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Abstract

We present a general framework for symmetrizing an arbitrary neural-network architec-
ture and making it equivariant with respect to a given group. We build upon the pro-
posals of Kim et al. (2023); Kaba et al. (2023) for symmetrization, and improve them
by replacing their conversion of neural features into group representations, with an opti-
mization whose loss intuitively measures the distance between group orbits. This change
makes our approach applicable to a broader range of matrix groups, such as the Lorentz
group O(1, 3), than these two proposals. We experimentally show our method’s compet-
itiveness on the SO(2) image classification task, and also its increased generality on the
task with O(1, 3). Our implementation will be made accessible at https://github.com/
tiendatnguyen-vision/Orbit-symmetrize.
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1. Introduction

Exploiting symmetries is a popular principle for developing an efficient learning system,
which is typically realized by defining a hypothesis class of functions equivariant to a given
group G of symmetries. While a dominant approach to define such a hypothesis class has
been to design a specific G equivariant neural-network architecture (Finzi et al., 2021a;
Villar et al., 2021), architecture-agnostic alternatives are explored recently (Puny et al.,
2022; Basu et al., 2023; Kaba et al., 2023; Kim et al., 2023). These alternatives are based
on symmetrization, where any unconstrained function ϕθ : X → Y is made G equivariant by
averaging it over transformations of inputs and outputs induced by certain group elements
g ∈ G. In this work, we improve one of the most powerful symmetrization methods from
(Kim et al., 2023; Kaba et al., 2023), which symmeterizes ϕθ to the following function Φθ,ω:

Φθ,ω(x) = Eϵ[g · ϕθ(g−1 · x)] with ρ(g) = r(qω(x, ϵ)), (1)

where qω : (x, ϵ) 7→ h ∈ Rn×n is aG equivariant network, and r : h 7→ ρ(g) is aG equivariant
contraction operator producing the representation ρ(g) of some element g ∈ G.
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A major issue with Equation (1) is that designing the contraction r is often non-trivial;
r should produce a valid group representation ρ(g) from an unstructured feature h while
being G equivariant itself. Prior works employed hand-designed algorithms, such as Gram-
Schmidt process for O(n) (Kaba et al., 2023), but such algorithms are available only for
certain groups (Kim et al., 2023). Our goal is to overcome this bottleneck and making the
symmetrization work for broader group symmetries, such as the Lorentz group O(1, 3).

Our idea is to design a differentiable objective on qω of which gradient-based optimization
makes qω(x, ϵ) directly output valid group representations h ≈ ρ(g), thereby removing
the need for contraction r. We design the objective in a principled manner as distance
minimization on group orbit space. Compared to symmetrization algorithms of Kim et al.
(2023); Kaba et al. (2023), this makes our approach applicable to a much broader range of
matrix groups where orbit separating invariants are available. We implement our method
for the special orthogonal group SO(2) and the Lorentz group O(1, 3), and find that our
objective can replace the known contraction r for SO(2) with a negligible performance drop,
and successfully achieves symmetrization based equivariance on the Lorentz group O(1, 3).

2. Orbit Distance Minimization

Problem Definition Let ρ : G→ GL(n) be a group representation that associates each
group element g ∈ G an invertible matrix ρ(g) ∈ Rn×n. For our G equivariant neural
network qω : (x, ϵ) 7→ h ∈ Rn×n, the group G acts on the output space through the matrix
multiplication of the representation h 7→ g ·h = ρ(g)h. Our goal is to train qω such that its
output is always a valid group representation h ∈ ρ(G), where ρ(G) denotes the image of ρ.

Orbit Distance Minimization We will now present a training objective that contracts
the output space of qω to valid group representations ρ(G) ⊂ Rn×n. Our key idea is that,
instead of working on Rn×n directly, working on the orbit space (quotient) Rn×n/G greatly
simplifies the problem. Let us write the orbit of an element h ∈ Rn×n under the action of G
as [h] = {g ·h : g ∈ G}. The orbit space Rn×n/G is defined accordingly as {[h] : h ∈ Rn×n}.

We now provide an observation that all valid group representations ρ(G) precisely map
onto a single point in the orbit space, which is the orbit of the identity matrix I ∈ Rn×n

since we have ρ(G) = {ρ(g) : g ∈ G} = {g · I : g ∈ G} = [I]. This implies, on the orbit
space, our objective is understood as contracting all orbits of neural network outputs [h]
towards a fixed point target [I]. Thus, if we can endow the orbit space with a distance metric
d : Rn×n/G×Rn×n/G→ R+, we can frame our training objective as distance minimization:

w∗ = argmin
ω

d([h], [I]), (2)

where we remark that qω : (x, ϵ) 7→ h ∈ Rn×n is our G equivariant neural network. We now
show that the objective indeed contracts the output of qω exactly to ρ(G) (proof in A.1):

Theorem 1 The training objective in Equation (2) achieves the global minimum with the
value of 0 if and only if qω always outputs valid group representations h ∈ ρ(G).

Our problem now reduces to defining a proper distance metric d on the orbit space Rn×n/G.
The closest concept we could find in literature is the quotient metric (Burago et al., 2001),
but it is intractable as it involves infimum over an infinite set. Instead, we propose a simple
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distance metric based on a class of functions called orbit separating invariants: G invariant
functions f that separate orbits f(h) ̸= f(h′) ⇐⇒ [h] ̸= [h′] (Dym and Gortler, 2022). In
detail, our distance metric can be defined as vector distance on outputs of f (proof in A.1):

Theorem 2 Let f : Rn×n → Rk be an orbit separating invariant and ∥ · ∥ be vector norm.
Then, d([h], [h′]) = ∥f(h)− f(h′)∥ is a distance metric on the orbit space Rn×n/G.

