
Physics-Learning AI Datamodel (PLAID) datasets: a collection of physics simulations for machine learning

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Machine learning-based surrogate models have emerged as a powerful tool to
2 accelerate simulation-driven scientific workflows. However, their widespread
3 adoption is hindered by the lack of large-scale, diverse, and standardized datasets
4 tailored to physics-based simulations. While existing initiatives provide valua-
5 ble contributions, many are limited in scope—focusing on specific physics do-
6 mains, relying on fragmented tooling, or adhering to overly simplistic datamodels
7 that restrict generalization. To address these limitations, we introduce PLAID
8 (Physics-Learning AI Datamodel), a flexible and extensible framework for rep-
9 presenting and sharing datasets of physics simulations. PLAID defines a unified
10 standard for describing simulation data and is accompanied by a library for creat-
11 ing, reading, and manipulating complex datasets across a wide range of physical
12 use cases (gitlab.com/drti/plaid). We release six carefully crafted datasets un-
13 der the PLAID standard, covering structural mechanics and computational fluid
14 dynamics, and provide baseline benchmarks using representative learning meth-
15 ods. Benchmarking tools are made available on Hugging Face, enabling direct
16 participation by the community and contribution to ongoing evaluation efforts
17 (huggingface.co/PLAIDcompetitions).

18 **1 Introduction**

19 Numerical simulation is a cornerstone of scientific and engineering research, providing essential
20 insights into complex physical phenomena across a wide range of domains—including earth and
21 environmental sciences [1], life sciences and medicine [2], finance and economics [3], and industrial
22 engineering [4, 5, 6]. These simulations rely on solving partial differential equations (PDEs) using
23 space and time discretization and numerical methods, typically implemented in large-scale computa-
24 tional solvers. While accurate, these simulations are often computationally intensive, with a single
25 high-fidelity run potentially requiring several hours or days. Many practical scenarios demand solving
26 the same physical model across a wide range of settings—such as in design exploration, optimization,
27 real-time simulation, and uncertainty quantification. In such many-query contexts, reliance on costly
28 simulations becomes impractical. To address this, a broad spectrum of surrogate modeling techniques
29 has been proposed to approximate simulation outputs at a fraction of the computational cost.

30 Classical surrogate models perform non-linear regression over parametric spaces using statistical
31 learning techniques, such as polynomial regression, nearest neighbors, support vector machines,
32 random forests [7], and Gaussian processes [8]. These models are widely supported by software
33 libraries such as UQLab [9], OpenTURNS [10], Dakota [11] and Lagun [12]. However, they
34 are typically restricted to low-dimensional, tabular parameter spaces and cannot be directly used
35 in more complex simulation setups. In contrast, many modern applications involve richer input
36 configurations, including unstructured geometries, spatially varying fields, and complex boundary or

37 material conditions. These settings require learning from heterogeneous, high-dimensional data with
38 nonparametric variability.

39 Recent advances in scientific machine learning have begun to address these challenges. One line
40 of work, often referred to as physics-based model reduction, builds surrogates that approximate
41 the solution of the governing equations directly [13, 14, 15, 16, 17, 18]. Other approaches have
42 also been proposed using non-parametric methods based on the use of morphing [19, 20, 21] or
43 optimal transport [22, 23], and have the advantage of requiring a smaller number of design points.
44 Increasingly, deep learning methods—particularly Graph Neural Networks (GNNs)—have shown
45 promise in capturing the spatiotemporal dynamics of physical systems. Building on the message-
46 passing paradigm introduced in [24], architectures such as MeshGraphNets [25] extend GNNs
47 to general mesh-based simulations. Hierarchical versions like MultiScale MeshGraphNets [26]
48 enhance scalability and accuracy, while recent works demonstrate effectiveness in inverse [27] and
49 steady-state problems [28]. Other developments include geodesic convolutions [29], multi-resolution
50 models [30, 31], and improved pooling strategies [32]. Tools such as PhysicsNeMo [33], PyTorch
51 Geometric [34], and Deep Graph Library [35] provide convenient foundations for implementing these
52 methods.

