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Abstract

Machine learning-based surrogate models have emerged as a powerful tool to1

accelerate simulation-driven scientific workflows. However, their widespread2

adoption is hindered by the lack of large-scale, diverse, and standardized datasets3

tailored to physics-based simulations. While existing initiatives provide valu-4

able contributions, many are limited in scope-focusing on specific physics do-5

mains, relying on fragmented tooling, or adhering to overly simplistic datamodels6

that restrict generalization. To address these limitations, we introduce PLAID7

(Physics-Learning AI Datamodel), a flexible and extensible framework for rep-8

resenting and sharing datasets of physics simulations. PLAID defines a unified9

standard for describing simulation data and is accompanied by a library for creat-10

ing, reading, and manipulating complex datasets across a wide range of physical11

use cases (gitlab.com/drti/plaid). We release six carefully crafted datasets un-12

der the PLAID standard, covering structural mechanics and computational fluid13

dynamics, and provide baseline benchmarks using representative learning meth-14

ods. Benchmarking tools are made available on Hugging Face, enabling direct15

participation by the community and contribution to ongoing evaluation efforts16

(huggingface.co/PLAIDcompetitions).17

1 Introduction18

Numerical simulation is a cornerstone of scientific and engineering research, providing essential19

insights into complex physical phenomena across a wide range of domains—including earth and20

environmental sciences [1], life sciences and medicine [2], finance and economics [3], and industrial21

engineering [4, 5, 6]. These simulations rely on solving partial differential equations (PDEs) using22

space and time discretization and numerical methods, typically implemented in large-scale computa-23

tional solvers. While accurate, these simulations are often computationally intensive, with a single24

high-fidelity run potentially requiring several hours or days. Many practical scenarios demand solving25

the same physical model across a wide range of settings—such as in design exploration, optimization,26

real-time simulation, and uncertainty quantification. In such many-query contexts, reliance on costly27

simulations becomes impractical. To address this, a broad spectrum of surrogate modeling techniques28

has been proposed to approximate simulation outputs at a fraction of the computational cost.29

Classical surrogate models perform non-linear regression over parametric spaces using statistical30

learning techniques, such as polynomial regression, nearest neighbors, support vector machines,31

random forests [7], and Gaussian processes [8]. These models are widely supported by software32

libraries such as UQLab [9], OpenTURNS [10], Dakota [11] and Lagun [12]. However, they33

are typically restricted to low-dimensional, tabular parameter spaces and cannot be directly used34

in more complex simulation setups. In contrast, many modern applications involve richer input35

configurations, including unstructured geometries, spatially varying fields, and complex boundary or36
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material conditions. These settings require learning from heterogeneous, high-dimensional data with37

nonparametric variability.38

Recent advances in scientific machine learning have begun to address these challenges. One line39

of work, often referred to as physics-based model reduction, builds surrogates that approximate40

the solution of the governing equations directly [13, 14, 15, 16, 17, 18]. Other approaches have41

also been proposed using non-parametric methods based on the use of morphing [19, 20, 21] or42

optimal transport [22, 23], and have the advantage of requiring a smaller number of design points.43

Increasingly, deep learning methods—particularly Graph Neural Networks (GNNs)—have shown44

promise in capturing the spatiotemporal dynamics of physical systems. Building on the message-45

passing paradigm introduced in [24], architectures such as MeshGraphNets [25] extend GNNs46

to general mesh-based simulations. Hierarchical versions like MultiScale MeshGraphNets [26]47

enhance scalability and accuracy, while recent works demonstrate effectiveness in inverse [27] and48

steady-state problems [28]. Other developments include geodesic convolutions [29], multi-resolution49

models [30, 31], and improved pooling strategies [32]. Tools such as PhysicsNeMo [33], PyTorch50

Geometric [34], and Deep Graph Library [35] provide convenient foundations for implementing these51

methods.52

Despite these advances, widespread adoption remains hindered by a critical bottleneck: the lack of53

large-scale, diverse, and standardized datasets for training and benchmarking. Existing datasets often54

cover narrow physical regimes, rely on ad hoc formats, or are tied to specific libraries—limiting55

reusability and interoperability. Furthermore, many datasets are tailored to isolated challenges (e.g.,56

time dependence) but fail to accommodate others (e.g., geometric variation). This fragmentation is57

particularly problematic in the context of recent developments in physics foundation models [36, 37,58

38, 39, 40], which require large, flexible, and standardized sources of training data.59

To address these limitations, we introduce PLAID (Physics-Learning AI Datamodel), a comprehensive60

framework for representing and manipulating datasets of physics simulations for machine learning.61

PLAID defines a generic, extensible datamodel that supports a wide range of use cases—including62

time-dependent problems, remeshing, mixed-element unstructured meshes, node/element tagging,63

multiple spatial dimensions and topologies. We provide an accompanying software library to facilitate64

dataset creation, reading, and high-level interaction, that can leverage Hugging Face infrastructure65

for efficient streaming, caching, and sharing.66

In Section 2, we review relevant dataset efforts in the literature. Section 3 introduces the PLAID67

datamodel and implementation, along with six publicly released datasets in structural mechanics and68

computational fluid dynamics, presented in Section 4, that showcase rich variability in physics and69

numerical complexity. In Section 5, we provide performance benchmarks across a range of machine70

learning methods, hosted on Hugging Face to allow community participation and continual updates.71

We conclude with perspectives in Section 6.72

2 Related Work73

Progress in machine learning has been largely driven by the availability of large, diverse, and74

carefully curated datasets [41, 42, 43]. Natural language processing models are trained on web-scale75

data [44, 45, 46, 47], and vision models routinely leverage billions of image–text pairs [48, 49, 50].76

In contrast, datasets for physics learning remain comparatively underdeveloped. Early benchmarks77

targeted standard physics problems and reference simulations [51, 52, 53]. More recent datasets78

have focused on complex, domain-specific settings [54, 55, 56, 57, 58, 59, 60, 61, 62]. The recently79

proposed Well [63] includes an impressive list of datasets for various physics, but is limited to80

structured grids (uniformly sampled domains).81

Structural mechanics simulations, with non-linear constitutive laws, are of paramount importance82

for industrial design, and are poorly represented in available datasets. Most available datasets use a83

datamodel that limit their evolution and generality. Complex industrial settings include vertices and84

element tags, heterogeneous data with remeshing, multiple meshes of various dimensions, topologies85

and mixed element types, compatible with commercial codes routinely used by design engineers.86

Besides, most datasets come with a library dedicated to the dataset, featuring specific commands and87

hypothesis, which limit they wide adoption.88
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3 PLAID standard89

We propose PLAID, a datamodel for datasets for machine learning applied to physics-related problems.90

PLAID also refers to the library that implements this datamodel, available on GitLab [64], and to91

the file format used to store data. The primary goal of the library is to provide a general and92

flexible framework for defining physics-based dataset, along with a corresponding learning task. The93

datamodel is built on CGNS [65], leveraging its well-established formalization of a wide range of94

physical configurations.95

PLAID datasets are provided either as human-readable data storage, or stored using Hugging Face96

datasets tools [66]. In the former case, YAML and CSV files can be opened with any text editor,97

while CGNS files containing physical configurations can be visualized using tools such as ParaView,98

see Figure 1. In the latter, we benefit directly from powerful data management such as caching and99

online streaming.100

Figure 1: PLAID files structure.

Additionally, PLAID offers high-level utilities for constructing, handling and read/write datasets101

efficiently. Documentation is available online, with usage examples and tutorials showing how one102

can create a PLAID dataset from its own data. We also mention Muscat, a finite element toolbox103

available on GitLab [67, 68], containing various reader and writers from and to various files formats104

used in numerical simulation codes for physics, and routines to generate the CGNS data structures105

used in PLAID. Samples can feature multiple meshes, scalars, fields and time series. We illustrate106

how PLAID can deal with complex heterogeneous data by explaining some available commands:107

• dataset[0].get_field_names(name, zone_name, base_name, location, time): re-108

trieves the first sample’s field called name, for chosen zone_name, base_name, location109

(Vertex, CellCenter, FaceCenter, ...) and time in the CGNS structure. Fields and meshes can110

change over time, allowing remeshing and field appearance/disappearance at any time step.111

• sample.get_field(name): automatic handling of default values to prevent exposing112

zone_name, base_name and location arguments to simple cases with no ambiguity.113

• sample.get_mesh(apply_links = True): allows to link meshes between CGNS data struc-114

tures to prevent multiple copies in case of fixed mesh cases.115

More examples are provided in Appendix B.116
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4 PLAID datasets117

4.1 Structural mechanics118

4.1.1 Tensile2d [69] (Zenodo, Hugging Face)119

Tensile2d is a simple dataset of 2D quasistatic non-linear structural mechanics simulations, in small120

deformations and plane strain regimes, solved with Z-set [70] using the finite element method. The121

material is modeled with a non-linear constitutive law. The dataset computes the deformation of a122

structure subjected to an imposed negative constant pressure at the top, and zero displacement at the123

bottom, see Figure 2 (left). Only the steady-state solution is kept.124

Input variability in the dataset are the unstructured meshes (variable shape, number of nodes and125

connectivity), the pressure P at the top boundary condition (scalar) and 5 scalars modeling the non-126

linear constitutive law: (p1, p2, p3, p4 and p5). Outputs of interest are 4 scalars (max_von_mises,127

max_q, max_U2_top and max_sig22_top) and 6 fields (U1, U2, q, sig11, sig22 and sig12).128

Seven nested training sets are provided, as well as a testing set and two out-of-distribution samples.129

4.1.2 2D_MultiScHypEl [71] (Zenodo, Hugging Face)130

2D_MultiScHypEl, standing for 2D multiscale hyperelasticity, is a dataset of 2D quasistatic non-131

linear structural mechanics simulations under large deformation and plane strain conditions, solved132

with DOLFINx [72] using the finite element method. The material behavior follows a compressible133

hyperelastic constitutive law, capturing complex non-linear responses. Each simulation corresponds134

to the homogenization of a porous representative volume element (RVE), subject to kinematically135

uniform boundary conditions (KUBC) [73], see Figure 2 (right).136

Input variability in the dataset are the unstructured meshes (variable shape, number of nodes, connec-137

tivity and topology–the number of circular inclusions) and the 3 scalars modeling the KUBC, namely138

the components C11, C12, and C22 of the macroscopic right Cauchy-Green deformation tensor.139

Outputs of interest are 1 scalar (effective_energy) and 7 fields (displacements u1, u2; first Piola-140

Kirchhoff stress components P11, P12, P22, P21 and the strain energy density field psi). Various141

training and testing sets are provided (both across all topologies and within each topology class).142

Figure 2: Settings for Tensile2d (left) and 2D_MultiScHypEl (right).

