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ABSTRACT

Reinforcement learning (RL) has become a central paradigm for post-training
large language models (LLMs) to elicit stronger reasoning. Yet, most recent
RL for LLMs (RL4LLM) methods avoid explicit critics, replacing them with
average advantage baselines. This shift is largely pragmatic: conventional value
functions are computationally expensive to train at LLM scale and often fail under
sparse rewards and long reasoning horizons. We revisit this bottleneck from an
architectural perspective and introduce Asymmetric Proximal Policy Optimization
(AsyPP0), a simple and scalable framework that restores the critic’s role while
remaining efficient in large-model settings. AsyPPO employs a set of lightweight
mini-critics, each trained on disjoint prompt shards. This design encourages
diversity while preserving calibration, reducing value-estimation bias. Beyond
robust estimation, AsyPPO leverages inter-critic uncertainty to refine the policy
update: (i) masking advantages in states where critics agree and gradients add little
learning signal, and (ii) filtering high-divergence states from entropy regularization,
suppressing spurious exploration. Across multiple reasoning benchmarks, AsyPPO
consistently improves learning stability and performance over strong baselines, e.g.,
GRPO, achieving performance gains of > 6% on Qwen3-4b-Base and about 3% on
Qwen3-8b-Base and Qwen3-14b-Base over classic PPO. Such results highlight the
importance of architectural innovations in critics for scalable, efficient algorithms.
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Figure 1: (a): The initial representational ability of the model makes asymmetric PPO possible, i.e., mini critics
guide larger actors. By optimizing the ensemble critic system, AsyPPO achieves reliable value estimation while
remaining lightweight. (b): Off-policy ratio=8, Report the average accuracy of 6 benchmarks, i.e., AIME 24,
AIME 25, MATH-500, OlympiadBench, MinervaMath, and AMC 2023. (c¢): We set unified distributed training
parameters for the algorithms on the same GPU cluster. The average clock time of the training step and the peak
GPU memory usage of AsyPPO are significantly lower than those of the classic PPO, remain at the GRPO level.
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1 INTRODUCTION

Proximal Policy Optimization (PPO) (Schulman et al., 2017) stands as one of the most powerful
actor-critic algorithms in deep RL, and has demonstrated its potential across diverse domains such
as computer games (Yu et al., 2022) and robotics control (Raj & Kos, 2024). In the realm of large-
scale language models (LLMs), PPO has also proven transformative and has been widely applied
in the post-training stage to stimulate the reasoning ability of LLMs (Hu et al., 2025). However,
the transition from classical RL to RL4ALLM introduces an unprecedented computational challenge,
as LLMs operate at scales orders of magnitude larger than traditional RL environments. Directly
applying PPO’s default symmetric actor-critic design, where the critic is as large as the actor, creates
significant computational overhead. In addition, training full critics at LLM scale is expensive and
inaccurate under sparse, long-horizon rewards (Yuan et al., 2025b).

Faced with these challenges, the RLALLM community has largely sidelined a key element of classical
PPO - its critic. GRPO (He et al., 2025), and its variants, including GSPO (Zheng et al., 2025) in the
Qwen series and DAPO (Yu et al., 2025), have achieved great success in replacing value functions
with group sampling and average-advantage baselines for coarse-grained estimation of advantages.
While effective, this paradigmatic shift abandons a key concept of RL: robust state value estimation
can naturally mitigate training collapse caused by advantage bias (Wang et al., 2025b; Liu et al.,
2024), especially under off-policy settings. This landscape motivates a fundamental reconsideration
of architectural assumptions inherited from deep RL', prompting the following central question:

Can we achieve lightweight yet robust value estimation by redesigning PPO to depart from the
standard symmetric actor—critic architecture, enabling stable and efficient learning?

To fill this research gap, we begin with a key insight: the initial rich representational ability inherited
from pre-trained models significantly enhances the feasibility of the asymmetric actor-critic in the
RLALLM domain, unlike agents that learn from scratch in classical deep RL, painting a promising
prospect for lightweight deployment and computational efficiency. Our initial experiments vali-
date this hypothesis, where we find that a small critic, e.g., Qwen3-0.6b-Base, can indeed provide
meaningful guidance to a much larger actor, e.g., Qwen3-8b-Base, demonstrating meaningful perfor-
mance improvements over the base model. However, this asymmetric setup underperforms classical
symmetric PPO, revealing limitations in a single small critic’s value estimation capabilities.