53 Despite these advances, widespread adoption remains hindered by a critical bottleneck: the lack of
54 large-scale, diverse, and standardized datasets for training and benchmarking. Existing datasets often
55 cover narrow physical regimes, rely on ad hoc formats, or are tied to specific libraries—limiting
56 reusability and interoperability. Furthermore, many datasets are tailored to isolated challenges (e.g.,
57 time dependence) but fail to accommodate others (e.g., geometric variation). This fragmentation is
58 particularly problematic in the context of recent developments in physics foundation models [36, 37,
59 38, 39, 40], which require large, flexible, and standardized sources of training data.

60 To address these limitations, we introduce PLAID (Physics-Learning AI Datamodel), a comprehensive
61 framework for representing and manipulating datasets of physics simulations for machine learning.
62 PLAID defines a generic, extensible datamodel that supports a wide range of use cases—including
63 time-dependent problems, remeshing, mixed-element unstructured meshes, node/element tagging,
64 multiple spatial dimensions and topologies. We provide an accompanying software library to facilitate
65 dataset creation, reading, and high-level interaction, that can leverage Hugging Face infrastructure
66 for efficient streaming, caching, and sharing.

67 In Section 2, we review relevant dataset efforts in the literature. Section 3 introduces the PLAID
68 datamodel and implementation, along with six publicly released datasets in structural mechanics and
69 computational fluid dynamics, presented in Section 4, that showcase rich variability in physics and
70 numerical complexity. In Section 5, we provide performance benchmarks across a range of machine
71 learning methods, hosted on Hugging Face to allow community participation and continual updates.
72 We conclude with perspectives in Section 6.

73 2 Related Work

74 Progress in machine learning has been largely driven by the availability of large, diverse, and
75 carefully curated datasets [41, 42, 43]. Natural language processing models are trained on web-scale
76 data [44, 45, 46, 47], and vision models routinely leverage billions of image–text pairs [48, 49, 50].

77 In contrast, datasets for physics learning remain comparatively underdeveloped. Early benchmarks
78 targeted standard physics problems and reference simulations [51, 52, 53]. More recent datasets
79 have focused on complex, domain-specific settings [54, 55, 56, 57, 58, 59, 60, 61, 62]. The recently
80 proposed Well [63] includes an impressive list of datasets for various physics, but is limited to
81 structured grids (uniformly sampled domains).

82 Structural mechanics simulations, with non-linear constitutive laws, are of paramount importance
83 for industrial design, and are poorly represented in available datasets. Most available datasets use a
84 datamodel that limit their evolution and generality. Complex industrial settings include vertices and
85 element tags, heterogeneous data with remeshing, multiple meshes of various dimensions, topologies
86 and mixed element types, compatible with commercial codes routinely used by design engineers.
87 Besides, most datasets come with a library dedicated to the dataset, featuring specific commands and
88 hypothesis, which limit their wide adoption.

89 **3 PLAID standard**

90 We propose PLAID, a datamodel for datasets for machine learning applied to physics-related problems.
 91 PLAID also refers to the library that implements this datamodel, available on GitLab [64], and to
 92 the file format used to store data. The primary goal of the library is to provide a general and
 93 flexible framework for defining physics-based dataset, along with a corresponding learning task. The
 94 datamodel is built on CGNS [65], leveraging its well-established formalization of a wide range of
 95 physical configurations.

96 PLAID datasets are provided either as human-readable data storage, or stored using Hugging Face
 97 datasets tools [66]. In the former case, YAML and CSV files can be opened with any text editor,
 98 while CGNS files containing physical configurations can be visualized using tools such as ParaView,
 99 see Figure 1. In the latter, we benefit directly from powerful data management such as caching and
 100 online streaming.

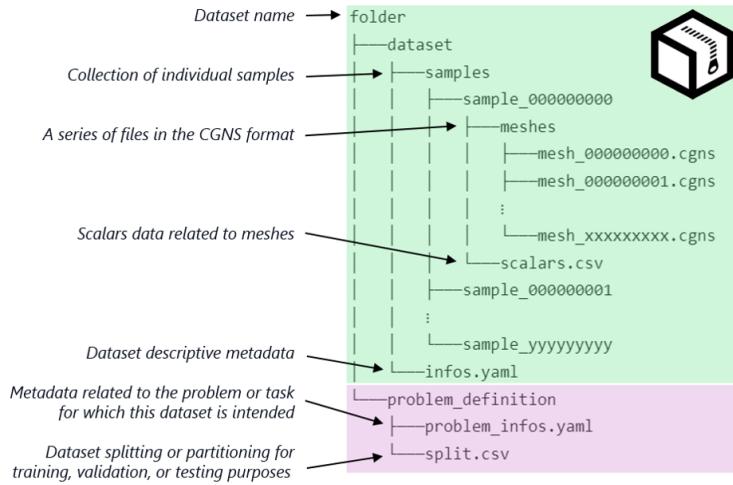


Figure 1: PLAID files structure.