With Theorem 2, we can use the below objective for optimization problem in Equation (2)1:

w∗ = argmin
ω

∥f(h)− f(I)∥. (3)

In practice, it is desirable to have a differentiable objective such that we can perform a
gradient-based optimization. Since qω : (x, ϵ) 7→ h is already a neural network, the objective
in Equation (3) would be differentiable almost everywhere with respect to ω if we choose
f and ∥ · ∥ to be differentiable almost everywhere.

Discussion on Generality We now discuss the results from invariant theory implying
orbit separating invariants f : Rn×n → Rk of bounded dimension k ≤ 2n2 + 1 exist for a
very general class of matrix groups and they are differentiable everywhere in general.

The existence of orbit separating invariants has been mainly shown for linearly reductive
groups including GL(n), semi-simple groups SL(n), O(n), SO(n), finite group Sn, and also
O(s, n − s). Most of the results are derived from the concept of invariant polynomials,
which are polynomials on matrix entries that are G invariant. To elaborate, consider a
group G acting on Rn×n, and let S be the set of all invariant polynomials f ′ : Rn×n → R.
We call a set of invariant polynomials {f1, ..., fk} the generating set if every f ′ ∈ S can
be written as f ′(·) = h(f1(·), ..., fk(·)) using some polynomial h : Rk → R. For every
linearly reductive group, Weyl’s theorem (Weyl, 1946) guarantees the existence of a finite
generating set. Furthermore, for many subclasses of these groups, it has been shown that
this set separates orbits in Rn×n whose closures do not intersect2 (Dym and Gortler, 2022;
Derksen and Kemper, 2015), allowing us to use their stack f : Rn×n → Rk as our orbit
separating invariant. Such f is differentiable everywhere as it is a stack of polynomials. For
many groups, the generating set is known from the invariant theory, and so is f (see A.2).

Now consider the dimension k of the separating invariant f : Rn×n → Rk which is the
size of the generating set {f1, ..., fk} in our context. While this can be large for some groups,
Dym and Gortler (2022) has shown that random linear projection can almost always reduce
it to a set of 2n2 +1 polynomials that still separates orbits (see A.3), which also reduces f .

Final Model Our original goal is to symmetrize a function ϕθ : X → Y to be G equivari-
ant. We define our symmetrization as follows by removing contraction r from Equation (1):

Φθ,ω(x) = Eh[h · ϕθ(h−1 · x)] where h = qω(x, ϵ). (4)

Given training pairs (x,y) of input x ∈ X and label y ∈ Y, we train for the joint objective
of task loss L and the orbit distance loss (Equation (3)) weighted by a hyperparameter λ:

θ∗, ω∗ = argmin
θ,ω

L(y,Φθ,ω(x)) + λEh∥f(h)− f(I)∥. (5)

1For some groups, orbit separation of f is guaranteed only for full-rank inputs (Dym and Gortler, 2022).
In this case, the optimality condition in Theorem 1 holds if we assume h to be full-rank.

2For compact groups this guarantees orbit separation; for closed non-compact groups this guarantees
orbit separation for full-rank inputs (Dym and Gortler, 2022) which relates to footnote 1.
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Table 1: Experimental results on SO(2) and O(1, 3) group symmetries.

(a) Rotated MNIST, SO(2).

Method Test Error % ↓

GCNN (p4) 2.36± 0.15
GCNN (p64) 2.28± 0.10

CNN 4.90± 0.20
CNN-Aug. 3.30± 0.20

CNN-Canonical. 2.32± 0.18
CNN-PS 2.21± 0.28

CNN-Canonical.-Orbit (Ours) 2.44± 0.12
CNN-PS-Orbit (Ours) 2.37± 0.35

(b) Particle Scattering, O(1, 3).

Method Test MSE ↓

Scalar MLP 0.00171± 0.00004

MLP 0.65381± 0.23663
MLP-Aug. 0.09101± 0.03107

MLP-Canonical. N/A
MLP-PS N/A

MLP-Canonical.-Orbit (Ours) 0.01027± 0.00082
MLP-PS-Orbit (Ours) 0.00887± 0.00070

Intuitively, if the orbit loss is ≈ 0, we would have h ≈ ρ(g) and the model would closely
achieve the symmetrization in Equation (1) while not requiring contraction r : h 7→ ρ(g).
A formal theoretical analysis on G equivariance and universality of Φθ,ω is provided in A.4.

3. Experiments

We evaluate our approach on two selected matrix groups: the special orthogonal group in
two dimensions SO(2) and the Lorentz group O(1, 3). Experimental details are in A.5.

Image Classification For SO(2), we use the Rotated MNIST (Larochelle et al., 2007),
a common benchmark for equivariant models (Cohen and Welling, 2016; Finzi et al., 2020)
with randomly rotated 62,000 digits (SO(2) invariance). We follow the setup of Kaba et al.
(2023) and use the same 7-layer CNN as our base function ϕθ. For the symmetrizer qω, we
use 2-layer EMLP (Finzi et al., 2021a) of 64 hidden dimensions. For training (Equation (5)),
we use cross entropy for task loss L; for orbit distance loss λ ∥f(h)− f(I)∥ we use the orbit
separating invariant f(h) = [vec(h⊤h),det(h)] (Dym and Gortler, 2022), L1 norm, λ = 1.

