
Published as a conference paper at ICLR 2026

DRAFT-BASED APPROXIMATE INFERENCE FOR LLMS

Kevin Galim1∗ Ethan Ewer2∗ Wonjun Kang1,3 Minjae Lee1
Hyung Il Koo1,4 Kangwook Lee2,5

1FuriosaAI 2UW-Madison 3Seoul National University
4Ajou University 5KRAFTON

{kevin.galim, kangwj1995, minjae.lee, hikoo}@furiosa.ai
{eewer, kangwook.lee}@wisc.edu

Code: https://github.com/furiosa-ai/draft-based-approx-llm

ABSTRACT

Optimizing inference for long-context large language models (LLMs) is increas-
ingly important due to the quadratic compute and linear memory cost of Trans-
formers. Existing approximate inference methods, including key-value (KV) cache
dropping, sparse attention, and prompt compression, typically rely on coarse pre-
dictions of token or KV pair importance. We unify and extend recent work by
introducing a framework for approximate LLM inference that leverages small draft
models to more accurately predict token and KV pair importance. We provide
novel theoretical and empirical analyses justifying lookahead-based importance
estimation techniques. Within this framework, we present: (i) SpecKV, the first
method to use lookahead with a small draft model to enable precise KV cache drop-
ping; (ii) SpecPC, which leverages draft model attention activations to identify and
discard less important prompt tokens; and (iii) SpecKV-PC, a cascaded compres-
sion strategy combining both techniques. Extensive experiments on long-context
benchmarks demonstrate that our methods consistently achieve higher accuracy
than existing baselines while retaining the same efficiency gains in memory usage,
latency, and throughput.

1 INTRODUCTION

The demand for longer context lengths in large language models (LLMs) (Achiam et al., 2023; Google
DeepMind, 2025) continues to grow (Liu et al., 2024b), driven by applications such as dialogue
systems (Achiam et al., 2023; Google DeepMind, 2025), document summarization (Liu et al., 2020),
and code completion (Du et al., 2024). Modern models like GPT-4 (Achiam et al., 2023) and Gemini
2.5 Pro (Google DeepMind, 2025) have pushed context windows to over a million tokens. However,
scaling Transformers (Vaswani et al., 2017) to these lengths remains difficult due to significant
computational and memory constraints. Attention computation scales quadratically with context
length, increasing inference latency, while key-value (KV) cache memory grows linearly, straining
GPU resources. For example, caching the KV states for 128K tokens in Llama-3.1-8B (Grattafiori
et al., 2024) can consume over 16GB of memory, limiting the practical scalability of LLMs.

To address scalability challenges, recent work introduces approximate LLM inference techniques
that reduce latency and memory usage at inference time. Techniques include sparse attention for
prefilling (Jiang et al., 2024a) and decoding (Tang et al., 2024), which speed up inference by having
each query attend to only a subset of keys. Sparse prefilling shortens time to the first token, while
sparse decoding boosts generation throughput. KV cache dropping (Cai et al., 2024b; Li et al., 2024;
Xiao et al., 2024; Zhang et al., 2023) reduces memory and increases throughput by shrinking the
cache after prefilling or during decoding. Prompt compression (Choi et al., 2024; Jiang et al., 2023b;
Liskavets et al., 2025) further improves efficiency by removing less important tokens before inputting
the prompt, reducing both attention and MLP computation, as well as decreasing KV cache size.

∗Equal contribution.

1

https://github.com/furiosa-ai/draft-based-approx-llm

Published as a conference paper at ICLR 2026

Oracle

Target Model

draft tokens
Draft Model

Approximated
Target Model

draft attention

SpecKV

SpecPC

prompt

input output

approximate output

≈
Ours

Oracle

Approximated
Model

input output

final input tokens

Identify influential input
tokens

Current approach
approximate

output

≈

Draft Model

input

Ours

 influential input
tokens

Oracle

Approximated
Model

input output

final input tokens

Identify influential input
tokens

Current approach
approximate

output

≈

Draft Model

input

Ours

Aware of influential
tokens

Oracle

Approximated
Model

input output

Current approach

approximate
output

≈

Draft Model

input

Ours

Aware of influential
tokens

Identify influential input
tokens

Current approach
Use inputs to identify
important input tokens

Use true outputs to identify
important input tokens

Draft Model

Oracle

Approximated
Model

input output

approximate
output

≈

Ours

Use approximate outputs to
identify important input tokens

Current approach
Use inputs to identify
important input tokens

Use true outputs to identify
important input tokens

Draft Model

Oracle

Approximated
Model

input output

approximate output

≈
Ours Use approximate outputs to

identify important input tokens

Current approach
Use inputs to identify
important input tokens

Use true outputs to identify
important input tokens

Draft Model

input importance

Use approximate outputs to
identify important input tokens

(a) Proposed Framework.

4k 8k 16k 32k 64k
Sequence Length

60

80

100

R
U

L
E

R
Sc

or
e

SpecKV (ours)
LAQ++ (Wa’25)

H2O (Zh’23)

SnapKV (Li’24)

PyrKV (Ca’24b)

w/ LA

w/o LA

(b) Impact of lookahead (LA) on accuracy.

Figure 1: (a) Overview of our Draft-based Approximate Inference framework for input token im-
portance estimation in comparison with current approaches and the oracle approach. Prior methods
use input tokens to estimate input token importance. Our approach incorporates draft model pre-
dictions of future output tokens, yielding more accurate importance estimates. This better aligns
with the hypothetical oracle setting, where the true output is known and influential tokens can be
precisely identified. (b) On RULER with Llama-3-70B (Grattafiori et al., 2024), lookahead-based
methods (LAQ++ (Wang et al., 2025), SpecKV) significantly outperform non-lookahead approaches
(H2O (Zhang et al., 2023), SnapKV (Li et al., 2024), PyramidKV (Cai et al., 2024b)), with our
proposed SpecKV achieving the best overall downstream score.

Orthogonally, speculative decoding (Cai et al., 2024a; Chen et al., 2023; Hu et al., 2025; Leviathan
et al., 2023) accelerates LLM inference by using a small draft model to propose a sequence of multiple
tokens, which the target model verifies in parallel. This improves throughput without altering the
output distribution and is particularly effective for autoregressive models, where sequential generation
is a bottleneck. However, unlike approximate inference, speculative decoding does not lower the total
memory or computation requirements and struggles with increasing context length.

In contrast, approximate LLM inference improves efficiency by reducing the amount of computation
the model performs. This is often done by estimating the importance of each token or KV pair for
future generation and discarding less important ones from attention or feedforward computations.
Existing methods (Cai et al., 2024b; Feng et al., 2025; Jiang et al., 2024a; Li et al., 2024) use attention
activations from input tokens to predict which tokens or KV pairs future tokens will attend to, as
future tokens are not yet available. However, input attention activations alone do not reliably identify
the tokens or KV pairs most relevant for future token generation. Recent methods (Liu et al., 2025;
Wang et al., 2025) address this by leveraging an approximate output to improve importance estimates.
In this work, we unify and extend these techniques by introducing Draft-based Approximate Inference,
a lookahead-based framework that uses an inexpensive draft model to approximate future outputs
with minimal overhead (Fig. 1a). Our main contributions are as follows:

1. We present Draft-based Approximate Inference, a framework using draft model lookahead
for enhanced approximate inference.

2. We present theoretical and empirical analyses justifying lookahead-based KV cache dropping
and the use of draft model token importance to approximate target model token importance.

3. Within the Draft-based Approximate Inference framework, we develop two concrete algo-
rithms targeting three LLM inference optimizations: Speculative KV Dropping (SpecKV)
for KV cache dropping with sparse prefill, and Speculative Prompt Compression (SpecPC)
for prompt compression. Notably, SpecKV is the first to use draft model lookahead for KV
cache optimization. Additionally, we introduce SpecKV-PC, a cascaded pipeline integrating
both algorithms to achieve superior accuracy, latency, and memory efficiency.

4. We perform comprehensive experiments on long-context benchmarks, demonstrating that
our methods attain state-of-the-art accuracy under fixed KV cache or prompt size constraints.
Our results consistently outperform prior baselines, underscoring the potential of draft
models for fast and accurate approximate inference in large language models.

2

Published as a conference paper at ICLR 2026

Table 1: Summary of prior work. Complexity reported without auxiliary/draft model. nin and nout
denote the number of input and output tokens, respectively. Cmax represents the maximum KV cache
or prompt capacity. sprefill and sdecode indicate the number of keys each query attends to during
the prefill and decoding phases, respectively. L is the number of attention layers. Since all time
complexities are linear with respect to L, we only include L for space complexity. Highlighted cells
indicate improved complexity.

Type Method Sparse Attn KV Dropping Prefill Time Decoding Time Prefill Space Decoding Space

Dense Dense ✗ ✗ O(nin
2) O(nout(nin + nout)) O(Lnin) O(L(nin + nout))

Sparse attention
MInference, FlexPrefill Prefill ✗ O(ninsprefill) O(nout(nin + nout)) O(Lnin) O(L(nin + nout))

Quest, RetrievalAttention Decode ✗ O(nin
2) O(noutsdecode) O(Lnin) O(L(nin + nout))

KV dropping

StreamingLLM Prefill Decode O(ninCmax) O(noutCmax) O(max(nin, LCmax)) O(LCmax)

H2O ✗ Decode O(nin
2) O(noutCmax) O(max(nin, LCmax)) O(LCmax)

SnapKV, PyramidKV, AdaKV ✗ After prefill O(nin
2) O(nout(Cmax + nout)) O(max(nin, LCmax)) O(L(Cmax + nout))

LAQ++ ✗ After prefill O(nin
2) O(nout(Cmax + nout)) O(Lnin) O(L(Cmax + nout))

SpecKV (Ours) Prefill After prefill O(ninsprefill) O(nout(Cmax + nout)) O(max(nin, LCmax)) O(L(Cmax + nout))

Prompt compression LLMLingua-2, CPC,
R2C, SpecPrefill, SpecPC (Ours) – – O(Cmax

2) O(nout(Cmax + nout)) O(LCmax) O(L(Cmax + nout))

2 RELATED WORK

Sparse Attention One way to improve inference efficiency is through sparse attention with static
patterns. For example, sliding window attention (Beltagy et al., 2020), used in models like Mis-
tral 7B (Jiang et al., 2023a), Gemma 3 (Gemma Team, 2025), GPT-3 (Brown et al., 2020), and
gpt-oss (Agarwal et al., 2025), restricts each query to attend only a fixed-size window of recent
keys, reducing computation and KV cache size during decoding. StreamingLLM (Xiao et al.,
2024) improves on sliding window by using initial tokens, called attention sinks, along with the
sliding window. MInference (Jiang et al., 2024a), adopted by Qwen2.5-1M (Yang et al., 2025b),
further boosts prefill efficiency by searching offline for adaptive sparse attention patterns (A-shape,
Vertical-Slash, and Block-Sparse) assigned per head. FlexPrefill (Lai et al., 2025) extends this idea
by determining sparsity rates for each input prompt. In contrast, Quest (Tang et al., 2024) and
RetrievalAttention (Liu et al., 2024a) target the decoding stage by only retrieving the most important
KV pairs from the cache, reducing both memory bandwidth and computational demands during
generation.

KV Cache Dropping KV dropping reduces computation and memory during decoding. Sliding
window attention (Beltagy et al., 2020) and StreamingLLM (Xiao et al., 2024) are examples of
KV dropping methods (as well as sparse attention) as they permanently evict KV pairs from cache.
H2O (Zhang et al., 2023) improves on this by dynamically selecting attention sinks, termed heavy-
hitters, using attention scores at each decoding step, while also maintaining a sliding window.
SnapKV (Li et al., 2024) compresses the KV cache at the end of the prefill stage by dropping
unimportant KV pairs. Subsequent work extends this idea by allocating KV cache budgets non-
uniformly across layers (PyramidKV (Cai et al., 2024b)) and attention heads (AdaKV (Feng et al.,
2025), HeadKV (Fu et al., 2025)). However, these approaches drop tokens based only on current
information, making them less robust to changes in token importance over time (Nawrot et al., 2025).
Recently, Wang et al. (2025) proposed Lookahead Q-Cache (LAQ++), which addresses this by
generating draft queries with a sparse approximation of the target model, using them to compute more
accurate importance scores, though this comes at the cost of no reduction in peak memory usage.

Prompt Compression Prompt compression removes tokens before reaching the model, reducing
compute and memory usage during both prefill and decoding, unlike KV dropping, which speeds
up only decoding. It also surpasses sparse attention by saving both attention and MLP computation.
Prompt compression works seamlessly with all types of inference setups, such as APIs or inference
engines like vLLM (Kwon et al., 2023), since it does not require any modifications to the model.
However, KV dropping can achieve higher compression because it selects tokens per head, while
prompt compression drops the same tokens across all layers and heads.

In a question-answer setup, prompt compression may be question-agnostic (compressing context
without considering the question) or question-aware (factoring in the question). Selective context (Li
et al., 2023) and LLMLingua (Jiang et al., 2023b) are training-free, question-agnostic approaches
using a small LLM to keep only key tokens. LongLLMLingua (Jiang et al., 2024b) adapts this

3

Published as a conference paper at ICLR 2026

for longer contexts in a question-aware manner. LLMLingua-2 (Pan et al., 2024) trains a small
model (Conneau et al., 2020) to score token importance without using the question. CPC (Liskavets
et al., 2025) uses a trained encoder to compute sentence importance via cosine similarity with the
question, while R2C (Choi et al., 2024) splits the prompt into chunks, processes each with the
question using a fine-tuned encoder-decoder Transformer (FiD (Izacard & Grave, 2021)), and ranks
them via cross-attention. Similar to our proposed SpecPC, SpecPrefill (Liu et al., 2025) leverages
attention scores from a smaller draft model to identify important tokens, using the draft model for
lookahead to improve token importance estimates.

Speculative Decoding Speculative decoding (Cai et al., 2024a; Chen et al., 2023; Hu et al., 2025;
Leviathan et al., 2023) accelerates LLM inference by using a small draft model to propose multiple
tokens that the target model verifies in parallel. This increases decoding throughput without changing
the output distribution, addressing the bottleneck of autoregressive generation. Previous work
further accelerates speculative decoding by enabling approximate inference in the draft model, using
techniques such as sparse attention (Sadhukhan et al., 2025), KV cache dropping (Sun et al., 2024),
or KV cache quantization (Tiwari et al., 2025), all while preserving exact inference. In contrast, our
approach leverages draft models to enable fast, approximate inference directly in the target model.

Table 1 summarizes prior work, highlighting their prefill, decoding time, and memory complexities.

3 PROPOSED FRAMEWORK: DRAFT-BASED APPROXIMATE INFERENCE

Previous LLM approximation methods (Cai et al., 2024b; Feng et al., 2025; Jiang et al., 2024a; Li
et al., 2024) estimate the importance of current tokens on future generation by analyzing current
attention patterns. While this can be effective, it provides only a rough estimate of each token’s
importance. In contrast, if future tokens were available, we could make substantially better importance
estimates by directly identifying which input tokens contribute to generating those output tokens.
However, these future tokens are inaccessible before generation.

Recent work has explored using approximate future information to improve token importance
estimation. LAQ++ (Wang et al., 2025) extends SnapKV (Li et al., 2024) by generating draft queries
and then using them to compute more accurate importance scores. SpecPrefill (Liu et al., 2025)
generates lookahead tokens with a small draft model and relies on the draft model’s attention to those
tokens to estimate input token importance. We bring these ideas together under a unified framework,
Draft-based Approximate Inference that leverages approximate future information to improve token
importance estimation. We further extend this framework with two new algorithms: SpecKV for KV
cache dropping and sparse prefilling (Section 4.1) and SpecPC for prompt compression (Section 4.2).
Finally, we introduce cascaded compression with SpecKV-PC, combining both approaches into a
single pipeline for superior accuracy and efficiency (Section 4.3).

While our methods use draft models, a technique also common in speculative decoding, our objective
is fundamentally different. Speculative decoding improves hardware utilization by having a draft
model propose tokens that the target model verifies, accelerating generation without changing the
output distribution. However, it does not reduce total computation or memory usage. In contrast, our
framework reduces computation and memory costs by approximating the target model.

