15084–15097, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-
driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration.
In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. Social gan: Socially accept-
able trajectories with generative adversarial networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2255–2264, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pp. 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018b.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime: Variational
information maximizing exploration. Advances in neural information processing systems, 29, 2016.

10

https://github.com/nikhilbarhate99/min-decision-transformer
https://github.com/nikhilbarhate99/min-decision-transformer

Under review as submission to TMLR

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling
problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Rahul Kidambi, Jonathan Chang, and Wen Sun. Mobile: Model-based imitation learning from observation
alone. Advances in Neural Information Processing Systems, 34:28598–28611, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-learning.
arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Yicheng Liu, Jinghuai Zhang, Liangji Fang, Qinhong Jiang, and Bolei Zhou. Multimodal motion prediction
with stacked transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7577–7586, 2021.

YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation: Learning
to imitate behaviors from raw video via context translation. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1118–1125. IEEE, 2018.

Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and Christian Claudel. Social-stgcnn: A social spatio-
temporal graph convolutional neural network for human trajectory prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14424–14432, 2020.

Abduallah Mohamed, Deyao Zhu, Warren Vu, Mohamed Elhoseiny, and Christian Claudel. Social-implicit:
Rethinking trajectory prediction evaluation and the effectiveness of implicit maximum likelihood estima-
tion. In European Conference on Computer Vision, pp. 463–479. Springer, 2022.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Alexander Nikulin. Faster trajectory transformer. https://github.com/Howuhh/
faster-trajectory-transformer, 2022.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In International conference on machine learning, pp. 2778–2787. PMLR, 2017.

Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan Shel-
hamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell. Zero-shot visual imitation. In Proceedings of
the IEEE conference on computer vision and pattern recognition workshops, pp. 2050–2053, 2018.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-guided deep
reinforcement learning of physics-based character skills. ACM Transactions On Graphics (TOG), 37(4):
1–14, 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Re-
search, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajectron++: Dynamically-
feasible trajectory forecasting with heterogeneous data. In European Conference on Computer Vision, pp.
683–700. Springer, 2020.

Juergen Schmidhuber. One big net for everything. arXiv preprint arXiv:1802.08864, 2018.

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards–just map them to actions.
arXiv preprint arXiv:1912.02875, 2019.

11

https://github.com/Howuhh/faster-trajectory-transformer
https://github.com/Howuhh/faster-trajectory-transformer
http://jmlr.org/papers/v22/20-1364.html

Under review as submission to TMLR

Jürgen Schmidhuber. Making the world differentiable: On using fully recurrent self-supervised neural net-
works for dynamic reinforcement learning and planning in non-stationary environments. Institut für In-
formatik, Technische Universität München. Technical Report FKI-126, 90, 1990.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural con-
trollers. In Proc. of the international conference on simulation of adaptive behavior: From animals to
animats, pp. 222–227, 1991.

Jürgen Schmidhuber. On learning to think: Algorithmic information theory for novel combinations of
reinforcement learning controllers and recurrent neural world models. arXiv preprint arXiv:1511.09249,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ruo Yu Tao, Vincent François-Lavet, and Joelle Pineau. Novelty search in representational space for sample
efficient exploration. Advances in Neural Information Processing Systems, 33:8114–8126, 2020.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation. arXiv
preprint arXiv:1807.06158, 2018b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, and Chuang Gan.
Imitation learning from observations by minimizing inverse dynamics disagreement. Advances in neural
information processing systems, 32, 2019.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn. Combo:
Conservative offline model-based policy optimization. Advances in Neural Information Processing Systems,
34, 2021.

Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris M Kitani. Agentformer: Agent-aware transformers for
socio-temporal multi-agent forecasting. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 9813–9823, 2021.

Deyao Zhu, Mohamed Zahran, Li Erran Li, and Mohamed Elhoseiny. Halentnet: Multimodal trajectory
forecasting with hallucinative intents. In International Conference on Learning Representations, 2021.

12

Under review as submission to TMLR

A Appendix

A.1 Datasets

For locomotion environments, the Medium dataset is collected using a policy trained to approximately 1/3
the performance of an expert. Medium-Replay uses the training replay buffer of the ’Medium’ policy. The
Medium-Expert dataset contains 50% of data from Medium and the remaining data is collected by an expert
policy. For the ant robot maze environment, in the Antmaze-Umaze dataset, the robot ant always goes
from a fixed start position to a fixed target location, while in Antmaze-Umaze-Diverse, the robot ant goes
to random target locations.

A.2 Hyperparameters

For the architecture of AFDT, we follow the default hyperparameters of DT. In detail, we use three trans-
former blocks for most of the environments and one for ball maze environments. Each block has one attention
head. The embedding dimension is set to 128. Dropout rate is set to 0.1. We train AFDT for 50000 gra-
dient steps and selected the best checkpoint from 3000 steps, 5000 steps, 10000 steps, 15000 steps, 30000
steps and 50000 steps. The implementation of AFDT is based on the repository ‘minimal decision trans-
former’(Barhate, 2022). For the architecture of Guided SAC, the environment Q function, the guided Q
function, and the policy net are all three-layer MLPs with ReLU activation function and 256 hidden di-
mensions. The implementation of Guided SAC is based on the repository ‘Stable Baseline 3’(Raffin et al.,
2021).

A.3 Action-Free Trajectory Transformer

Our implementation of AFTT is based on the repository ‘faster-trajectory-transformer’ (Nikulin, 2022),
which has an improved inference speed compared to the original implementation. We follow all the default
hyperparameters and model architectures in the repository, but remove the action-related component in TT
to build AFTT. We use a uniform strategy to discretize the state space.

13

	Introduction
	Related Work
	Background
	Action-Free Guide
	Action-Free Decision Transformer
	Guided Soft Actor-Critic

	Experiments
	Main Experiments
	Ablation Study
	Limitations

	Conclusion
	Appendix
	Datasets
	Hyperparameters
	Action-Free Trajectory Transformer