To unlock the capabilities of the small critic, we consider critic ensembles to improve its value
estimation and policy guidance. However, naive ensembles offer limited benefits for policy learning,
as LLM critics start from identical pre-trained checkpoints with different heads only and are trained
on the same data, leading to nearly identical behaviors that provide no corrective benefit. To tackle
this critical challenge, we propose a simple yet effective non-overlapping data partitioning technique,
in which each critic is trained via the subset formed by uniformly extracting responses from each
prompt without overlap. This design encourages diversity among small critics and mitigates the
risk of perception asynchrony among critics. Leveraging our ensemble-based value correction,
small critics can provide reliable guidance to large policies despite their limited expressivity (Tint
et al., 2024) (Figure 1(a)). Surprisingly, we find that double critic could be the sweet spot between
correction capability and efficiency, it yields a qualitative leap in evaluation reliability while incurring
the minimal redundancy needed for bias reduction. More critics increase the computation without
proportional gains. Empirically, we demonstrate that two Qwen3-1.7b-Base critics robustly guide
a larger policy, e.g., Qwen3-14b-Base, reducing critic over-parameterization while outperforming
symmetric PPO under off-policy setting (Figure 1(b)). Notably, asymmetric architecture reduces peak
memory by 20%, and accelerates training by around 20 seconds per step (see Figure 1(c)).

We further discovered that the agreement and divergence patterns in value estimates between our
double critics, measured by their standard deviation, provide a useful signal for refining the policy
loss objective. Value-estimation heterogeneity reflects both uncertainty and informativeness of the
states. Leveraging this, we mask advantage values in states where critics strongly agree, reducing
overfitting to low-quality samples and improving training stability. Conversely, we exploit divergence
across critics by filtering out uncertain states from entropy regularization, since such states often
correspond to low-probability continuations or spurious, reasoning-irrelevant patterns that inject

'Please refer to Appendix A for detailed related work.
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noise into entropy measurements (Ahmed et al., 2019). Thus, restricting entropy regularization to
high-confidence states promotes safer exploration and improves performance.

Overall, we refer to the above components as Asymmetric Proximal Policy Optimization (AsyPPO).
The contributions of AsyPPO can be summarized in three main aspects:

1. Robust Estimation: Prompt-level data partitioning enhances ensemble reliability and yields
consistent performance improvements. (§3.1)

2. Lightweight Architecture: The asymmetric design mitigates critic over-parameterization
and opens a new direction for RLALLM. (§3.1)

3. Objective Refinement: We introduce two uncertainty-aware modifications to the PPO
objective that improve sample efficiency and enable safer exploration. (§3.2)

2 PRELIMINARIES

Proximal Policy Optimization (PPO). PPO (Schulman et al., 2017) is a widely used actor-critic
algorithm in the policy gradient family. It improves the stability by optimizing a clipped surrogate
objective, which limits how much the updated policy 7y can deviate from the old policy my_,, at each
update step. The objective is defined as:
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where 7y and 7y, denote the current and previous policy, respectively. Here ¢ is a sampled guestion
and o the generated output sequence,, with o, the t-th token. e is the clipping hyperparameter
that constrains the update ratio. A; is the advantage estimate at step ¢, typically computed with
Generalized Advantage Estimation (GAE) (Schulman et al., 2015).

Generalized Advantage Estimation (GAE). GAE addresses the bias—variance trade-off in advan-
tage estimation by combining multi-step returns with exponentially decaying weights:
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Here V (s) is the value function, v € [0, 1] is the discount factor, and A € [0, 1] is the GAE parameter
that balances bias and variance. Setting A = 0 recovers the low-variance, high-bias 7'D(0) estimator,
while A = 1 corresponds to the high-variance, low-bias Monte Carlo estimator. In practice, PPO
leverages GAE together with the clipped objective, yielding stable training and improved sample
efficiency. The choice of v and A critically influences the temporal horizon and smoothness of the
advantage estimates, and thus the convergence of the policy.

3  ASYMMETRIC PROXIMAL POLICY OPTIMIZATION

We begin by empirically examining the potential of the asymmetric actor-critic framework while
highlighting the limitations of naive ensemble critics in LLM reasoning. By analyzing key differences
between classical deep RL and RL4LLM, we propose a group-level non-overlapping data division
strategy that enables lightweight mini-critics to provide reliable value estimation (§3.1). Building
on this, we investigate the role of divergence and agreement among the mini-critics and find that
uncertainty in their value estimates carries strong representational power for measuring sample quality.
Leveraging this insight, we incorporate value uncertainty as a signal into the policy optimization
objective, reformulating the loss function and refining the entropy regularization to improve sample
efficiency and exploration capability of the policy (§3.2).
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Figure 2: Left: The single mini-critic parameterized by Qwen3-0.6b-Base can effectively guide policies across
model scales. Middle: There are significant differences in the guiding ability of the two ensemble critics for
policies. Actors uniformly use Qwen3-8B-Base, while critics use Qwen3-0.6B-Base. Right: Our ensemble
method intensifies the cognitive differences among mini-critics. The y-axis represents the standard deviation
between the values calculated by the two mini-critics. We train on 5,000 questions sampled from DeepMath-
103K (He et al., 2025) and evaluate policies on five challenging math benchmarks: AIME 2024, MATH-500,
OlympiadBench, MinervaMath, and AMC 2023. For each question, we report the average of 4 generations.