We use the following baselines: CNN, CNN with SO(2) data augmentation, equivariant
GCNN (Cohen and Welling, 2016), and CNN made SO(2) equivariant with symmetrization
methods Canonicalization (Kaba et al., 2023) and Probabilistic Symmetrization (PS) (Kim
et al., 2023) that follow Equation (1) except Canonicalization drops noise ϵ. We take the
performances of CNN, data augmentation, and GCNN from Kaba et al. (2023), and train
symmetrization baselines using SO(2) contraction of Kim et al. (2023). The results are in
Table 1(a). Symmetrization improves CNN overall, as all symmetrized CNNs outperform
data augmentation and perform on par with GCNN. Within symmetrization, replacing con-
traction r : h 7→ ρ(g) with our orbit distance loss leads to a negligible drop in performance.
This indicates orbit distance minimization can replace the role of contraction operator, with
a slight tradeoff as qω takes an extra role of producing valid group representation h ≈ ρ(g).

Particle Scattering For the Lorentz group O(1, 3), we use Particle Scattering synthetic
regression dataset from Finzi et al. (2021a) for matrix element in electron muon scattering
(O(1, 3) invariance). We use 10,000 train data, and use 1,000 validation and 1,000 test data
that are randomly O(1, 3) transformed. We use 3-layer MLP of 128 hidden dimensions as
our base function ϕθ, and our symmetrizer qω is based on 3-layer Scalar MLP (Villar et al.,
2021) of 128 hidden dimensions. For training (Equation (5)), we use mean squared error
for task loss L; for orbit distance loss λ ∥f(h)− f(I)∥ we use the orbit separating invariant
f(h) = [vec(h⊤Λh)], Λ = diag([+1,−1,−1,−1]) (Dym and Gortler, 2022), L1 norm, λ = 1.

4



Symmetrization with Orbit Distance Minimization

We run the following baselines: MLP, MLP with O(1, 3) data augmentation, and invari-
ant Scalar MLP (Villar et al., 2021), with 3 layers of 128 hidden dimensions. Symmetrization
baselines in Equation (1) cannot be built as O(1, 3) contraction is not known. The results
are in Table 1(b). O(1, 3) symmetrized MLPs based on our method significantly outperform
MLP as well as data augmentation. To our knowledge, this is the first successful result in
symmetrization based equivariance for O(1, 3), implying symmetrization can be applied to
groups where contraction r : h 7→ ρ(g) is not available. Yet, our method has performance
gap from invariant Scalar MLP. An explanation is that Scalar MLP gets Minkowsky inner
product x⊤Λx as input which is heavily correlated to label function of particle scattering,
but our base MLP gets transformed input ≈ ρ(g)−1 ·x which requires additional processing.
We leave closing this gap as an important future research direction.

Conclusion We proposed orbit distance minimization, a framework for symmetrization
based equivariant learning. Our method is competitive on SO(2) invariant classification and
successfully achieves symmetrization based equivariance on Lorentz group O(1, 3).
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Appendix A. Proofs and Supplementary Discussions

A.1. Proof of Theorem 1 and Theorem 2

Before the proofs, we provide a formal definition of distance metric on the orbit space.

Definition 3 A function d : Rn×n/G × Rn×n/G → R+ is a distance metric on the orbit
space Rn×n/G if it satisfies the following conditions for all orbits [h], [h′], [h′′] ∈ Rn×n/G:

1. d([h], [h′]) ≥ 0 (non-negativity),

2. d([h], [h′]) = 0 ⇐⇒ [h] = [h′] (identity of indiscernibles),

3. d([h], [h′]) = d([h′], [h]) (symmetry),

4. d([h], [h′]) ≤ d([h], [h′′]) + d([h′′], [h′]) (triangle inequality).

We now provide the proofs.

Theorem 1 The training objective in Equation (2) achieves the global minimum with the
value of 0 if and only if qω always outputs valid group representations h ∈ ρ(G).

Proof Recall the definition of an orbit [h] = {g·h : g ∈ G}. (=⇒) If d([h], [I]) = 0, since d is
a distance metric, we have [h] = [I] from identity of indiscernibles. This implies [h] = ρ(G)
since [I] = {g · I : g ∈ G} = {ρ(g) : g ∈ G} = ρ(G). On the orbit [h] = {g · h : g ∈ G},
by selecting the identity element id ∈ G we get h ∈ [h], thus h ∈ ρ(G). (⇐=) If qω always
outputs valid group representations h ∈ ρ(G), we can write h = ρ(h) for some h ∈ G.
Then we have [h] = {g · h : g ∈ G} = {g · ρ(h) : g ∈ G} = {(gh) · I : g ∈ G} = {g′ · I :
g′h−1 ∈ G} = {g′ · I : g′ ∈ G} = [I]. Note that we used the associativity and invertibility of
group elements as well as the fact that right operation by h ∈ G maps a group G to itself.
Since [h] = [I] and d is a distance metric, we have that d([h], [I]) = 0 due to identity of
indiscernibles, which is a global minimum due to non-negativity.

Theorem 2 Let f : Rn×n → Rk be an orbit separating invariant and ∥ · ∥ be vector norm.
Then, d([h], [h′]) = ∥f(h)− f(h′)∥ is a distance metric on the orbit space Rn×n/G.

Proof We first note that a vector norm ∥ · ∥ induces a distance metric d′(u,v) = ∥u− v∥,
which is called the induced metric. We now explicitly show that d([h], [h′]) = ∥f(h)−f(h′)∥
satisfies the four conditions in Definition 3. Since ∥·∥ is a vector norm, non-negativity clearly
holds. Since f is an orbit separating invariant [h] ̸= [h′] ⇐⇒ f(h) ̸= f(h′), by invoking the
identity of indiscernibles of the induced metric we have [h] ̸= [h′] ⇐⇒ ∥f(h)− f(h′)∥ ̸= 0,
which proves the identity of indiscernibles for d([h], [h′]). Symmetry and triangle inequality
of d([h], [h′]) are inherited from the symmetry and triangle inequality of the induced metric,
as we have d([h], [h′]) = ∥f(h) − f(h′)∥ = ∥f(h′) − f(h)∥ = d([h′], [h]) for symmetry and
d([h], [h′]) = ∥f(h)−f(h′)∥ ≤ ∥f(h)−f(h′′)∥+∥f(h′′)−f(h′)∥ = d([h], [h′′])+d([h′′], [h′])
for triangle inequality. Therefore, d([h], [h′]) is a distance metric on the orbit space.