4.1.3 2D_ElPlDynamics [74] (Zenodo, Hugging Face)143

2D_ElPlDynamics, standing for 2D elasto-plasto dynamics, is a dataset of 2D dynamic non-linear144

structural mechanics simulations, in large deformations and plane strain regimes, solved with Open-145

Radioss [75] using the finite element method. The material is modeled with a non-linear elastoplastic146

law, with damage (modeled using element erosion), failure and a non-local method for reducing mesh147

sensitivity. The dataset computes the transient deformation of a 2D structure, subjected to imposed148

displacement on the right and zero displacement on the left, see Figure 3 (left).149

Input variability in the dataset are the unstructured meshes (variable shape, number of nodes, con-150

nectivity and topology). Outputs of interest are 3 fields (U_x and U_y the displacement fields at the151
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nodes, and EROSION_STATUS a boolean field at the elements describing the state – valid or broken –152

of each element). A training and a testing set are provided.153

4.2 Computational fluid mechanics154

4.2.1 Rotor37 [76] (Zenodo, Hugging Face)155

Rotor37 is a dataset of 3D compressible steady-state Reynolds-Averaged Navier-Stokes (RANS)156

simulations, solved with elsA [77] using the finite volumes method. Large scale simulations around157

the rotor37 blade inside a 3D duct have been computed, with inflow, outflow and periodic boundary158

conditions. An adequate turbulence model and laws of the wall have been chosen. The dataset only159

keeps the steady-state solution at the boundary of the blade inside the duct, and scalars of interest,160

see Figure 3 (right).161

Input variability in the dataset are the block-structured anisotropic meshes (variable shape, normals162

at the blade surface are provided) and 2 scalars (the pressure P and the rotation speed Omega of the163

blade). Outputs of interest are 3 scalars (Massflow, Compression_ratio and Efficiency) and 3164

fields (Density, Pressure, Temperature). Eight nested training sets and a testing set are provided.165

Figure 3: Settings for 2D_ElPlDynamics (left) and Rotor37 (right).

4.2.2 2D_profile [78] (Zenodo, Hugging Face)166

2D_profile is a dataset of 2D compressible steady-state Reynolds-Averaged Navier-Stokes (RANS)167

simulations, solved with elsA [77] using the finite volumes method. The flow is computed around 2D168

profiles, which present large deformation around shapes resembling airfoils or propeller blades, on a169

large refined meshes, with inflow, outflow and periodic boundary conditions, at a supersonic regime.170

An adequate turbulence model and laws of the wall have been chosen. The dataset only keeps the171

steady-state solution on a zone cropped close to the profile, see Figure 4 (left).172

Input variability in the dataset are the unstructured anisotropic meshes (variable shape, number173

of nodes and connectivity). Outputs of interest are 4 fields (Mach, Pressure, Velocity-x and174

Velocity-y). A training and a testing set are provided.175

4.2.3 VKI-LS59 [79] (Zenodo, Hugging Face)176

VKI-LS59 is a dataset of 2D compressible steady-state Reynolds-Averaged Navier-Stokes (RANS)177

simulations, solved with BROADCAST [80] using the finite volumes method with high-order178

corrections. The flow is computed around the VKI-LS59 blade, with inflow, outflow and periodic179

boundary conditions. A Spalart-Allmaras turbulence model has been chosen, see Figure 4 (right).180

Input variability in the dataset are the block-structured anisotropic meshes (variable shape, number of181

nodes and connectivity, the distance field to the blade surface is provided) and 2 scalars (angle_in182

and mach_out). Outputs of interest are 6 scalars (Q, power, Pr, Tr, eth_is and angle_out) and 7183

fields (ro, rou, rov, roe, nut, mach and M_iso – this last being only defined at the surface of the184

blade). Eight nested training sets are provided, as well as a testing set.185

4.2.4 AirfRANS [55]186

AirfRANS is a dataset of external aerodynamics, featuring steady-state Reynolds-Averaged Navier-187

Stokes (RANS) simulations over airfoils at a subsonic regime, proposed in [55], which we refer to for188
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Figure 4: Settings for 2D_profile (left) and VKI-LS59 (right).

a detailed description. In addition to the six original datasets, we provide three variants of AirfRANS189

in PLAID format: original [81](Zenodo, Hugging Face), clipped [82](Zenodo, Hugging Face) and190

remeshed [83](Zenodo, Hugging Face).191

Input variability in the dataset are the anisotropic meshes (variable shape, number of nodes and192

connectivity, the distance field to the airfoil surface is provided) and 2 scalars (angle_of_attack193

and inlet_velocity). Outputs of interest are 2 scalars (C_D and C_L) and 4 fields (nut, Ux, Uy and194

p). Various training and testing sets are provided.195

4.3 Dataset collection196

The collection of proposed datasets is available online in a Zenodo community and a Hugging Face197

community. Description summaries are provided in Tables 1 and 2. The collection will be enriched198

in the future with additional datasets. Since these datasets have been constructed with the goal to199

provide open benchmarks to the community, the outputs are not provided on the testing sets – but we200

provide tools to evaluate scores on these testing sets. Some field outputs are illustrated in Table 3.201

Dataset Simulation
code Model Nb

samples
Volume
Zenodo

Volume
HF

Tensile2d Z-set
2D quasistatic non-linear structural

mechanics, small deformations,
non-linear constitutive law

702 290 MB 383 MB

2D_MultiScHypEl DOLFINx 2D quasistatic non-linear structural
mechanics, finite elasticity 1,140 350 MB 419 MB

2D_ElPlDynamics OpenRadioss
2D dynamic non-linear structural
mechanics, non-linear non-local

constitutive law
1,018 5.7 GB 8.6 GB

Rotor37 elsA 3D Navier-Stokes (RANS) 1,200 3.3 GB 4.0 GB
2D_profile elsA 2D Navier-Stokes (RANS) 400 660 MB 814 MB
VKI-LS59 BROADCAST 2D Navier-Stokes (RANS) 839 1.9 GB 2.3 GB

AirfRANS original 9.3 GB 15.6 GB
AirfRANS clipped OpenFOAM 2D Navier-Stokes (RANS) 1,000 9.7 GB 18.2 GB
AirfRANS remeshed 520 MB 611 MB

Table 1: Dataset collection description: model and simulation volume.

5 Benchmark202

We first mention that we do not provide benchmark tools and results for the AirfRANS datasets, since203

outputs are public on the testing sets, and various benchmarks are already available in articles [19, 55]204

and in a competition at NeurIPS 2024 [84].205
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Dataset Mesh (mean nodes) Inputs Outputs Splits (train/test)

Tensile2d tri (9,428) mesh, 6 scalars 4 scalars, 6 fields 500 / 200
2D_MultiScHypEl tri (5,692) mesh, 3 scalars 1 scalar, 7 fiels 764 / 376
2D_ElPlDynamics tri (25,429) mesh 3 fields 1,000 / 18
Rotor37 quad (29,773*) mesh, 2 scalars 4 scalars, 3 fields 1,000 / 200
2D_profile tri (37,042) mesh 4 fields 300 / 100
VKI-LS59 quad (36,421*) mesh, 2 scalars 6 scalars, 7 fields 671 / 168

AirfRANS original quad (179,776)
AirfRANS clipped tri (179,779) mesh, 2 fields 2 scalars, 4 fields various splits
AirfRANS remeshed tri (7,624)

Table 2: Dataset collection description: data and splits, a ∗ in the second column means that the number of
nodes and connectivity are constant in the dataset – the position of the nodes still varies.

Dataset Examples of field outputs

Tensile2d

2D_MultiScHypEl

2D_ElPlDynamics

Rotor37

2D_profile

VKI-LS59

Table 3: Dataset collection examples of field outputs illustrations.