101 Additionally, PLAID offers high-level utilities for constructing, handling and read/write datasets
 102 efficiently. Documentation is available online, with usage examples and tutorials showing how one
 103 can create a PLAID dataset from its own data. We also mention Muscat, a finite element toolbox
 104 available on GitLab [67, 68], containing various reader and writers from and to various files formats
 105 used in numerical simulation codes for physics, and routines to generate the CGNS data structures
 106 used in PLAID. Samples can feature multiple meshes, scalars, fields and time series. We illustrate
 107 how PLAID can deal with complex heterogeneous data by explaining some available commands:

- 108 • `dataset[0].get_field_names(name, zone_name, base_name, location, time):` retrieves the first sample's field called `name`, for chosen `zone_name`, `base_name`, `location` (Vertex, CellCenter, FaceCenter, ...) and `time` in the CGNS structure. Fields and meshes can
 109 change over time, allowing remeshing and field appearance/disappearance at any time step.
- 110 • `sample.get_field(name):` automatic handling of default values to prevent exposing
 111 `zone_name`, `base_name` and `location` arguments to simple cases with no ambiguity.
- 112 • `sample.get_mesh(apply_links = True):` allows to link meshes between CGNS data struc-
 113 tures to prevent multiple copies in case of fixed mesh cases.

116 More examples are provided in Appendix B.

117 **4 PLAID datasets**

118 **4.1 Structural mechanics**

119 **4.1.1 Tensile2d [69] (Zenodo, Hugging Face)**

120 Tensile2d is a simple dataset of 2D quasistatic non-linear structural mechanics simulations, in small
 121 deformations and plane strain regimes, solved with Z-set [70] using the finite element method. The
 122 material is modeled with a non-linear constitutive law. The dataset computes the deformation of a
 123 structure subjected to an imposed negative constant pressure at the top, and zero displacement at the
 124 bottom, see Figure 2 (left). Only the steady-state solution is kept.

125 Input variability in the dataset are the unstructured meshes (variable shape, number of nodes and
 126 connectivity), the pressure P at the top boundary condition (scalar) and 5 scalars modeling the non-
 127 linear constitutive law: (p_1, p_2, p_3, p_4 and p_5). Outputs of interest are 4 scalars ($\max_{\text{von_mises}}$,
 128 \max_{q} , $\max_{\text{U2_top}}$ and $\max_{\text{sig22_top}}$) and 6 fields ($U_1, U_2, q, \text{sig11}, \text{sig22}$ and sig12).
 129 Seven nested training sets are provided, as well as a testing set and two out-of-distribution samples.

130 **4.1.2 2D_MultiScHypE1 [71] (Zenodo, Hugging Face)**

131 2D_MultiScHypE1, standing for 2D multiscale hyperelasticity, is a dataset of 2D quasistatic non-
 132 linear structural mechanics simulations under large deformation and plane strain conditions, solved
 133 with DOLFINx [72] using the finite element method. The material behavior follows a compressible
 134 hyperelastic constitutive law, capturing complex non-linear responses. Each simulation corresponds
 135 to the homogenization of a porous representative volume element (RVE), subject to kinematically
 136 uniform boundary conditions (KUBC) [73], see Figure 2 (right).

137 Input variability in the dataset are the unstructured meshes (variable shape, number of nodes, connec-
 138 tivity and topology—the number of circular inclusions) and the 3 scalars modeling the KUBC, namely
 139 the components C_{11} , C_{12} , and C_{22} of the macroscopic right Cauchy-Green deformation tensor.
 140 Outputs of interest are 1 scalar (effective_energy) and 7 fields (displacements u_1, u_2 ; first Piola-
 141 Kirchhoff stress components $P_{11}, P_{12}, P_{22}, P_{21}$ and the strain energy density field ψ). Various
 142 training and testing sets are provided (both across all topologies and within each topology class).