3.1 TOWARDS LIGHTWEIGHT VALUE ESTIMATION

In LLM reasoning, the policy inherits expressive capabilities from the pre-trained model at initializa-
tion. As shown in Figure 2 (Left), even without critic warm-up, a small critic, i.e., Qwen3-0.6B-Base
(Yang et al., 2025), can provide useful guidance, demonstrating the potential of an asymmetric
architecture. However, due to sparse rewards and the small critic’s limited familiarity with long-
tail reasoning trajectories favored by larger models (Li et al., 2025), its value estimates are often
inaccurate. This leads to suboptimal policy guidance compared to symmetric PPO.

Starting from the ensemble system. To strengthen mini-critic perceptual capacity, we first adopt an
ensemble of critics, a standard technique in classical deep RL for reducing estimation bias (Chen et al.,
2021). In practice, we add a second critic based on the same base model and average their predictions
for value estimation. These corrected values are then used in advantage computation via GAE.
However, as Figure 2 (Middle) shows, this naive ensemble approach yields limited improvement.
The reason becomes clear in Figure 2 (Right), the two mini-critics exhibit nearly identical behavior,
failing to provide the diversity that ensembles rely on. In classical RL, critics are initialized randomly,
ensuring parameter diversity and differentiated value estimates, which is essential for ensemble
effectiveness. By contrast, in RLALLM, critics are typically initialized from the same pre-trained
model, which accelerates learning but reduces diversity. This motivates a key question: under
homogeneous initialization, can ensemble critics be adapted to remain effective in LLM reasoning?

Group level non-overlap data division. Beyond 7 Vanilla value
explicitly increasing parameter differences through ~ '¢ EER Comected value
initialization, another promising approach is to pro-

vide differentiated optimization signals for each critic s
during training. Intuitively, training critics on non-
overlapping subsets of data encourages them to learn

from distinct trajectories and reward distributions, o0
steering their updates in different directions and pro-

moting functional diversity. However, in practice, :

randomly partitioning the training data can lead to
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observations. Our ensemble critic system training process can then be formalized as:

M
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M denotes the number of mini-critic with parameters {¢,, }27_,. Each critic aim to fit the return R,
based on its assigned subset D = Un]\le Dy, D; N D;j = . Corrected advantage A can be obtained:
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The results in Figure 2 (Middle, Right) demonstrate that critics trained under our ensemble strategy
exhibit clearly differentiated behaviors. Statistical analysis from a linguistic perspective (Figure 3)
reveals that the corrected values from our ensemble framework significantly encourage the policy to
acquire core reasoning patterns. Overall, our method effectively unlocks the efficiency of asymmetric
PPO and points to a promising new direction for RLALLM algorithm design.

Takeaway 1

Optimizing the ensemble critic design enhances the learning capacity of the asymmetric
actor—critic while significantly reducing computational overhead.

Baseline
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Figure 4: (a): Agreement among critics implies the state’s downstream dynamics are well modeled by the policy,
making these samples low-value for learning and best avoided for overfitting. (b): In the high data-reuse setting
(UTD=4), masking the bottom 20% (by value-std) boosts AsyPPO’s learning efficiency, yields an improvement
of about 6 points. The accuracy records of the six benchmarks follow Figure 1 (b). (¢): We evaluated two 5%
masking mechanisms on vanilla AsyPPO (baseline), i.e., entropy vs. value-std. The value-std masking produced
the strongest learning efficiency benefit. Actors use Qwen3-4B-Base, while critics use Qwen3-0.6B-Base.

3.2 PoLICcY LOSS RECONSTRUCTION

Beyond enabling robust value estimation, we conjecture that ensemble mini-critics can further
enhance policy learning efficiency. Intuitively, the degree of agreement among critics’ value estimates
for a given state can serve as a meaningful signal for policy optimization. This insight arises from our
analysis of value fitting dynamics (Lee et al., 2021): when critics produce similar value estimates
for a state s;, it often indicates that s; is low-informative. Such states are frequently encountered
across trajectories, and the rewards they yield exhibit low variance, causing critics to converge in
their predictions, as visualized in Figure 4 (a). Analysis in Appendix D shows the positive correlation
between value-std and the policy gradient, empirically supporting the above speculation.