5.1 Methods206

For practical reasons, we limit the benchmarks to the few following methods:207

• MeshGraphNets (MGNs) [25] are GNNs that utilize an encode-process-decode architecture,208

transforming mesh data into graph structures, processing them through message passing,209

and decoding the results to predict field outputs.210
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• Mesh Morphing Gaussian Processes (MMGP) [19] rely on mesh morphing, finite element in-211

terpolation and dimensionality reduction to pretreat mesh-based data into a low dimensional212

embedding, and utilizes Gaussian processes to predict output scalars and fields.213

• Vi-Transformer [85] and Augur 1 rely on mesh partitioning to build tokens related to local214

mesh information and utilize a transformer to predict scalar and field outputs.215

• Domain Agnostic Fourier Neural Operators (DAFNO) [86] handle problems involving216

irregular geometries and evolving domains. It incorporates a smoothed characteristic217

function into the integral layer architecture of FNOs, allowing the use of Fast Fourier218

Transform (FFT) for efficient computations while explicitly encoding geometric information.219

• Modulated Aerodynamic Resolution Invariant Operator (MARIO) [87] builds upon [88] and220

exploits implicit neural representations, which model continuous signals by mapping input221

coordinates directly to output values, without relying on discrete grids or explicit storage.222

For more details on the methods and their respective advantages/drawbacks, refer to Appendix A.223

5.2 Evaluation metric224

Accuracy of the trained models is evaluated by computing RRMSEs (Relative Root Mean Square225

Errors). Let {f iref}
n⋆
i=1 and {f ipred}

n⋆
i=1 be respectively the reference and prediction of a field output226

on the testing set. The RRMSE is defined as227

RRMSEf (fref , fpred) =

(
1

n⋆

n⋆∑
i=1

1
Ni ∥f iref − f ipred∥22

∥f iref∥2∞

)1/2

,

where N i is the number of nodes in the mesh of sample i, n⋆ is the number of samples in the testing228

set, and ∥f iref∥∞ is the maximum component in the vector f iref . Similarly for scalar outputs, the229

following relative RMSE is computed:230

RRMSEs(sref , spred) =

(
1

n⋆

n⋆∑
i=1

|siref − sipred|2

|siref |2

)1/2

.

The score of a submission, total_error, is the mean over fields and scalars RRMSEs.231

5.3 Benchmark results232

All individual RRMSE and total_error for each method applied to each dataset are reported in233

Table 4. These results are considered neither exhaustive, nor definitive.234

We provide the community with online benchmarking applications hosted on Hugging Face as235

competitions with no end date, see Hugging Face benchmark collection. Each benchmark comes with236

a visualization application of the datasets, a description of inputs and outputs and detailed instructions237

for accessing the data and constructing a prediction file. Anyone can register and submit a prediction:238

submissions are automatically ranked based on total_error as defined in Section 5.2. Hence, the239

benchmark results presented here will be updated in the future. See Section C for additional details240

on the benchmarking applications.241

We notice that MMGP, Vi-Transformer/Augur and MARIO models perform particularly well on our242

steady-state datasets, while DAFNO has only been evaluated on our unique time-dependent dataset.243

6 Conclusion and perspectives244

Limitations. PLAID is designed to accommodate a wide range of complex scenarios and remains245

adaptable to emerging use cases that may not be fully addressed by the current datamodel. We246

plan to expand our collection with more diverse and large-scale datasets of industrial relevance,247

complemented by benchmarking applications accessible to the community.248

Roadmap. Future developments include the creation of generic PyTorch dataloaders for PLAID,249

and the standardization of evaluation metrics and training/inference pipelines based on PLAID.250

1commercial solution from Augur company
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Field, scalar output MGN MMGP Vi-Transf. Augur DAFNO MARIO

Tensile2d

U1 0.0788 0.0016 0.0344 0.0093 - -
U2 0.1237 0.0013 0.0424 0.0135 - -
sig11 0.1726 0.0037 0.0715 0.0187 - -
sig22 0.0560 0.0015 0.0341 0.0099 - -
sig12 0.0570 0.0026 0.0494 0.0121 - -
max_von_mises 0.0185 0.0050 0.0145 0.0219 - -
max_U2_top 0.0292 0.0042 0.0210 0.0344 - -
max_sig22_top 0.0030 0.0016 0.0022 0.0030 - -

total_error 0.0673 0.0027 0.0337 0.0154 - -

2D_MultiScHypEl

u1 0.0400 - 0.0350 0.0140 - -
u2 0.0444 - 0.0356 0.0164 - -
P11 0.0383 - 0.0611 0.0185 - -
P12 0.0670 - 0.1016 0.0316 - -
P22 0.0383 - 0.0614 0.0189 - -
P21 0.0663 - 0.1005 0.0311 - -
psi 0.0443 - 0.0580 0.0239 - -
effective_energy 0.0111 - 0.0108 0.0313 - -

total_error 0.0437 - 0.0580 0.0232 - -

2D_ElPlDynamics

U_x - - - - 0.0025 -
U_y - - - - 0.0291 -

total_error - - - - 0.0158 -

Rotor37

Density 0.0114 0.0039 0.0370 0.0055 - -
Pressure 0.0114 0.0039 0.0366 0.0053 - -
Temperature 0.0024 0.0009 0.0074 0.0012 - -
Massflow 0.0061 0.0007 0.0058 0.0028 - -
Compression_ratio 0.0060 0.0007 0.0055 0.0028 - -
Efficiency 0.0071 0.0009 0.0067 0.0019 - -

total_error 0.0074 0.0019 0.0165 0.0033 - -

2D_profile

Mach 0.0604 0.0514 0.0699 - - -
Pressure 0.0466 0.0335 0.0430 - - -
Velocity-x 0.0735 0.0585 0.0854 - - -
Velocity-y 0.0566 0.0483 0.0570 - - -

total_error 0.0593 0.0480 0.0638 - - -

VKI-LS59

nut 0.1656 0.0822 0.1489 0.0641 - 0.0259
mach 0.0451 0.0309 0.0643 0.0245 - 0.0112
Q 0.0716 0.0023 0.0228 0.0076 - 0.0052
power 0.0403 0.0057 0.0168 0.0108 - 0.0077
Pr 0.0068 0.0026 0.0042 0.0050 - 0.0018
Tr 0.0001 0.0000 0.0001 0.0000 - 0.0000
eth_is 0.1912 0.1224 0.1311 0.1732 - 0.0453
angle_out 0.0263 0.0033 0.0061 0.0040 - 0.0023

total_error 0.0684 0.0312 0.0493 0.0362 - 0.0124

Table 4: RRMSE and total_error on PLAID benchmarks, best on each line is bold, second best is underlined.
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A Details on the ML models used in the benchmark541

We briefly present the main competing methods that we used for the benchmark. We also highlight542

some practical details about their implementation. Readers are encouraged to refer directly to the543

papers introducing the methods for further information.544

A.1 MGN545

A.1.1 Method546

MeshGraphNet (MGN) [25], introduced by T. Pfaff et al., is a framework designed for learning mesh-547

based simulations using graph neural networks. The model is capable of being trained to simulate548

dynamic solutions by passing messages over a meshed domain, predicting acceleration at each mesh549

node at a given time step. This prediction allows for the calculation of the output field at the next time550

step through forward integration. Specifically, MGN is trained using one-step supervision and can be551

applied iteratively to generate long trajectories during inference. The architecture of MeshGraphNet552

is composed of encoding, processing, and decoding steps. In this work, MGN has been adapted to553

predict steady-state fields.554

We utilize the following features as input (see Figure 5 for the workflow diagram):555

• the distance of each node to the boundary,556

• the type of node,557

• the coordinates of the node.558

Figure 5: Illustration of MGN workflow to predict steady-state pressure field of a sample from the 2D_profile
dataset.

A.1.2 Experiments559

In this section, we provide a summary of the experiments conducted on various datasets.560
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For all datasets, we trained two separate models: one focused on field predictions and the other561

on scalar predictions. For scalar outputs, a readout layer taken from [89] is added to the model.562

Except for the 2D_profile dataset, we only required a single model since it does not include scalar563

prediction tasks.564

The LeakyReLU is chosen as the activation function, and all models are trained for 1000 epochs.565

The input node features consist of those introduced in the previous section, combined with input566

scalars if they exist. Given two node coordinates xi and xj , the calculation for edge features is based567

on exp(−||xi − xj ||22/(2h2)), where h epresents the median value of the edge lengths within the568

mesh.569

The rest of architecture details and training information are outlined in Table 5 and Table 6.570

Dataset Message
Passing Steps Latent Size Nbe epochs Batch size Training

Time Hardware

Tensile2d 10 16 1000 1 3h46min 1 × A100
2D_MultiScHypEl 10 32 1000 1 5h54min 1 × A100
Rotor37 10 64 1000 1 19h24min 1 × A100
2D_profile 10 128 1000 1 17h27min 1 × A100
VKI-LS59 10 64 1000 1 16h32min 1 × A100

Table 5: Field MGN: Architecture details and training statistics across datasets.

Dataset Message
Passing Steps Latent Size Nbe epochs Batch size Training

Time Hardware

Tensile2d 10 32 1000 1 4h6min 1 × A100
2D_MultiScHypEl 10 16 1000 1 6h 1 × A100
Rotor37 10 16 1000 1 10h 1 × A100
VKI-LS59 10 16 1000 1 9h13min 1 × A100

Table 6: Scalar MGN: Architecture details and training statistics across datasets.