3.1 JUSTIFICATION FOR LOOKAHEAD-BASED KV CACHE DROPPING

KV cache dropping requires estimating the importance of each input KV pair. We define importance
as the average attention activation from output queries to each input key. Specifically, the vector of
importance scores and its approximation are given by

sT = 1
nout

nout∑
i=1

Softmax

(
x
(o)T
i WqW

T
k XT

√
d

)
and ŝT = 1

nout

nout∑
i=1

Softmax

(
x̂
(o)T
i WqW

T
k XT

√
d

)
,

(1)

4

Published as a conference paper at ICLR 2026

10 15
ε

65

70

75

80

85

R
U

L
E

R
Sc

or
e

1.5B3.0B

0.5B
2048

1024

512
256

128

64

Cmax = 256

SpecKV
LAQ++

(a) Score vs. ϵ (32B Target)

0.0 0.5 1.0
Token Importance (1.5B)

0.0

0.2

0.4

0.6

0.8

To
ke

n
Im

po
rt

an
ce

(1
4B

)

R2 = 0.97

(b) Importance Corr. (1.5B vs. 14B)

0.85 0.90 0.95 1.00
R2

75.0

77.5

80.0

82.5

85.0

87.5

R
U

L
E

R
Sc

or
e

0.5B-4bit

0.5B

1.5B

7B
3B

14B

Cmax = 1024

(c) Score vs. R2 (14B Target)

Figure 2: Experimental validation on RULER-32K tasks (5 samples each) using Qwen2.5 models. (a)
Lower error ϵ (Eq. (2)) yields higher downstream scores. Increasing the draft model size (SpecKV) or
initial cache size (LAQ++)1 reduces ϵ, with SpecKV outperforming LAQ++. (b) Importance scores
(as used in SpecPC) of the draft and target models are highly correlated. (c) For SpecPC, a larger
draft model improves both the token importance correlation (R2) and the final task performance.

where X = [x1, . . . , xnin]
T ∈ Rnin×d is the matrix of input embeddings, x(o)

i ∈ Rd is the input
embedding from the ith output token, and x̂

(o)
i ∈ Rd is its approximation. si and ŝi denote the

importance of the ith KV pair.

To understand when lookahead-based KV cache dropping algorithms provide reliable importance
estimates, we analyze how error in approximate input embeddings impacts error in importance score
estimates for a single attention head.

Theorem 1. If ∥x(o)
i − x̂

(o)
i ∥2 ≤ ϵ for all i and ∥xj∥2 ≤

√
d for all j, then ∥s− ŝ∥2 ≤ ϵ∥WqW

T
k ∥2.

This result shows that for a single attention layer, the worst-case error in the approximate importance
scores is proportional to the worst-case error in the approximate input embeddings, implying that
lookahead-based KV cache dropping algorithms provide reliable importance estimates as long as the
draft model remains reasonably accurate (see Section B.1 for proof).

To evaluate the quality of different draft outputs, we compute ϵ for two algorithms (LAQ++ and
SpecKV). While Theorem 1 assumes a strict token-wise alignment (where each draft token x̂

(o)
i

corresponds to a target token x
(o)
i), in practice, the draft and target models often generate sequences

of different lengths (ˆnout ̸= nout). To address this mismatch, we relax the strict point-wise condition
and empirically evaluate draft quality using the global distance between the centroids of the output
sequences. We compute ϵ as:

ϵ =

∥∥∥∥∥ 1

nout

nout∑
i=1

x
(o)
i − 1

ˆnout

n̂out∑
i=1

x̂
(o)
i

∥∥∥∥∥
2

. (2)

This metric serves as a practical proxy for the distributional mismatch between the target and draft
outputs. We report ϵ averaged across all attention layers. As shown in Fig. 2a, increasing draft quality
(decreasing ϵ) leads to higher downstream accuracy. Furthermore, Section E.4 demonstrates how
SpecKV’s lookahead mechanism improves importance score correlation and accuracy, particularly
for long outputs.

3.2 JUSTIFICATION FOR DRAFT-BASED PROMPT COMPRESSION

Most KV cache dropping algorithms estimate token importance using attention scores from the
target model itself. While effective, this approach is too computationally expensive for tasks like
prompt compression, where we need to estimate token importance without forwarding the entire

1For LAQ++, initial cache size refers to the value of Cmax used during the sparse draft generation.

5

Published as a conference paper at ICLR 2026

input through the target model. A more efficient alternative is to use a smaller draft model for this
estimation. To justify this approach, we study how the similarity between the draft and target models’
outputs correlates with the similarity of their attention activations in a single attention layer.

The target model attention layer uses weights Wq, Wk, and Wv, and the draft model attention layer
uses Ŵq, Ŵk, and Ŵv. Let the input prompt be X = [x1, . . . , xn]

T ∈ Rn×d. The outputs of the
target attention layer and its approximation are

Y = Softmax
(

XWqW
T
k XT

√
d

)
XWv = AXWv, Ŷ = Softmax

(
XŴqŴ

T
k XT

√
d

)
XŴv = ÂXŴv,

(3)

where X = [x1, . . . , xn]
T ∈ Rn×d, A = [a1, . . . , an]

T is the attention matrix, and Â =
[â1, . . . , ân]

T is the approximate attention matrix.

If the scaled inputs satisfy the Restricted Isometry Property (RIP)2 (Candes & Tao, 2005), a condition
widely studied in compressed sensing to ensure the stable recovery of sparse signals, we can establish
the following bound:
Theorem 2. If there exists a constant c such that cXT satisfies the Restricted Isometry Property with
parameters (2k, δ), where δ is the restricted isometry constant and k is the approximate sparsity of
ai and âi, and the output error satisfies ∥yi − ŷi∥2 ≤ ϵ∥X∥∞,2, then the attention error satisfies
∥ai − âi∥2 ≤ 2cϵ∥X∥∞,2

σmin(Wv)(1−δ) .3

This result offers a surprising and elegant connection: it reveals that mathematical tools developed for
compressed sensing can also bound the error in attention approximations. Specifically, it shows that
the worst-case error in the approximate attention activations is proportional to the worst-case error
in the approximate outputs, with the constant depending on the conditioning of the weight matrices
and the maximum input embedding norm. This implies that if the draft model provides a reasonable
approximation of the output, it also gives a reasonable approximation of the attention activations (see
Section B.2 for proof). Furthermore, even if the scaled inputs do not satisfy the RIP, we can still
bound the attention approximation error by applying Theorem 3 (see Section B.3 for proof).

In addition to the theoretical analysis, we examine the correlation between the importance scores
(as computed by SpecPC) for Qwen2.5-Instruct (1.5B as draft, 14B as target). In Fig. 2b, we plot
the draft importance scores against the corresponding target importance scores. The results reveal
a strong correlation, supporting the use of draft attention activations to approximate target token
importance. Furthermore, this correlation strengthens as the draft model size increases (Fig. 2c).

4 DRAFT-BASED APPROXIMATE INFERENCE METHODS

4.1 SPECKV: ROBUST IMPORTANCE ESTIMATION FOR KV CACHE DROPPING

Existing sparse attention and KV cache dropping methods, such as SnapKV, estimate token importance
by analyzing recent attention activations. This approach can be inaccurate when the set of important
KV pairs shifts during generation, as past patterns do not always predict future ones. We argue that a
more robust estimate can be derived from the attention activations of draft queries for future tokens.

LAQ++ attempts this by generating draft queries from the target model using an initially compressed
cache. These queries are then used to compute more accurate importance scores for a second, more
informed compression pass. However, this two-pass method provides no reduction in peak memory
because it must store the entire original KV cache of the target model to avoid recomputing the
expensive prefill stage.

To overcome this limitation, we propose SpecKV. Our method employs a lightweight draft model to
generate the draft output, which substantially reduces the cost of the lookahead step. This enables an
accurate compression of the KV cache without sacrificing peak memory reduction.

2The input embedding matrix may satisfy the RIP if its entries are approximately uniformly or normally
distributed. RIP can also hold with positional embeddings constructed from a Fourier basis.

3∥X∥∞,2 denotes the maximum ℓ2 norm of X’s rows; σmin(Wv) is the smallest singular value of Wv .

6

Published as a conference paper at ICLR 2026

output

window

SnapKV Importance
Scores

SpecKV Importance
Scores (Ours)

Draft Model

prompt prompt

prompt

Figure 3: Overview of SpecKV: Instead of using only the last prompt tokens like SnapKV, SpecKV
employs a lightweight draft model to generate lookahead tokens, providing richer context for more
accurate KV importance estimation. Tokens in window are always retained.

SpecKV (Algorithm 1) begins by generating a draft output of length nlookahead using a small draft
model, which acts as a proxy for the target model’s future outputs. During prefilling, both the
input tokens and the draft tokens are passed through the target model. For each attention head, we
compute token importance scores by measuring the cross-attention between the queries from the last
nwindow input tokens and the draft output tokens to the remaining input keys (Fig. 3). We apply local
pooling with kernel size k to the attention scores to maintain continuity. These scores guide two
optimizations: sparse prefilling and KV cache dropping. For sparse prefilling, we use a variation of
the Vertical-Slash kernel pattern introduced in (Jiang et al., 2024a). For KV cache dropping, we retain
the top Cmax − nwindow KV pairs with the highest importance scores, along with the final nwindow KV
pairs from the most recent tokens.

4.2 SPECPC: LEVERAGING DRAFT MODELS FOR EFFICIENT PROMPT COMPRESSION

SpecKV leverages the draft model outputs to enable more effective KV cache dropping. However,
greater efficiency gains are possible by leveraging more information from the draft model. As
demonstrated in Section 3.2, draft model attention scores serve as reliable estimates of target token
importance. Building on this insight, we introduce SpecPC, an extension of SpecPrefill (Liu et al.,
2025), which compresses the prompt to reduce latency and memory usage during both prefilling and
decoding, surpassing the efficiency benefits of traditional KV cache dropping.

SpecPC (Algorithm 2) feeds an input prompt (length nin) to the draft model and directly extracts its
attention activations A ∈ Rnlayer×nhead×(nin+nlookahead−1)×nin , where nlayer and nhead denote the number
of layers and heads. These activations indicate token importance and are used to drop less relevant
tokens from the prompt.

SpecPrefill (Liu et al., 2025) uses a window size of nwindow = 1, meaning it relies on attention
scores from queries associated with the last input token and nlookahead draft output tokens to compute
token importance. However, our experiments show that the optimal choice of nwindow (the number of
input queries used for importance estimation) is task-dependent, with some tasks benefiting from
additional input queries. To address this, we adopt a large window with non-uniform token weights,
placing greater emphasis on tokens near the prompt’s end to achieve robust, task-wide performance.
Window tokens are reweighted so that the jth token from the end receives weight nwindow−(j−1)

nwindow
. Max

aggregation is performed across layers, heads, and queries to produce a single importance score
per token (excluding the always-kept last nwindow tokens). Additionally, as PyramidKV (Cai et al.,
2024b) showed that attention is more focused in deeper layers, we exclude the first lskip layers during
aggregation.

We apply average, then max pooling, so selected tokens also include nearby context, avoiding static
chunking that could split related tokens (e.g., key-value pairs). This maintains the local context LLMs
require. Unlike other methods that select entire sentences, we avoid sentence-level pre-processing to
support non-text inputs, such as images. We then select the top-Cmax tokens with the highest scores,
always including window tokens, to form the compressed prompt. We pass the compressed prompt to
the target model with reassigned contiguous position IDs, enabling SpecPC to surpass the model’s
maximum context length.

7

Published as a conference paper at ICLR 2026

2. SpecKV

1. SpecPC

Oracle

Target Model
input

output

approximate output

≈
Ours

Current approach
Use inputs to identify
important input tokens

Use true outputs to identify
important input tokens

Draft Model

input importance

Use approximate outputs to
identify important input tokens

Draft Model

Target Model

input

token importance

lookahead tokens

compressed input

Figure 4: Overview of cascaded compression with SpecKV-PC: First, the draft model produces token
importance scores and lookahead tokens. Next, SpecPC uses these scores to compress the initial input
prompt. Finally, the target model is prefilled using both the compressed prompt and the lookahead
tokens, while SpecKV compresses its KV cache

4.3 SPECKV-PC: CASCADED COMPRESSION WITH SPECKV AND SPECPC

SpecKV-PC integrates SpecKV and SpecPC into a highly efficient, two-stage compression pipeline.
The core strategy leverages a cascaded approach, which first compresses the prompt with SpecPC
and then further compresses the KV cache with SpecKV (Fig. 4). Because of fewer target model
activations, SpecKV-PC achieves substantially lower latency and a smaller memory footprint than
SpecKV alone, as the computationally intensive target model processes only a fraction of the original
prompt.

5 EXPERIMENTS

5.1 SETUP

We benchmark SpecKV and SpecPC against baselines on RULER (Hsieh et al., 2024) and Long-
Bench (Bai et al., 2024) using two model pairs: Qwen2.5-Instruct (Yang et al., 2024) (14B target
with 1.5B/0.5B drafts for KV dropping/prompt compression) and Llama-3-Instruct (Grattafiori et al.,
2024) (3.1-70B 4-bit target with 3.2-3B/1B drafts, respectively).

RULER is a synthetic benchmark with 13 tasks of varying complexity, including tasks such as
key-value retrieval (NIAH), multi-hop tracing, and aggregation. It can be generated at any sequence
length to assess a model’s effective context window. We evaluate at 4K, 8K, 16K, 32K, and 64K
(Qwen is excluded at 64K due to its 32K sequence limit). LongBench contains 12 English, five
Chinese, two code, and three synthetic tasks across five categories. We exclude the Chinese tasks
(unsupported by Llama) and synthetic tasks (already covered by RULER). We select 50 examples
from each task, yielding 700 examples from LongBench and 650 examples at each context length for
RULER.

For SpecKV, we compare against KV dropping methods H2O (Zhang et al., 2023), SnapKV (Li
et al., 2024), PyramidKV (Cai et al., 2024b), and LAQ++ (Wang et al., 2025), using Cmax = 256.
Additionally, we assess SpecKV-PC-2048 that first compresses to 2048 tokens via SpecPC before
applying SpecKV (Cmax = 256). For SpecPC, we benchmark against LLMLingua-v2 (Pan et al.,
2024), CPC (Liskavets et al., 2025), R2C (Choi et al., 2024), and SpecPrefill (Liu et al., 2025) with
Cmax = 1024. Based on our ablation studies (Fig. 19), we set nlookahead to the maximum token limit
for SpecKV and to one for SpecPC. For SpecPrefill and LAQ++, we use nlookahead = 8 as in the
official paper. Sections C to E contain datasets, details, and additional results, including cross-family
evaluations, different Cmax settings, and multimodal experiments on MileBench (Dingjie et al., 2024)
with Qwen2.5-VL (Bai et al., 2025).

8

Published as a conference paper at ICLR 2026

4k 8k 16k 32k
Sequence Length

60

70

80

90

100

Sc
or

e

Qwen2.5 32B

4k 8k 16k 32k 64k
Sequence Length

Llama-3 70B (4-bit)

SpecKV
SpecKV-PC-2048

Draft
Target

H2O
SnapKV

PyramidKV
LAQ++

SpecKV
SpecKV-PC-2048

Draft
Target

H2O
SnapKV

PyramidKV
LAQ++

(a) KV dropping (Cmax = 256)

4k 8k 16k 32k
Sequence Length

60

70

80

90

100

Sc
or

e

Qwen2.5 32B

4k 8k 16k 32k 64k
Sequence Length

Llama-3 70B (4-bit)

SpecPC
Draft

Target
LLMLingua-2

CPC
R2C

SpecPrefillSpecPC
Draft

Target
LLMLingua-2

CPC
R2C

SpecPrefill

(b) Prompt compression (Cmax = 1024)

Figure 5: Performance of SpecKV and SpecPC. Both methods consistently outperform all baselines
across sequence lengths, maintaining strong results at longer contexts. SpecKV-PC further improves
upon SpecKV to achieve state-of-the-art results for KV dropping. Note that H2O and PyramidKV
are not plotted for Qwen2.5 32B as their performance falls outside the visible range.

5.2 RESULTS

Fig. 5 (RULER) and Table 2 (LongBench) compare our methods with baselines. All our methods
consistently outperform other baselines, demonstrating superior KV cache and prompt compression.
Their performance far exceeds the draft model, highlighting robustness even with weaker drafts.
Performance improves further with better drafts (Fig. 18). On RULER and LongBench, SpecKV and
SpecPC consistently surpass existing baselines across multiple model families and context lengths.
Interestingly, SpecKV-PC outperforms SpecKV alone, suggesting that the initial SpecPC-based
prompt compression acts as an effective pre-filter by removing easy-to-identify, unimportant tokens.
For larger Cmax, our methods remain superior (Figs. 10 and 11; Tables 9 to 11). Finally, we provide
additional results regarding AdaKV (Section E.2), multimodal tasks (Section E.3), cross-family
settings (Section E.5), and SpecKV-PC prompt compression ratios (Section E.6).

Table 2: LongBench performance with Qwen2.5 and Llama-3.

Qwen2.5 32B Llama-3 70B (4-bit)

Group Method Sing
leQ

A

M
ult

iQ
A

Sum
m.

Few
-sh

ot

Cod
e

All Sing
leQ

A

M
ult

iQ
A

Sum
m.