7



Nguyen Kim Yang Hong

Table 2: Orbit separating invariants for some group actions from (Dym and Gortler (2022)),
along with the domain on which orbit separation is guaranteed.

Group Domain Orbit separating invariant Dimension

Sn Rn×n [ϕα(h) =
∑n

j=1 h
α
j ], α ∈ Zd

≥0, |α| ≤ n
(
2n
n

)
O(n) Rn×n [vec(h⊤h)] n2

SO(n) Rn×n [vec(h⊤h),deth] n2 + 1

O(1, n− 1) Rn×n
full [vec(h⊤Λh)], Λ = diag([+1,−1, ...,−1]) n2

SL(n) Rn×n
full [deth] 1

GL(n) Rn×n
full [det2(hWi)/ det

−1(hh⊤)], Wi ∈ Rn×n, i = 1, ...2n2 + 1 2n2 + 1

A.2. Supplementary Discussion on Orbit Separating Invariants

In this section, we provide examples of known orbit separating invariants for certain linearly
reductive groups in Table 2 along with supplementary discussion for Sn and GL(n) groups.
For the symmetric group Sn, the orbit separating invariant is implemented upon a set of
invariant functions known as multi-dimensional power sum polynomials (Dym and Maron,
2020; Segol and Lipman, 2019). For a given input h ∈ Rn×n, this invariant is written as:

ϕα(h) =

n∑
j=1

hα
j , α ∈ Zd

≥0, |α| ≤ n, (6)

where hj is jth row of h, α = (α1, ...αn) ∈ Nn is a multi-index, and hα
j = hj,α1 × ...×hj,αn .

For the general linear group GL(n), on the contrary to other groups in Table 2 whose
orbit separating invariants are based on the generating set of invariant polynomials, the
generating set with respect to action of GL(n) consists solely of constant polynomial, which
cannot be used to implement the orbit separating invariant f . Instead, Dym and Gortler
(2022) has shown that f can be built by adopting a family of rational invariants as follows:

q(h,W) =
det(hW)2

det(hh⊤)
, h,W ∈ Rn×n, (7)

where, Dym and Gortler (2022) shows that, for almost every W1, ...W2n2+1 randomly
sampled from Rn×n the set of functions f = {q(h,Wi) : i = 1, ..2n2+1} separates orbits of
invertible matrices in Rn×n. This example demonstrates that our method has the possibility
to be applied to linearly reductive groups even when non-trivial generating set of invariant
polynomial is not available, as long as an alternative orbit separating set is found.

A.3. Supplementary Discussion on Random Projection for Scalability

In this section, we discuss the method for controlling the dimension of separating invariants
f : Rn×n → Rk to be k ≤ 2n2 + 1 as we have discussed in Section 2. Specifically, we
summarize the projection technique suggested in Dym and Gortler (2022), which produce
a smaller set of orbit separating invariants from the generating set. The idea is summarized
below, which is an immediate consequence of corollary 1.9 in Dym and Gortler (2022):
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Lemma 4 Consider a group G that acts on Rn×n and let f : Rn×n → Rk be an orbit
separating invariant for this action. For almost every vectors w(1), ...w(2n2+1) ∈ Rk sampled
randomly, the function f̂ : Rn×n → R2n2+1 with component functions defined as:

f̂j(x) =
k∑

i=1

w
(j)
i fi(x), j = 1, ...2n2 + 1, (8)

is also an orbit separating invariant.

With this technique, given an orbit separating invariant f in arbitrary high dimension k, we
can get a new orbit separating invariant f̂ in dimension 2n2+1. Furthermore, this technique
preserves differentiability as f̂j is merely a linear combination of fi. If f is composed of
polynomials, as in the many cases of linearly reductive groups (Dym and Gortler, 2022), we
can avoid k intermediate variables fi(x) in Equation (8) by fixing linear projections w and
contracting k polynomials fi into 2n2 + 1 polynomials f̂j before computing f̂(x).

A.4. Proof of Equivariance and Universality

In this section, we formally prove the G equivariance and universality of our symmetrized
model Φθ,ω in Equation (4). We define some notations and assumptions beforehand.

Definitions In the proofs, we set our group to be a matrix group G ⊂ GL(n), and define
representations ρ : G → GL(n) and ρgl : GL(n) → GL(n) under the restriction of being
aligned ρ(g) = ρgl(g) for all g ∈ G without the loss of generality. For example, ρ and ρgl can
be chosen as identity maps. Recall our G equivariant neural network qω : (x, ϵ) 7→ h ∈ Rn×n

in Equation (4). Given that ϵ is a random variable, we can consider the implicit probabilistic
distribution characterized by qω, which we denote as pω(h|x). Further assuming that h is
full-rank, we have h = g ∈ GL(n), and we write our distribution as pω(g|x). Based on the
notations, we can rewrite Equation (4) more formally as follows:

Φθ,ω(x) = Epω(g|x)[ρ
gl
Y (g)ϕθ(ρ

gl
X (g)

−1x)], (9)

where ρglX : GL(n) → GL(X ) and ρglY : GL(n) → GL(Y) are the representations of GL(n) on
the input space and output space of the base function ϕθ : X → Y, respectively.