A.2 MMGP571

A.2.1 Method572

We refer the reader to [19] for a complete presentation of the Mesh Morphing Gaussian Process573

(MMGP) method. MMGP combines four main ingredients: (i) mesh morphing, (ii) finite element574

interpolation, (iii) dimensionality reduction, and (iv) Gaussian process regression. Together, these575

enable learning mappings between geometries and solution fields for PDEs, even when the input576

geometry is provided as non-parametrized meshes.577

An overview of the workflow is illustrated in Figure 6, which should be read from left to right. On the578

left are sample-specific input geometries; on the right are the corresponding solution fields defined on579

these geometries.580

Since input meshes are not parametrized, they must first be embedded into a learnable space. MMGP581

does this by interpreting mesh vertex coordinates as continuous fields (e.g., the x-coordinate field582

shown in the left column of Figure 6, exhibiting vertical iso-lines). Each mesh is then deterministically583

morphed onto a reference geometry—the unit disk in this 2D example, but it can be one of the training584

samples shape. Next, each sample morphed coordinate fields are projected onto a common mesh of585

the reference geometry via finite element interpolation. This ensures all samples share a consistent586

discretization, making them compatible with standard dimensionality reduction techniques like PCA.587

The result is a compact, fixed-size representation of the geometry. When scalar inputs are present,588

they can be concatenated to the reduced vector.589

A similar procedure is applied to the output fields: morphing onto the reference geometry, projection590

onto the common mesh, and PCA compression yield low-dimensional field representations aligned591

with the geometric embeddings.592
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Ẑi
} {

Ûi
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Figure 6: Illustration of the MMGP inference workflow for the prediction of an output field of interest [19].

These deterministic preprocessing steps transform the original complex problem—mapping between593

high-dimensional and irregularly discretized fields—into a standard regression task between low-594

dimensional vectors. This enables the use of classical regression models; we adopt Gaussian process595

regression due to its robustness, accuracy, and built-in uncertainty quantification.596

MMGP offers several practical advantages: it handles large meshes efficiently, produces interpretable597

models, and delivers high accuracy in our experiments, with uncertainty estimates. In industrial design598

applications, where data can lie on low-dimensional manifolds, small models like MMGP can be599

especially effective—provided that the reparametrization (or embedding) is constructed appropriately,600

here with the morphing.601

The main limitations of MMGP are tied to the morphing step, which currently requires problem-602

specific setup, and the fact that morphing and interpolation must still be performed at inference time.603

These challenges are addressed in recent works [20, 90], which introduce automatic alignment and604

online-efficient morphing strategies. Further improvements are proposed in [21], where optimization605

techniques are used to generate morphings that maximize PCA compression.606

All mesh and field operations are implemented using the Muscat library [67, 68]. An upcoming607

release will include a GPU-accelerated finite element interpolation routine, significantly improving608

inference latency.609

Additional improvement of MMGP are possible, by replacing the linear decoder of the PCA by a610

non-linear one that accounts for high-order interactions among the selected POD modes and includes611

a rotation of the POD basis and a polynomial correction, as proposed in [91].612

Physics-based models compatible with the morphing, finite element interpolation and dimensionality613

reduction of MMGP have been proposed. The physics equation can be efficiently assembled and614

solved on the low-dimension space spanned by the PCA modes obtained after morphing, instead of615

using data-driven low-dimensional models. In [92], a hyper-reduced least-square Petrov-Galerkin616

scheme is used to reduced the Navier-Stokes equations, with morphing. While much more compli-617

cated to utilize, we expect such methods to greatly improve the accuracy, with a moderate additional618

computation cost.619

A.2.2 Experiments620

Hyperparameters and training statistics for the MMGP experiments are listed in Table 7. We first621

mention that MMGP has not been applied to the 2D_ElPlDynamics and 2D_MultiScHypEl datasets,622

since the method is yet to be extended to variable topology settings.623

We notice that Rotor37 and VKI-LS59 do not require morphing, since the samples’ meshes have the624

same number of nodes. In Tensile2d and 2D_profile, systematic morphing strategies to align the625

shapes are sufficient, with respectively Tutte barycentric embedding [19, Ann B] and elasticity-based626

automatic morphing [20].627

Since the VKI-LS59 dataset exhibits discontinuities due to the presence of shock waves, a non-linear628

decoder [91] was employed to reconstruct the fields of interest. For the compression of the mach629
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fields, 5 POD modes and a polynomial order of 3 were used, while 40 POD modes were retained for630

the compression of the nut fields. Since polynomial decoders are prone to overfitting, the number of631

modes and the polynomial order were selected through a k-fold cross-validation procedure on the632

training set.633

Since the solution fields of 2D_profile and VKI-LS59 feature complex structures (e.g. shocks634

of variable position), we expect the involved optimal morphing strategy from [21] to significantly635

improve the results of MMGP on these cases.636

Dataset Morphing PCA modes
(shape)

PCA modes
(field) GP kernel Training

time Hardware

Tensile2d Tutte [19, Ann B] 8 8 Matérn 5/2 13min02s 128 cores
Rotor37 None 32 64 Matérn 5/2 6min13s 128 cores
2D_profile Elasticity [20] 16 32 RBF 18min32s** 12 cores
VKI-LS59 None 13 5-3/40-1* Matérn 5/2 4min13s 64 cores

Table 7: Hyperparameters and training statistics for the MMGP experiments (on an AMD EPYC 9534 CPU).
Training times include all preprocessing (morphing, finite element interpolation and dimensionality reduction),
in addition to the training of the Gaussian processes. *For VKI-LS59, X-Y stands for the number of modes
and polynomial order of the decoder for the mach and nut fields respectively. **Not including morphing time
(which takes approximately 10min on 300 cores).

A.3 Vi-Transformer and Augur637

A.3.1 Method638

Transformers for long context range regression. The natural way of dealing with mesh-based639

regression problems is to use GNN models which rely on message-passing. Although these are great640

at capturing information locally, they struggle to retrieve it at long distances. Indeed, the smallest641

number of GNN layers needed to have a receptive field that covers the whole graph is half the642

diameter of the graph. This becomes computationally impractical in the context of large simulation643

meshes. This behavior is analogous to Convolutional Neural Networks (CNNs) in Computer Vision644

(CV) where long-range dependencies are only captured at the deeper levels of the network. One way645

of alleviating this is to consider transformer architectures, which compute similarities between all646

the input tokens simultaneously thanks to the attention mechanism, thus removing the need to have647

infeasibly deep networks.648

Transformers on very large data. One of the main challenges of transformers in this case is to649

handle the large size of the meshes (in the order of tens of thousands of points per mesh, and up to650

millions with practical industrial problems). Currently, the computational bottleneck of transformers651

is a widely considered subject: given N tokens of dimension D, the critical issue of self attention is652

that one needs N2 ×D operations where D ≈ D is the size of the embedding of each token, and N2653

is the cost to compute the Gram matrix of the N tokens (this computation cost is also a memory one654

as storing the matrix requires also N2D numbers).655

Many papers have focused on the possibility to linearize the cost of self-attention, for example:656

• [93] introduces Reformer which considers the formulation of the attention mechanism :657

softmax
(
QK√
D

)
with the key and query matrices (respectively K and Q), capitalizing on the658

fact that for a given query Qi, only the keys which provide high dot products with Qi will659

have a significant impact on the value of softmax
(
QiK

T

√
D

)
. Therefore, Reformer makes660

use of locality-sensitive hashing for only computing the QiKT
j products with the p keys that661

are closest to a query, where p ∈ N is a chosen hyperparameter, efficiently linearizing the662

self attention.663

• [94] introduces Linformer. Coarsely, Linformer relies on the Nyström approximation to664

approximate the Gram matrix of self attention. Precisely, while the Nyström approximation665

replaces an n×n symmetric matrixA byUUT whereU is only n×k containing the eigenvec-666
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tors of largest eigenvalue, Linformer offers to learn E,F such that softmax
(
QK√
D

)
≈ EFT .667

This also offers a linear approximation of the self attention computation.668

This has also been tackled in CV tasks [95], where self-attention is not applied on pixels directly669

but on pixel-patches that aggregate pixel neighborhoods into tokens, thus drastically reducing the670

self-attention’s input sequence length.671

Transformers for large scale point-wise regression. The most used transformer architectures are672

in one of two categories. The auto-regressive sequence-to-sequence transformers, mostly used in673

Natural Language Processing (NLP) for text generation, and the sequence-to-class ones which are674

used both in NLP, as in sentiment analysis [96], spam detection [97], long document classification675

[98], and CV with image classification [95].676

Both are quite different from the point-wise regression objective of the PLAID benchmarks. Indeed,677

the first method generates new token sequences of arbitrary lengths, while the second only makes use678

of transformer encoders with neural network heads to obtain a probability distribution on a set of679

classes.680

Some work has been conducted in order to tackle regression problems with transformers:681

• Segformer [99] addresses this in the case of image segmentation; it uses a multiscale U-type682

transformer to sequentially downscale the input image, and uses a multiscale MLP head to683

decode these downscaled states into the output segmentation mask.684

• Point Transformer [100] also uses a U-style encoder-decoder architecture, this time on 3D685

point-cloud data for both segmentation and classification.686

• TransCFD [101] tackles airfoil surrogate CFD modeling by using a decoder-only architecture687

from a latent embedding of the input geometry. It relies on structured regular grids (images)688

of the inputs, and not arbitrary mesh discretizations.689

• Point Transformer V3 [102] groups points together and computes attention scores within690

these groups. Local and long-distance information are captured through different serializa-691

tions of the input mesh.692

Both Segformer and TransCFD make use of the regular nature of their data to precisely decode (and/or693

encode) the output (and/or input) fields. Point Transformers, on the other hand, handle unstructured694

point-cloud data. Although these methods fit the nature of the PLAID benchmark, we propose lighter695

methods that stick more closely to the classical transformer model.696

Vi-Transformer for mesh field regression. The chosen approach relies on a transformer encoder697

architecture and is analogous to Vision Transformers (Vi-Transformer). Rather than considering each698

node of the mesh as a token by its own, the encoder takes as input tokenized point-cloud patches.699

Local information is kept within the patches while long-range information is retrieved through the700

transformer’s mapping, which compares all token pairs together. The general architecture of the701

Vi-Transformer is depicted in Figure 7.702

Augur Transformer model. Augur has developed Transformer models specifically designed703

for numerical simulations. These models share fundamental architectural similarities with Vision704

Transformers (ViT), where the computational mesh is decomposed into patches. Each patch is705

embedded into a latent space, resulting in the input tokens for the Transformer architecture. This706

approach enables information exchange between local patches across long spatial distances, similar707

to how ViTs process image data.708

The key innovation in Augur’s approach lies in the decoding mechanism, addressing a critical709

question: how to properly reconstruct the output field from the processed sequence of tokens? In710

traditional ViT architectures, direct reconstruction from individually processed tokens can result711

in discontinuities at patch interfaces due to insufficient global context integration. Augur models712

overcome this limitation by incorporating a global information vector that aggregates data from all713

tokens. The decoder then uses a combination of point-specific information, processed local features,714

and global context to produce a more robust and consistent output field. Furthermore, unlike ViTs,715

Augur models do not treat scalar predictions as constant fields but instead derive them directly from716
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Figure 7: Vi-Transformer architecture. Input meshes are partitioned using the Metis domain decomposition
algorithm [103]. Each such sub-domain is then tokenized before passing through the transformer encoder. In
the end, each token is decoded into its domain’s corresponding fields. Input scalars are embedded during the
tokenization procedure while output scalars are estimated as uniform fields.