Few
-sh

ot

Cod
e

All

Dense Target 56.01 43.99 25.90 64.06 44.74 47.78 55.02 47.06 28.61 70.47 48.19 49.99

KV

H2O 46.63 30.81 19.88 56.03 39.27 39.32 54.07 41.30 22.55 49.10 54.14 43.52
SnapKV 52.54 40.21 19.89 61.18 40.12 42.98 55.88 45.30 22.49 62.15 55.49 47.75
PyramidKV 50.92 37.26 18.90 63.24 40.20 43.19 55.41 45.59 22.50 59.06 49.90 46.25
LAQ++ 55.15 44.14 22.24 63.25 41.19 45.79 54.90 46.48 22.83 64.31 55.10 48.43
SpecKV 53.48 43.77 24.02 63.79 44.80 46.06 51.80 47.23 25.53 64.02 58.75 48.80
SpecKV-PC-2048 52.60 44.52 24.11 63.38 48.45 46.48 61.42 47.15 26.51 66.94 58.19 51.60

PC

LLMLingua-2 33.83 26.39 22.85 32.46 43.01 30.90 37.95 28.20 23.35 42.37 37.63 33.63
CPC 45.60 40.62 23.09 60.08 32.31 40.91 45.14 39.41 24.86 61.40 37.58 41.97
R2C 50.49 40.37 23.26 53.45 34.11 39.88 48.93 42.01 25.38 58.91 40.19 43.29
SpecPrefill 45.94 39.32 23.16 62.04 43.17 42.70 54.62 46.43 25.63 64.80 44.92 48.37
SpecPC 51.23 41.40 23.37 62.26 38.23 43.66 56.84 44.48 25.91 67.37 47.15 48.44

5.3 EFFICIENCY

We evaluate latency and memory on a single NVIDIA H200 (141GB) GPU. The target model is
Qwen2.5-32B, with draft models of Qwen2.5-1.5B for KV dropping and Qwen2.5-0.5B for prompt
compression. Latency is measured as the time to generate 64 tokens including all draft stages, with
nlookahead set to 64 for SpecKV and SpecKV-PC4, 8 for SpecPrefill and LAQ++, and 1 for SpecPC,
with SpecKV-PC prompts compressed to 2048 tokens. For KV dropping methods, we report peak
system memory, while for prompt compression, we report memory for the compression stage only,

4While some tasks can generate up to 128 tokens, benchmark outputs are typically under 64 tokens.

9

Published as a conference paper at ICLR 2026

because the target model uses the same amount of memory for all prompt compression algorithms. A
detailed breakdown of latency and memory is included in Section E.7.

SpecKV outperforms both SnapKV and LAQ++ in speed, driven by efficient sparse prefilling and a
low-latency draft model (Fig. 6). Notably, SpecKV-PC achieves a 75% reduction in latency compared
to LAQ++ at 64k context, as it significantly reduces the target prefill bottleneck through prompt
compression. Regarding memory, while SpecKV requires more memory than SnapKV to store draft
weights, this overhead is constant and can be further reduced by offloading to a CPU. Crucially,
SpecKV is far more memory-efficient than LAQ++, which needs the entire target KV cache to
function, matching the memory footprint of the dense target model. Thus, SpecKV offers a superior
combination of accuracy and memory efficiency. Furthermore, SpecKV-PC yields substantial peak
memory savings (around 25GB compared to LAQ++ at 64k context) by feeding a shorter prompt to
the target model. Other KV dropping methods are omitted as their performance is similar to SnapKV.

SpecPC achieves the lowest latency among all baselines. It avoids the CPU preprocessing overhead
of CPC and R2C and is faster than SpecPrefill due to a shorter lookahead. SpecPC is also the most
memory-efficient, using substantially less memory than R2C. Overall, prompt compression is faster
than KV dropping because only the compressed prompt tokens (Cmax) are passed to the target model.

0k 25k 50k
Sequence Length

60

70

80

90

Pe
ak

M
em

or
y

(G
B

)

Memory

25k 50k
Sequence Length

0

10

Ti
m

e
(s

)

Latency

SpecKV
SpecKV*

SpecKV-PC
Draft

Target
SnapKV

LAQ++

(a) SpecKV memory and latency.

25k 50k
Sequence Length

5

10
Pe

ak
M

em
or

y
(G

B
)

Memory (Compress)

25k 50k
Sequence Length

2.5

5.0

7.5

10.0

Ti
m

e
(s

)

Latency

SpecPC
LLMLingua-2

CPC
R2C

SpecPrefill

(b) SpecPC memory and latency.

Figure 6: Peak memory usage and latency. SpecKV* denotes SpecKV without sparse prefill.

6 DISCUSSION

In this paper, we present Draft-based Approximate Inference, a framework that leverages draft model
lookahead for approximate inference. Within this framework, we introduce two concrete algorithms:
Speculative KV Dropping (SpecKV) for KV cache dropping with sparse prefill, and Speculative
Prompt Compression (SpecPC) for prompt compression. We further propose SpecKV-PC, a cascaded
pipeline that synergizes these approaches for improved efficiency and accuracy. Our approach is
grounded in theoretical and empirical analyses that justify lookahead-based KV cache dropping
and the use of draft model token importance to approximate target model importance. Through
comprehensive experiments on long-context benchmarks, we show that our methods consistently
achieve state-of-the-art accuracy under fixed KV cache and prompt size constraints, surpassing
prior baselines. These contributions establish draft model lookahead as a powerful tool for efficient
long-context inference, extending the role of draft models beyond speculative decoding.

Limitations and Future Work For SpecKV, draft generation causes minimal latency even for
larger nlookahead (Section E.7). However, very long outputs or large nlookahead values may reduce
performance. In these cases, lowering nlookahead could maintain speed with little loss in accuracy.
For SpecPC, increasing nlookahead to generate more tokens led to only minor accuracy gains; better
leveraging longer drafts remains future work. Additionally, while our methods are robust using very
small (Fig. 18) or cross-family (Section E.5) draft models, a reasonably accurate draft model is still
required. Currently, Draft-based Approximate Inference supports sparse prefill, KV dropping, and
prompt compression. Extensions such as lookahead-based sparse decoding or iterative KV cache
dropping, where KV entries are periodically removed using draft lookahead, could further improve
support for reasoning models with long outputs.

10

Published as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide a link to our public code. All algorithms, datasets, and experimental details, including
hyperparameter settings, can be found in Section 5 and the appendix (Sections A, C and D).

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report.
arXiv preprint, abs/2303.08774, 2023. URL https://arxiv.org/abs/2303.08774.

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. GPT-OSS-120B & GPT-OSS-20B model card.
arXiv preprint, abs/2508.10925, 2025. URL https://arxiv.org/abs/2508.10925.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. GQA: Training generalized multi-query Transformer models from multi-head checkpoints.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pp. 4895–4901, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2.5-VL technical report. arXiv preprint, abs/2502.13923, 2025.
URL https://arxiv.org/abs/2502.13923.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3119–3137, Bangkok,
Thailand, 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172.
URL https://aclanthology.org/2024.acl-long.172.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document Transformer.
arXiv preprint, abs/2004.05150, 2020. URL https://arxiv.org/abs/2004.05150.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple LLM inference acceleration framework with multiple decoding heads. In
International Conference on Machine Learning, pp. 5209–5235. PMLR, 2024a.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Xiao Wen. PyramidKV: Dynamic KV cache compression based
on pyramidal information funneling. arXiv preprint, abs/2406.02069, 2024b. URL https:
//arxiv.org/abs/2406.02069.

E.J. Candes and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory,
51(12):4203–4215, 2005. doi: 10.1109/TIT.2005.858979.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint,
abs/2302.01318, 2023. URL https://arxiv.org/abs/2302.01318.

11

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2502.13923
https://aclanthology.org/2024.acl-long.172
https://arxiv.org/abs/2004.05150
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2302.01318

Published as a conference paper at ICLR 2026

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. In European Conference on Computer Vision, pp. 19–35. Springer, 2024.

Eunseong Choi, Sunkyung Lee, Minjin Choi, Jun Park, and Jongwuk Lee. From reading to compress-
ing: Exploring the multi-document reader for prompt compression. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pp. 14734–14754, 2024.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
supervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 8440–8451, Online, 2020. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.747. URL https:
//aclanthology.org/2020.acl-main.747.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, 2024.

Song Dingjie, Shunian Chen, Guiming Hardy Chen, Fei Yu, Xiang Wan, and Benyou Wang.
MileBench: Benchmarking MLLMs in long context. In First Conference on Language Mod-
eling, 2024.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Evaluating large language models in class-level
code generation. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, ICSE ’24, New York, NY, USA, 2024. Association for Computing Machinery.
ISBN 9798400702174. doi: 10.1145/3597503.3639219. URL https://doi.org/10.1145/
3597503.3639219.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-KV: Optimizing KV cache
eviction by adaptive budget allocation for efficient LLM inference. In The Thirty-ninth Annual
Conference on Neural Information Processing Systems, 2025. URL https://openreview.
net/forum?id=tcisuhGsQZ.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads
matter: A head-level KV cache compression method with integrated retrieval and reasoning.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=FJFVmeXusW.

Gemma Team. Gemma 3. 2025. URL https://goo.gle/Gemma3Report.

Google DeepMind. Gemini 2.5 Pro: Advanced reasoning AI model, 2025. URL https://
deepmind.google/technologies/gemini/pro/.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 herd
of models. arXiv preprint, abs/2407.21783, 2024. URL https://arxiv.org/abs/2407.
21783.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. RULER: What’s the real context size of your long-context language models? In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?
id=kIoBbc76Sy.

Yunhai Hu, Zining Liu, Zhenyuan Dong, Tianfan Peng, Bradley McDanel, and Sai Qian Zhang. Spec-
ulative decoding and beyond: An in-depth survey of techniques. arXiv preprint, abs/2502.19732,
2025. URL https://arxiv.org/abs/2502.19732.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. In Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume, pp. 874–880, Online, 2021. Association
for Computational Linguistics. URL https://aclanthology.org/2021.eacl-main.
74.

12

https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/2020.acl-main.747
https://doi.org/10.1145/3597503.3639219
https://doi.org/10.1145/3597503.3639219
https://openreview.net/forum?id=tcisuhGsQZ
https://openreview.net/forum?id=tcisuhGsQZ
https://openreview.net/forum?id=FJFVmeXusW
https://openreview.net/forum?id=FJFVmeXusW
https://goo.gle/Gemma3Report
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://arxiv.org/abs/2502.19732
https://aclanthology.org/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74

Published as a conference paper at ICLR 2026

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7B. arXiv preprint, abs/2310.06825,
2023a. URL https://arxiv.org/abs/2310.06825.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. LLMLingua: Compressing
prompts for accelerated inference of large language models. In The 2023 Conference on Empir-
ical Methods in Natural Language Processing, 2023b. URL https://openreview.net/
forum?id=ADsEdyI32n.

Huiqiang Jiang, YUCHENG LI, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MInference 1.0:
Accelerating pre-filling for long-context LLMs via dynamic sparse attention. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024a. URL https:
//openreview.net/forum?id=fPBACAbqSN.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. LongLLMlingua: Accelerating and enhancing LLMs in long context scenarios via prompt
compression. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1658–1677, 2024b.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with PagedAttention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. FlexPrefill: A context-aware
sparse attention mechanism for efficient long-sequence inference. In The Thirteenth International
Conference on Learning Representations, 2025.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from Transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin. Compressing context to enhance inference
efficiency of large language models. In The 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, 2023. URL https://openreview.net/forum?id=cjbdRN8Yxy.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before
generation. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=poE54GOq2l.

Barys Liskavets, Maxim Ushakov, Shuvendu Roy, Mark Klibanov, Ali Etemad, and Shane K Luke.
Prompt compression with context-aware sentence encoding for fast and improved LLM inference.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 24595–24604,
2025.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, Chen Chen, Fan Yang, Yuqing Yang, and Lili Qiu.
RetrievalAttention: Accelerating long-context LLM inference via vector retrieval. arXiv preprint,
abs/2409.10516, 2024a. URL https://arxiv.org/abs/2409.10516.

Fei Liu et al. Learning to summarize from human feedback. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 583–592, 2020.

Jingyu Liu, Beidi Chen, and Ce Zhang. Speculative prefill: Turbocharging TTFT with lightweight
and training-free token importance estimation. arXiv preprint, abs/2502.02789, 2025. URL
https://arxiv.org/abs/2502.02789.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024b.

13

https://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=ADsEdyI32n
https://openreview.net/forum?id=ADsEdyI32n
https://openreview.net/forum?id=fPBACAbqSN
https://openreview.net/forum?id=fPBACAbqSN
https://openreview.net/forum?id=cjbdRN8Yxy
https://openreview.net/forum?id=poE54GOq2l
https://arxiv.org/abs/2409.10516
https://arxiv.org/abs/2502.02789

Published as a conference paper at ICLR 2026

Piotr Nawrot, Robert Li, Renjie Huang, Sebastian Ruder, Kelly Marchisio, and Edoardo M. Ponti. The
sparse frontier: Sparse attention trade-offs in Transformer LLMs. arXiv preprint, abs/2504.17768,
2025. URL https://arxiv.org/abs/2504.17768.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin,
Victor Rühle, Yuqing Yang, Chin-Yew Lin, et al. LLMlingua-2: Data distillation for efficient
and faithful task-agnostic prompt compression. In Findings of the Association for Computational
Linguistics ACL 2024, pp. 963–981, 2024.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS-W, 2017.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
Transformer. Journal of machine learning research, 21(140):1–67, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, Austin, Texas, 2016. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

Ranajoy Sadhukhan, Jian Chen, Zhuoming Chen, Vashisth Tiwari, Ruihang Lai, Jinyuan Shi, Ian En-
Hsu Yen, Avner May, Tianqi Chen, and Beidi Chen. MagicDec: Breaking the latency-throughput
tradeoff for long context generation with speculative decoding. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=CS2JWaziYr.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. TriForce: Lossless accel-
eration of long sequence generation with hierarchical speculative decoding. In First Conference on
Language Modeling, 2024. URL https://openreview.net/forum?id=HVK6nl3i97.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. QUEST: Query-
aware sparsity for efficient long-context LLM inference. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=KzACYw0MTV.

Rishabh Tiwari, Haocheng Xi, Aditya Tomar, Coleman Hooper, Sehoon Kim, Maxwell Horton,
Mahyar Najibi, Michael W. Mahoney, Kurt Keutzer, and Amir Gholami. QuantSpec: Self-
speculative decoding with hierarchical quantized KV cache. arXiv preprint, abs/2502.10424, 2025.
URL https://arxiv.org/abs/2502.10424.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Yixuan Wang, Shiyu Ji, Yijun Liu, Yuzhuang Xu, Yang Xu, Qingfu Zhu, and Wanxiang Che.
Lookahead Q-cache: Achieving more consistent KV cache eviction via pseudo query. In Christos
Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, and Violet Peng (eds.), Proceedings of
the 2025 Conference on Empirical Methods in Natural Language Processing, pp. 34158–34174,
Suzhou, China, November 2025. Association for Computational Linguistics. ISBN 979-8-89176-
332-6. doi: 10.18653/v1/2025.emnlp-main.1732. URL https://aclanthology.org/
2025.emnlp-main.1732/.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. HuggingFace’s Transformers: State-
of-the-art natural language processing. arXiv preprint, abs/1910.03771, 2019. URL https:
//arxiv.org/abs/1910.03771.

14

https://arxiv.org/abs/2504.17768
https://aclanthology.org/D16-1264
https://openreview.net/forum?id=CS2JWaziYr
https://openreview.net/forum?id=CS2JWaziYr
https://openreview.net/forum?id=HVK6nl3i97
https://openreview.net/forum?id=KzACYw0MTV
https://arxiv.org/abs/2502.10424
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/2025.emnlp-main.1732/
https://aclanthology.org/2025.emnlp-main.1732/
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771

Published as a conference paper at ICLR 2026

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint, abs/2412.15115,
2024. URL https://arxiv.org/abs/2412.15115.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025a.

An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,
Jianhong Tu, Jianwei Zhang, Jingren Zhou, et al. Qwen2.5-1M technical report. arXiv preprint,
abs/2501.15383, 2025b. URL https://arxiv.org/abs/2501.15383.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, Brussels, Belgium, 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2O: Heavy-
hitter oracle for efficient generative inference of large language models. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=RkRrPp7GKO.