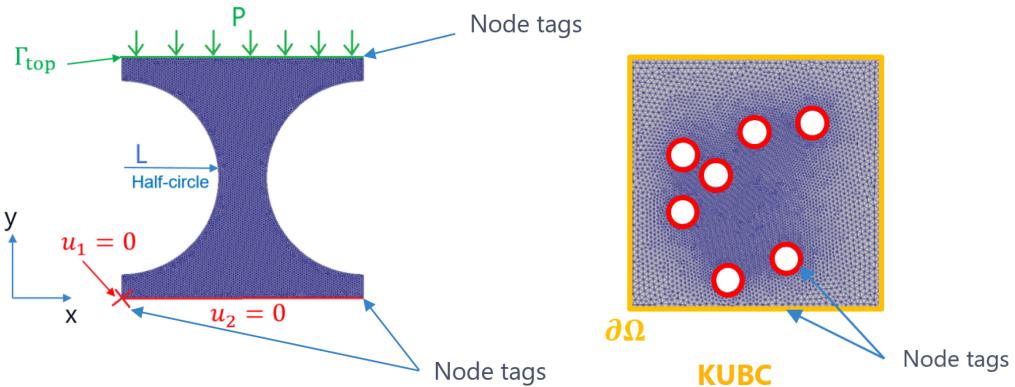


Figure 2: Settings for Tensile2d (left) and 2D_MultiScHypE1 (right).

143 **4.1.3 2D_ElPlDynamics [74] (Zenodo, Hugging Face)**

144 2D_ElPlDynamics, standing for 2D elasto-plasto dynamics, is a dataset of 2D dynamic non-linear
 145 structural mechanics simulations, in large deformations and plane strain regimes, solved with Open-
 146 Radioss [75] using the finite element method. The material is modeled with a non-linear elastoplastic
 147 law, with damage (modeled using element erosion), failure and a non-local method for reducing mesh
 148 sensitivity. The dataset computes the transient deformation of a 2D structure, subjected to imposed
 149 displacement on the right and zero displacement on the left, see Figure 3 (left).

150 Input variability in the dataset are the unstructured meshes (variable shape, number of nodes, con-
 151 nectivity and topology). Outputs of interest are 3 fields (U_x and U_y the displacement fields at the

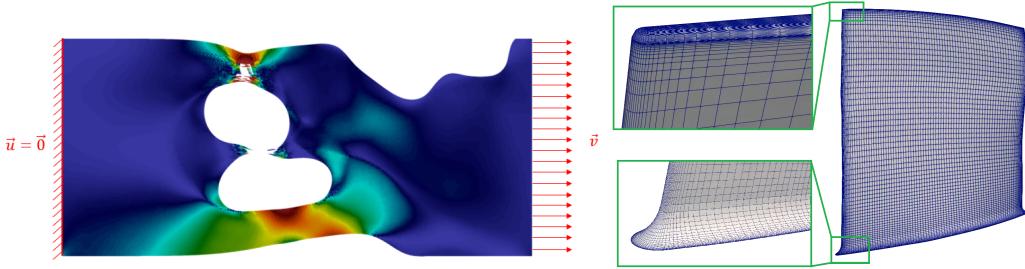
152 nodes, and EROSION_STATUS a boolean field at the elements describing the state – valid or broken –
 153 of each element). A training and a testing set are provided.

154 **4.2 Computational fluid mechanics**

155 **4.2.1 Rotor37 [76] (Zenodo, Hugging Face)**

156 Rotor37 is a dataset of 3D compressible steady-state Reynolds-Averaged Navier-Stokes (RANS)
 157 simulations, solved with elsA [77] using the finite volumes method. Large scale simulations around
 158 the rotor37 blade inside a 3D duct have been computed, with inflow, outflow and periodic boundary
 159 conditions. An adequate turbulence model and laws of the wall have been chosen. The dataset only
 160 keeps the steady-state solution at the boundary of the blade inside the duct, and scalars of interest,
 161 see Figure 3 (right).

162 Input variability in the dataset are the block-structured anisotropic meshes (variable shape, normals
 163 at the blade surface are provided) and 2 scalars (the pressure P and the rotation speed Omega of the
 164 blade). Outputs of interest are 3 scalars (Massflow, Compression_ratio and Efficiency) and 3
 165 fields (Density, Pressure, Temperature). Eight nested training sets and a testing set are provided.