Figure 8: Augur Transformer architecture: Input meshes are partitioned using the Metis domain decomposition
algorithm. Each subdomain is then tokenized before being passed through the Transformer. An additional global
tensor is added to the Transformer to gather global information. Output fields are reconstructed using a decoder
that leverages both local and global information. Output scalars (KPIs) are predicted directly from the global
tensor.

the global information vector, enhancing prediction accuracy. The general architecture of the Augur717

model is depicted in Figure 8.718

A.3.2 Experiments719

Both the Vi-Transformer and Augur models rely on a relatively small number of hyperparameters.720

These include the patch size (i.e., the number of nodes per patch), the latent dimension onto which721

the aggregated patches are projected, and the Transformer encoder hyperparameters, such as the722

number of heads, the number of transformer encoder layers and the dimension of the feedforward723

layer. Table 8 details the hyperparameters for the Vi-Transformer, while Table 9 outlines those for the724

Augur model.725

A.4 DAFNO726

DAFNO belongs to the Operator Approximator class of architectures, i.e. it builds mappings between727

two function spaces. The use of the Fast Fourier Transform (FFT) within the different layers leads to728

the sampling of the input function on a regular grid, thus falling back to a finite dimension space. This729

architecture has the advantage of learning transformation in the frequency domain which provides a730

significant advantage compared to CNNs on several physical problems.731
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Dataset Patch size Latent
dimension

Feedforward
dimension

Nb encoder
layers

Training
time Hardware

Tensile2d 50 6400 2048 5 3h18 3 × A30
2D_MultiScHypEl 10 512 256 5 1h56 3 × A30
Rotor37 100 256 256 10 33min 3 × A30
2D_profile 50 1024 1024 5 36min 3 × A30
VKI-LS59 50 6400 2048 5 1h27 3 × A30

Table 8: (Vi-Transformer) Hyperparameters and training statistics for the Vi-Transformer experiments. Training
times include all preprocessing (domain decomposition, tokenization), in addition to the training of the model
itself. The number of attention heads is kept at 16 for all experiments.

Dataset Patch size Latent
dimension

Feedforward
dimension

Nb encoder
layers

Training
time Hardware

Tensile2d 16 512 2048 8 1h11 1 × RTX 2080Ti
2D_MultiScHypEl 4 128 512 8 7h48 1 × RTX 2080Ti
Rotor37 32 256 1024 8 2h30 1 × RTX 2080Ti
VKI-LS59 64 512 2048 4 2h15 1 × RTX 2080Ti

Table 9: (Augur) Hyperparameters and training statistics for the Augur experiments. Training times include all
preprocessing (domain decomposition, tokenization), in addition to the training of the model itself.

A.4.1 Method732

The DAFNO model deals separately with the input fields and the geometry of the problem [86]:733

let u : R2 → Rk be our input fields and χΩ : R2 → {0, 1} be the characteristic function of the734

domain Ω. Let W ∈ Rk×k, W ∗ ∈ Rk×k, c ∈ Rk be the learnable parameters, let σ : R → R be735

a scalar non-linear function (sigmoid, ReLU, or tanH) to be applied elementwise. A layer of the736

DAFNO architecture is defined by the following operator:737

J [u](x) = σ
(
Wu(x) + c+ F−1 [W ∗F [(u(x)− u(·))χΩ(·)χΩ(x)]] (x)

)
(1)

= σ (Wu(x) + c+ χΩ(x)I [χΩ(·)u(·)] (x)− u(x)I [χΩ(·)] (x)) , (2)

where I[f ](x) = F−1 [W ∗F [u](.)] (x), with F denoting the FFT operator. Equation (1) shows738

the interest of using the DAFNO architecture: the FFT in operator only considers values inside the739

domain Ω. Moreover the FFT is computed over the local variation of the input field rather than the740

input field itself (u(x)− u(.) instead of u(.)) making the layer, by design, seek features within local741

variations. The DAFNO network ends up being a composition of one or multiple of such layers. The742

mask χΩ is used at each layer unaltered to make sure that no noise outside the domain may perturb743

the prediction.744

FNO models and variant can only predict on regular grids (this is due to the use of the FFT). This is a745

common constraint shared with some neural networks such as CNNs. This means that, in order to746

predict on an unstructured mesh, a preprocessing and postprocessing of the fields are needed. The747

preprocessing consists in a projection of the original mesh to a regular grid where the FNO is able748

produce a prediction. Then, a postprocessing projecting back from the regular grid to the original749

mesh needs to be performed to compare the prediction to reference fields. The projection operations750

were performed using Muscat [68, 67].751

A.4.2 Experiments752

The DAFNO architecture can build transient predictions on various geometries and topology, the753

only dataset introduced in Section 4 that meets these three characteristics is the 2D_ElPlDynamics754

dataset.755

Training procedure. The training was performed in a autoregressive manner: given the input fields756

at time t, the model has to predict the fields at time t+ dt very much like an explicit solver would do.757
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Once trained, one may build the whole transient field prediction by applying the model recursively758

on the initial conditions. A key choice involves selecting inputs that are informative enough for the759

model to accurately predict the system dynamics.760

On top of the fields provided by the dataset (U_x and U_y) we added two coordinate fields (one for x761

and one for y) and we computed a fifth input: a smoothed mask χsmooth
Ω as suggested by the original762

DAFNO paper [86] along with being a drop in replacement of χΩ in the DAFNO layers. This smooth763

quantity is richer than its discontinuous counterpart since it provides insight on how close we are764

from the border of the geometry. We are summarizing the input/output quantities in Table 10.765

Attribute Simulation at t Input DAFNO Output DAFNO

Mesh - -

U_x

U_y

χsmooth
Ω -

Table 10: Features throughout the learning process, "-" means the field is not available/used at the given stage.
The simulation at t (column 1) can be projected to a regular grid (column 2). The regular fields along with
coordinates fields x and y make input features for the DAFNO model which in turns predicts the fields at t+ dt
(column 3).

The training was parallelized on 40 GPUs (A100) and lasted 6 hours. Inference and thus testing can766

be performed on a single GPU to compute the metrics presented in Table 4.767

Model and training parametrization. We summarize the model parametrization in Table 11 and768

training procedure in Table 12.769

Model
parameters Layer count Channel

hidden layers Padding Fourier modes Activation
Function

Value 8 64 8 20× 20 GELU

Table 11: DAFNO: parametrization of the model.

A.5 MARIO770

Modulated Aerodynamic Resolution-Invariant Operator (MARIO) is a deep learning model designed771

to approximate the solution operator of a partial differential equation (PDE) [87], involving geometric772

variability. It leverages Conditional Neural Fields (or Implicit Neural Representations) to learn773
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Training
parameters Epochs Optimizer Learning rate Batch size Loss

Value 1800 Adam 0.0003 60 Pixel-wise L2

Table 12: DAFNO: parametrization of the training.

the mapping between spatial coordinates from a mesh, geometric information (e.g., via the signed774

distance function, SDF), inflow conditions, and the resulting physical field. Unlike mesh-based775

methods, INRs represent continuous fields through neural network parameterizations, enabling776

resolution-independent predictions and flexible evaluation. MARIO extends this approach to handle777

multiple geometries and operating conditions through a conditioning mechanism.778

A.5.1 Method779

Modulated INR architecture. MARIO implements a conditional neural field approach where780

a single neural network architecture can represent multiple distinct signals through a conditioning781

mechanism. The conditioning variable z = [µgeom, µ] encodes both geometric parameterization µgeom782

and operating conditions µ (e.g., angle of attack, Mach number, Reynolds number).783

The main network is a multilayer perceptron (MLP) where the layer outputs are modulated by784

sample-specific vectors:785

fθ,ϕ(x) =WL(ηL−1 ◦ ηL−2 ◦ · · · ◦ η1 ◦ γ(x)) + bL (3)
ηl(·) = ReLU(Wl(·) + bl + ϕl(z)) (4)

where ϕl(z) = [hψ(z)]l ∈ Rdl are layer-specific modulation vectors obtained from the hypernetwork786

hψ that processes the conditioning variable z. The main network parameters θ are shared for all787

samples and consist of the weights and biases matrices Wl, bl. In MARIO, an explicit shape encoding788

µgeom is used as input of the architecture to properly model geometric variability. In many real-world789

applications, a geometric parameterization is not available or insufficient to capture complex shapes.790