A.4.1. Proof of Equivariance

In this section, we prove that even if our G equivariant parameterized distribution pω(g|x)
in Equation (9) over which the base function ϕθ is symmetrized is not strictly supported on
G, the entire symmetrized function Φθ,ω would still retain G equivariance.

Definition 5 Consider a group G ⊂ GL(n) acting on a vector space X . The conditional
probabilistic distribution pω(g|x) for g ∈ GL(n) and x ∈ X is G equivariant if it satisfies:

pω(g|x) = pω(g
′g|ρX (g′)x), ∀g′ ∈ G, g ∈ GL(n),x ∈ X , (10)

where ρX : G→ GL(n) is the representation of G on X .
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This generalizes the notion of probabilistic G equivariance in Kim et al. (2023) to our
framework, since the support of pω(·|x) is not limited to G but extended to GL(n). We first
prove that G equivariance of pω is achieved with an appropriate choice of qω and ϵ:

Lemma 6 If qω is G equivariant and p(ϵ) is G invariant under a representation ρE that
satisfies det(ρE(ϵ)) = 1∀ϵ ∈ E, then the probabilistic distribution pω(g|x) characterized by
qω is G equivariant (Definition 5).

Proof Our proof is inspired by the proof of Theorem 3 in Kim et al. (2023). Firstly, we
interpret the probability pω(g|x, ϵ) as a delta distribution:

pω(g|x, ϵ) = δ(ρgl(g) = qω(x, ϵ)). (11)

We marginalize over p(ϵ) to get pω(g|x):

pω(g|x) =
∫
ϵ
pω(g|x, ϵ)p(ϵ)dϵ

=

∫
ϵ
δ(ρgl(g) = qω(x, ϵ))p(ϵ)dϵ. (12)

Moreover, we have:

pω(g
′g|ρX (g′)x) =

∫
ϵ
δ(ρgl(g′g) = qω(ρX (g

′)x, ϵ))p(ϵ)dϵ. (13)

Since ρ is a restriction of ρgl into G, we automatically have ρgl(g) = ρ(g) ∀g ∈ G. Together
with the equivariance of qω, we have:

qω(ρX (g
′)x, ϵ) = ρ(g′)qω(x, ρE(g

′)−1ϵ)

= ρgl(g′)qω(x, ρE(g
′)−1ϵ). (14)

This leads to:

pω(g
′g|ρX (g′)x) =

∫
ϵ
δ(ρgl(g′g) = ρgl(g′)qω(x, ρE(g

′)−1ϵ))p(ϵ)dϵ

=

∫
ϵ
δ(ρgl(g) = qω(x, ρE(g

′)−1ϵ))p(ϵ)dϵ. (15)

Next, to compute Equation (15), we introduce a change of variable ϵ′ = ρE(g
′)−1ϵ:

pω(g
′g|ρX (g′)x) =

∫
ϵ′
δ(ρgl(g) = qω(x, ϵ

′))p(ρE(g
′)ϵ′)

1

| det ρE(g′)−1|
dϵ′. (16)

Since ρE(·) always has determinant 1, we have | det ρE(g′)−1| = 1. Furthermore, the invari-
ance of p(ϵ) with respect to G gives p(ρE(g

′)ϵ′) = p(ϵ′). Eventually, we get:

pω(g
′g|ρX (g′)x) =

∫
ϵ′
δ(ρgl(g) = qω(x, ϵ

′))p(ϵ′)dϵ′

= pω(g|x). (17)

This finishes the proof.

Next, we show the G equivariance of the symmetrized model Φθ,ω (Equation (9)):

10
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Theorem 7 If pω is G equivariant, then Φθ,ω is G equivariant for arbitrary ϕθ.

Proof We prove Φθ,ω(ρX (g
′)x) = ρY(g

′)Φθ,ω(x) for all x ∈ X , g′ ∈ G. From Equation (9):

Φθ,ω(ρX (g
′)x) = Epω(g|ρX (g′)x)[ρ

gl
Y (g)ϕθ(ρ

gl
X (g)

−1ρX (g
′)x)]. (18)

Let us define h = g′−1g ∈ GL(n), then we have g = g′h. Because pω is G equivariant, we
have pω(g|ρX (g′)x) = pω(g

′h|ρX (g′)x) = pω(h|x). Thus, Equation (18) becomes:

Φθ,ω(ρX (g
′)x) = Epω(h|x)[ρ

gl
Y (g

′h)ϕθ(ρ
gl
X (g

′h)−1ρglX (g
′)x)]

= ρglY (g
′)Epω(h|x)[ρ

gl
Y (h)ϕθ(ρ

gl
X (h)

−1x)]

= ρglY (g
′)Φθ,ω(x)

= ρY(g
′)Φθ,ω(x). (19)

The last equality is from the fact that ρ is a restriction of ρgl to G. This finishes the proof.

A.4.2. Proof of Universality

In this section, we prove that even if our G equivariant parameterized distribution pω(g|x)
in Equation (9) is not strictly supported on G, the entire symmetrized function Φθ,ω is
still a universal approximator of arbitrary G equivariant functions as long as pω(g|x) can
approximate a G equivariant distribution h(g|x) which is compactly supported on G.

Definition 8 We say that a G equivariant distribution h(g|x) on g ∈ GL(n) and x ∈ X
is compactly supported on G if (1) h(g|x) is supported on G for all x, and (2) for any
compact set K ⊂ X , the union of the support ∪x∈K supph(g|x) is compact.

