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Abstract

Deep reinforcement learning (RL) has shown the potential to achieve superhuman1

performance in solving complex decision tasks. Although, unlike humans, it fails to2

generalise and reuse previously acquired knowledge effectively, which is a crucial3

ability for a truly intelligent agent. The work proposes an RL-specific modification4

of CycleGAN, which ensures one-to-one knowledge transfer between different RL5

tasks. We evaluate the approach on the 2-D Atari game Pong and compare it against6

two baselines: using GAN and CycleGAN methods. The results demonstrate that7

our method consistently outperforms the state-of-the-art methods.8

1 Introduction9

The inherent ability of reinforcement learning (RL) to dynamically learn complex policies through10

trial and error has shown great potential in solving diverse decision problems. Deep RL, which11

combines RL advantages with the power to handle high-dimensional data, recently brought many12

advances. For instance, model-free methods show significant results in MuJoCo environments,13

[1], real-world robotic applications, [2] and have demonstrated an ability to achieve super-human14

performance in Atari games, [3], [4]. Model-based deep RL methods such as AlphaZero, [5], or15

PlaNET, [6] made significant progress. However, in many real-world tasks, RL remains unsuitable as16

the errors can be extremely costly. One of the promising ways to address this issue is using transfer17

learning (TL), [7] when skills and knowledge collected on similar tasks are applied to the currently18

solved problem. Besides, learning is essential for developing agents capable of lifelong learning,19

[8], for simulation-to-real knowledge transfer used in robotics, [9, 10, 11, 12], or for developing the20

general AI, [13].21

Despite many advances made, the use of transfer learning in RL and especially TL in deep RL, is22

limited. For example, 1-pixel perturbations of state observations can lead to useless policies, [14].23

The RL methods often fail to reuse previously acquired knowledge even in similar tasks when the24

original image is rotated, or some colours are changed. It has also been shown that learning from25

scratch can be more efficient than fine-tuning a previously obtained model, [15]. That significantly26

contrasts with the human ability to generalise and reuse previously acquired knowledge.27

Main contributions of the paper28

• It introduces a method for knowledge transfer between two different RL tasks based on29

RL-specific modification of CycleGAN. The method is highly applicable in practice. The30

method does not rely on paired data and is independent of the nature of the involved RL31

tasks. It ensures that the approach can be easily applied to various domains.32

• The work establishes a correspondence function that reveals similarity of the source and33

target RL tasks. The proposed formulation suggests learning the correspondence function34

by minimising the discriminative loss function.35
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• The work proposes a new four-component loss function which reflects different types of36

losses. The proposed modification accounts for the actual policy used and takes into account37

the existing dynamic relationships of the involved RL tasks.38

• We demonstrate how adding two new components generalises GAN and CycleGAN methods,39

i.e. the latter are special cases of the proposed approach.40

• We achieve results indicating a complete reuse of previously acquired knowledge when41

transferring between the original Pong and rotated Pong.42

• We show that the proposed approach copes with the tasks for which standard approaches43

(GAN, CycleGAN) fail and learning from scratch remains to be the most efficient method.44

Experiments with 2-D Atari game Pong, [16], demonstrated that the proposed method notably speeds45

up the learning and increases the average reward.46

The paper layout is as follows. Section 2 recalls the necessary background and formulates the TL47

problem. Section 3.4 constructs the correspondence function and proposes a novel method of its48

learning. Section 4 describes the experimental evaluation of the proposed approach and compares it49

with baseline methods. Section 5 provides concluding remarks and outlines future research directions.50

Related works51

Survey [17] systematically analyses recent advances in transfer learning for deep RL. The research52

category to which our approach belongs utilises mapping functions between the source and target53

task to ensure knowledge transfer. Among them, a line of research that learns common features of54

RL tasks that can be transferred. It was shown, [18], that the policies learnt on so-called mid-level55

features can generalise better than those learnt directly on image observations. Work [19] leverages56

general features of two RL tasks with different dynamics. However, the method is based on paired57

image observations which are hard or impossible to obtain in practice. Work [20] achieved success in58

tasks differing in reward function by maintaining successor features and decoupling environment59

dynamic and reward function. Approach [21] introduces task similarity criterion and builds TL60

framework based on knowledge shaping, where for similar tasks, efficient transfer is theoretically61

guaranteed.62

The pioneering work that used task correspondence was based on unsupervised image-to-image63

translation models CycleGAN1, [22], and UNIT2, [23]. Approach [15] achieved results on a specific64

set of tasks by finding correspondence between states of two RL tasks. The application potential65

of the approach is rather limited as problems like mode-collapse were present. Works [11] and66