Therefore, a learning mechanism to obtain compact geometric representations from the SDF fields791

is adopted. These encoding process leverages a separate Neural Field encoder, that maps input792

coordinates to output SDF values, while fitting latent shape representations.793

Geometry encoding mechanism. For each geometry’s signed distance function (SDF), a meta-794

learning optimization procedure based on CAVIA [104] adapts a shared neural network fθin,ϕin to795

represent different shapes. Given the shared network parameters θin and hypernetwork parameters ψ,796

the latent representation µgeom = z
(K)
in for geometry i is obtained by solving:797

z
(0)
in = 0 (5)

z
(k+1)
in = z

(k)
in − α∇

z
(k)
in

Lin(fθin,ϕin(x), sdfi), for 0 ≤ k ≤ K − 1 (6)

where ϕin = hψ(z
(k)
in ), α is the inner loop learning rate, and K is the number of optimization steps798

(typically set to 3). The loss Lin measures the reconstruction error between the true SDF field and its799

prediction over a sampling grid defined on the input domain.800

This optimization process, illustrated in Figure 9, yields a compact latent code µgeom = z
(K)
in that801

captures the essential geometric features.802

Fourier feature encoding. To address the spectral bias inherent in neural networks, MARIO803

employs Fourier feature encoding for the input coordinates:804

γ(x) = [cos(2πBx), sin(2πBx)] (7)

where B ∈ Rm×d contains frequency vectors sampled from a Gaussian distribution N (0, σ). This805

encoding enables the network to better capture high-frequency details in the output fields.806
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Figure 9: MARIO geometry encoding process.
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Figure 10: MARIO architecture.

Scalar output prediction. In addition to predicting coordinate-dependent fields, MARIO can also807

predict global scalar quantities for each sample. Since these scalar outputs are global properties of808

the solution (e.g., power coefficients, efficiency metrics), they depend only on the sample-specific809

information encoded in the modulation vectors. The scalar prediction is therefore implemented as:810

s =Ws · ϕagg + bs (8)

where ϕagg represents an aggregation of the modulation vectors produced by the hypernetwork. This811

single-layer transformation efficiently leverages the already learned sample representation without812

requiring additional feature extraction.813

The architecture of MARIO is illustration in Figure 10.814

Training procedure. MARIO is trained using a weighted loss function that balances field prediction815

accuracy and scalar output accuracy:816

L = α · Lfield + (1− α) · Lscalar (9)
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where α ∈ [0, 1] is a weighting parameter. The field loss Lfield is computed as the mean squared error817

between predicted and target fields across spatial locations, while the scalar loss Lscalar is the mean818

squared error of the global quantities.819

Key advantages. MARIO presents three major benefits: (i) it is resolution-invariant and can be820

evaluated at arbitrary spatial locations; (ii) it overcomes spectral bias through multiscale Fourier821

encodings; and (iii) it adapts to geometry-specific variations via bias modulation using the auxiliary822

network hψ .823

A.5.2 Experiment824

Model and training parametrization. The model parametrization and training procedure are825

provided respectively in Tables 13 and 14.826

Model
param.

Geom.
Hypernet.

depth

Geom.
Hypernet.

width

Geom.
latent
dim

Hypernet.
depth

Hypernet.
width

INR
depth

INR
width

Nb of
frequen-

cies

Value 1 128 16 3 256 6 256 64

Table 13: MARIO: parametrization of the model.

Training
param. Epochs Optimizer Learning

rate
Batch
size

Training
time

Training
hardware

Loss
(α = 0.8)

Value 2000 AdamW 0.001 4 30h 1 × A100 MSE

Table 14: MARIO: parametrization of the training.

We notice that MARIO is significantly longer to train than the other tested models.827

B Additional details on PLAID828

We illustrate further the capabilities of PLAID by providing some additional commands to retrieve829

information from our datasets directly from Hugging Face.830

B.1 Tensile2d831

Tensile2d is a simple dataset, for which standard and simple PLAID commands are sufficient to832

retrieve the data:833

1 from datasets import load_dataset
2 from plaid.containers.sample import Sample
3 import pickle
4

5 # Load the dataset
6 hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")
7

8 # Get split ids
9 ids_train = hf_dataset.description["split"]["train_500"]

10

11 # Get inputs/outputs names
12 in_scalars_names = hf_dataset.description["in_scalars_names"]
13 out_fields_names = hf_dataset.description["out_fields_names"]
14

15 # Get samples
16 sample = Sample.model_validate(pickle.loads(hf_dataset[ids_train[0]]["sample"]))
17

18 # Examples of data retrievals
19 nodes = sample.get_nodes()
20 elements = sample.get_elements()
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Figure 11: Illustration of the first sample in the train split of VKI-LS59: (left) fluid domain, (right) blade surface
domain.

21 nodal_tags = sample.get_nodal_tags()
22

23 for sn in ["P", "p1", "p2", "p3", "p4", "p5"]:
24 scalar = sample.get_scalar(sn)
25

26 # outputs
27 for fn in ["U1", "U2", "q", "sig11", "sig22", "sig12"]:
28 field = sample.get_field(fn)
29

30 for sn in ["max_von_mises", "max_q", "max_U2_top", "max_sig22_top"]:
31 scalar = sample.get_scalar(sn)
32

The geometrical support in PLAID samples can be easily converted to Muscat meshes:834

1 from Muscat.Bridges import CGNSBridge
2 CGNS_tree = sample.get_mesh()
3 mesh = CGNSBridge.CGNSToMesh(CGNS_tree)

B.2 VKI-LS59835

VKI-LS59 also contains stationary configurations, meaning only one time step per sample, but836

features a complex geometrical setting, with a 2D fluid domain and a 1D blade surface domain, see837

Figure 11.838

The fluid domain contains 2D elements in a 2D ambient space, hence is contained in the CGNS base839

called "Base_2_2". For the blade surface domain, we have 1D elements in a 2D ambient space: the840

CGNS base is then "Base_1_2". The corresponding data are retrieved as follows:841

1 from datasets import load_dataset
2 from plaid.containers.sample import Sample
3 import pickle
4

5 # Load the first sample of the train split
6 hf_dataset = load_dataset("PLAID-datasets/VKI-LS59", split="all_samples")
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7 ids_train = hf_dataset.description["split"]["train"]
8 sample = Sample.model_validate(pickle.loads(hf_dataset[ids_train[0]]["sample"]))
9

10 # Examples of data retrievals
11 for fn in ["sdf", "ro", "rou", "rov", "roe", "nut", "mach"]:
12 field = sample.get_field(fn, base_name="Base_2_2")
13 M_iso = sample.get_field("M_iso", base_name="Base_1_2")
14 for sn in sample.get_scalar_names():
15 scalar = sample.get_scalar(sn)
16

17 nodes_fluid = sample.get_nodes(base_name="Base_2_2")
18 nodes_blade_surface = sample.get_nodes(base_name="Base_1_2")
19 elements_fluid = sample.get_elements(base_name="Base_2_2")
20 elements_blade_surface = sample.get_elements(base_name="Base_1_2")
21 nodal_tag_fluid = sample.get_nodal_tags(base_name="Base_2_2")

The meshes for the fluid domain and blade surface domain can also be converted to Muscat meshes:842

1 from Muscat.Bridges import CGNSBridge
2 CGNS_tree = sample.get_mesh()
3 mesh_fluid = CGNSBridge.CGNSToMesh(CGNS_tree, baseNames=["Base_2_2"])
4 mesh_blade = CGNSBridge.CGNSToMesh(CGNS_tree, baseNames=["Base_1_2"])

B.3 2D_ElPlDynamics843

2D_ElPlDynamics contains additional complexity: time-dependent data and a field located at the844

center of the elements. When retrieving data, the default location of the fields is at the vertices. For845

other type of fields, location mush be specified. Furthermore, in 2D_ElPlDynamics, the mesh is846

different from one sample to another, but stays constant through the time sequence within a sample.847

Hence, to prevent useless duplication of data, we link the geometrical support of the second to last848

time step data to the mesh of the first time step. The corresponding commands are provided below:849

1 from datasets import load_dataset
2 from plaid.containers.sample import Sample
3 import pickle
4

5 # Load the first sample of the train split
6 hf_dataset = load_dataset("PLAID-datasets/2D_ElastoPlastoDynamics",

split="all_samples")↪→
7 ids_train = hf_dataset.description["split"]["train"]
8 sample = Sample.model_validate(pickle.loads(hf_dataset[ids_train[0]]["sample"]))
9

10 # Examples of data retrievals
11 time_steps = sample.get_all_mesh_times()
12

13 for time in time_steps:
14 for fn in ["U_x","U_y"]:
15 field = sample.get_field(fn, time = time)
16 field = sample.get_field("EROSION_STATUS", location="CellCenter", time = time)
17

18 CGNS_tree_t0 = sample.get_mesh(time = 0.)
19 CGNS_tree_t1 = sample.get_mesh(time = 0.01, apply_links = True, in_memory = True)

C Benchmarking online applications850

Anyone wishing to participate in our benchmarks, hosted at huggingface.co/PLAIDcompetitions,851

should create a Hugging Face account. However, no account is required to browse the website or view852
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the leaderboards. To participate, users simply need to train their model independently and submit853

predictions on the testing set. We do not require participants to upload their models. Two separate854

leaderboards are maintained, each based on a hidden subset of the test set, in order to discourage855

tentatives to overfit on the testing set.856

We illustrate the benchmarking application using the VKI-LS59 dataset as an example.857

Figure 12 shows the benchmark homepage. A navigation menu is available on the left-hand side,858

allowing users to browse the site and log in. This page also provides examples of the dataset output859

fields and includes a visualization tool, where users can select a training sample ID and an output860

field to display.861

Figure 12: "Home" page of the benchmarking application on the VKI-LS59 dataset.