166 **Figure 3:** Settings for 2D_E1P1Dynamics (left) and Rotor37 (right).

166 **4.2.2 2D_profile [78] (Zenodo, Hugging Face)**

167 2D_profile is a dataset of 2D compressible steady-state Reynolds-Averaged Navier-Stokes (RANS)
 168 simulations, solved with elsA [77] using the finite volumes method. The flow is computed around 2D
 169 profiles, which present large deformation around shapes resembling airfoils or propeller blades, on a
 170 large refined meshes, with inflow, outflow and periodic boundary conditions, at a supersonic regime.
 171 An adequate turbulence model and laws of the wall have been chosen. The dataset only keeps the
 172 steady-state solution on a zone cropped close to the profile, see Figure 4 (left).

173 Input variability in the dataset are the unstructured anisotropic meshes (variable shape, number
 174 of nodes and connectivity). Outputs of interest are 4 fields (Mach, Pressure, Velocity-x and
 175 Velocity-y). A training and a testing set are provided.

176 **4.2.3 VKI-LS59 [79] (Zenodo, Hugging Face)**

177 VKI-LS59 is a dataset of 2D compressible steady-state Reynolds-Averaged Navier-Stokes (RANS)
 178 simulations, solved with BROADCAST [80] using the finite volumes method with high-order
 179 corrections. The flow is computed around the VKI-LS59 blade, with inflow, outflow and periodic
 180 boundary conditions. A Spalart-Allmaras turbulence model has been chosen, see Figure 4 (right).

181 Input variability in the dataset are the block-structured anisotropic meshes (variable shape, number of
 182 nodes and connectivity, the distance field to the blade surface is provided) and 2 scalars (angle_in
 183 and mach_out). Outputs of interest are 6 scalars (Q, power, Pr, Tr, eth_is and angle_out) and 7
 184 fields (ro, rou, rov, roe, nut, mach and M_iso – this last being only defined at the surface of the
 185 blade). Eight nested training sets are provided, as well as a testing set.

186 **4.2.4 AirfRANS [55]**

187 AirfRANS is a dataset of external aerodynamics, featuring steady-state Reynolds-Averaged Navier-
 188 Stokes (RANS) simulations over airfoils at a subsonic regime, proposed in [55], which we refer to for

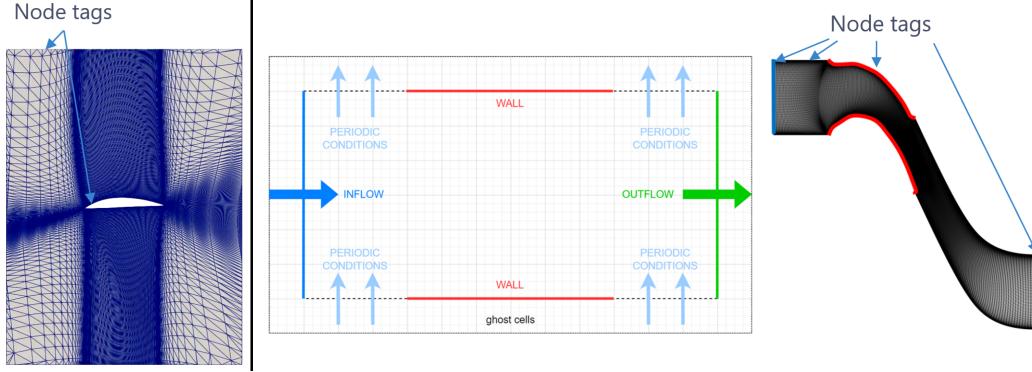


Figure 4: Settings for 2D_profile (left) and VKI-LS59 (right).

189 a detailed description. In addition to the six original datasets, we provide three variants of `AirfRANS`
 190 in PLAID format: original [81](Zenodo, Hugging Face), clipped [82](Zenodo, Hugging Face) and
 191 remeshed [83](Zenodo, Hugging Face).

192 Input variability in the dataset are the anisotropic meshes (variable shape, number of nodes and
 193 connectivity, the distance field to the airfoil surface is provided) and 2 scalars (`angle_of_attack`
 194 and `inlet_velocity`). Outputs of interest are 2 scalars (`C_D` and `C_L`) and 4 fields (`nut`, `Ux`, `Uy` and
 195 `p`). Various training and testing sets are provided.