Advantage masking based on the value agreement. Recent studies show that preventing the
policy from overfitting to low-information samples can substantially improve learning efficiency (Liu
et al., 2025b). Since the degree of agreement across critics reflects state informativeness, where high
agreement implies low uncertainty and limited learning potential, we use the standard deviation of
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critics’ outputs to quantify the benefit of optimizing a given state. Specifically, we identify the top
k percentage of states with the highest agreement (i.e., lowest standard deviation) and mask their
corresponding advantages in the policy loss. This suppresses gradient updates from low-informative
transitions, filtering out noisy or redundant learning signals directing policy optimization toward
higher-value data. The resulting policy loss objective is:
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corresponding to the 20% of states with high
critic convergence, the policy exhibits stable
learning dynamics even under high sample reuse
(update-to-data ratio (UTD) =4, i.e., each sam-
ple was used for training four times) and sig-
nificantly improves sample efficiency. We fur-
ther compared value-std (critic-side uncertainty)
with entropy (policy-side uncertainty) (Wang 1
etal., 2025a; Rahn et al., 2024; Cui et al., 2025b) 0.951
by masking an equal fraction of states per step 0.9
according to each metric. Figure 4(c) shows

that value-std-based masking consistently deliv-  Figure 5: Left: States with low value-std maintain low
ers stronger learning benefits. This observation entropy (left box group), but states with low entropy may
echoes classic RL findings (Osband et al., 2016), have a high value-std (right box group). Right: States
where ensemble-based value uncertainty acts as  with low entropy and states with low value-std show
a proxy for learning dynamics. Figure 5 reveals obvious differences. We sampled the 5% lowest entropy
that low value-std states consistently align with states and the 5% lowest value-std states at step 150.
low entropy, suggesting that value-std is a more precise uncertainty metric than entropy.
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Takeaway 2

Agreement among critics provides a reliable measure of the learning benefit of the states.

Entropy filtering based on value divergence. When critics exhibit significant divergence in
their evaluation of a state s;, reflected in a high standard deviation, it may indicate that s; is
reasoning-independent. For instance, different critics may encounter divergent reward distributions
for trajectories passing through s;, due to factors such as inference-irrelevant tokens or inherent
semantic patterns in model generations. With a large A, the dispersion in returns distribution
propagates back to each state, amplifying disagreement among critics. In such cases, persistent
exploration at s; is meaningless, as it does not correspond to an actionable decision state (Figure 6
(a)). To promote meaningful exploration while avoiding wasteful updates on noisy or non-decision
states, we introduce a safe entropy regularization weighted by 3. Specifically, we filter out states with
high value standard deviation when computing entropy H. Complete policy loss can be rewritten as:

lol
1 A - <
Jepo(0) =E(4 pq), ovma,,, (0l0)] To| > lﬂt $min <15t < Ay, clip (IS4, 1—€, 1+¢) At>
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B -1 H [mo(-|s)] |; 17t = : :
+ i H[ma( */ﬂ}’ t {1_ otherwise
Figure 6 (b) shows that, unlike naive entropy loss, which can yield suboptimal learning, our entropy
regularization mitigates entropy collapse and stabilizes policy learning, avoiding spurious exploration
while guiding the policy toward better convergence with higher returns. We also compare filtering
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Figure 6: (a): When critics diverge, the state is weakly coupled to the final outcome and has complex future
dynamics; exploration in such non-critical states should be avoided. (b): Excluding states with high value-
estimate standard deviation from the entropy loss prevents policy collapse induced by naive entropy regularization
and yields a roughly 7 percentage-point improvement. The setup follows the settings in Figure 1 (b). (c):
Excluding the top 40% of high value-std states from the entropy loss preserves policy entropy at levels comparable
to naive entropy guidance, whereas filtering the same percentage of states with the highest entropy collapse. The
settings are consistent with Figure 4.

based on value-std versus entropy. As shown in Figure 6 (c), the overlap between the two sets is
minimal. Even after filtering the top 40% of hight value-std, policy entropy remains stable, while
filtering the same fraction of high-entropy states causes entropy collapse. Statistical analysis of
filtered tokens (Appendix E) further confirms that removed words are typically adverbs, interjections
that are irrelevant to decision-making. Algorithm 1 summarizes the full execution process of AsyPPO.

Takeaway 3

Divergence among value estimations indicates the cost-effectiveness of exploring the states.