Figure 13 provides detailed instructions on how to retrieve the dataset, including a description of862

the inputs and outputs used in the benchmark. Example commands are also provided to retrieve the863

samples and the required associated data.864

The set of rules applying to the benchmark is presented in Figure 14.865

Figure 15 provides detailed instructions on how to generate and submit the prediction file. The866

scoring function used for evaluation is also described.867

Figure 16 illustrates the user’s submissions page and the submission interface.868

Figure 17 shows the public leaderboard as it appeared at the time of submission of this work.869
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Figure 13: "Dataset" page of the benchmarking application on the VKI-LS59 dataset.
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Figure 14: "Rules" page of the benchmarking application on the VKI-LS59 dataset.
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Figure 15: "Submission information" page of the benchmarking online application on the VKI-LS59 dataset.
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Figure 16: "My submissions" page of the benchmarking application on the VKI-LS59 dataset.

Figure 17: "Public leaderboard" page of the benchmarking application on the VKI-LS59 dataset.
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NeurIPS Paper Checklist870

1. Claims871

Question: Do the main claims made in the abstract and introduction accurately reflect the872

paper’s contributions and scope?873

Answer: [Yes]874

Justification: Claims are made in the abstract and the last two paragraphs on the introduction.875

Section 3, 4 and 5 directly address the claimed contributions, namely the proposed standard876

and implementation, the datasets and the benchmarking results and tools.877

Guidelines:878

• The answer NA means that the abstract and introduction do not include the claims879

made in the paper.880

• The abstract and/or introduction should clearly state the claims made, including the881

contributions made in the paper and important assumptions and limitations. A No or882

NA answer to this question will not be perceived well by the reviewers.883

• The claims made should match theoretical and experimental results, and reflect how884

much the results can be expected to generalize to other settings.885

• It is fine to include aspirational goals as motivation as long as it is clear that these goals886

are not attained by the paper.887

2. Limitations888

Question: Does the paper discuss the limitations of the work performed by the authors?889

Answer: [Yes]890

Justification: In the conclusion (Section 6), we mention that PLAID may not currently891

address all possible future complex scenario, but can be adapted. We also infer that the892

dataset collection and benchmarks can be completed by new data and methods, and provide893

a future roadmap for PLAID. We specify in Section 5.3 that the benchmark results are not894

exhaustive.895

Guidelines:896

• The answer NA means that the paper has no limitation while the answer No means that897

the paper has limitations, but those are not discussed in the paper.898

• The authors are encouraged to create a separate "Limitations" section in their paper.899

• The paper should point out any strong assumptions and how robust the results are to900

violations of these assumptions (e.g., independence assumptions, noiseless settings,901

model well-specification, asymptotic approximations only holding locally). The authors902

should reflect on how these assumptions might be violated in practice and what the903

implications would be.904

• The authors should reflect on the scope of the claims made, e.g., if the approach was905

only tested on a few datasets or with a few runs. In general, empirical results often906

depend on implicit assumptions, which should be articulated.907

• The authors should reflect on the factors that influence the performance of the approach.908

For example, a facial recognition algorithm may perform poorly when image resolution909

is low or images are taken in low lighting. Or a speech-to-text system might not be910

used reliably to provide closed captions for online lectures because it fails to handle911

technical jargon.912

• The authors should discuss the computational efficiency of the proposed algorithms913

and how they scale with dataset size.914

• If applicable, the authors should discuss possible limitations of their approach to915

address problems of privacy and fairness.916

• While the authors might fear that complete honesty about limitations might be used by917

reviewers as grounds for rejection, a worse outcome might be that reviewers discover918

limitations that aren’t acknowledged in the paper. The authors should use their best919

judgment and recognize that individual actions in favor of transparency play an impor-920

tant role in developing norms that preserve the integrity of the community. Reviewers921

will be specifically instructed to not penalize honesty concerning limitations.922
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3. Theory assumptions and proofs923

Question: For each theoretical result, does the paper provide the full set of assumptions and924

a complete (and correct) proof?925

Answer: [NA]926

Justification: The paper does not include theoretical results.927

Guidelines:928

• The answer NA means that the paper does not include theoretical results.929

• All the theorems, formulas, and proofs in the paper should be numbered and cross-930

referenced.931

• All assumptions should be clearly stated or referenced in the statement of any theorems.932

• The proofs can either appear in the main paper or the supplemental material, but if933

they appear in the supplemental material, the authors are encouraged to provide a short934

proof sketch to provide intuition.935

• Inversely, any informal proof provided in the core of the paper should be complemented936

by formal proofs provided in appendix or supplemental material.937

• Theorems and Lemmas that the proof relies upon should be properly referenced.938

4. Experimental result reproducibility939

Question: Does the paper fully disclose all the information needed to reproduce the main ex-940

perimental results of the paper to the extent that it affects the main claims and/or conclusions941

of the paper (regardless of whether the code and data are provided or not)?942

Answer: [Yes]943

Justification: PLAID: the code is provided and extensively documented, including tutorials944

for converting anyone how data into the PLAID data model; instructions and advice are945

given for anyone to download and inspect the datasets. Benchmarking: applications and946

detailed instructions are provided for anyone to participate and update the benchmarks.947

Guidelines:948

• The answer NA means that the paper does not include experiments.949

• If the paper includes experiments, a No answer to this question will not be perceived950

well by the reviewers: Making the paper reproducible is important, regardless of951

whether the code and data are provided or not.952

• If the contribution is a dataset and/or model, the authors should describe the steps taken953

to make their results reproducible or verifiable.954

• Depending on the contribution, reproducibility can be accomplished in various ways.955

For example, if the contribution is a novel architecture, describing the architecture fully956

might suffice, or if the contribution is a specific model and empirical evaluation, it may957

be necessary to either make it possible for others to replicate the model with the same958

dataset, or provide access to the model. In general. releasing code and data is often959

one good way to accomplish this, but reproducibility can also be provided via detailed960

instructions for how to replicate the results, access to a hosted model (e.g., in the case961

of a large language model), releasing of a model checkpoint, or other means that are962

appropriate to the research performed.963

• While NeurIPS does not require releasing code, the conference does require all submis-964

sions to provide some reasonable avenue for reproducibility, which may depend on the965

nature of the contribution. For example966

(a) If the contribution is primarily a new algorithm, the paper should make it clear how967

to reproduce that algorithm.968

(b) If the contribution is primarily a new model architecture, the paper should describe969

the architecture clearly and fully.970

(c) If the contribution is a new model (e.g., a large language model), then there should971

either be a way to access this model for reproducing the results or a way to reproduce972

the model (e.g., with an open-source dataset or instructions for how to construct973

the dataset).974
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(d) We recognize that reproducibility may be tricky in some cases, in which case975

authors are welcome to describe the particular way they provide for reproducibility.976

In the case of closed-source models, it may be that access to the model is limited in977

some way (e.g., to registered users), but it should be possible for other researchers978

to have some path to reproducing or verifying the results.979

5. Open access to data and code980

Question: Does the paper provide open access to the data and code, with sufficient instruc-981

tions to faithfully reproduce the main experimental results, as described in supplemental982

material?983

Answer: [Yes]984

Justification: The PLAID library is provided in open-source and documented. All the985

mentioned datasets are provided in open-data. Benchmarking application are provided and986

available for anyone to use and contribute to.987

Guidelines:988

• The answer NA means that paper does not include experiments requiring code.989

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/990

public/guides/CodeSubmissionPolicy) for more details.991

• While we encourage the release of code and data, we understand that this might not be992

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not993

including code, unless this is central to the contribution (e.g., for a new open-source994

benchmark).995

• The instructions should contain the exact command and environment needed to run to996

reproduce the results. See the NeurIPS code and data submission guidelines (https:997

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.998

• The authors should provide instructions on data access and preparation, including how999

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1000

• The authors should provide scripts to reproduce all experimental results for the new1001

proposed method and baselines. If only a subset of experiments are reproducible, they1002

should state which ones are omitted from the script and why.1003

• At submission time, to preserve anonymity, the authors should release anonymized1004

versions (if applicable).1005

• Providing as much information as possible in supplemental material (appended to the1006

paper) is recommended, but including URLs to data and code is permitted.1007

6. Experimental setting/details1008

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1009

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1010

results?1011

Answer: [Yes]1012

Justification: Learning tasks are formalized in the PLAID standard, and information on split1013

and inputs/outputs are provided in Section 4. Details on the models used in the benchmarks1014

are provided in Section A.1015

Guidelines:1016

• The answer NA means that the paper does not include experiments.1017

• The experimental setting should be presented in the core of the paper to a level of detail1018

that is necessary to appreciate the results and make sense of them.1019

• The full details can be provided either with the code, in appendix, or as supplemental1020

material.1021

7. Experiment statistical significance1022

Question: Does the paper report error bars suitably and correctly defined or other appropriate1023

information about the statistical significance of the experiments?1024

Answer: [No]1025
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Justification: While our contributions focuse on the PLAID standard and implementation,1026

the datasets and the benchmarking, it would have been very computationally demanding to1027

train each model of the benchmark many times to include mean and standard deviations for1028

every experiment. Besides, ranking in the benchmark is made from a single prediction.1029