[10] improved the approach proposed in [15] by introducing learnt Q-function or object detection67

into the learning of the task correspondence. One of the recent approaches, [24], includes an68

environment model in the learning of the task correspondence. This approach is strongly inspired by69

the video-to-video translation model, [25].70

2 Background and notation71

This section briefly recalls RL formalism and introduces the considered problem.72

2.1 Notation73

Throughout the text, sets are denoted by bold capital letters (e.g. X), N and R are sets of natural and74

real numbers respectively. ∥x∥ is the L1 norm of x. xt is the value of x at discrete time t ∈ N. Ep[x]75

denotes the expected value of x with respect to a probability density p (if provided).76

We formalise the transfer problem in a general way by considering two RL tasks - the source task, S,77

and the target task, T , characterised by their respective task domains. SS × AS and ST × AT , with S78

and A denoting a set of states and a set of actions respectively.79

1Cycle generative adversarial network
2Unsupervised Image-to-Image Translation Networks
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2.2 Reinforcement learning80

Reinforcement learning (RL) considers an agent purposefully interacting with an environment by81

selecting actions. RL agent models its environment as a Markov decision process (MDP), [26]82

consisting of discrete sets of observable states S and actions A. Set S × A is referred to as the83

task domain. At each time t, the agent observes environment state st ∈ S and takes action at ∈ A.84

Executing action at at state st: i) causes a transition to state st+1 according to transition function that85

describes p(st+1|st, at), and ii) provides reward rt, i. e. the value of reward function R(st+1, at, st).86

The agent’s goal is to learn policy π∗ : S 7→ A that maximises the accumulated reward.87

Whenever the state space is huge, for instance, when the state is given by a video frame, efficient learn-88

ing of Q-function calls for numerical approximation. The state-of-the-art in function approximation89

points to deep neural networks (DNN) as a suitable methodology, [27].90

Deep Q-networks (DQN), [28], use a standard off-policy Q-learning, [29], and DNN to estimate the91

Q-function, which then gives the maximizing policy π∗.92

3 Transfer learning for RL93

Humans have a remarkable ability to generalise. They do not learn everything from scratch but rather94

reuse earlier acquired knowledge to a new task or domain3. Generally finding common patterns95

between different tasks and effectively transferring the concepts learned on one task to another is an96

essential characteristic of high-level intelligence.97

In this section, we formalise a problem of transfer learning between two RL tasks, empirically98

introduce a correspondence function reflecting the similarity of two RL tasks and propose an RL-99

specific modification of CycleGAN algorithm that realises knowledge transfer between two RL tasks.100

The proposed transfer i) considers behaviours, which are most useful for the target task; ii) captures101

and respects common patterns in transition dynamics of the involved RL tasks.102

3.1 Problem formulation103

We consider two RL tasks: the source task, S, and the target task, T with their respective task104

domains SS × AS and ST × AT . Each of the tasks corresponds to MDP with its own environmental105

dynamics and reward function, see Section 2.2. Transition functions of the tasks as well as theirs106

reward functions may be different.107

This work uses an abstract notion of similarity, inspired by human learning when tackling related108

problems. Two tasks are similar if they share some common properties, and the knowledge acquired109

in one task proves to be beneficial in solving the other. This empirical definition can be more formally110

introduced as follows.111

Definition 3.1 (Correspondence function). Consider source S and target T tasks with respective112

domains SS × AS and ST × AT . A correspondence function, C : (ST × AT ) 7→ (SS × AS), is a113

mapping, which reveals the similarity of the involved RL tasks in terms of the dynamics of the tasks’114

environments and the associated Q-functions.115

It is clear that function C establishes the relationship between similar patterns in behaviour of the116

target and source tasks that are necessary for knowledge transfer. So, if QS is the optimal Q-function117

for the source task, then Q-function118

QS(C(., .)) : ST × AT 7→ R (1)
gives better performance4 on the target task than a random policy.119

Let us assume (for brevity) that the action spaces of the source and the target RL task are identical,120

i.e. AS = AT . Let mutually corresponding actions be found using identity mapping regardless121

of the current state5. Thus, we need to learn a mapping indicating corresponding states, i. e. the122

3Developmental psychologists have shown that as early as 18 months old, children can infer intentions and
imitate the behaviour of adults, [30]. The imitation is complex as children must infer a match between their
observations and internal representations, effectively linking the two diverse domains.