Algorithm 1 Asymmetric PPO with two mini-critic

1: mg: actor. Vi, , @ mini-critics, o, € O: generation up to step ¢ in response o under prompt

g, O denotes the total response in the batch. o(O): value estimation std across the critics. A:
corrected advantage. 14: The index for advantage masking. 1*: The index for entropy filtering.

2: while training step < maximum step do
3 # Rollout under a batch of prompts )
4: O + m(Q)
5: # Train critics
6: Build training subsets for each critic, and update V. ,,. > Eq.2
7 # Correct the advantage
8: A GAE(V,r),V <= mean(Vy, (Q, O), V4, (Q, 0)) > Eq.3
9: # Train the policy
10:  Generate masking vector 4 < Lowy,(c(O)) and filtering vector I < Topy, (o(O)).
11: Update 7y via reconstructed PPO loss. > Eq.5

12: end while

4 EXPERIMENTS

In §3, we described the architecture and training pipeline of AsyPPO and, through controlled ablation
studies, demonstrated its efficacy on 4B and 8B LLMs (refer to Appendix B for detailed results).
Building on that, this section examines AsyPPO more broadly through a suite of experiments. We
organize the subsequent studies around three research questions: RQ1: Can AsyPPO and naive
asymmetric PPO unlock general reasoning in larger LLM? RQ2: How sensitive is AsyPPO to the size
and number of critics? RQ3: What setups are effective for advantage masking and entropy filtering?
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Figure 7: AsyPPO improves accuracy by an average of about 3 + points compared to GRPO, and achieves more
than 20% lighter weight than symmetrical PPO. Our naive asymmetric PPO still works on the 14b policy, but
fails under the 1.7b critic setting. However, AsyPPO unlocks the 1.7b critic’s ability to guide the 14b actor.

4.1 GENERALIZATION TO LARGE MODELS

Setup. To ensure consistency with prior research, we fix the global batch size to 1024, with a
maximum response length of 8192 tokens. The learning rate is set to le — 6. For text generation, we
use a top_p value = 0.99, and top_k value = 100, temperature 0.99, UT D = 4 (also referred to as
PPO_epoch, result in off-policy). The actor is Qwen3-14b-Base, while critics vary in size from the
Qwen3-Base family. To ensure reproducibility and fairness, we exclusively use open-source datasets.
We use the hard training dataset from Liu et al. (2025d); Zeng et al. (2025), which exposes clear
performance gaps across algorithms in long-tail reasoning tasks. We report the average @4 across 4
challenging benchmarks, i.e., MATH-500 (Lightman et al., 2023), OlympiadBench (He et al., 2024),
MinervaMath (Lewkowycz et al., 2022), and AMC 2023 (Xue et al., 2025).

Baselines. For all algorithms, actors are initialized using Qwen3-14b-Base. Naive asymmetric PPO
uses a single critic, i.e., Qwen3-1.7b-Base, Qwen3-4b-Base and Qwen3-8b-Base, and optimize with
the vanilla PPO optimization objective. AsyPPO employs two mini-critics with advantage masking at
20% and entropy filtering at 20%. We use the setting of GRPO recommended by Liu et al. (2025d).
Full hyperparameter details are provided in Appendix C.2.

Results. Figure 7 shows that AsyPPO with two 4b critics achieves the strongest results across
all tasks. Compared to GRPO, AsyPPO improves accuracy by an average of about 3 points. For
naive asymmetric PPO (a single mini-critic guiding a large actor), we observe a clear critic-capacity
threshold: single Qwen3-1.7b-Base critic cannot reliably guide 14b actors, despite successfully
guiding an 8B actor; upgrading to a 4B critic restores effective learning. By contrast, AsyPPO lowers
this requirement, 1.7b critics deliver substantial reasoning gains. Combined with the lightweight
deployability in Figure 1(c), AsyPPO establishes an efficient and practical RL4LLM design.
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Figure 8: (a): The increase in the size of the critic further enhances the effectiveness of AsyPPO, which
can be regarded as the marginal benefit brought by the parameter scaling up. We initialize the actor using
Qwen3-8b-Base and initialize the double mini critic using four sizes of the Qwen3 Base model. (b): A qualitative
improvement in performance can be achieved by using two mini critics. (¢): A suitable group size for AsyPPO is
32. (d): Using the mean of the critic’s estimated value can achieve better correction of the value than using min.
For (b,c,d), we initialize the actor using Qwen3-8b-Base and initialize the mini critics using Qwen3-1.7b-Base.

4.2 ABLATION STUDY

The preceding results show that AsyPPO consistently enhances reasoning in base models across scales.
We provide a module-wise analysis to characterize the algorithm from multiple perspectives.
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Figure 9: Left: Average test score on six benchmarks under various advantage masking setup. Middle: Average
test score under various filtering out setup. Right: entropy curves during training. All experiments were based
on Qwen3-8b-Base actor and Qwen3-1.7b-Base critic. The accuracy calculation follow Figure 2.