196 4.3 Dataset collection

197 The collection of proposed datasets is available online in a Zenodo community and a Hugging Face
 198 community. Description summaries are provided in Tables 1 and 2. The collection will be enriched
 199 in the future with additional datasets. Since these datasets have been constructed with the goal to
 200 provide open benchmarks to the community, the outputs are not provided on the testing sets – but we
 201 provide tools to evaluate scores on these testing sets. Some field outputs are illustrated in Table 3.

Dataset	Simulation code	Model	Nb samples	Volume Zenodo	Volume HF
Tensile2d	Z-set	2D quasistatic non-linear structural mechanics, small deformations, non-linear constitutive law	702	290 MB	383 MB
2D_MultiScHypEl	DOLFINx	2D quasistatic non-linear structural mechanics, finite elasticity	1,140	350 MB	419 MB
2D_ElP1Dynamics	OpenRadioss	2D dynamic non-linear structural mechanics, non-linear non-local constitutive law	1,018	5.7 GB	8.6 GB
Rotor37	elsA	3D Navier-Stokes (RANS)	1,200	3.3 GB	4.0 GB
2D_profile	elsA	2D Navier-Stokes (RANS)	400	660 MB	814 MB
VKI-LS59	BROADCAST	2D Navier-Stokes (RANS)	839	1.9 GB	2.3 GB
AirfRANS original				9.3 GB	15.6 GB
AirfRANS clipped	OpenFOAM	2D Navier-Stokes (RANS)	1,000	9.7 GB	18.2 GB
AirfRANS remeshed				520 MB	611 MB

Table 1: Dataset collection description: model and simulation volume.

202 5 Benchmark

203 We first mention that we do not provide benchmark tools and results for the `AirfRANS` datasets, since
 204 outputs are public on the testing sets, and various benchmarks are already available in articles [19, 55]
 205 and in a competition at NeurIPS 2024 [84].

Dataset	Mesh (mean nodes)	Inputs	Outputs	Splits (train/test)
Tensile2d	tri (9,428)	mesh, 6 scalars	4 scalars, 6 fields	500 / 200
2D_MultiScHypEl	tri (5,692)	mesh, 3 scalars	1 scalar, 7 fields	764 / 376
2D_ElP1Dynamics	tri (25,429)	mesh	3 fields	1,000 / 18
Rotor37	quad (29,773*)	mesh, 2 scalars	4 scalars, 3 fields	1,000 / 200
2D_profile	tri (37,042)	mesh	4 fields	300 / 100
VKI-LS59	quad (36,421*)	mesh, 2 scalars	6 scalars, 7 fields	671 / 168
AirfRANS original	quad (179,776)			
AirfRANS clipped	tri (179,779)	mesh, 2 fields	2 scalars, 4 fields	various splits
AirfRANS remeshed	tri (7,624)			

Table 2: Dataset collection description: data and splits, a * in the second column means that the number of nodes and connectivity are constant in the dataset – the position of the nodes still varies.