4Performance is measured by average reward per time.
5More specifically, all actions of the source and target task have the same labels and meanings (e.g. a = 1

stands for "up"). Therefore, no mapping between source and target task action spaces is necessary
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correspondence function for states. The searched correspondence function C is then obtained as123

follows:124

C(sT , aT ) = (GT (sT ), I(aT )), ∀(sT , aT ) ∈ ST × AT , (2)

where GT is the generator from (3) mapping states from the target task to states from the source task125

and I(.) is an identity mapping.126

The correspondence function is unknown to RL agent and the next section describes how to learn it.127

3.2 Learning of correspondence function128

The proposed learning is inspired by CycleGAN, see Section 3.3, where the learning minimises a129

discriminative loss function, which makes the similarity metric small for similar patterns and large130

otherwise. Even direct application of CycleGAN to the states brought some success in policy transfer,131

see for instance [15]. However, data records in experience memories comprise richer yet unused132

information that may be helpful for the transfer of knowledge. We propose to include additional133

components into the loss function minimised in CycleGAN learning making the method entirely134

relevant to RL.135

This work proposes adding two new components to the CycleGAN losses, (4), (5):136

• Q-loss LQ - a loss that reflects how the Q-function learned from the source task, QS , copes137

with impreciseness in learned generators GT and GS .138

• Model-loss LM - a loss that reflects the influence of the environment model of the source139

task.140

Let us briefly summarize CycleGAN and explain the reasons for introducing the new components141

and their forms.142

3.3 CycleGAN143

Cycle-consistent Generative Adversarial Network (CycleGAN), [22], is based on GAN6, [31], and144

was originally proposed for image-to-image translation. The idea behind cycle consistency is that145

data that has been translated to a new domain and then recovered from it, should not change.146

CycleGAN operates with two mappings GS and GT called generators7147

GS : SS → ST and GT : ST → SS . (3)

They are learnt as two GANs, that is, simultaneously with the corresponding discriminators DS and148

DT . Generators learn to map states from SS to ST and vice-versa, while discriminators learn to149

distinguish a real state from a state mapped by a generator.150

Learning in CycleGAN minimises a two-component loss. The first is adversarial loss, LGAN comes151

from GAN and is given by152

LGAN =EsS [logDS(sS)] + EsT [log (1−DS (GS (sT )))]

+ EsT [logDT (sT )] + EsS [log (1−DT (GT (sS)))] (4)

The adversarial training encourages mappings GS and GT (3) to produce outputs indistinguishable153

from the real ones, i. e. respective sets SS and ST .154

The second component is cycle-consistency loss, LCyc, that has the following form:155

LCyc = EsS [∥GT (GS (sS))− sS∥] + EsT [∥GS (GT (sT ))− sT ∥] . (5)

Minimisation of cycle-consistency loss LCyc ensures that every state sS ∈ SS must be recoverable156

after mapping it back to ST , i.e. GT (GS(sS)) ≈ sS . The same requirement applies to every state157

sT ∈ ST .158

6Generative adversarial network
7that translate data between source and target domains
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Q−loss159

The available Q-function, QS , should be incorporated in the learning of correspondence function C160

as it determines the optimal policy. We introduce loss LQ in the following form:161

LQ =EsS [∥QS (GT (GS (sS)))−QS (sS)∥] (6)

The loss (6) will make the learned correspondence more suitable for transferring knowledge between162

tasks S and T because the learned correspondence function, C, will retain the parts of the states that163

are the most important for choosing the optimal action.164

Model loss165

So far, all considered losses (4) - (6) are associated with state values. However, every RL task is a166

dynamic one, and the time sequence of states is essential. Consider states of the target and the source167

tasks at times t and t+ 1. If generator GT ensures mapping sTt on sSt+1 and generator GS maps168

sSt+1 back to sTt, then losses LGAN ,LCyc and LQ (4) - (6) are minimal. However, it would not169

help to solve the target RL task.170

To ensure that the correspondence function, C, grasps all essential dynamic relationships of the source171

and target task, the overall loss minimised must consider the learnt environment model, F 8 of the172

source task:173

LM =EsTt,aTt,sTt+1
[∥F (GT (sTt) , aTt)−GT (sTt+1)∥] (7)

Total loss174

The proposed total loss comprises all the components (4), (5), (6) and (7) and, thus, has the following175

form:176

L = LGAN + λCycLCyc + λQLQ + λMLM , (8)

where λCyc, λQ and λM are loss parameters that define relative influence (weight) of the respective177

components.178

The proposed approach, which minimises 4-component loss (8), generalises GAN, [31], and Cycle-179

GAN, [22], methods often used for transfer learning. It is easy to see that GAN and CycleGAN can180

be obtained by setting some of parameters λQ, λM , λCyc in (8) to zeros as follows:181