15

https://openreview.net/forum?id=NG7sS51zVF
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2501.15383
https://aclanthology.org/D18-1259
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO

Published as a conference paper at ICLR 2026

Appendix
A Algorithm Pseudocode 17

B Mathematical Proofs 17

B.1 Proof of Theorem 1 . 19

B.2 Proof of Theorem 2 . 19

B.3 Proof of Theorem 3 . 20

C Benchmark Dataset Details 23

C.1 LongBench . 23

C.2 RULER . 23

C.3 MileBench . 24

D Experimental Setup 24

D.1 Hyperparameter Settings . 24

D.2 Implementation Details . 25

E Extended Experimental Analysis 26

E.1 Additional Results on RULER and LongBench 26

E.2 Integration and Comparison with the AdaKV Baseline 26

E.3 Multi-modal Evaluation . 26

E.4 SpecKV: Impact of nlookahead Parameter on Importance Score Correlation 27

E.5 Performance of Cross-Family Models . 27

E.6 Extended Results for SpecKV-PC . 28

E.7 SpecKV: Extended Latency and Memory Analysis 29

E.8 Ablation Studies . 29

E.8.1 SpecKV: Analysis of Enhanced Draft Models 30

E.8.2 SpecKV and SpecPC: Impact of nlookahead 30

E.8.3 SpecKV: Accuracy Analysis of Sparse Prefill 30

16

Published as a conference paper at ICLR 2026

A ALGORITHM PSEUDOCODE

Algorithm 1 SpecKV
1: Input:

Input sequence x with length nin

Parameters: Number of lookahead tokens nlookahead, Maximum cache capacity Cmax,
Compression window size nwindow, Kernel size k, Prefill window size nslash,
Number of global tokens in prefill nvert

2: Generate a draft output ydraft of length nlookahead using the draft model.
3: Forward x and ydraft through the target model.
4: for each attention head in target model do
5: X ← Target model hidden states from prompt at current layer ▷ X ∈ Rnin×d

6: Y ← Target model hidden states from draft output at current layer ▷ Y ∈ Rnlookahead×d

7: m← nin − nwindow

8: A← CrossAttention
(
Q from

[
Xm:
Y

]
, K/V from X:m

)
▷ Compute attention

9: s← MaxReduce(A) ▷ Rn1×n2 → Rn2

10: s← AvgPool1D(s, k) ▷ Smooth attention
11: ivert ← topk(s, nvert) ▷ Select global tokens (Sparse prefill)
12: islash ← {1, 2, . . . , nslash} ▷ Sliding window (Sparse prefill)
13: icache ← topk(s, Cmax − nwindow) ∪ {m+ 1,m+ 2, . . . , nin} ▷ Select KVs
14: output← VerticalSlash(X, ivert, islash) ▷ Sparse prefill attention
15: cache← Kicache , Vicache ▷ KV cache dropping
16: end for

Algorithm 2 SpecPC
1: Input:

Draft attention tensor A ∈ Rnlayer×nhead×(nin+nlookahead−1)×nin

Parameters: Window size nwindow, Kernel size k, Number of neighbors nneighbor,
Number of selected tokens Cmax, Number of skipped layers lskip

2: m← nin − nwindow

3: A← Alskip:,:,m:,:m ▷ Skip layers and only consider window queries and non-window keys
4: for j ∈ {1, 2, . . . , nwindow} do
5: A...,j,: ← j

nwindow
A...,j,: ▷ Assign more weight to later tokens

6: end for
7: s← MaxReduce(A) ▷ Rn1×n2×n3×n4 → Rn4

8: s← AvgPool1D(s, k) ▷ Smooth attention
9: s← MaxPool1D(s, nneighbor) ▷ Keep neighbor tokens

10: iselected ← topk(s, Cmax) ∪ {m+ 1,m+ 2, . . . , nin} ▷ Keep most activated tokens and window tokens
11: return iselected

B MATHEMATICAL PROOFS

Lemma 1. ∥ Softmax(x)− Softmax(y)∥2 ≤ ∥x− y∥∞.

Proof. Let J be the Jacobian matrix of Softmax. Then, J(v) = diag(p) − ppT , where p =
Softmax(v). Note that p is a probability distribution, so pi ≥ 0 for all i and

∑
i pi = 1. For any

17

Published as a conference paper at ICLR 2026

vectors v and z,

∥J(v)z∥22 = ∥(diag(p)− ppT)z∥22
=

∑
i

(pizi − pip
T z)2

=
∑
i

p2i (zi − pT z)2

≤
∑
i

pi(zi − pT z)2

=
∑
i

(
piz

2
i − 2pizip

T z + pi(p
T z)2

)
=

∑
i

piz
2
i − (pT z)2

≤
∑
i

piz
2
i

≤
∑
i

pi∥z∥2∞

≤ ∥z∥2∞.

Thus, ∥J(v)z∥2 ≤ ∥z∥∞ for all v and z. From the fundamental theorem of line integrals,

Softmax(x)− Softmax(y) =

∫ 1

0

J(y + t(x− y))(x− y)dt. (4)

Finally,

∥ Softmax(x)− Softmax(y)∥2 =

∥∥∥∥∫ 1

0

J(y + t(x− y))(x− y)dt

∥∥∥∥
2

≤
∫ 1

0

∥J(y + t(x− y))(x− y)∥2dt

≤
∫ 1

0

∥x− y∥∞dt

= ∥x− y∥∞.

Lemma 2. Let y = Softmax(x) and y′ = Softmax(x′). If ∥y − y′∥p ≤ ϵ, then there exists a scalar
c such that ∥x− x′ − c1∥p ≤ ϵ

m , where m = mini(min(yi, y
′
i)) and p ∈ {1, 2, . . . ,∞}.

Proof. From the mean value theorem, there exists ξ ∈ (yi, y
′
i) such that

log yi−log y′
i

yi−y′
i

= d log t
dt

∣∣∣∣∣
t=ξ

= 1
ξ . (5)

Note that ξ > 0. Then,

| log yi − log y′i| = 1
ξ |yi − y′i| ≤ 1

m |yi − y′i|. (6)

Let c = log
∑

j e
xj − log

∑
j e

x′
j , so

∣∣∣∣log exi∑
j exj − log ex

′
i∑

j e
x′
j

∣∣∣∣ =
∣∣∣∣∣∣xi − x′

i −

log
∑
j

exj − log
∑
j

ex
′
j

∣∣∣∣∣∣ = |xi − x′
i − c| (7)

18

Published as a conference paper at ICLR 2026

for all i. Thus,

|xi − x′
i − c| ≤ 1

m |yi − y′i| =⇒ |xi − x′
i − c|p ≤ 1

mp |yi − y′i|p

=⇒
∑
i

|xi − x′
i − c|p ≤ 1

mp

∑
i

|yi − y′i|p

=⇒ ∥x− x′ − c1∥pp ≤ 1
mp ∥y − y′∥pp

=⇒ ∥x− x′ − c1∥p ≤ 1
m∥y − y′∥p

=⇒ ∥x− x′ − c1∥p ≤ ϵ
m .

B.1 PROOF OF THEOREM 1

We define the vector of importance scores as and its approximation as

sT = 1
nout

nout∑
i=1

Softmax

(
x
(o)T
i WqW

T
k XT

√
d

)
and ŝT = 1

nout

nout∑
i=1

Softmax

(
x̂
(o)T
i WqW

T
k XT

√
d

)
,

(8)

where X = [x1, . . . , xnin]
T ∈ Rnin×d is the matrix of input embeddings, x(o)

i ∈ Rd is the ith output
embedding, and x̂

(o)
i ∈ Rd is the ith approximate output embedding (from the draft model). si and

ŝi denote the importance of the ith KV pair. In practice, SpecKV estimates importance using queries
from recent input and draft output tokens. This is omitted from the theoretical analysis for clarity.

Proof. We assume ∥x(o)
i − x̂

(o)
i ∥2 ≤ ϵ for all i and ∥xj∥2 ≤

√
d for all j.

∥x(o)
i − x̂

(o)
i ∥2 ≤ ϵ, so∣∣∣∣x(o)T

i WqW
T
k xj√

d
− x̂

(o)T
i WqW

T
k xj√

d

∣∣∣∣ = 1√
d

∣∣∣(x(o)
i − x̂

(o)
i)TWqW

T
k xj

∣∣∣
≤ 1√

d
∥WqW

T
k ∥2ϵ

√
d

= ϵ∥WqW
T
k ∥2.

Thus, ∥∥∥∥x
(o)T
i WqW

T
k XT

√
d

− x̂
(o)T
i WqW

T
k XT

√
d

∥∥∥∥
∞

≤ ϵ∥WqW
T
k ∥2. (9)

Applying Lemma 1 and the triangle inequality, we get

∥s− ŝ∥2 =

∥∥∥∥∥ 1
nout

nout∑
i=1

Softmax

(
x
(o)T
i WqW

T
k XT

√
d

)
− 1

nout

nout∑
i=1

Softmax

(
x̂
(o)T
i WqW

T
k XT

√
d

)∥∥∥∥∥
2

≤ 1
nout

nout∑
i=1

∥∥∥∥Softmax

(
x
(o)T
i WqW

T
k XT

√
d

)
− Softmax

(
x̂
(o)T
i WqW

T
k XT

√
d

)∥∥∥∥
2

≤ 1
nout

nout∑
i=1

∥∥∥∥x
(o)T
i WqW

T
k XT

√
d

− x̂
(o)T
i WqW

T
k XT

√
d

∥∥∥∥
∞

≤ ϵ∥WqW
T
k ∥2,

B.2 PROOF OF THEOREM 2

X = [x1, . . . , xnin]
T (10)

Y = [y1, . . . , ynin]
T = Softmax

(
XWqW

T
k XT

√
d

)
XWv (11)

19

Published as a conference paper at ICLR 2026

Ŷ = [ŷ1, . . . , ŷnin]
T = Softmax

(
XŴqŴ

T
k XT

√
d

)
XŴv (12)

A = [a1, . . . , anin]
T = Softmax

(
XWqW

T
k XT

√
d

)
(13)

Â = [â1, . . . , ânin]
T = Softmax

(
XŴqŴ

T
k XT

√
d

)
(14)

Proof. We assume ∥yi − ŷi∥2 ≤ ϵ∥X∥∞,2, where ∥X∥∞,2 is the maximum ℓ2 norm of the rows of
X . Additionally, we assume that there exists a constant c such that cXT has the Restricted Isometry
Property (Candes & Tao, 2005) with parameters (2k, δ), where δ is the restricted isometry constant
and k is the approximate sparsity of ai and âi.

Recall that a matrix B satisfies the Restricted Isometry Property with constant δ ∈ (0, 1) if for every
k-sparse vector v, the following inequality holds:

(1− δ)∥v∥22 ≤ ∥Bv∥22 ≤ (1 + δ)∥v∥22. (15)

Let ∆Wv = Wv − Ŵv and ∆ai = ai − âi.

If nin = 1, then A = Â ∈ R1×1 with A1,1 = Â1,1 = 1, so AX = ÂX = X = xT
1 , which implies

∥y1 − ŷ1∥2 = ∥xT
1 WV − xT

1 Ŵv∥2 = ∥xT
1 ∆Wv∥2 ≤ ϵ∥X∥∞,2 = ϵ∥x1∥2 (16)

for all x1. ∥xT
1 Wv∥2 ≤ ϵ∥x1∥ for all x1 is the definition of the matrix ℓ2 norm, so ∥∆Wv∥2 ≤ ϵ.

∥yi − ŷi∥2 = ∥aTi XWv − âTi XŴv∥2
= ∥aTi XWv − (âTi XWv − âTi X∆Wv)∥2
= ∥aTi XWv − (aTi XWv −∆aTi XWv − âTi X∆Wv)∥2
= ∥∆aTi XWv + âTi X∆Wv∥2
≤ ϵ∥X∥∞,2

Then, ∥∆aTi XWv∥2 ≤ ϵ∥X∥∞,2 + ∥âTi X∆Wv∥2.

Since âTi X is a convex combination of the rows of X , ∥âTi X∥2 ≤ ∥X∥∞,2.

Thus, ∥∆aTi XWv∥2 ≤ ϵ∥X∥∞,2 + ∥âTi X∆Wv∥2 ≤ ϵ∥X∥∞,2 + ∥âTi X∥2∥∆Wv∥2 ≤ 2ϵ∥X∥∞,2.

Attention scores are approximately sparse (Jiang et al., 2024a), especially for long sequences.
Therefore, we assume ai and âi are k-sparse. Then, ∆ai is at most 2k-sparse. Since cXT has the
Restricted Isometry Property with parameters 2k, δ,

(1− δ)∥∆ai∥2 ≤ ∥∆aTi (cX)∥2 ≤ (1 + δ)∥∆ai∥2. (17)

Then,
1
c (1− δ)∥∆ai∥2 ≤ ∥∆aTi X∥2 ≤ 2ϵ∥X∥∞,2

σmin(Wv)
, (18)

so
∥∆ai∥2 ≤ 2cϵ∥X∥∞,2

σmin(Wv)(1−δ) . (19)

B.3 PROOF OF THEOREM 3

Theorem 3. If ∥Y − Ŷ ∥2 ≤ ϵ∥X∥2 for all X and the column space of Wq,Wk, Ŵq, Ŵk is a subset
of the column space of Wv , then ∥ai − âi∥2 ≤ ϵδ, where

δ = 2dσmax(Wv)
2

σmin(Wv)
exp

(
2max

(
∥Wq∥2∥Wk∥2

σmin(Wv)2
,
∥Ŵq∥2∥Ŵk∥2

σmin(Ŵv)2

))
∥X∥2∞,2. (20)

20

Published as a conference paper at ICLR 2026

Proof. We assume ∥Y − Ŷ ∥2 ≤ ϵ∥X∥2. Additionally, we assume that the column space of
Wq,Wk, Ŵq, Ŵk is a subset of the column space of Wv. To get a norm bound on ∆ai = ai − âi,
we will bound the norms of the error in approximate weight matrices. We will find these bounds by
using specific inputs, taking advantage of the fact that ∥Y − Ŷ ∥2 ≤ ϵ∥X∥2 for all X .

We will start by bounding ∆Wv = Wv − Ŵv, by choosing an input that fixes A and Â. If n = 1,
then A = Â = [1], so AX = ÂX = X = xT

1 , which implies

∥Y − Ŷ ∥2 = ∥AXWV − ÂXŴv∥2 = ∥xT
1 WV − xT

1 Ŵv∥2 = ∥xT
1 ∆Wv∥2 ≤ ϵ∥X∥2 = ϵ∥x1∥2

(21)
for all x1. Thus, ∥∆Wv∥2 ≤ ϵ.

Next, we will bound the norm of ∆B = B − B̂, where B = WqW
T
k and B̂ = ŴqŴ

T
k . We will

choose the X so that the values are the identity matrix. Then Y = A. Let UΣV T be the singular
value decomposition of Wv . We set

X = ΦV Σ−1UT , (22)

where Φ is an arbitrary orthonormal basis spanning Rd×d.

Note that σmin(Φ) = σmax(Φ) = 1, so ∥X∥2 = σmax(X) = 1
σmin(Wv)

and σmin(X) = 1
σmax(Wv)

.

Now,

∥Y − Ŷ ∥2 = ∥AXWV − ÂXŴv∥2
= ∥AXWV − (ÂXWv − ÂX∆Wv)∥2
= ∥AXWV − (AXWv −∆AXWv − ÂX∆Wv)∥2
= ∥∆AXWv + ÂX∆Wv∥2
≤ ∥∆AXWv∥2 + ∥ÂX∆Wv∥2
= ∥∆AΦV Σ−1UTUΣV T ∥2 + ∥ÂX∆Wv∥2
= ∥∆AΦ∥2 + ∥ÂX∆Wv∥2
= ∥∆A∥2 + ∥ÂX∆Wv∥2
≤ ϵ∥X∥2 + ϵ∥X∥2
≤ 2ϵ

σmin(Wv)
.

Note that each row of Â is a probability distribution (non-negative entries summing to 1), so left-
multiplying X by Â forms a convex combination of the rows of X . From Jensen’s inequality we get
∥ÂX∥2 ≤ ∥X∥2, because x → ∥x∥2 is a convex function.

Let δ1 = max
(

∥Wq∥2∥Wk∥2

σmin(Wv)2
,
∥Ŵq∥2∥Ŵk∥2

σmin(Ŵv)2

)
. Since ∥X∥2 = 1

σmin(Wv)
and ∥B∥2 ≤ ∥Wq∥2∥Wk∥2,

∥XBXT ∥2 ≤ δ1. Consequently, |xT
i Bxj | ≤ δ1 for all i, j. This implies that each attention weight

satisfies

ai,j >
e−δ1∑d
j=1 eδ1

= 1
de

−2δ1 . (23)

The same argument applied to â gives

âi,j >
e−δ1∑d
j=1 eδ1

= 1
de

−2δ1 . (24)

Applying Lemma 2 to each row, there exists c ∈ Rd such that

21

Published as a conference paper at ICLR 2026

∥∥∥XBXT
√
d

− XB̂XT
√
d

+ c1T
∥∥∥
2
≤ de2δ1

∥∥∥Softmax
(

XBXT
√
d

)
− Softmax

(
XB̂XT

√
d

)∥∥∥
2∥∥∥XBXT −XB̂XT +

√
dc1T

∥∥∥
2
≤ d3/2e2δ1∥∆A∥2

≤ 2ϵd3/2e2δ1

σmin(Wv)
.