Ensemble critic system. Figure 8 (a) shows a scaling-law-like trend: increasing critic size steadily
raises the policy’s peak score. We recommend using the largest critic model that fits in GPU
memory to maximize AsyPPQ’s optimization capacity. However, we do not see comparable gains
from increasing the number of critics: Figure 8 (b) shows that two mini-critics are sufficient for a
clear step-change in performance. Varying the GRPO group size (trajectories per prompt) under our
non-overlapping group setup while keeping other parameters at their defaults (Figure 8 (c)), and
found 32 to be a robust setting. Comparing ensemble value aggregation (Figure 8§ (d)), the mean of
values outperforms min value, suggesting overestimation is not a dominant issue in RLALLM.

Value-convergent-based advantage masking. To identify a robust advantage-masking percentage,
we adopt the main experiment settings with Qwen3-8b-Base as the policy and two Qwen3-1.7b-Base
critics. Figure 9 (Left) shows that masking 20% of low-value-std states provides the strongest gains.

Value-divergence-based entropy filter. To find an appropriate filtering percentage, we follow the
same setup as for advantage masking. We test masking 10%, 20%, 30%, and 40% of the highest-
value-std states from the entropy loss. As shown in Figure 9 (Middle, Right), larger masks induce
entropy collapse, while 20% strikes the best exploration—exploitation balance.

5 CONCLUSION

We reframed the critic bottleneck in RL4LLM as an architectural rather than a purely algorithmic
or optimization issue. Our proposed Asymmetric Proximal Policy Optimization (AsyPPO) reinstates
the critic’s role via double lightweight mini-critics trained on disjoint prompt-level data, yielding
diverse yet calibrated value estimates. Beyond improving value estimation robustly, we showed that
inter-critic uncertainty provides an actionable signal for policy optimization: masking advantages
for low-informativeness states and filtering high-divergence states from entropy regularization both
reduce overfitting and promote safer, more effective exploration. Across standard LLM reasoning
benchmarks, AsyPPO consistently improves general reasoning for models of varied sizes, empirically
supporting asymmetric actor—critic design as a viable and efficient direction for RLALLM. AsyPPO
mitigates critic over-parameterization while improving the sample and compute efficiency of PPO.

Limitations. To ensure fairness and reliability under limited GPU resources, all experiments
initialized both actor and critic models from the widely used Qwen3 series. Evaluation on additional
model families (e.g., Llama (Grattafiori et al., 2024)) is left for future work. Following (Liu et al.,
2025d), we fixed the maximum generation length to 8k tokens, a common academic setting that
balances inference coverage while avoiding inference-cost blowups. We plan to assess the algorithm’s
generalization under ultra-long inference budgets and adopt classical RL practice of using a more
diverse set of random seeds to further strengthen the robustness of our conclusions.

Future work. AsyPPO opens new avenues for RLALLM design and raises several interesting
questions. For example, do ensemble critic systems composed of different model families and sizes
exhibit performance differences? Do variations in critic hyperparameter settings affect calibration
and uncertainty estimates? Promising directions also include confidence-weighted ensemble critics
to improve value estimation and analyze the relationship between value uncertainty and entropy.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we conduct experiments with an open-source RL training framework (Wang
et al., 2025¢) and initialize both the actor and critic from widely used open-source Qwen3 models.
The policy is trained on an open-source dataset (DeepMath-103K). Moreover, we provide a complete
specification of training hyperparameters and the evaluation protocol, including the computation of
test accuracy, in Appendix C.2.

ETHICS STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning, and RLALLM in
particular. There are many potential societal consequences of our work, none which we feel must be
specifically highlighted here.
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A RELATED WORK

Critic-based RL4LLM algorithms Shao et al. (2024) first demonstrated that large-scale rein-
forcement learning (RL) with outcome-based rewards can unlock long-tail reasoning, beginning
from an unaligned base model. This finding has led to numerous variations of the Proximal Policy
Optimization (PPO) algorithm. As far as we know, most algorithm research is mainly based on the
baseline normalized advantage calculation method (Hu, 2025; Liu et al., 2025¢; Chen et al., 2025).