• λQ = λM = λCyc = 0 (for GAN),182

• λQ = λM = 0 (for CycleGAN).183

3.4 Transfer learning: Algorithm184

The main steps of the proposed algorithm:185

Step 1 The agent first solves task S by the DQN algorithm. The obtained knowledge, KS =186

(QS ,MS), consists of learned Q-function, QS , and collected experience memory MS =187

((st, at, st+1, rt)
nM

i=1).188

Step 2 The agent applies a random decision rule to task T , collects experience memory MT .189

Step 3 The assumed similarity of the tasks S and T guarantees the existence of correspondence190

function C (see Definition 3.1). The agent uses knowledge KS = (QS ,MS) and memory191

MT to learn correspondence function C.192

Step 4 Existence of a correspondence function C, allows to express Q-function of the target task,193

QT , via Q-function of the source task, QS , and learnt correspondence function C as follows:194

QT (sT , aT ) = QS(C(sT , aT )), ∀(sT , aT ) ∈ (ST × AT ) . (9)

Then the agent can use Q-function QS of the source task to choose the optimal actions in the target195

task.196

8Environment model F : S × A 7→ S is a mapping taking current state st and action at and giving the next
state st+1. It is learned using the experience memory, MS
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Figure 1: Standard Pong, [16] Figure 2: Pong rotated by 90 degrees,
[16]

4 Experimental part197

To test the efficiency of the proposed approach, two experiments on the Atari game Pong, [16], were198

conducted. The performance of the approach was evaluated based on an average accumulated reward199

per game. GAN and CycleGAN were used as baseline methods.200

4.1 Experiment description and setup201

The proposed TL method was tested in two experiments.202

Experiment 1: The source and target tasks were the same, i.e. game Pong (screenshot is shown in203

Fig. 1). The main aim of this experiment was to verify the ability of the proposed approach to find204

the identity transformation.205

Experiment 2: The source task was the original Pong while the target task was rotated Pong (see206

screenshot in Fig. 2). The game remained the same, but all image frames were rotated by 90 degrees.207

Each experiment consists of the following steps:208

1) The agent played the source task (standard Pong), learned the optimal policy by DQN and209

obtained the optimal Q-function QS , environment model F and experience memory MS210

containing 10000 data entries collected at the end of the game.211

2) The agent played the target task (standard Pong in Experiment 1 or rotated Pong in Experi-212

ment 2) using random policy and obtained data for experience memory MT containing 10000213

data entries.214

3) The agent started learning the correspondence function C using the method from Section 3.4,215

4) For every 1000 learning steps, the agent:216

• suspends learning of correspondence function C,217

• uses learnt C and the Q-function transformed from the source task, see (9), to play five218

games of the target task, and219

• computes the average accumulated reward per game.220

5) The agent played the target task while using the learned correspondence9 and Q-function221

QS transferred from the source task. At the same time the agent uses DQN and fixed C to222

continuously fine-tune Q-function QT of the target task.223

The key metric to evaluate the success of the knowledge transfer was the average accumulated reward224

per game.225

Baselines: The results are compared with two baselines - using GAN and CycleGAN methods, [31],226

[22], which have been recently used for knowledge transfer in similar settings, [15].227

The following sections provide the key details of the experiments performed and their results.228

4.2 Experiment 1229

This experiment aimed to test transfer learning when source and target tasks are identical.230

9the correspondence function that achieved the highest average accumulated reward per game in the previous
step was used here
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a) GAN
λCyc = λQ = λM = 0

b) CycleGAN
λCyc = 10, λQ = λM = 0

c) Loss (8) with λCyc = 1,
λQ = 1, λM = 1

Figure 3: Experiment 1: Average accumulated reward per game when playing five games with the
transformed Q-function (9) every 1000 learning steps. The performance is shown for different values
of loss parameters λCyc, λQ and λM . Fig. 3a and 3b show the baselines using GAN and CycleGAN
methods.

Figure 4: Moving average of reward per game computed from the last 20 games depending on the
number of Pong games played. The blue line denotes learning from scratch, i. e. without TL, the
orange line denotes the case with TL. The Q-function QT is continuously learned during the game in
both cases.