(25)

Minimizing over c, we obtain

min
c

∥XBXT −XB̂XT +
√
dc1T ∥2 = min

c
∥X∆BXT −

√
dc1T ∥2

=
∥∥X∆BXT − 1

dX∆BXT11T
∥∥
2

=
∥∥X∆BXT

(
I − 1

d11
T
)∥∥

2

(26)

Substituting in the definition of X , we get

∥ΦV Σ−1UT∆BUΣ−1V TΦT (I − d−111T)∥2 ≤ ϵd3/2e2δ1

σmin(Wv)
. (27)

Each multiplication by Σ−1 can decrease the norm by at most 1
σmax(Wv)

, so when removing both
instances of Σ−1 we scale the bound by σmax(Wv)

2, giving us

∥ΦV UT∆BUV TΦT (I − d−111T)∥2 ≤ 2ϵd3/2e2δ1

σmin(Wv)
σmax(Wv)

2. (28)

Then, since Φ and V are orthonormal and preserve spectral norm under multiplication, we conclude

∥UT∆BUV TΦT (I − d−111T)∥2 ≤ 2ϵd3/2e2δ1

σmin(Wv)
σmax(Wv)

2. (29)

Finally, since the column space of Wq,Wk, Ŵq, Ŵk is a subset of the column space of Wv, the
column space of ∆B is a subset of the column space of U . Thus, left multiplication by UT does not
impact the spectral norm, so

∥∆BUV TΦT (I − d−111T)∥2 ≤ 2ϵd3/2e2δ1

σmin(Wv)
σmax(Wv)

2. (30)

Note that the matrix I − 1
d11

T is a projection onto the subspace orthogonal to the all-ones vector. Its
singular values are [1, . . . , 1, 0], so its spectral norm is∥∥I − 1

d11
T
∥∥
2
= 1. (31)

Moreover, since
∥∥I − 1

h11
T
∥∥
2
= 1 and Φ is an arbitrary orthonormal basis of Rd, it follows that for

any fixed P ∈ Rd×d, we can choose Φ such that the largest component of PΦT lies entirely in the
subspace orthogonal to 1. In this case,

∥∥PΦT (I − 1
d11

T)
∥∥
2
= ∥P∥2. (32)

Thus, ∥∆B∥2 ≤ δ2 where δ2 = 2ϵd3/2 σmax(Wv)
2

σmin(Wv)
e2δ1 .

Now that we have bounded ∥∆B∥2, we will consider any input X . Then, |xT
i ∆Bxj | ≤ δ2∥X∥2∞,2,

so ∥xT
i ∆BXT ∥∞ ≤ δ2∥X∥2∞,2. ∥X∥∞,2 is the maximum ℓ2 norm of the rows of X .

From Lemma 1,

∥ai − âi∥2 = ∥Softmax
(

xT
i BXT

√
d

)
− Softmax

(
xT
i B̂XT

√
d

)
∥2

≤
∥∥∥xT

i BXT

√
d

− xT
i B̂XT

√
d

∥∥∥
∞

= 1√
d

∥∥xT
i ∆BXT

∥∥
∞ ≤ δ2∥X∥2

∞,2√
d

.

22

Published as a conference paper at ICLR 2026

∥ai − âi∥2 ≤ δ2∥X∥2
∞,2√

d
= 2ϵdσmax(Wv)

2

σmin(Wv)
exp

(
2max

(
∥Wq∥2∥Wk∥2

σmin(Wv)2
,
∥Ŵq∥2∥Ŵk∥2

σmin(Ŵv)2

))
∥X∥2∞,2.

(33)

C BENCHMARK DATASET DETAILS

C.1 LONGBENCH

Table 3: LongBench tasks.

Task Dataset Source Avg. Words Metric Language Size
Single-Document QA

1-1 NarrativeQA Literature, Film 18,409 F1 English 200
1-2 Qasper Science 3,619 F1 English 200
1-3 MultiFieldQA-en Multi-field 4,559 F1 English 150
1-4 MultiFieldQA-zh Multi-field 6,701 F1 Chinese 200

Multi-Document QA
2-1 HotpotQA Wikipedia 9,151 F1 English 200
2-2 2WikiMultihopQA Wikipedia 4,887 F1 English 200
2-3 MuSiQue Wikipedia 11,214 F1 English 200
2-4 DuReader Baidu Search 15,768 Rouge-L Chinese 200

Summarization
3-1 GovReport Government report 8,734 Rouge-L English 200
3-2 QMSum Meeting 10,614 Rouge-L English 200
3-3 MultiNews News 2,113 Rouge-L English 200
3-4 VCSUM Meeting 15,380 Rouge-L Chinese 200

Few-shot Learning
4-1 TREC Web question 5,177 Accuracy (CLS) English 200
4-2 TriviaQA Wikipedia, Web 8,209 F1 English 200
4-3 SAMSum Dialogue 6,258 Rouge-L English 200
4-4 LSHT News 22,337 Accuracy (CLS) Chinese 200

Synthetic Task
5-1 PassageCount Wikipedia 11,141 Accuracy (EM) English 200
5-2 PassageRetrieval-en Wikipedia 9,289 Accuracy (EM) English 200
5-3 PassageRetrieval-zh C4 Dataset 6,745 Accuracy (EM) Chinese 200

Code Completion
6-1 LCC Github 1,235 Edit Sim Python/C#/Java 500
6-2 RepoBench-P Github repository 4,206 Edit Sim Python/Java 500

LongBench5 (Bai et al., 2024) is a benchmark suite designed for long-context evaluation, comprising
14 English tasks, five Chinese tasks, and two code tasks. As Llama does not support Chinese,
we excluded the corresponding tasks. Furthermore, we removed the synthetic tasks, as these are
already covered by the RULER benchmark. The remaining tasks are grouped into five categories:
single-document question answering, multi-document question answering, summarization, few-shot
learning, and code completion. For each category, the overall score is calculated as the average of all
its subtasks. The final LongBench score is computed as the average across all included tasks. Table 3
provides an overview of all tasks, adapted from Bai et al. (2024).

C.2 RULER

RULER6 (Hsieh et al., 2024) is a synthetic dataset designed to evaluate the true supported context
length of LLMs. It comprises 13 tasks, including eight needle-in-a-haystack (NIAH) retrieval tasks,
two aggregation tasks, two question answering (QA) tasks, and one multi-hop tracing task.

The NIAH tasks involve hiding random key-value pairs within generated text and challenging the
model to retrieve them. Aggregation tasks simulate summarization by asking the model to extract the

5https://huggingface.co/datasets/THUDM/LongBench (MIT License)
6https://github.com/NVIDIA/RULER (Apache License 2.0)

23

https://huggingface.co/datasets/THUDM/LongBench
https://github.com/NVIDIA/RULER

Published as a conference paper at ICLR 2026

most frequent or common words from a given passage. The QA tasks require the model to answer a
question about a randomly selected paragraph within the context, serving as a real-world analog to
NIAH tasks. In the multi-hop tracing task, the model must identify all variable names that reference
the same value within a chain of assignments.

RULER is generated for a range of sequence lengths using randomly generated texts drawn from Paul
Graham essays, SQuAD (Rajpurkar et al., 2016), and HotPotQA (Yang et al., 2018) datasets. This
approach enables a comprehensive assessment of a language model’s capability to process varying
context lengths. Evaluation is conducted based on accuracy, considering a response correct if it
contains the requested value associated with the specified key.

C.3 MILEBENCH

Table 4: Overview of the MileBench datasets. Average tokens are computed using Qwen2.5-VL (Bai
et al., 2025).

Category Dataset Avg. Words Avg. Images Avg. Tokens Metric Size

Temporal
EgocentricNavigation 85 45 3,079 Accuracy 200
MovingDirection 62 5 1,042 Accuracy 200
SceneTransition 66 20 5,125 Accuracy 200

Semantic
SlideVQA 66 2 2,053 Accuracy 200
TQA 50 8 5,536 Accuracy 200
WebQA 146 2 1,706 Accuracy 200

MileBench7 (Dingjie et al., 2024) is a long-context benchmark designed to evaluate Multimodal
Large Language Models (MLLMs). It comprises 29 multi-image-text datasets, organized into 12
tasks, which are further grouped into four categories: Temporal Multi-Image, Semantic Multi-Image,
and two diagnostic categories—NIAH and Image Retrieval.

For our additional experiments in Section E.3, we selected three datasets each from the Temporal
Multi-Image and Semantic Multi-Image categories: EgocentricNavigation, MovingDirection, and
SceneTransition for the Temporal Multi-Image category, and SlideVQA, TQA, and WebQA for the
Semantic Multi-Image category. Table 4 provides an overview of the selected datasets.

D EXPERIMENTAL SETUP

D.1 HYPERPARAMETER SETTINGS

Table 5: Prompt compression backbones and parameter counts.

Method Backbone Parameters
LLMLingua-2 (Pan et al., 2024) xlm-roberta-large (Conneau et al., 2020) 560M
CPC (Liskavets et al., 2025) Llama-3.2-1B (Grattafiori et al., 2024) 1B
R2C (Choi et al., 2024) T5-base (Raffel et al., 2020) 220M

Table 6: Summary of hyperparameters for various methods.

Hyperparameter StreamingLLM H2O SnapKV PyramidKV Ada-SnapKV LAQ++ SpecKV SpecPrefill SpecPC
Window size nwindow 32 32 32 32 32 32 32 1 64
Pool – – Max Max Max Max Max Avg Avg
Kernel size k – – 7 7 7 7 7 13 64/32
Reduction – – Mean Mean Mean Max Max Mean-Max Max
lookahead tokens nlookahead – – – – – 8 All 8 1
Compression window size nslash – – – – – – 2048 – –
global tokens in prefill nvert – – – – – – 2048 – –
neighbors nneighbor / chunk size – – – – – – – 32 64/32
skipped layers lskip – – – – – – – – 8
Initial cache size – – – – – Cmax – – –

7https://milebench.github.io (Apache License 2.0)

24

https://milebench.github.io

Published as a conference paper at ICLR 2026

Table 5 lists the backbone models employed by each prompt compression method, while Table 6
details the hyperparameters used in our experiments. Generally, we select hyperparameters for each
method based on their respective codebases. We observe that using max aggregation improved
performance compared to mean aggregation for SpecKV and SpecPC. For SpecKV, setting nslash and
nvert to 2048 resulted in minimal accuracy loss but substantially reduced latency (Section E.8.3).

For SpecKV, we always generate tokens until the draft model produces the EOS token, which yields
the best performance. For latency measurements, we set nlookahead = 64 tokens, reflecting the average
sequence length in our benchmarks. In SpecPC, prompt compression drops tokens uniformly across
all layers and heads (unlike SpecKV, which prunes per head), so a larger Cmax is needed to retain
relevant information. While a larger nlookahead can boost performance, in practice, generating only
one token per prompt (nlookahead = 1) is usually sufficient. Strong alignment between the draft and
target model attentions enables SpecPC to outperform methods like R2C and CPC. For an ablation
on nlookahead, see Fig. 19.

Retaining the local context for prompt compression proved essential. This observation aligns with
the design of existing prompt compression methods, which typically aim to preserve entire sentences
within the prompt. Consequently, we increase both the pooling kernel size (k) and the number of
neighboring tokens (nneighbor) to 64. For Llama, slightly better results are achieved by reducing both
k and nneighbor to 32, though the performance difference was marginal.

For all remaining methods not explicitly mentioned, we use the default configurations provided in
their respective codebases.

D.2 IMPLEMENTATION DETAILS

For our experimental results, we employ the following large language models: Llama-3.2-1B-
Instruct8, Llama-3.1-8B-Instruct9, Llama-3.1-70B-Instruct (4-bit)10, Qwen2.5-0.5B-Instruct11,
Qwen2.5-14B-Instruct12, Qwen2.5-32B-Instruct13, and Qwen2.5-72B-Instruct-GPTQ-Int414.
For MLLM evaluation on MileBench (Dingjie et al., 2024), we utilize Qwen2.5-VL-3B-Instruct-
AWQ15 and Qwen2.5-VL-32B-Instruct-AWQ16.

Our implementation is based on PYTORCH (Paszke et al., 2017) (BSD-3 License) and Hugging-
face’s TRANSFORMERS (Wolf et al., 2019) (Apache License 2.0). All experiments leverage
FLASHATTENTION-217 (Dao, 2024). Latency measurements are performed using VLLM18 wherever
possible (i.e., where attention map outputs are not required). For implementing the sparse prefill
mechanism of SpecKV, we use kernels from MINFERENCE19. All methods are evaluated via greedy
decoding. Experiments are conducted on NVIDIA H100 80GB GPUs, with runtimes varying by
context length; for a maximum context length of 64K tokens, experiments take up to 2 hours.

For evaluating STREAMINGLLM (Xiao et al., 2024), H2O (Zhang et al., 2023), SNAPKV (Li et al.,
2024), and PYRAMIDKV (Cai et al., 2024b), we use implementations from KVCACHE-FACTORY20.
In this library, the STREAMINGLLM and H2O implementations drop KV once after prefill, rather
than at each decoding step, differing from their original codebases. This adjustment enables fairer
comparison to SNAPKV and others. We extend KVCACHE-FACTORY to support Grouped Query
Attention (Ainslie et al., 2023) by repeating keys and values for each KV head, computing attention
within the window, and averaging across KV heads. This approach avoids duplicating the KV cache.

8https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct (Llama 3.2 license)
9https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct (Llama 3.1 license)

10https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct (Llama 3.1 license)
11https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct (Apache License 2.0)
12https://huggingface.co/Qwen/Qwen2.5-14B-Instruct (Apache License 2.0)
13https://huggingface.co/Qwen/Qwen2.5-32B-Instruct (Apache License 2.0)
14https://huggingface.co/Qwen/Qwen2.5-72B-Instruct-GPTQ-Int4 (Apache License

2.0)
15https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct-AWQ (Apache License 2.0)
16https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct-AWQ (Apache License 2.0)
17https://github.com/Dao-AILab/flash-attention (BSD 3-Clause License)
18https://github.com/vllm-project/vllm (Apache License 2.0)
19https://github.com/microsoft/MInference (MIT License)
20https://github.com/Zefan-Cai/KVCache-Factory (MIT License)

25

https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct-GPTQ-Int4
https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct-AWQ
https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct-AWQ
https://github.com/Dao-AILab/flash-attention
https://github.com/vllm-project/vllm
https://github.com/microsoft/MInference
https://github.com/Zefan-Cai/KVCache-Factory

Published as a conference paper at ICLR 2026

For other baselines, we use their official implementations. For Lookahead Q-Cache (LAQ++), we
provide our own implementation since their code is not publicly available.

E EXTENDED EXPERIMENTAL ANALYSIS

E.1 ADDITIONAL RESULTS ON RULER AND LONGBENCH

In this section, we present results for RULER and LongBench using various Cmax values of 256, 512,
and 1024 for KV dropping, and 1024, 2048, and 3072 for prompt compression. Specifically, we
employ Qwen2.5-32B-Instruct, Llama-3.1-70B-Instruct (4-bit quantized with bitsandbytes21), and
Qwen2.5-72B-Instruct-GPTQ-Int4 as target model.

Figs. 10 and 11 show the RULER results, and Tables 9 to 11 present the LongBench results. Overall,
our methods achieve higher accuracy than the baselines in most settings, especially with small Cmax.
Specifically, SpecKV significantly outperforms SnapKV and LAQ++ on RULER in most cases.
Similarly, SpecPC consistently achieves strong results, particularly at longer sequence lengths on
RULER. On LongBench, both of our methods also surpass the baselines.

E.2 INTEGRATION AND COMPARISON WITH THE ADAKV BASELINE

Fig. 12 (RULER), Tables 12 and 13 (LongBench) present the performance of our proposed methods
on Qwen2.5 (0.5B draft, 14B target) and Llama-3 (1B draft, 8B target). We include additional
baselines, notably AdaKV (Feng et al., 2025), for various values of Cmax. AdaKV is an extension
to SnapKV and allows different KV budget per attention head. We apply AdaKV to SpecKV in a
similar fashion, which further boosts performance in our experiments.

E.3 MULTI-MODAL EVALUATION

We conduct additional experiments using Qwen2.5-VL-3B-Instruct-AWQ (draft) and Qwen2.5-VL-
32B-Instruct-AWQ (target) on six MileBench (Dingjie et al., 2024) datasets. We select three datasets
each from the Temporal Multi-Image (EgocentricNavigation, MovingDirection, SceneTransition) and
Semantic Multi-Image (SlideVQA, TQA, WebQA) categories. We focus on these datasets because,
for Qwen2.5-VL, the performance gap between draft and target models is most significant; in other
cases, the models perform too similarly or the draft even outperforms the target.