On the other hand, value-based algorithm innovations are relatively few, Yuan et al. (2025b) argued
that the decay factor is not well-suited for complex reasoning tasks that require long chains of thought
(CoT). Yue et al. (2025); Zhu et al. (2025); Zhao et al. (2025) proposed novel mechanisms to enhance
the robustness of the critic model when faced with noisy reward signals. Open-Reasoner-Zero (Hu
et al., 2025) argues that, within this regime, vanilla PPO without KL regularization suffices to scale
training stably. T-PPO (Fan et al., 2025) uses critic to enhance the stability of policy training in the
long-tail asynchronous setting (Fu et al., 2025). Another similar research line to introduce critic-like
models is done with the introduction of Implicit PRM (Yuan et al., 2025a). This approach is also
able to provide token-level supervision for scalable RL training. PRIME (Cui et al., 2025a) adapted
a specific reward model formulation to directly generate token-level rewards. However, current
mainstream RLALLM algorithms primarily emphasize critic-free optimization (Zhang et al., 2025).
In this context, our research aim to underscore the importance of the critic in RLALLM scenarios and
try to address the deployment limitations associated with critics.

Asymmetric architecture. In the realm of continuous deep RL, recent studies have investigated
the potential of asymmetric network structures by reducing the capacity of the actor network. For
example, Mastikhina et al. (2025); Mysore et al. (2021) suggest that the actor can function effectively
with a significantly smaller capacity compared to the critic. Empirical evidence from Tan et al. (2022)
supports this idea, demonstrating that sparsifying the policy network can enhance effective policy
learning while significantly improving both inference and training speeds. Additionally, Liu et al.
(2025a) found that pruning the actor network’s topology based on trial gradients can yield better
performance. Similarly, Ma et al. (2025) revealed that even random pruning of the actor network can
maintain performance within the SimBa network architecture (Lee et al., 2024). These contributions
highlight the adaptability of RL in accommodating asymmetric designs, providing valuable insights
for our research. However, existing works primarily concentrate on reducing the actor’s size within
simple network frameworks. In contrast, our paper pioneers the exploration of effectively guiding a
small critic to inform a larger actor by optimizing the PPO algorithm within the RLALLM scenario.

B THE PERFORMANCE GAIN OF AsyPPO ON THE SMALL MODEL STRATEGY

Policy model Base model Symmetric PPO AsyPPO

Qwen3-4b-Base 30.5% 47.3% 53.1% +6.1%
Qwen3-8b-Base 31.7% 50.6% 53.8% +3.2%

Table 1: Peak accuracy comparison of Symmetric PPO and AsyPPO under high data reuse setting (UTD=4) over
six benchmarks. Score calculation same as Figure 1 (b). Purple score denotes the improvement compare to
Symmetric PPO.

We set both the classic symmetrical PPO and our AsyPPO to the optimal Settings. AsyPPO uniformly
initializes mini-critics using the Qwen3-1.7b-Base model. AsyPPO employs two mini-critics with
advantage masking at 20%. And use the open source hard training dataset in (Liu et al., 2025d),
which is selected from DeepMath-103k (He et al., 2025) with sampling probability proportional to
each entry’s assigned difficulty level. We report the average @4 across six challenging benchmarks,
i.e., MATH-500, OlympiadBench, MinervaMath, and AMC 2023, AIME 2025, AIME 2024.

Overall, Table 1 shows that AsyPPO effectively enhances the reasoning capabilities of two small
models of different sizes, achieving respective improvements of 22.6% and 22.1% over their original
performance. Compared to symmetric PPO, our algorithm delivers gains of 6.1% and 3.2%, while
maintaining lightweight deployment. Upon analyzing specific benchmarks, our approach demon-
strates notable advancements. For instance, on AIME 2025, we observed respective increases of
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approximately 4% (4B) and 6% (8B) compared to symmetric PPO. Similarly, on MATH-500, the
improvements were around 3% (4B) and 2% (8B), and on MinervaMath, the gains were approxi-
mately 2% (4B) and 4% (8B). In the remaining three tasks, our method maintained performance
levels comparable to those of symmetric PPO.

C DETAILED EXPERIMENTAL SETUP

C.1 PLOT SETUP

To ensure clarity and intuitiveness in the qualitative analysis, all curves are consistently smoothed
using identical parameters. Specifically, the mean values are computed using an 11-step moving
window with an exponential smoothing factor of 0.6. The smooth window set as 4 and 2.