Definition 9 We say that a parameterized G equivariant distribution pω(g|x) on g ∈
GL(n) and x ∈ X is approximately compactly supported on G if there exists a distribution
h(g|x) compactly supported on G such that, for any compact set K ⊂ X and any 0 < α < 1,
there exists a choice of parameters ω that (1) the following holds for all g ∈ G and x ∈ K:

pω(g|x) ≥ (1− α)h(g|x), (20)

and (2) the union of the support ∪x∈K supp pω(g|x) is a subset of a compact set H that only
depend on the given h and K.

Lemma 10 Let h(g|x) be a G equivariant distribution compactly supported on G. For any
function ϕθ : X → Y, we define its symmetrization κθ : X → Y over h(g|x) as follows:

κθ(x) = Eh(g|x)[ρY(g)ϕθ(ρX (g)
−1x)]. (21)

Then, κθ is G equivariant. Furthermore, κθ is a universal approximator of G equivariant
functions if ϕθ is a universal approximator.

11
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Proof Our proof is inspired by the proof of theorem 2 of Kim et al. (2023). We first prove
the G equivariance of κθ by showing κθ(ρX (g

′)x) = ρY(g
′)κθ(x)∀g ∈ G,x ∈ X . We write:

κθ(ρX (g
′)x) = Eh(g|ρX (g′)x)[ρY(g)ϕθ(ρX (g)

−1ρX (g
′)x)]. (22)

Let m = g′−1g, then we have g = g′m. Since h is G equivariant, we have h(g|ρX (g′)x) =
h(g′m|ρX (g′)x) = h(m|x). Therefore, Equation (22) becomes the following:

κθ(ρX (g
′)x) = Eh(m|x)[ρY(g

′m)ϕθ(ρX (g
′m)−1ρX (g

′)x]

= ρY(g
′)Eh(m|x)[ρY(m)ϕθ(ρX (m)−1x)]

= ρY(g
′)κθ(x), (23)

showing the G equivariance of κθ.

We now prove the universality of κθ. Assume a compact set K ⊂ X is given. Let us
denote MK = ∪x∈K supph(g|x) and NK = {g−1|g ∈ MK}. Since h is compactly supported
on G, by definition MK is compact. Furthermore, NK is also compact as it is image of a
compact set MK under matrix inversion operator g 7→ g−1 which is continuous on GL(n).
Let ψ : X → Y be an arbitrary G equivariant function. By equivariance of ψ, we have:

∥ψ(x)− κθ(x)∥ = ∥ψ(x)− Eh(g|x)[ρY(g)ϕθ(ρX (g)
−1x)]∥

= ∥Eh(g|x)[ψ(x)]− Eh(g|x)[ρY(g)ϕθ(ρX (g)
−1x)]∥

= ∥Eh(g|x)[ρY(g)ψ(ρX (g)
−1x)]− Eh(g|x)[ρY(g)ϕθ(ρX (g)

−1x)]∥. (24)

Since the union of the supportMK = ∪x∈K supph(g|x) is compact and Y is finite-dimension,
there exist c > 0 such that ∥ρY(g)∥ ≤ c∀g ∈ MK. Therefore, Equation (24) becomes:

∥ψ(x)− κθ(x)∥ ≤ max
g∈MK

∥ρY(g)∥ Eh(g|x)∥ψ(ρX (g)−1x)− ϕθ(ρX (g)
−1x)∥

≤ c Eh(g|x)∥ψ(ρX (g−1)x)− ϕθ(ρX (g
−1)x)∥. (25)

Let us define the set Ksym = ∪g∈NKρX (g)K. Since NK is compact and X is finite-dimension,
the set {ρX (g)|g ∈ NK} is compact, which implies the compactness of Ksym. Since ϕθ is a
universal approximator, for any ϵ > 0, there exists a choice of parameters θ such that:

max
g∈NK

∥ψ(ρX (g)x)− ϕθ(ρX (g)x)∥ ≤ ϵ/c, (26)

for all x ∈ K. Therefore, Equation (25) becomes:

∥ψ(x)− κθ(x)∥ ≤ c max
g∈NK

∥ψ(ρX (g)x)− ϕθ(ρX (g)x)∥ ≤ ϵ, (27)

for all x ∈ K. This finishes the proof.

So far, we have proven universality of symmetrized function κθ over h(g|x) compactly sup-
ported on G (Definition 8). We now prove for symmetrized function Φθ,ω over parameterized
distribution pω(g|x) which is approximately compactly supported on G (Definition 9).
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Theorem 11 The symmetrized function Φθ,ω in Equation (9) is a universal approximator
of G equivariant functions if ϕθ is a continuous universal approximator and the parameter-
ized probabilistic distribution pω is approximately compactly supported on G.

Proof We prove that for arbitraryG equivariant function ψ : X → Y, for any given compact
set K ⊂ X and ϵ > 0, there exists a choice of parameters θ, ω such that ∥ψ(x)−Φθ,ω(x))∥ ≤ ϵ
holds for all x ∈ K. First, given that pω is approximately compactly supported on G, from
Definition 9 we obtain the distribution h(g|x) which is compactly supported on G, and a
compact set H that includes the union of the support ∪x∈K supp pω(g|x). Based on that,
we define κθ : X → Y following Lemma 10 as κθ(x) = Eh(g|x)[ρY(g)ϕθ(ρX (g)

−1x)]. With
the triangle inequality of the metric induced by ∥ · ∥, we have:

∥ψ(x)− Φθ,ω(x))∥ ≤ ∥ψ(x)− κθ(x)∥+ ∥κθ(x)− Φθ,ω(x))∥. (28)

According to Lemma 10, κθ is G equivariant and there exists a choice of parameter θ∗ such
that ∥ψ(x) − κθ∗(x)∥ ≤ ϵ/2, ∀x ∈ K. So we only need to prove there exists a choice of
parameter ω such that ∥κθ∗(x)− ϕθ∗,ω(x))∥ ≤ ϵ/2, ∀x ∈ K. We first write:

∥κθ∗(x)− Φθ∗,ω(x))∥ = ∥Eh(g|x)[ρY(g)fθ∗(ρX (g)
−1x)]− Epω(g|x)[ρ

gl
Y (g)fθ∗(ρ

gl
X (g)

−1x)]∥.
(29)

Since pω is approximately compactly supported on G, for any 0 < α < 1, there exists a
choice of parameter ω∗ such that (1) pω∗(g|x) ≥ (1 − α)h(g|x) holds for all g ∈ G,x ∈ K,
and (2) the union of the support ∪x∈K supp pω∗(g|x) is a subset of the compact set H. Given
that, we define an unnormalized distribution p′ω∗(g|x) as follows:{

p′ω∗(g|x) = pω∗(g|x)− (1− α)h(g|x) ∀g ∈ G,

p′ω∗(g|x) = pω∗(g|x) ∀g /∈ G.
(30)

By setting ω = ω∗, the right side of Equation (29) becomes:

∥κθ∗(x)− Φθ∗,ω(x))∥

=

∥∥∥∥∥
∫
G
[ρY(g)fθ∗(ρX (g)

−1x)]h(g|x)dg −
∫
GL(n)

[ρglY (g)fθ∗(ρ
gl
X (g)

−1x)]pω∗(g|x)dg

∥∥∥∥∥
=

∥∥∥∥∥α
∫
G
[ρY(g)fθ∗(ρX (g)

−1x)]h(g|x)dg −
∫
GL(n)

[ρglY (g)fθ∗(ρ
gl
X (g)

−1x)]p′ω∗(g|x)dg

∥∥∥∥∥ (31)

By denoting A(x, g) = ρY(g)fθ∗(ρX (g)
−1x) and B(x, g) = ρglY (g)fθ∗(ρ

gl
X (g)

−1x), we have:

∥κθ∗(x)− Φθ∗,ω(x))∥ =

∥∥∥∥∥α
∫
G
A(x, g)h(g|x)dg −

∫
GL(n)

B(x, g)p′ω∗(g|x)dg

∥∥∥∥∥
≤ α

∫
G
∥A(x, g)∥h(g|x)dg +

∫
GL(n)

∥B(x, g)∥p′ω∗(g|x)dg. (32)

Since fθ∗ is continuous and the set MK = ∪x∈K supph(g|x) is compact, we have that the
set ∪x∈K{A(x, g) : g ∈ supph(g|x)} is compact. Thus, there exists C1 > 0 such that
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∥A(x, g)∥ ≤ C1 for all x ∈ K, g ∈ MK. Let us define the set NK = ∪x∈K supp p′ω∗(g|x)
and assume that NK ⊆ GL(n). From the property of pω∗ that the union of the support is
bounded by the compact set H, and the definition of p′ω∗ in Equation (30), we can see that
NK is bounded by the compact set H. This also leads to the compactness of ∪x∈K{B(x, g) :

g ∈ supp p′ω∗(g|x)}. Therefore, there exists C2 > 0 such that ∥ρglY (g)fθ∗(ρ
gl
X (g)

−1x)∥ ≤ C2

for all x ∈ K and g ∈ NK. As a result, Equation (32) becomes:

∥κθ∗(x)− Φθ∗,ω∗(x))∥ ≤ α

∫
G
C1h(g|x)dg +

∫
GL(n)

C2p
′
ω∗(g|x)dg

= αC1 + αC2. (33)

Notice that C1, C2 are dependent on distribution h(g|x) and the setH, but not ω. Therefore,
by choosing α = ϵ

2(C1+C2)
, and setting ω = ω∗ accordingly, we have:

∥κθ∗(x)− ϕθ∗,ω∗(x))∥ ≤ ϵ/2, ∀x ∈ K (34)

This finishes the proof.

A.5. Experimental Details

A.5.1. Rotated MNIST

In this section, we supplement the implementation and training details for the Rotated
MNIST experiment. We employ exactly the same CNN architecture as Kaba et al. (2023)
to implement our base function ϕθ, which has 7 layers with hidden dimensions of 32, 64, 128
for layers 1 – 3, layers 4 – 6, and layer 7 respectively. At layers 4 and 7, a 5× 5 convolution
with stride 2 are used instead of pooling. Other convolutions use 3 × 3 filters with stride
1. Each convolution is followed by batch normalization and ReLU activation. Dropout of
p = 0.4 is used at layers 4 and 7.

For our SO(2) equivariant symmetrizer qω(x, ϵ), given an input image x ∈ R28×28×1, we
preprocess it into a tensor format and apply an EMLP (Finzi et al., 2021b) on it. In more
detail, firstly, we construct a coordinate map C ∈ R28×28×2 where the central pixel has
coordinate (0, 0) and each corner has coordinate (±14,±14). This coordinate map will be
shared for all images. We construct a tensor v ∈ R28×28×3 by concatenating x and C across
the channel dimension (v[:, :, 0] = x,v[:, :, 1 :] = C). Then, we flat the first two dimension
to have tensor v ∈ R784×3. Now, each row of v corresponds to a pixel in the original image,
where the first channel is the pixel value, while the last two channels are pixel’s coordinates.
Next, we sort rows in v in an ascending order of the first column (v[:, 0]) and mask out
all rows with a pixel value less than a predefined threshold t = 0.2. Then, we keep the
top m = 200 rows and achieve a new tensor v ∈ Rm×3. Lastly, we extract two tensors
v1,v2 from v as following: v1 = v[:, 0]⊤ ∈ R1×m,v2 = v[:, 1 :]⊤ ∈ R2×m. Notice that these
processing steps do not break rotation equivariance and v1 is SO(2) invariant while v2 is
SO(2) equivariant with respect to input image x.