For KV dropping, we evaluate H2O, SnapKV, and PyramidKV from our prior experiments. We do not
include AdaKV in our evaluation as it is dependent on an older Transformers (Wolf et al., 2019) ver-
sion incompatible with Qwen2.5-VL. For prompt compression, we compare with FastV (Chen et al.,
2024)—a method specialized for dropping image tokens inside LLMs. FastV uses a hyperparameter
k: it runs all tokens up to layer k, then drops less-attended image tokens based on the attention map,
processing only the top tokens thereafter. This makes FastV less efficient than SpecPC, since all
tokens must be processed up to k with the full model, requiring considerable memory. Notably, FastV
must compute the entire attention map at layer k, preventing the use of FlashAttention and leading to
out-of-memory errors, even for moderate sequence lengths. As a result, many MileBench datasets
exceed 80GB VRAM, so we limit our analysis to these six datasets.

Since the selected MileBench datasets have relatively short average context lengths, we conduct
experiments using reduced Cmax values for both KV cache dropping (64, 96, and 128) and prompt
compression (512, 768, and 1024).

Fig. 13a presents results for various KV dropping methods. Our proposed method, SpecKV, demon-
strates performance comparable to existing approaches, while significantly outperforming the others
on the WebQA task.

Fig. 13b compares the performance of SpecPC and FastV under two configurations (k = 2 and
k = 5). Our method consistently outperforms FastV in most cases.

26

Published as a conference paper at ICLR 2026

0.3 0.4 0.5 0.6
R2

20

21

22

23

24

25

26

27

28

L
on

gB
en

ch
Sc

or
e

0

512

256

16

64 12832

0

512
256

16

64 128
32

GovReport
Multi-news

Figure 7: Impact of nlookahead on SpecKV importance score accuracy (R2) and LongBench down-
stream performance (nout = 512). The plot shows a strong positive correlation: as nlookahead increases
(with nlookahead = 0 being equivalent to SnapKV), both the R2 (correlation with the true target model
scores) and the downstream task score improve. Notably, SpecKV improves correlation and accuracy
even with a small nlookahead = 32, which is only 6.25% of the output length. Experiments use a
Qwen2.5-0.5B draft model and a Qwen2.5-32B target model on two LongBench tasks.

E.4 SPECKV: IMPACT OF nLOOKAHEAD PARAMETER ON IMPORTANCE SCORE CORRELATION

We analyze the impact of the nlookahead parameter on the correlation (R2) between SpecKV’s estimated
importance scores and the ground-truth scores from the target model. For this analysis, we use
50 examples from the Multi-news and GovReport tasks from LongBench, selected for their long
maximum output length (512 tokens). We employ Qwen2.5-0.5B as the draft model and Qwen2.5-32B
as the target model, with Cmax = 256.

To establish the ground-truth scores, we use the target model’s generated output (up to nout) as a
perfect lookahead sequence and record the resulting importance scores. In Figs. 7, 14 and 15, we
compute the R2 correlation between these ground-truth scores and the scores estimated by SpecKV
using various nlookahead values.

As shown in Figs. 14 and 15, the R2 correlation steadily increases with nlookahead, confirming that
a larger lookahead provides a more accurate importance estimation. This benefit is particularly
pronounced for longer output sequences (nout). We also test nlookahead = 0 (equivalent to SnapKV),
which yields a significantly inferior correlation.

Furthermore, we connect this score accuracy to downstream performance. Fig. 7 plots the R2

value against the final LongBench downstream score. We observe that these two metrics are highly
correlated: a higher R2 (better score accuracy) generally yields better downstream performance.
Consequently, increasing nlookahead improves both the R2 correlation and the final task score.

E.5 PERFORMANCE OF CROSS-FAMILY MODELS

In this section, we evaluate the effectiveness of our methods using cross-family draft models. We set
Llama-3.1-70B as the target model and employ Qwen2.5-0.5B and Qwen2.5B-1.5B as draft models.
The evaluation is conducted on the RULER and LongBench benchmarks, using Cmax = 256 for
SpecKV and Cmax = 1024 for SpecPC.

A key challenge in this setup is that the Qwen and Llama families use different tokenizers, neces-
sitating a token translation step. For SpecKV, we de-tokenize the draft model’s output and then
re-tokenize it with the target model’s tokenizer. For SpecPC, we aggregate attention scores from
tokens to words before re-tokenizing, to avoid tokenizing partial words, and replace the draft model’s
chat template with the target’s.

21https://github.com/bitsandbytes-foundation/bitsandbytes (MIT License)

27

https://github.com/bitsandbytes-foundation/bitsandbytes

Published as a conference paper at ICLR 2026

4k 8k 16k 32k
Sequence Length

70

80

90

100

Sc
or

e

Llama-3 70B (4-bit)

SpecKV (Llama-3B)
SpecKV (Qwen-0.5B)

SpecKV (Qwen-1.5B)
LAQ++

SnapKV

(a) KV cache dropping.

4k 8k 16k 32k
Sequence Length

60

70

80

90

100

Sc
or

e

Llama-3 70B (4-bit)

SpecPC (Llama-1B)
SpecPC (Qwen-0.5B)

SpecPC (Qwen-1.5B)
SpecPrefill (Llama-1B)

CPC
R2C

(b) Prompt compression.

Figure 8: Cross-family model results for SpecKV and SpecPC on RULER. SpecKV demonstrates
robust performance even with draft models from different families, outperforming the strongest
baseline, LAQ++.

Table 7: Cross-family model results for SpecKV and SpecPC on LongBench using Llama-3.1-70B
(4-bit) as target model.

Cmax Method Single-
doc QA

Multi-
doc QA Summary Few-shot

Learning
Code

Completion All

KV 256

SnapKV 55.88 45.30 22.49 62.15 55.49 47.75
LAQ++ 54.90 46.48 22.83 64.31 55.10 48.43
SpecKV (Llama-3B) 51.80 47.23 25.53 64.02 58.75 48.80
SpecKV (Qwen-0.5B) 53.18 45.70 24.40 63.69 57.36 48.26
SpecKV (Qwen-1.5B) 51.20 47.07 24.98 65.81 57.53 48.73

PC 1024

CPC 45.14 39.41 24.86 61.40 37.58 41.97
R2C 48.93 42.01 25.38 58.91 40.19 43.29
SpecPrefill (Llama-1B) 54.62 46.43 25.63 64.80 44.92 48.37
SpecPC (Llama-1B) 56.84 44.48 25.91 67.37 47.15 48.44
SpecPC (Qwen-0.5B) 36.73 36.42 24.68 64.51 50.75 42.04
SpecPC (Qwen-1.5B) 51.58 39.53 25.87 66.43 50.25 46.48

The results, shown in Fig. 8 (RULER) and Table 7 (LongBench), indicate that both SpecKV and
SpecPC achieve good results even with cross-family drafts. Notably, SpecKV outperforms the
strongest baseline, LAQ++. This aligns with the intuition that SpecKV, which relies only on the draft
model’s output, should generalize well to cross-model scenarios. SpecPC experiences a performance
drop because it relies on similar attention patterns between the draft and target models, a condition
that may not hold in cross-family setups.

E.6 EXTENDED RESULTS FOR SPECKV-PC

This section presents extended results for the cascaded compression strategy, SpecKV-PC. By
restricting the large target model to process only a small fraction of the original prompt, this approach
achieves substantially better latency and memory efficiency than SpecKV alone.

We evaluate the impact of varying prompt compression ratios on accuracy using Qwen2.5-1.5B/32B
and Llama-3-3B/70B as draft/target pairs, with a final KV cache size of Cmax = 256. Our combined
method, denoted as SpecKV-PC-X (where the prompt is compressed to X tokens), is benchmarked
against standard SpecKV, SpecPC, LAQ++, and SnapKV.

As illustrated in Fig. 9 (RULER) and Table 8 (LongBench), SpecKV-PC proves to be both efficient
and highly accurate. Notably, we find that moderate pre-compression (e.g., SpecKV-PC-2048)
yields accuracy superior to standard SpecKV alone, particularly at the longer sequence lengths
(RULER). This suggests that the initial SpecPC stage acts as an effective pre-filter, discarding
irrelevant information to help the target model focus on the most important tokens.

28

Published as a conference paper at ICLR 2026

Conversely, extreme prompt compression (e.g., SpecPC-256) results in significant performance
degradation. This indicates that for aggressive compression targets, coarse prompt-level reduction is
insufficient.

4k 8k 16k 32k
Sequence Length

60

70

80

90

100

Sc
or

e

Qwen2.5 32B

4k 8k 16k 32k 64k
Sequence Length

Llama-3 70B (4-bit)

SpecKV
SpecKV-PC-2048
SpecKV-PC-1024

SpecKV-PC-512
SpecPC-256

LAQ++
SnapKV

SpecKV
SpecKV-PC-2048
SpecKV-PC-1024

SpecKV-PC-512
SpecPC-256

LAQ++
SnapKV

Figure 9: Performance of the combined SpecKV and SpecPC methods on RULER (final Cmax = 256).
Our cascaded approach (SpecKV-PC-X) pre-compresses the prompt to X tokens, achieving higher
accuracy than standard SpecKV (which sees the full prompt) at longer sequences. This suggests the
initial pre-filtering allows SpecKV to make a more effective final selection.

Table 8: LongBench performance of cascaded compression with SpecKV and SpecPC using Qwen2.5
and Llama-3. SpecKV-PC-2048 achieves superior performance.

Qwen2.5 32B Llama-3 70B (4-bit)

Group Method Sing
leQ

A

M
ult

iQ
A

Sum
m.

Few
-sh

ot

Cod
e

All Sing
leQ

A

M
ult

iQ
A

Sum
m.

Few
-sh

ot

Cod
e

All

Dense Target 56.01 43.99 25.90 64.06 44.74 47.78 55.02 47.06 28.61 70.47 48.19 49.99

KV

SnapKV 52.54 40.21 19.89 61.18 40.12 42.98 55.88 45.30 22.49 62.15 55.49 47.75
LAQ++ 55.15 44.14 22.24 63.25 41.19 45.79 54.90 46.48 22.83 64.31 55.10 48.43
SpecKV 53.48 43.77 24.02 63.79 44.80 46.06 51.80 47.23 25.53 64.02 58.75 48.80
SpecKV-PC-2048 52.60 44.52 24.11 63.38 48.45 46.48 61.42 47.15 26.51 66.94 58.19 51.60
SpecKV-PC-1024 55.37 42.21 24.14 63.09 39.72 45.28 58.73 47.33 25.69 64.28 55.19 49.89
SpecKV-PC-512 45.77 36.57 22.36 56.57 39.57 40.21 51.73 46.11 23.01 63.64 50.00 46.68

PC SpecPC-256 34.75 27.05 19.15 45.0 35.07 32.0 27.97 25.93 19.09 51.25 48.12 33.5

E.7 SPECKV: EXTENDED LATENCY AND MEMORY ANALYSIS

We analyze the latency and memory usage of baselines and our algorithms, breaking down latency
into three stages: draft generation, target prefill, and target decoding. For LAQ++, draft generation
occurs after target prefill to share the same KV cache.

All experiments are run on an H200 GPU (141 GB VRAM) using the Qwen2.5 model (3B draft, 32B
target). We evaluate across a range of input sizes, nin ∈ {4k, 8k, 16k, 32k, 64k}, and output sizes,
nout ∈ {64, 128, 256, 512}. A global Cmax = 256 is used for all experiments. For algorithm-specific
settings, we set nlookahead = nout for SpecKV and use the default nlookahead = 8 for LAQ++. For the
SpecKV-PC variant, we employ SpecKV-PC-2048, which pre-compresses the prompt to 2048 tokens.

Our results demonstrate that draft lookahead introduces negligible latency (Fig. 16) and memory
overhead (Fig. 17) relative to the total cost of target model inference. Notably, cascaded compression
with SpecKV and SpecPC (SpecKV-PC) significantly reduces prefill time and peak memory. At 64k
context, SpecKV-PC is about 40% faster and 25 GB more memory efficient than LAQ++.

E.8 ABLATION STUDIES

In this section, we conduct a series of ablation experiments to further analyze the effectiveness of our
two proposed methods: SpecKV and SpecPC. For consistency, we fix Cmax to 256 for KV dropping

29

Published as a conference paper at ICLR 2026

and 1024 for prompt compression across all experiments. We utilize Qwen2.5 (Instruct), employing
the 0.5B model as the draft and the 14B model as the target. We sample 100 random examples per
task from the LongBench and RULER benchmarks.

E.8.1 SPECKV: ANALYSIS OF ENHANCED DRAFT MODELS

Fig. 18 illustrates the impact of using draft models of different sizes and versions on the RULER
score. As anticipated, both newer (Yang et al., 2025a) and larger draft models lead to improved
performance of SpecKV.

E.8.2 SPECKV AND SPECPC: IMPACT OF nLOOKAHEAD

Fig. 19 illustrates how varying the number of generated draft tokens, nlookahead, affects the performance
of SpecKV and SpecPC. Overall, increasing nlookahead generally results in higher final accuracy for
SpecKV, whereas it yields only marginal improvements for SpecPC. We attribute this to the larger
Cmax budget of SpecPC, which allows it to capture all important tokens without needing to generate
long drafts.

E.8.3 SPECKV: ACCURACY ANALYSIS OF SPARSE PREFILL

In this section, we experimentally evaluate how the sparsity of SpecKV’s prefill procedure affects
downstream task performance (Fig. 20). Specifically, we set nvert equal to nslash and compare several
values for these parameters. As anticipated, reducing sparsity (i.e., using a higher nvert) generally
results in higher accuracy; however, accuracy improvements plateau at nvert = 2048, which we
therefore adopt for our main experiments.

Interestingly, for certain LongBench categories, increased sparsity (i.e., lower nvert) can actually lead
to improved performance. This counterintuitive result suggests that, for some tasks, sparser prefill
may serve as a form of regularization, preventing overfitting to irrelevant context.

LLM USAGE DISCLOSURE

We utilized Google’s Gemini 2.5 Pro (Google DeepMind, 2025) and OpenAI’s GPT (Achiam et al.,
2023) to assist with improving the grammar, clarity, and readability of this manuscript. The authors
reviewed and edited all LLM-generated suggestions to ensure the final text accurately reflects our
scientific contributions and claims. The authors retain full responsibility for the content of this paper.

30

Published as a conference paper at ICLR 2026

4k 8k 16k 32k
Sequence Length

60

70

80

90

100

Sc
or

e

Cmax = 256

4k 8k 16k 32k
Sequence Length

Cmax = 512

4k 8k 16k 32k
Sequence Length

Cmax = 1024

SpecKV (1.5B)
Draft (1.5B)

Target (32B)
H2O

SnapKV
PyramidKV

LAQ++SpecKV (1.5B)
Draft (1.5B)

Target (32B)
H2O

SnapKV
PyramidKV

LAQ++SpecKV (1.5B)
Draft (1.5B)

Target (32B)
H2O

SnapKV
PyramidKV

LAQ++

(a) Qwen2.5: Draft model (1.5B), target model (32B)22

4k 8k 16k 32k 64k
Sequence Length

60

70

80

90

100

Sc
or

e

Cmax = 256

4k 8k 16k 32k 64k
Sequence Length

Cmax = 512

4k 8k 16k 32k 64k
Sequence Length

Cmax = 1024

SpecKV (3B)
Draft (3B)

Target (70B)
H2O

SnapKV
PyramidKV

LAQ++SpecKV (3B)
Draft (3B)

Target (70B)
H2O

SnapKV
PyramidKV

LAQ++SpecKV (3B)
Draft (3B)

Target (70B)
H2O

SnapKV
PyramidKV

LAQ++

(b) Llama-3: Draft model (3.2-3B), target model (3.1-70B, 4-bit)

4k 8k 16k 32k
Sequence Length

60

70

80

90

100

Sc
or

e

Cmax = 256

4k 8k 16k 32k
Sequence Length

Cmax = 512

4k 8k 16k 32k
Sequence Length

Cmax = 1024

SpecKV (1.5B)
Draft (1.5B)

Target (72B)
H2O

SnapKV
PyramidKV

LAQ++SpecKV (1.5B)
Draft (1.5B)

Target (72B)
H2O

SnapKV
PyramidKV

LAQ++SpecKV (1.5B)
Draft (1.5B)

Target (72B)
H2O

SnapKV
PyramidKV

LAQ++

(c) Qwen2.5: Draft model (1.5B), target model (72B, 4-bit)

Figure 10: Extended RULER results for KV cache dropping. Our proposed SpecKV method
consistently outperforms SnapKV and LAQ++ across the majority of evaluated settings, often by a
substantial margin.

22H2O and PyramidKV are not plotted for Qwen2.5 at Cmax = 256 as their performance falls outside the
visible range.