C.2 HYPERPARAMETERS

We employ ROLL, a user-friendly and efficient open-source reinforcement learning framework, to
implement our pipeline. Subsequently, the key parameters observed during the training process are
presented as follows. See our code config file for more details on the parameters. For the 14b policy
training. We uniformly arrange the actors on (0,16) and the critics on (16,32) GPUs. For other small
models, we uniformly place the actor at (0,8) and the critic at (8,16) GPU. Detailed settings can be
found in next page.
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# We use below setup for 4b and 8b policy

seed: 42

max_steps: 500

save_steps: 500

logging_steps: 1

eval_steps: 1

gamma: 1.0 # discount factor

lambd: 1.0 # GAE lambda

rollout_batch_size: 64

prompt_length: 1024

response_length: 8000

value_aggregation_strategy: "mean”
gradient_mask_percentage: 0.2 # mask 20%
entropy_loss_coef: 0.01
entropy_filter_mask_percentage: 0.2 # filter out 20%
ppo_epochs: 1 # 4 is also used in main experiments
adv_estimator: "gae"

init_kl_coef: 0.0

async_generate_level: 1

actor_train:
training_args:

learning_rate: 1.0e-6
weight_decay: @
per_device_train_batch_size: 1
gradient_accumulation_steps: 256
warmup_steps: 50
num_train_epochs: 50

critic_1:
training_args:

learning_rate: 1.0e-5
weight_decay: 1.0e-2
warmup_steps: 5
per_device_train_batch_size: 1
gradient_accumulation_steps: 128
warmup_steps: 5
num_train_epochs: 50

critic_2:
training_args:

learning_rate: 1.0e-5
weight_decay: 1.0e-2
warmup_steps: 5
per_device_train_batch_size: 1
gradient_accumulation_steps: 128
warmup_steps: 5
num_train_epochs: 50

actor_infer:
generating_args:

max_new_tokens: ${response_length}
top_p: 0.99
top_k: 100
num_beams: 1
temperature: 0.99
num_return_sequences: 32
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# We use below setup for 14b policy
seed: 42
max_steps: 500
save_steps: 500
logging_steps: 1
eval_steps: 1
gamma: 1.0 # discount factor
lambd: 1.0 # GAE lambda
value_aggregation_strategy: "mean”
gradient_mask_percentage: 0.2 # mask 20%
entropy_loss_coef: 0.01
entropy_filter_mask_percentage: 0.2 # filter out 20% or 0%
rollout_batch_size: 64
prompt_length: 1024
response_length: 8000
infer batch size: 4
ppo_epochs: 4
adv_estimator: "gae"
init_kl_coef: 0.0
async_generate_level: 1
actor_train:
training_args:
learning_rate: 1.0e-6
weight_decay: @
per_device_train_batch_size: 2
gradient_accumulation_steps: 6
warmup_steps: 50
num_train_epochs: 50
critic_1:
training_args:
learning_rate: 1.0e-5
weight_decay: 1.0e-2
warmup_steps: 5
per_device_train_batch_size: 2
gradient_accumulation_steps: 16
warmup_steps: 5
infer batch size: 4
num_train_epochs: 50
critic_2:
training_args:
learning_rate: 1.0e-5
weight_decay: 1.0e-2
warmup_steps: 5
per_device_train_batch_size: 2
gradient_accumulation_steps: 16
warmup_steps: 5
infer batch size: 4
num_train_epochs: 50

actor_infer:
generating_args:
max_new_tokens: ${response_length}
top_p: 0.99
top_k: 100
num_beams: 1
temperature: 0.99
num_return_sequences: 32
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C.3 PROMPT

In this work, we incorporate the following instruction into the system prompt to encourage the model
to better demonstrate its reasoning process: ‘“Please reason step by step, and put your final answer
within \boxed{}.” This setting is designed to guide the model to perform step-by-step reasoning
and explicitly present the final answer in the form of \boxed{ }, thereby enhancing the clarity and
readability of the output.
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Figure 10: Left: Statistics within a mini-batch in the mid-training stage. Right: The 40 tokens that are masked
most frequently in the same mini-batch.

D THE RELATIONSHIP BETWEEN VALUE STD AND STATE INFORMATION
QUANTITY

Specifically, for the training scenarios of 8b actors and two 0.6b critics, we use the value-std
corresponding to the global state and the median of the gradient magnitude to categorize the states
into four types. Namely, large gradient & large value std, large gradient & small value std, small
gradient & large value std, small gradient & small value std. The results in Figure 10 (Left) show that
the vast majority of states are classified into the categories of large gradient & large value std and
small gradient & small value std, thereby empirically proving the positive relationship between value
std and the learning value (information quantity) of the state.

E VISUALIZATION OF WORD CLOUDS

We statistically analyzed the word clouds of the tokens with the highest mask frequency in the initial
stage of AsyPPO training. The results in Figure 10 (Right) show that our mask mechanism tends to
mask adjectives, adverbs, and some isolated symbols, with less involvement in logical transitions,
except for the slightly prominent progressive word "therefore".

LLM USAGE

LLMs were used to assist paper editing and to write the code for plotting experiments.
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