GS and GT generators (see Section 3.2) were constructed as neural networks with convolutional231

layers. Their specific architecture was taken from [32]. The discriminators DS and DT were also232

constructed as neural networks with convolutional layers with the architecture as in [33].233

The transfer learning with the loss (8) was tested for all the combinations of the parameters: λCyc ∈234

{0, 1, 10}, λQ ∈ {0, 1} and λM ∈ {0, 1, 10}.235

The results are presented in Fig. 3 and Fig. 4. The main findings are:236

• The best results are obtained for the proposed loss function, (8), that contains the proposed237

components LQ and LM , i. e. λCyc = λQ = λM = 1, Fig. 3e.238

• GAN baseline, Fig. 3a, does not produce good results. Performance of CycleGAN baseline,239

Fig. 3b, soon became unstable though it provides good rewards at the beginning.240

• The agent successfully learned the correspondence function and completely reused previ-241

ously acquired knowledge, Fig. 4.242

4.3 Experiment 2243

In Experiment 2, the target task is the original Pong with image frames rotated by 90 degrees (see244

Fig. 2).245

Generators GS and GT , (see (3) and Section 3.2) are constructed as neural networks with two246

different architectures (for both of them). The architecture of the first one, referred to here as the247
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a) Rotation generator using
GAN

d) Resnet generator
using CycleGAN

b) Resnet generator
using GAN

e) Rotation generator
with λCyc = λQ = 0, λM = 10

c) Rotation generator
using CycleGAN

f) Resnet generator
with λCyc = 1, λQ = 0, λM = 1

Figure 5: Average accumulated reward in five games when playing Rotated Pong with the transformed
Q-function (9) every 1000 learning steps. The results are shown for the rotation and the resnet
generator with the best settings of the loss parameters in each case (e, f) as well as with using GAN
and CycleGAN baselines (a-d).

resnet generator, was taken from [32] and then followed by a rotation layer, see [34]. The second248

type, referred to as the rotation generator, was composed of the mentioned rotation layer only.249

The proposed approach was tested for different values of loss parameters λCyc, λQ and λM , (8).250

Fig. 5 - Fig. 7 present the best-reached performance compared with the performance of the baseline251

methods.252

The main findings are the following:253

• The GAN and CycleGAN baselines did not produce a correspondence function suitable for254

knowledge transfer.255

• The rotation generator yields the perfect correspondence function. Learning the correspon-256

dence function with the resnet generator provided significantly better results than learning257

the Q-function from scratch.258

• Fine-tuning the Q-function from the source task gives worse performance on the target task259

than learning a new Q-function from scratch.260

5 Conclusion261

We propose a method for knowledge transfer between two different reinforcement learning tasks.262

Our approach establishes the correspondence function that reveals the similarity between the source263

and target task. The neural network approximates the correspondence function and learns it from264

unpaired data using dynamic cycle consistency. To ensure that the essential dynamic relationships265

between the involved RL tasks are exploited, we have introduced a four-component loss (8) with two266

novel components: model loss and Q-loss.267

We show the efficacy of our approach on simulated experiments involving the 2-D Atari game Pong268

and compare it against two baselines using GAN and CycleGAN methods.269

The results show that the proposed approach outperforms baseline methods. The introduced corre-270

spondence function respects Q-function and environment model of the source task and establishes271

them into learning. This allows the agent to gradually build, adapt, and use a set of skills while272
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a) Rotation generator using GAN

b) Rotation generator using CycleGAN

c) Rotation generator with λCyc = 0, λQ = 0, λM = 10

d) Resnet generator using GAN

e) Resnet generator using CycleGAN

f) Resnet generator with λCyc = 1, λQ = 0, λM = 1

Figure 6: Experiment 2: Screenshots of the game depicting progress in learning the correspondence
function C (2) after 0, 15000, 30000 and 50000 steps. The results are shown for the rotation and the
resnet generators with the best settings of parameters λCyc, λQ and λM (8) as well as with using
GAN and CycleGAN baselines. The left parts of the pictures are game frames of the target task
representing the states, and the right parts are the same states transformed by the correspondence
function C.

interacting with the dynamically changing environment, which is generally different from the source273

task.274

The most significant advantage of the proposed method is its practical applicability. The solution275

does not rely on paired data and is independent of the nature of the involved RL tasks. It ensures that276

the approach can be easily applied to various domains.277

The foreseen research should focus on the open problems: i) how to perform transfer learning between278

tasks having low similarity, ii) how to identify and transfer relevant knowledge from several source279

tasks, iii) how to choose the only relevant source tasks similarly to [35], iv) what is a better network280

architecture for the correspondence function learning.281
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Figure 7: Moving average of reward per game computed from the last 20 games depending on the
number of played games for the game rotated Pong for four different agents - an agent learning
the game from scratch (blue line), an agent using the correspondence function learned with the
resnet generator (orange line), an agent using the correspondence function learned with the rotation
generator (green line) and an agent reusing only the Q-function without any correspondence function
(red line). The agents were continuously learning the Q-function.

Method implementation: The method implementation in Python is available at282

https://github.com/*** (anonymized)283
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