31

Published as a conference paper at ICLR 2026

4k 8k 16k 32k
Sequence Length

60

70

80

90

100

Sc
or

e
Cmax = 1024

4k 8k 16k 32k
Sequence Length

Cmax = 2048

4k 8k 16k 32k
Sequence Length

Cmax = 3072

SpecPC (0.5B)
Draft (0.5B)

Target (32B)
LLMLingua-2

CPC
R2C

SpecPrefill (0.5B)SpecPC (0.5B)
Draft (0.5B)

Target (32B)
LLMLingua-2

CPC
R2C

SpecPrefill (0.5B)SpecPC (0.5B)
Draft (0.5B)

Target (32B)
LLMLingua-2

CPC
R2C

SpecPrefill (0.5B)

(a) Qwen2.5: Draft model (0.5B), target model (32B)

4k 8k 16k 32k 64k
Sequence Length

60

70

80

90

100

Sc
or

e

Cmax = 1024

4k 8k 16k 32k 64k
Sequence Length

Cmax = 2048

4k 8k 16k 32k 64k
Sequence Length

Cmax = 3072

SpecPC (1B)
Draft (1B)

Target (70B)
LLMLingua-2

CPC
R2C

SpecPrefill (1B)SpecPC (1B)
Draft (1B)

Target (70B)
LLMLingua-2

CPC
R2C

SpecPrefill (1B)SpecPC (1B)
Draft (1B)

Target (70B)
LLMLingua-2

CPC
R2C

SpecPrefill (1B)

(b) Llama-3: Draft model (3.2-1B), target model (3.1-70B, 4-bit)

4k 8k 16k 32k
Sequence Length

60

70

80

90

100

Sc
or

e

Cmax = 1024

4k 8k 16k 32k
Sequence Length

Cmax = 2048

4k 8k 16k 32k
Sequence Length

Cmax = 3072

SpecPC (0.5B)
Draft (0.5B)

Target (72B)
CPC

R2C SpecPrefill (0.5B)SpecPC (0.5B)
Draft (0.5B)

Target (72B)
CPC

R2C SpecPrefill (0.5B)SpecPC (0.5B)
Draft (0.5B)

Target (72B)
CPC

R2C SpecPrefill (0.5B)

(c) Qwen2.5: Draft model (0.5B), target model (72B, 4-bit)

Figure 11: Extended RULER results on prompt compression. Our proposed SpecPC method
consistently outperforms CPC, R2C, and SpecPrefill, maintaining strong performance even on
long sequences.

32

Published as a conference paper at ICLR 2026

Table 9: LongBench results for Qwen2.5, featuring 0.5B (SpecPC) and 1.5B (SpecKV) draft models
and a 32B target model.

Cmax Method Single-
doc QA

Multi-
doc QA Summary Few-shot

Learning
Code

Completion All

Dense –
Draft (0.5B) 19.07 26.58 20.90 53.51 32.48 30.37
Draft (1.5B) 36.16 35.01 22.79 63.92 36.62 39.06
Target (32B) 56.01 43.99 25.90 64.06 44.74 47.78

KV

256

H2O 46.63 30.81 19.88 56.03 39.27 39.32
SnapKV 52.54 40.21 19.89 61.18 40.12 42.98
PyramidKV 50.92 37.26 18.90 63.24 40.20 43.19
LAQ++ 55.15 44.14 22.24 63.25 41.19 45.79
SpecKV (1.5B) 53.48 43.77 24.02 63.79 44.80 46.06

512

H2O 48.62 36.72 21.31 59.10 40.99 42.27
SnapKV 55.24 42.21 21.47 63.36 39.69 44.73
PyramidKV 54.79 41.87 20.28 62.00 40.08 46.55
LAQ++ 55.77 45.30 23.96 62.37 41.86 46.44
SpecKV (1.5B) 52.78 43.97 24.80 64.72 46.77 46.60

1024

H2O 51.86 41.30 23.02 60.18 42.93 44.84
SnapKV 55.32 44.04 23.08 66.15 44.42 46.76
PyramidKV 55.91 42.67 22.28 64.76 42.52 48.31
LAQ++ 56.33 45.18 25.17 62.13 43.06 46.61
SpecKV (1.5B) 55.72 43.95 25.20 63.31 42.38 46.38

PC

1024

CPC 45.60 40.62 23.09 60.08 32.31 40.91
R2C 50.49 40.37 23.26 53.45 34.11 39.88
SpecPrefill (0.5B) 45.94 39.32 23.16 62.04 43.17 42.70
SpecPC (0.5B) 51.23 41.40 23.37 62.26 38.23 43.66

2048

CPC 51.01 42.31 23.74 60.92 35.83 43.26
R2C 50.32 42.66 24.08 59.11 40.54 44.19
SpecPrefill (0.5B) 51.60 40.72 23.71 64.20 45.29 45.09
SpecPC (0.5B) 55.40 42.60 24.12 61.46 48.05 46.20

3072

CPC 56.80 42.05 24.77 62.79 37.98 45.37
R2C 51.67 42.88 24.09 62.45 27.01 42.66
SpecPrefill (0.5B) 53.85 42.92 24.48 64.03 45.76 46.24
SpecPC (0.5B) 56.89 42.42 24.71 62.66 47.49 46.79

33

Published as a conference paper at ICLR 2026

Table 10: LongBench results for Llama-3, featuring 3.2-1B (SpecPC) and 3.2-3B (SpecKV) draft
models and a 3.1-70B (4-bit) target model.

Cmax Method Single-
doc QA

Multi-
doc QA Summary Few-shot

Learning
Code

Completion All

Dense –
Draft (1B) 28.37 28.62 26.12 59.10 33.59 35.27
Draft (3B) 45.53 40.52 27.46 64.82 46.73 44.89
Target (70B) 55.02 47.06 28.61 70.47 48.19 49.99

KV

256

H2O 54.07 41.30 22.55 49.10 54.14 43.52
SnapKV 55.88 45.30 22.49 62.15 55.49 47.75
PyramidKV 55.41 45.59 22.50 59.06 49.90 46.25
LAQ++ 54.90 46.48 22.83 64.31 55.10 48.43
SpecKV (3B) 51.80 47.23 25.53 64.02 58.75 48.80

512

H2O 55.01 43.86 23.85 58.48 52.00 46.26
SnapKV 56.08 46.94 24.40 63.34 52.14 48.32
PyramidKV 54.73 47.07 24.20 63.62 47.05 47.35
LAQ++ 55.06 47.45 24.58 63.39 51.75 48.36
SpecKV (3B) 53.31 47.47 27.33 67.49 54.19 49.66

1024

H2O 54.19 45.77 26.03 63.62 49.58 47.71
SnapKV 54.94 47.40 25.97 67.56 48.13 48.85
PyramidKV 56.32 46.82 26.20 62.58 48.28 48.02
LAQ++ 55.19 47.17 26.43 67.41 47.16 48.61
SpecKV (3B) 53.32 46.02 27.41 66.40 50.66 48.63

PC

1024

CPC 45.14 39.41 24.86 61.40 37.58 41.97
R2C 48.93 42.01 25.38 58.91 40.19 43.29
SpecPrefill (1B) 54.62 46.43 25.63 64.80 44.92 48.37
SpecPC (1B) 56.84 44.48 25.91 67.37 47.15 48.44

2048

CPC 55.97 46.00 26.72 64.78 41.31 47.36
R2C 53.62 46.70 26.27 62.41 47.90 47.34
SpecPrefill (1B) 58.39 45.37 27.13 66.60 45.45 48.81
SpecPC (1B) 59.39 46.25 27.60 68.42 46.70 49.88

3072

CPC 56.64 46.69 27.29 64.92 44.75 48.30
R2C 56.11 45.15 27.51 61.76 47.17 47.57
SpecPrefill (1B) 57.75 46.15 27.15 64.70 42.50 48.02
SpecPC (1B) 58.47 48.07 27.72 65.43 41.28 48.69

34

Published as a conference paper at ICLR 2026

Table 11: LongBench results for Qwen2.5, featuring 0.5B (SpecPC) and 1.5B (SpecKV) draft models
and a 72B (4-bit) target model.

Cmax Method Single-
doc QA

Multi-
doc QA Summary Few-shot

Learning
Code

Completion All

Dense –
Draft (0.5B) 19.07 26.58 20.90 53.51 32.48 30.37
Draft (1.5B) 36.16 35.01 22.79 63.92 36.62 39.06
Target (72B) 58.70 45.89 26.24 64.83 51.08 49.22

KV

256

H2O 53.68 35.05 21.10 50.84 48.87 41.41
SnapKV 55.85 40.12 21.65 55.82 50.41 44.37
PyramidKV 55.13 38.89 20.14 53.02 49.59 42.91
LAQ++ 57.26 43.54 22.95 62.53 55.79 46.98
SpecKV (1.5B) 53.94 42.71 25.07 66.58 46.93 47.06

512

H2O 55.77 39.52 22.61 58.01 50.69 44.94
SnapKV 59.08 44.13 23.04 61.33 51.77 47.59
PyramidKV 56.98 42.52 22.03 55.43 50.29 45.10
LAQ++ 58.28 34.94 24.38 63.74 54.79 49.08
SpecKV (1.5B) 55.74 43.39 25.85 64.56 47.80 47.44

1024

H2O 55.37 43.50 24.11 62.09 50.68 46.90
SnapKV 59.56 44.06 24.41 62.85 52.87 48.46
PyramidKV 58.34 43.68 23.18 59.66 51.45 46.96
LAQ++ 58.66 35.37 26.35 60.90 53.56 49.59
SpecKV (1.5B) 56.04 44.27 25.71 63.46 49.90 47.73

PC

1024

CPC 46.37 38.36 24.19 52.54 28.30 38.64
R2C 55.78 40.10 24.40 47.62 33.17 40.72
SpecPrefill (0.5B) 49.04 40.32 24.41 63.53 50.12 45.16
SpecPC (0.5B) 48.52 45.34 24.14 61.04 48.30 45.26

2048

CPC 55.14 43.53 24.71 49.46 33.21 41.78
R2C 54.61 45.70 24.99 53.65 42.43 44.41
SpecPrefill (0.5B) 53.39 43.46 25.53 65.89 50.18 47.51
SpecPC (0.5B) 58.36 46.38 25.32 64.43 51.11 48.98

3072

CPC 55.78 44.41 25.47 42.71 39.16 41.68
R2C 59.22 44.70 25.69 55.22 44.04 45.90
SpecPrefill (0.5B) 55.75 45.71 25.93 64.22 51.63 48.44
SpecPC (0.5B) 59.84 44.95 25.91 64.18 46.88 48.46

35

Published as a conference paper at ICLR 2026

4k 8k 16k 32k
Sequence Length

40

50

60

70

80

90

100

Sc
or

e

Qwen2.5 (14B)

4k 8k 16k 32k 64k
Sequence Length

Llama-3 (8B)

SpecKV
Ada-SpecKV
Draft

Target
H2O
SnapKV

PyramidKV
Ada-SnapKV
LAQ++

SpecKV
Ada-SpecKV
Draft

Target
H2O
SnapKV

PyramidKV
Ada-SnapKV
LAQ++

(a) KV dropping (Cmax = 256)

4k 8k 16k 32k
Sequence Length

60

70

80

90

100

Sc
or

e

Qwen2.5 (14B)

4k 8k 16k 32k 64k
Sequence Length

Llama-3 (8B)

SpecPC
Draft
Target

LLMLingua-2
CPC

R2C
SpecPrefill

SpecPC
Draft
Target

LLMLingua-2
CPC

R2C
SpecPrefill

(b) Prompt compression (Cmax = 1024)

4k 8k 16k 32k
Sequence Length

40

50

60

70

80

90

100

Sc
or

e

Qwen2.5 (14B)

4k 8k 16k 32k 64k
Sequence Length

Llama-3 (8B)

SpecKV
Ada-SpecKV
Draft

Target
H2O
SnapKV

PyramidKV
Ada-SnapKV
LAQ++

SpecKV
Ada-SpecKV
Draft

Target
H2O
SnapKV

PyramidKV
Ada-SnapKV
LAQ++

(c) KV dropping (Cmax = 512)

4k 8k 16k 32k
Sequence Length

60

70

80

90

100

Sc
or

e

Qwen2.5 (14B)

4k 8k 16k 32k 64k
Sequence Length

Llama-3 (8B)

SpecPC
Draft
Target

LLMLingua-2
CPC

R2C
SpecPrefill

SpecPC
Draft
Target

LLMLingua-2
CPC

R2C
SpecPrefill

(d) Prompt compression (Cmax = 2048)

4k 8k 16k 32k
Sequence Length

40

50

60

70

80

90

100

Sc
or

e

Qwen2.5 (14B)

4k 8k 16k 32k 64k
Sequence Length

Llama-3 (8B)

SpecKV
Ada-SpecKV
Draft

Target
H2O
SnapKV

PyramidKV
Ada-SnapKV
LAQ++

SpecKV
Ada-SpecKV
Draft

Target
H2O
SnapKV

PyramidKV
Ada-SnapKV
LAQ++

(e) KV dropping (Cmax = 1024)

4k 8k 16k 32k
Sequence Length

60

70

80

90

100

Sc
or

e

Qwen2.5 (14B)

4k 8k 16k 32k 64k
Sequence Length

Llama-3 (8B)

SpecPC
Draft
Target

LLMLingua-2
CPC

R2C
SpecPrefill

SpecPC
Draft
Target

LLMLingua-2
CPC

R2C
SpecPrefill

(f) Prompt compression (Cmax = 3072)

Figure 12: Performance of the proposed SpecKV and SpecPC on RULER compared to various
baselines including AdaKV for Qwen2.5-0.5B-Instruct and Llama-3.2-1B-Instruct as draft models,
and Qwen2.5-14B-Instruct and Llama-3.1-8B-Instruct as target models. AdaKV can further boost
the performance of SpecKV. Notably, SpecPC performs nearly on par with the target model. Low-
performing methods are omitted.

36

Published as a conference paper at ICLR 2026

Table 12: Results for LongBench performance with Qwen2.5-0.5B (draft) and Qwen2.5-14B (target).

Cmax Method Single-
doc QA

Multi-
doc QA Summary Few-shot

Learning
Code

Completion All

Dense – Draft 21.04 24.4 21.23 54.07 33.39 30.64
Target 53.19 42.83 24.99 65.34 51.75 47.33

KV

256

StreamingLLM 38.66 24.13 19.10 49.75 35.23 33.24
H2O 46.98 29.66 19.82 50.88 47.86 38.41
SnapKV 49.07 33.19 19.49 54.49 47.34 40.25
PyramidKV 47.07 31.84 18.32 54.81 43.26 38.76
Ada-SnapKV 50.92 34.57 19.63 55.07 49.58 41.41
LAQ++ 52.45 39.99 22.12 61.46 51.32 45.05
SpecKV 51.07 38.76 23.20 59.68 49.58 44.09
Ada-SpecKV 51.92 39.38 24.90 61.05 53.43 45.61

512

StreamingLLM 38.97 27.04 21.14 53.78 36.52 35.41
H2O 47.56 33.16 21.02 53.45 49.78 40.37
SnapKV 50.74 38.33 20.97 57.81 49.94 43.10
PyramidKV 50.19 36.37 20.25 58.17 47.88 42.19
Ada-SnapKV 51.69 38.61 21.48 59.84 51.85 44.18
LAQ++ 52.31 42.06 23.75 61.62 51.64 45.89
SpecKV 51.98 41.51 24.11 62.60 52.33 46.09
Ada-SpecKV 51.00 42.18 25.74 63.74 55.28 48.46

1024

StreamingLLM 40.08 32.01 22.12 55.42 38.36 37.54
H2O 49.73 37.27 22.38 55.94 51.26 42.75
SnapKV 51.56 40.98 22.65 63.90 51.48 45.73
PyramidKV 51.42 40.93 21.76 59.96 49.92 44.43
Ada-SnapKV 51.81 40.96 22.83 64.14 51.97 45.94
LAQ++ 52.27 42.59 25.04 61.56 51.68 46.27
SpecKV 52.92 41.85 24.30 63.46 52.50 46.61
Ada-SpecKV 52.27 43.22 26.39 64.83 54.40 47.78

PC

1024

LLMLingua-2 27.10 23.74 22.57 35.85 37.62 28.79
CPC 42.76 36.05 22.58 48.38 35.57 37.17
R2C 46.43 37.42 22.64 47.21 29.48 37.15
SpecPrefill 46.21 37.21 22.82 62.18 48.34 43.00
SpecPC 47.70 38.30 23.30 59.74 52.52 43.73

2048

LLMLingua-2 35.10 32.22 23.51 39.82 44.80 34.40
CPC 48.74 39.70 23.39 55.77 42.07 41.92
R2C 50.68 40.65 23.47 56.72 45.62 43.27
SpecPrefill 49.75 38.58 23.70 65.05 50.40 45.15
SpecPC 53.23 41.43 23.68 63.26 54.92 46.76

3072

LLMLingua-2 43.50 35.67 24.10 45.66 47.32 38.67
CPC 51.59 41.08 23.84 58.14 44.82 43.83
R2C 51.71 41.39 23.89 62.09 48.58 45.31
SpecPrefill 51.81 41.27 24.26 64.28 50.66 46.15
SpecPC 53.25 41.48 24.49 64.51 54.41 47.14

37

Published as a conference paper at ICLR 2026

Table 13: Results for LongBench performance with Llama-3.2-1B (draft) and Llama-3.1-8B (target).