Guidelines:1030

• The answer NA means that the paper does not include experiments.1031

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1032

dence intervals, or statistical significance tests, at least for the experiments that support1033

the main claims of the paper.1034

• The factors of variability that the error bars are capturing should be clearly stated (for1035

example, train/test split, initialization, random drawing of some parameter, or overall1036

run with given experimental conditions).1037

• The method for calculating the error bars should be explained (closed form formula,1038

call to a library function, bootstrap, etc.)1039

• The assumptions made should be given (e.g., Normally distributed errors).1040

• It should be clear whether the error bar is the standard deviation or the standard error1041

of the mean.1042

• It is OK to report 1-sigma error bars, but one should state it. The authors should1043

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1044

of Normality of errors is not verified.1045

• For asymmetric distributions, the authors should be careful not to show in tables or1046

figures symmetric error bars that would yield results that are out of range (e.g. negative1047

error rates).1048

• If error bars are reported in tables or plots, The authors should explain in the text how1049

they were calculated and reference the corresponding figures or tables in the text.1050

8. Experiments compute resources1051

Question: For each experiment, does the paper provide sufficient information on the com-1052

puter resources (type of compute workers, memory, time of execution) needed to reproduce1053

the experiments?1054

Answer: [Yes]1055

Justification: Details are provided in Section A.1056

Guidelines:1057

• The answer NA means that the paper does not include experiments.1058

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1059

or cloud provider, including relevant memory and storage.1060

• The paper should provide the amount of compute required for each of the individual1061

experimental runs as well as estimate the total compute.1062

• The paper should disclose whether the full research project required more compute1063

than the experiments reported in the paper (e.g., preliminary or failed experiments that1064

didn’t make it into the paper).1065

9. Code of ethics1066

Question: Does the research conducted in the paper conform, in every respect, with the1067

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1068

Answer: [Yes]1069

Justification: The NeurIPS Code of Ethics has been read and acknowledged by the first1070

author. In particular, the research did not involve real data of real people, is not concerned by1071

safety, security, discrimnation, surveillance, deception & harassment, environment, human1072

rights, bias and fairness. Impact mitigation measures are applicable.1073

Guidelines:1074

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1075

• If the authors answer No, they should explain the special circumstances that require a1076

deviation from the Code of Ethics.1077
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1078

eration due to laws or regulations in their jurisdiction).1079

10. Broader impacts1080

Question: Does the paper discuss both potential positive societal impacts and negative1081

societal impacts of the work performed?1082

Answer: [NA]1083

Justification: The paper deals with ML for physics, with main application for design1084

processes in the industry.1085

Guidelines:1086

• The answer NA means that there is no societal impact of the work performed.1087

• If the authors answer NA or No, they should explain why their work has no societal1088

impact or why the paper does not address societal impact.1089

• Examples of negative societal impacts include potential malicious or unintended uses1090

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1091

(e.g., deployment of technologies that could make decisions that unfairly impact specific1092

groups), privacy considerations, and security considerations.1093

• The conference expects that many papers will be foundational research and not tied1094

to particular applications, let alone deployments. However, if there is a direct path to1095

any negative applications, the authors should point it out. For example, it is legitimate1096

to point out that an improvement in the quality of generative models could be used to1097

generate deepfakes for disinformation. On the other hand, it is not needed to point out1098

that a generic algorithm for optimizing neural networks could enable people to train1099

models that generate Deepfakes faster.1100

• The authors should consider possible harms that could arise when the technology is1101

being used as intended and functioning correctly, harms that could arise when the1102

technology is being used as intended but gives incorrect results, and harms following1103

from (intentional or unintentional) misuse of the technology.1104

• If there are negative societal impacts, the authors could also discuss possible mitigation1105

strategies (e.g., gated release of models, providing defenses in addition to attacks,1106

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1107

feedback over time, improving the efficiency and accessibility of ML).1108

11. Safeguards1109

Question: Does the paper describe safeguards that have been put in place for responsible1110

release of data or models that have a high risk for misuse (e.g., pretrained language models,1111

image generators, or scraped datasets)?1112

Answer: [NA]1113

Justification: The paper deals with ML for physics, with no apparent risk of misuse.1114

Guidelines:1115

• The answer NA means that the paper poses no such risks.1116

• Released models that have a high risk for misuse or dual-use should be released with1117

necessary safeguards to allow for controlled use of the model, for example by requiring1118

that users adhere to usage guidelines or restrictions to access the model or implementing1119

safety filters.1120

• Datasets that have been scraped from the Internet could pose safety risks. The authors1121

should describe how they avoided releasing unsafe images.1122

• We recognize that providing effective safeguards is challenging, and many papers do1123

not require this, but we encourage authors to take this into account and make a best1124

faith effort.1125

12. Licenses for existing assets1126

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1127

the paper, properly credited and are the license and terms of use explicitly mentioned and1128

properly respected?1129

Answer: [Yes]1130

38



Justification: Origin and license of the AirfRANS dataset is correctly reported (origin in the1131

paper, origin and license in the Zenodo and Hugging Face repos). The rest of the propose1132

material is original, the chosen license for PLAID and the datasets is provided in the repos.1133

Guidelines:1134

• The answer NA means that the paper does not use existing assets.1135

• The authors should cite the original paper that produced the code package or dataset.1136

• The authors should state which version of the asset is used and, if possible, include a1137

URL.1138

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1139

• For scraped data from a particular source (e.g., website), the copyright and terms of1140

service of that source should be provided.1141

• If assets are released, the license, copyright information, and terms of use in the1142

package should be provided. For popular datasets, paperswithcode.com/datasets1143

has curated licenses for some datasets. Their licensing guide can help determine the1144

license of a dataset.1145

• For existing datasets that are re-packaged, both the original license and the license of1146

the derived asset (if it has changed) should be provided.1147

• If this information is not available online, the authors are encouraged to reach out to1148

the asset’s creators.1149

13. New assets1150

Question: Are new assets introduced in the paper well documented and is the documentation1151

provided alongside the assets?1152

Answer: [Yes]1153

Justification: The PLAID library, the datasets and the benchmarking application are all1154

described and documented in details.1155

Guidelines:1156

• The answer NA means that the paper does not release new assets.1157

• Researchers should communicate the details of the dataset/code/model as part of their1158

submissions via structured templates. This includes details about training, license,1159

limitations, etc.1160

• The paper should discuss whether and how consent was obtained from people whose1161

asset is used.1162

• At submission time, remember to anonymize your assets (if applicable). You can either1163

create an anonymized URL or include an anonymized zip file.1164

14. Crowdsourcing and research with human subjects1165

Question: For crowdsourcing experiments and research with human subjects, does the paper1166

include the full text of instructions given to participants and screenshots, if applicable, as1167

well as details about compensation (if any)?1168

Answer: [NA]1169

Justification: The paper does not involve crowdsourcing nor research with human subjects.1170

Guidelines:1171

• The answer NA means that the paper does not involve crowdsourcing nor research with1172

human subjects.1173

• Including this information in the supplemental material is fine, but if the main contribu-1174

tion of the paper involves human subjects, then as much detail as possible should be1175

included in the main paper.1176

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1177

or other labor should be paid at least the minimum wage in the country of the data1178

collector.1179

15. Institutional review board (IRB) approvals or equivalent for research with human1180

subjects1181
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Question: Does the paper describe potential risks incurred by study participants, whether1182

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1183

approvals (or an equivalent approval/review based on the requirements of your country or1184

institution) were obtained?1185

Answer: [NA]1186

Justification: The paper does not involve crowdsourcing nor research with human subjects.1187

Guidelines:1188

• The answer NA means that the paper does not involve crowdsourcing nor research with1189

human subjects.1190

• Depending on the country in which research is conducted, IRB approval (or equivalent)1191

may be required for any human subjects research. If you obtained IRB approval, you1192

should clearly state this in the paper.1193

• We recognize that the procedures for this may vary significantly between institutions1194

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1195

guidelines for their institution.1196

• For initial submissions, do not include any information that would break anonymity (if1197

applicable), such as the institution conducting the review.1198

16. Declaration of LLM usage1199

Question: Does the paper describe the usage of LLMs if it is an important, original, or1200

non-standard component of the core methods in this research? Note that if the LLM is used1201

only for writing, editing, or formatting purposes and does not impact the core methodology,1202

scientific rigorousness, or originality of the research, declaration is not required.1203

Answer: [NA]1204

Justification: The core method development in this research does not involve LLMs as any1205

important, original, or non-standard components.1206

Guidelines:1207

• The answer NA means that the core method development in this research does not1208

involve LLMs as any important, original, or non-standard components.1209

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1210

for what should or should not be described.1211

40

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	PLAID standard
	PLAID datasets
	Structural mechanics
	Tensile2d casenave202514840177 (Zenodo, Hugging Face)
	2D_MultiScHypEl staber202514840446 (Zenodo, Hugging Face)
	2D_ElPlDynamics piat202515286369 (Zenodo, Hugging Face)

	Computational fluid mechanics
	Rotor37 roynard202514840190 (Zenodo, Hugging Face)
	2D_profile casenave202515155119 (Zenodo, Hugging Face)
	VKI-LS59 bucci202514840512 (Zenodo, Hugging Face)
	AirfRANS bonnet2022airfrans

	Dataset collection

	Benchmark
	Methods
	Evaluation metric
	Benchmark results

	Conclusion and perspectives
	Details on the ML models used in the benchmark
	MGN
	Method
	Experiments

	MMGP
	Method
	Experiments

	Vi-Transformer and Augur
	Method
	Experiments

	DAFNO
	Method
	Experiments

	MARIO
	Method
	Experiment


	Additional details on PLAID
	Tensile2d
	VKI-LS59
	2D_ElPlDynamics

	Benchmarking online applications