To train symmetrization models, we employ faithful noise ϵ ∈ R2×dE with dE set to 10.
To implement the symmetrizer, we leverage a 2-layers EMLP with hidden dimension 64
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Figure 1: Example transformed images for Rotated MNIST dataset. The first row include
images from the original dataset, while the second row are those images trans-
formed by output of our learned symmetrizer qω(x, ϵ). It is clear from these
figures that transformations associated with qω(x, ϵ) is purely rotation.

that has the following input and output representations in notation of Finzi et al. (2021a):{
repin = (dE +m)T(0) +mT(1)

repout = 2T(1)
(35)

With the symmetrizer qω(x, ϵ) designed in this manner, qω is guaranteed to always output
2× 2 matrices in SO(2) equivariant manner with respect to the input image x.

When we compute the input transformation qω(x, ϵ)
−1 · x as in Equation (4), we find

that since qω(x, ϵ) is a neural feature, directly applying matrix inverse to it harms the
stability of training. To enhance stability, we assume as if qω(x, ϵ) is already close to a
SO(2) matrix, and employ the property of SO(n) matrices ρ(g)−1 = ρ(g)⊤ to compute
an approximation of inverse. This approximation becomes more exact as orbit distance
training progresses qω(x, ϵ) → ρ(g) ∈ SO(2). Indeed, we observe this significantly improves
training stability while not harming the quality of learned transformations qω(x, ϵ). To
apply the transformation qω(x, ϵ)

−1 to input image x, we follow implementation of Kaba
et al. (2023) and employ computer vision library Kornia (Riba et al., 2020).

We train the models by minimizing the cross entropy loss on classification task jointly
with L1 norm for orbit distance minimization using λ = 1.0. The models are trained
for 1000 epochs using Adam optimizer and a learning rate of 0.0003. All symmetrization
methods in Table 1(a) are trained with this same setting for fair comparison. Some example
transformations qω(x, ϵ)

−1·x learned by our models trained with orbit distance minimization
is shown in Figure 1, which verifies that valid group representations are indeed learned.

A.5.2. Particle Scattering

In this section, we supplement the implementation and training details for the Particle Scat-
tering experiment. We use 3-layer MLP with 128 hidden dimensions and SiLU (Hendrycks
and Gimpel, 2016) activation function as our base function ϕθ.
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Given an input x ∈ R4×4, for the O(1, 3) equivariant symmetrizer qω(x, ϵ), we use a
3-layer Scalar MLP (Villar et al., 2021) with 28 hidden dimensions and SiLU activation,
preceded by an O(1, 3) equivariant featurization procedure. In more detail, we first sample
the noise variable ϵ ∈ R4×dE from a compactly supported distribution p(ϵ) which is invariant
to O(1, 3) under trivial representation ρE(g) = I. We use elementwise uniform distribution
ϵij ∼ Unif[aij ,aij + bij ] with trainable offset a ∈ R4×dE and scale b ∈ R4×dE initialized
as 1 and 0 respectively. Then, before Scalar MLP, we transform ϵ into a feature matrix
z ∈ R4×dE with a simple procedure equivariant to O(1, 3) transformations of the input x.
We interpret the sampled noise ϵ as the the Minkowsky inner product between input x and
feature z (which is unknown at this point) ϵ = x⊤Λz where Λ = diag([+1,−1,−1,−1]),
from which we obtain z = (x⊤Λ)−1ϵ. As Minkowsky inner product ϵ, or space-time interval,
is O(1, 3) invariant as can be seen in x⊤Λz = (g · x)⊤Λ(g · z) = x⊤ρ(g)⊤Λρ(g)z = x⊤Λz,
having fixed the noise ϵ, transforming x 7→ g · x transforms z 7→ g · z accordingly. For
Canonicalization (Kaba et al., 2023) that has to drop stochasticity, we simply use deter-
ministic ϵ = a to obtain the feature z. Then, we then use this feature z to supplement
the input x by addition or channel concatenation, and provide the combined feature as an
input to Scalar MLP and obtain the output h ∈ R4×4. In our experiments, we find that this
featurization significantly and consistently improves orbit distance training. Note that our
framework and theoretical results are not altered, as the featurization (x, ϵ) 7→ z is O(1, 3)
equivariant and can be interpreted as a part the equivariant symmetrizer qω : (x, ϵ) 7→ h.

Similar as in the SO(2) experiment, to avoid computing inverse of neural feature during
the input transformation qω(x, ϵ)

−1 · x (Equation (4)), we assume as if qω(x, ϵ) is already
close to a O(1, 3) matrix, and employ the property of O(1, 3) matrices ρ(g)−1 = Λρ(g)⊤Λ
to compute an approximation of inverse. This approximation becomes more exact as orbit
distance training progresses qω(x, ϵ) → ρ(g) ∈ O(1, 3), and we observe this significantly
improves training stability while not harming the quality of learned transformations qω(x, ϵ).

We train the models by minimizing the mean squared error loss for regression task jointly
with L1 norm on the orbit distance minimization using λ = 1. All models are trained for
1,000 epochs with batch size 1,000 using Adam optimizer with a learning rate of 0.003. All
methods in Table 1(b) are trained with this same setting. Both of our models qω(x, ϵ) 7→ h
consistently achieve orbit distance ∥f(h) − f(I)∥ of around 0.02–0.03 on unseen inputs x,
while random Gaussian matrices have loss of around ≈ 50. This supports that valid group
representations are learned by our approach.
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