Cmax Method Single-
doc QA

Multi-
doc QA Summary Few-shot

Learning
Code

Completion All

Dense – Draft 28.08 27.27 25.65 60.16 31.11 34.69
Target 45.85 43.79 28.68 66.65 50.46 46.84

KV

256

StreamingLLM 38.69 27.12 21.64 50.75 34.74 34.58
H2O 43.54 36.81 22.62 55.64 47.81 40.82
SnapKV 43.79 37.31 21.96 56.29 47.34 40.91
PyramidKV 43.62 37.79 21.75 55.15 46.32 40.54
Ada-SnapKV 44.04 37.86 22.34 59.95 50.39 42.38
LAQ++ 45.81 41.72 22.93 64.18 47.21 44.17
SpecKV 43.23 39.73 24.43 60.90 51.09 43.36
Ada-SpecKV 42.40 40.73 25.74 57.94 52.51 43.25

512

StreamingLLM 38.80 29.15 24.16 52.59 37.25 36.33
H2O 44.82 39.36 23.95 58.70 49.30 42.79
SnapKV 45.00 41.31 23.61 61.36 49.92 43.83
PyramidKV 45.26 41.22 23.36 61.15 48.06 43.51
Ada-SnapKV 45.09 41.17 24.19 61.81 51.74 44.30
LAQ++ 46.17 43.44 24.17 63.13 48.74 44.87
SpecKV 43.48 41.86 26.17 62.34 51.36 44.59
Ada-SpecKV 43.80 42.56 26.59 58.72 54.41 44.56

1024

StreamingLLM 38.45 32.54 25.03 58.09 38.60 38.54
H2O 45.45 42.50 25.42 59.17 50.10 44.13
SnapKV 45.46 43.15 25.42 62.06 52.37 45.22
PyramidKV 46.10 42.78 25.17 63.43 49.55 45.11
Ada-SnapKV 46.06 43.34 25.48 63.47 50.50 45.43
LAQ++ 46.21 44.14 25.71 64.10 50.00 45.75
SpecKV 43.73 43.39 26.95 63.14 51.28 45.30
Ada-SpecKV 44.83 43.72 27.50 61.04 54.23 45.70

PC

1024

LLMLingua-2 29.61 24.83 23.43 24.18 40.66 27.68
CPC 35.67 36.61 25.26 34.01 43.58 34.42
R2C 38.41 39.07 25.28 43.26 43.99 37.58
SpecPrefill 41.51 39.38 25.82 63.51 44.68 42.86
SpecPC 44.83 39.94 25.85 63.70 44.82 43.76

2048

LLMLingua-2 34.00 32.51 24.90 24.76 47.27 31.64
CPC 40.02 39.41 26.83 39.02 46.66 37.80
R2C 44.53 38.97 26.63 54.62 46.67 41.97
SpecPrefill 42.35 42.11 27.23 63.56 44.46 43.91
SpecPC 44.92 40.71 27.30 64.77 46.89 44.78

3072

LLMLingua-2 39.13 35.44 25.98 29.73 49.92 35.05
CPC 41.73 39.52 27.27 42.12 49.13 39.30
R2C 44.77 40.97 27.35 60.85 48.08 44.14
SpecPrefill 43.86 42.45 27.82 63.17 45.25 44.46
SpecPC 47.12 41.95 28.02 65.61 45.52 45.65

38

Published as a conference paper at ICLR 2026

64 96 128
Cmax

40

45

Sc
or

e
EgocentricNavigation

64 96 128
Cmax

40

50

MovingDirection

64 96 128
Cmax

87.5

90.0

92.5

SceneTransition

64 96 128
Cmax

40

60

80

Sc
or

e

WebQA

64 96 128
Cmax

80

85

TQA

64 96 128
Cmax

70

80

SlideVQA

SpecKV
Draft

Target
H2O

SnapKV
PyramidKV

SpecKV
Draft

Target
H2O

SnapKV
PyramidKV

SpecKV
Draft

Target
H2O

SnapKV
PyramidKV

SpecKV
Draft

Target
H2O

SnapKV
PyramidKV

SpecKV
Draft

Target
H2O

SnapKV
PyramidKV

SpecKV
Draft

Target
H2O

SnapKV
PyramidKV

(a) KV dropping

512 768 1024
Cmax

30

40

50

Sc
or

e

EgocentricNavigation

512 768 1024
Cmax

40

50

MovingDirection

512 768 1024
Cmax

80

90

SceneTransition

512 768 1024
Cmax

70

80

Sc
or

e

WebQA

512 768 1024
Cmax

80

85
TQA

512 768 1024
Cmax

70

80

90
SlideVQA

SpecPC
Draft

Target
FastV k = 2

FastV k = 5SpecPC
Draft

Target
FastV k = 2

FastV k = 5SpecPC
Draft

Target
FastV k = 2

FastV k = 5SpecPC
Draft

Target
FastV k = 2

FastV k = 5SpecPC
Draft

Target
FastV k = 2

FastV k = 5SpecPC
Draft

Target
FastV k = 2

FastV k = 5

(b) Prompt compression

Figure 13: MileBench multi-modal results using Qwen2.5-VL-3B-Instruct-AWQ (draft) and Qwen2.5-
VL-32B-Instruct-AWQ (target). SpecKV demonstrates competitive performance across most tasks
and achieves a substantial improvement on WebQA. SpecPC consistently outperforms both FastV
configurations on the majority of datasets.

39

Published as a conference paper at ICLR 2026

n o
ut

=
16 R2 = 0.90 R2 = 0.90

n o
ut

=
32 R2 = 0.82 R2 = 0.84 R2 = 0.84

n o
ut

=
64 R2 = 0.69 R2 = 0.74 R2 = 0.77 R2 = 0.76

n o
ut

=
12

8 R2 = 0.54 R2 = 0.59 R2 = 0.63 R2 = 0.68 R2 = 0.67

n o
ut

=
25

6 R2 = 0.39 R2 = 0.44 R2 = 0.48 R2 = 0.54 R2 = 0.58 R2 = 0.60

nlookahead = 0

n o
ut

=
51

2 R2 = 0.35

nlookahead = 16

R2 = 0.40

nlookahead = 32

R2 = 0.43

nlookahead = 64

R2 = 0.49

nlookahead = 128

R2 = 0.53

nlookahead = 256

R2 = 0.57

nlookahead = 512

R2 = 0.57

Figure 14: Correlation of importance scores from SpecKV against ground-truth scores from the
dense target model for various output lengths (nout) and lookaheads (nlookahead). Increasing nlookahead
improves correlation, especially for longer output lengths (nout). SnapKV (nlookahead = 0) consistently
shows the lowest correlation. Experiments use a Qwen2.5-0.5B draft model and a Qwen2.5-32B
target model on Multi-news from LongBench.

40

Published as a conference paper at ICLR 2026

n o
ut

=
16 R2 = 0.91 R2 = 0.94

n o
ut

=
32 R2 = 0.82 R2 = 0.88 R2 = 0.87

n o
ut

=
64 R2 = 0.64 R2 = 0.70 R2 = 0.75 R2 = 0.71

n o
ut

=
12

8 R2 = 0.48 R2 = 0.54 R2 = 0.59 R2 = 0.61 R2 = 0.61

n o
ut

=
25

6 R2 = 0.33 R2 = 0.38 R2 = 0.42 R2 = 0.47 R2 = 0.50 R2 = 0.48

nlookahead = 0

n o
ut

=
51

2 R2 = 0.26

nlookahead = 16

R2 = 0.31

nlookahead = 32

R2 = 0.35

nlookahead = 64

R2 = 0.39

nlookahead = 128

R2 = 0.42

nlookahead = 256

R2 = 0.44

nlookahead = 512

R2 = 0.45

Figure 15: Correlation of importance scores from SpecKV against ground-truth scores from the
dense target model for various output lengths (nout) and lookaheads (nlookahead). Increasing nlookahead
improves correlation, especially for longer output lengths (nout). SnapKV (nlookahead = 0) shows the
lowest correlation. Experiments use a Qwen2.5-0.5B draft model and a Qwen2.5-32B target model
on GovReport from LongBench.

41

Published as a conference paper at ICLR 2026

0

10

20

30

40
Ti

m
e

(s
)

Ta
rge

t

Sna
pK

V

LAQ++

SpecK
V*

SpecK
V

SpecK
V-P

C

nin = 4k

Ta
rge

t

Sna
pK

V

LAQ++

SpecK
V*

SpecK
V

SpecK
V-P

C

nin = 8k

Ta
rge

t

Sna
pK

V

LAQ++

SpecK
V*

SpecK
V

SpecK
V-P

C

nin = 16k

Ta
rge

t

Sna
pK

V

LAQ++

SpecK
V*

SpecK
V

SpecK
V-P

C

nin = 32k

Ta
rge

t

Sna
pK

V

LAQ++

SpecK
V*

SpecK
V

SpecK
V-P

C

nin = 64k

Target Prefill Target Decode Target Lookahead (LAQ++) Draft Lookahead (SpecKV)

Figure 16: End-to-end latency comparison across five input sequence lengths (nin) and four output
sequence lengths (nout ∈ {64, 128, 256, 512}). All experiments use the Qwen2.5 model (3B draft,
32B target) with Cmax = 256. For SpecKV algorithms, we use nlookahead = nout. Each bar segment
breaks down the latency by processing stage, and the four bars for each method correspond to the four
nout values. SpecKV* denotes SpecKV without sparse prefill, while SpecKV-PC combines SpecKV
with SpecPC. Notably, when nin ≥ 16k, the efficiency gains from sparse prefill (SpecKV) and prompt
compression (SpecKV-PC) effectively offset the lookahead overhead for nlookahead ≤ 64 and ≤ 512,
respectively. Overall, SpecKV-PC is the most efficient method; by precompressing the prompt, it
significantly cuts target prefill time, resulting in a speedup of about 40% to 75% (depending on output
length) over LAQ++ at a 64k input context.

0

20

40

60

80

Pe
ak

M
em

or
y

(G
B

)

Ta
rge

t

Sna
pK

V

LAQ++

SpecK
V*

SpecK
V

SpecK
V-P

C

nin = 4k

Ta
rge

t

Sna
pK

V

LAQ++

SpecK
V*

SpecK
V

SpecK
V-P

C

nin = 8k

Ta
rge

t

Sna
pK

V

LAQ++

SpecK
V*

SpecK
V

SpecK
V-P

C

nin = 16k

Ta
rge

t

Sna
pK

V

LAQ++

SpecK
V*

SpecK
V

SpecK
V-P

C

nin = 32k

Ta
rge

t

Sna
pK

V

LAQ++

SpecK
V*

SpecK
V

SpecK
V-P

C

nin = 64k

Total Peak Memory Draft Model Memory (SpecKV)

Figure 17: Peak memory usage across five input sequence lengths (nin) using the Qwen2.5 model (3B
draft, 32B target) with Cmax = 256 and nlookahead = nout. SpecKV* denotes SpecKV without sparse
prefill, while SpecKV-PC combines SpecKV with SpecPC. LAQ++ offers no peak memory savings
over the target model, as it must store the full cache. SpecKV is slightly more memory-hungry than
SnapKV because it also stores the draft model weights (indicated in green), though this constitutes
a small fraction of the total memory. SpecKV-PC is the most memory-efficient method; it first
compresses the prompt (to 2048 tokens here) before the target model’s prefill phase, significantly
reducing peak usage. At a 64k context length, SpecKV-PC saves approximately 9 GB over SnapKV
and 25 GB over LAQ++.

42

Published as a conference paper at ICLR 2026

4k 8k 16k 32k
Sequence Length

75

80

85

90

95

Sc
or

e
Target
Qwen2.5-0.5B

Qwen3-0.6B
Qwen2.5-1.5B

Qwen2.5-3B
Qwen2.5-14B (oracle)

Figure 18: Effect of draft model quality on RULER score. The target model is Qwen2.5-14B
(Instruct). Consistent with expectations, employing more capable draft models boosts performance.
For reference, we also evaluate an oracle setting where the draft model is identical to the target
(Qwen2.5-14B), representing an empirical upper bound for SpecKV.

0 1 2 4 8 16 32 64 128 ∞
Number of Draft Tokens (nlookahead)

0.6

0.7

0.8

0.9

R
el

at
iv

e
Sc

or
e

RULER 4k
RULER 8k

RULER 16k RULER 32k

(a) SpecKV on RULER

0 1 2 4 8 16 32 64 128 ∞
Number of Draft Tokens (nlookahead)

0.80

0.85

0.90

0.95

1.00

R
el

at
iv

e
Sc

or
e

Single-document QA
Multi-document QA

Summarization
Few-shot Learning

Code Completion

(b) SpecKV on LongBench

1 2 4 8 16 32 64 128 ∞
Number of Draft Tokens (nlookahead)

0.95

0.96

0.97

0.98

0.99

R
el

at
iv

e
Sc

or
e

RULER 4k
RULER 8k

RULER 16k RULER 32k

(c) SpecPC on RULER

1 2 4 8 16 32 64 128 ∞
Number of Draft Tokens (nlookahead)

0.90

0.95

1.00

R
el

at
iv

e
Sc

or
e

Single-document QA
Multi-document QA

Summarization
Few-shot Learning

Code Completion

(d) SpecPC on LongBench

Figure 19: Impact of the number of generated draft tokens, nlookahead, on the relative performance of
SpecKV and SpecPC, using Qwen2.5-0.5B-Instruct as the draft model and Qwen2.5-14B-Instruct as
the target model. The relative score is calculated as the score of each SpecKV configuration divided
by the score of the full dense target model. Increasing nlookahead substantially boosts SpecKV’s score,
whereas SpecPC shows only minor improvement with higher nlookahead. SnapKV (nlookahead = 0) has
the lowest performance in most cases. ∞ denotes lookahead to the EOS token.

43

Published as a conference paper at ICLR 2026

256 512 1024 2048 4096 ∞
Sparsity (nvert and nslash)

0.75

0.80

0.85

0.90

R
el

at
iv

e
Sc

or
e

RULER 4k
RULER 8k

RULER 16k RULER 32k

(a) RULER

256 512 1024 2048 4096 ∞
Sparsity (nvert and nslash)

0.85

0.90

0.95

1.00

1.05
R

el
at

iv
e

Sc
or

e

Single-document QA
Multi-document QA

Summarization
Few-shot Learning

Code Completion

(b) LongBench

Figure 20: Impact of different sparsity levels in SpecKV’s sparse prefill on relative performance,
using Qwen2.5-0.5B-Instruct as the draft model and Qwen2.5-14B-Instruct as the target model. We
vary nvert (set equal to nslash) and observe the impact on accuracy. Accuracy improves as sparsity
decreases (higher nvert) up to 2048, beyond which gains saturate, hence our choice of 2048 for main
results. ∞ corresponds to fully dense prefill. Notably, for some LongBench tasks, higher sparsity
actually benefits accuracy. The relative score is calculated as the score of each SpecKV configuration
divided by the score of the full dense target model.

44

	Introduction
	Related Work
	Proposed Framework: Draft-based Approximate Inference
	Justification for Lookahead-based KV Cache Dropping
	Justification for Draft-based Prompt Compression

	Draft-based Approximate Inference Methods
	SpecKV: Robust Importance Estimation for KV Cache Dropping
	SpecPC: Leveraging Draft Models for Efficient Prompt Compression
	SpecKV-PC: Cascaded Compression with SpecKV and SpecPC

	Experiments
	Setup
	Results
	Efficiency

	Discussion
	Algorithm Pseudocode
	Mathematical Proofs
	Proof of theorem:speckv
	Proof of theorem:specpcrip2
	Proof of theorem:specpc

	Benchmark Dataset Details
	LongBench
	RULER
	MileBench

	Experimental Setup
	Hyperparameter Settings
	Implementation Details

	Extended Experimental Analysis
	Additional Results on RULER and LongBench
	Integration and Comparison with the AdaKV Baseline
	Multi-modal Evaluation
	SpecKV: Impact of nlookahead Parameter on Importance Score Correlation
	Performance of Cross-Family Models
	Extended Results for SpecKV-PC
	SpecKV: Extended Latency and Memory Analysis
	Ablation Studies
	SpecKV: Analysis of Enhanced Draft Models
	SpecKV and SpecPC: Impact of nlookahead
	SpecKV: Accuracy Analysis of Sparse Prefill