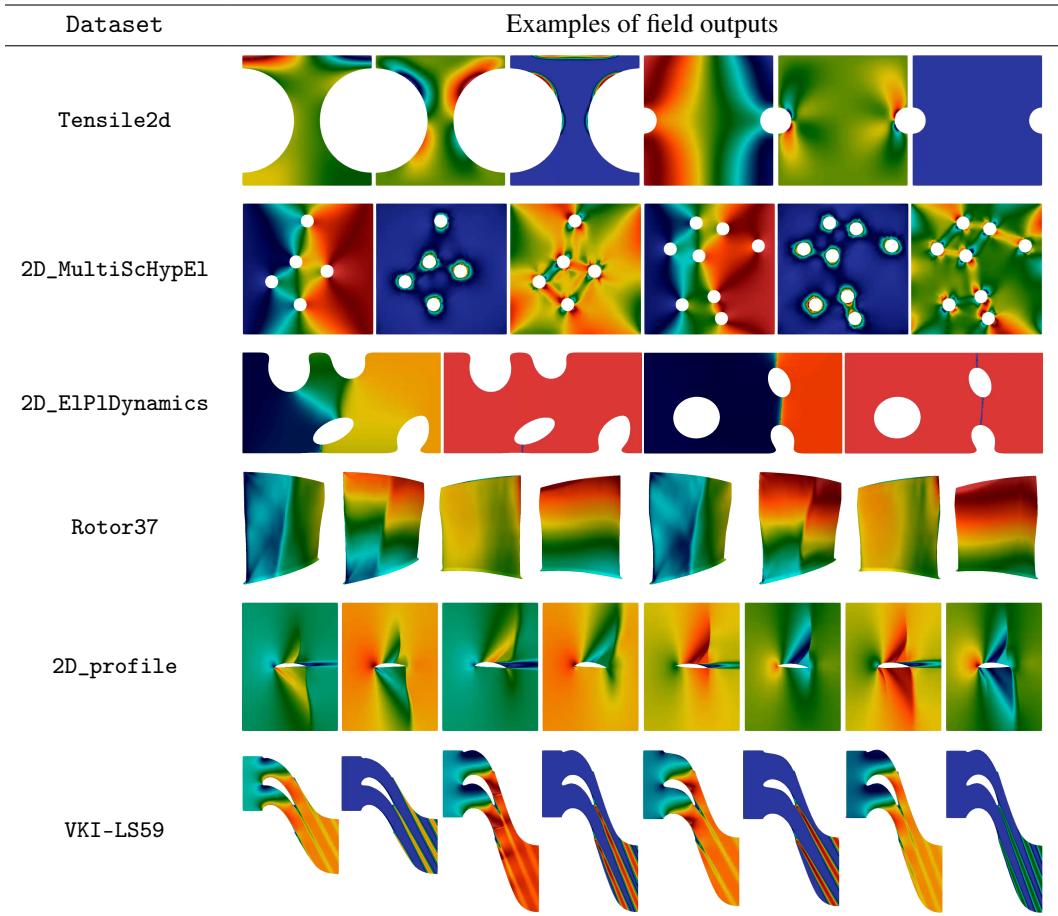


Table 3: Dataset collection examples of field outputs illustrations.

206 5.1 Methods

207 For practical reasons, we limit the benchmarks to the few following methods:

208 • MeshGraphNets (MGNs) [25] are GNNs that utilize an encode-process-decode architecture,
 209 transforming mesh data into graph structures, processing them through message passing,
 210 and decoding the results to predict field outputs.

- Mesh Morphing Gaussian Processes (MMGP) [19] rely on mesh morphing, finite element interpolation and dimensionality reduction to pretreat mesh-based data into a low dimensional embedding, and utilizes Gaussian processes to predict output scalars and fields.
- Vi-Transformer [85] and Augur ¹ rely on mesh partitioning to build tokens related to local mesh information and utilize a transformer to predict scalar and field outputs.
- Domain Agnostic Fourier Neural Operators (DAFNO) [86] handle problems involving irregular geometries and evolving domains. It incorporates a smoothed characteristic function into the integral layer architecture of FNOs, allowing the use of Fast Fourier Transform (FFT) for efficient computations while explicitly encoding geometric information.
- Modulated Aerodynamic Resolution Invariant Operator (MARIO) [87] builds upon [88] and exploits implicit neural representations, which model continuous signals by mapping input coordinates directly to output values, without relying on discrete grids or explicit storage.

223 For more details on the methods and their respective advantages/drawbacks, refer to Appendix A.

224 5.2 Evaluation metric

225 Accuracy of the trained models is evaluated by computing RRMSEs (Relative Root Mean Square
226 Errors). Let $\{\mathbf{f}_{\text{ref}}^i\}_{i=1}^{n_\star}$ and $\{\mathbf{f}_{\text{pred}}^i\}_{i=1}^{n_\star}$ be respectively the reference and prediction of a field output
227 on the testing set. The RRMSE is defined as

$$\text{RRMSE}_f(\mathbf{f}_{\text{ref}}, \mathbf{f}_{\text{pred}}) = \left(\frac{1}{n_\star} \sum_{i=1}^{n_\star} \frac{\frac{1}{N^i} \|\mathbf{f}_{\text{ref}}^i - \mathbf{f}_{\text{pred}}^i\|_2^2}{\|\mathbf{f}_{\text{ref}}^i\|_\infty^2} \right)^{1/2},$$

228 where N^i is the number of nodes in the mesh of sample i , n_\star is the number of samples in the testing
229 set, and $\|\mathbf{f}_{\text{ref}}^i\|_\infty$ is the maximum component in the vector $\mathbf{f}_{\text{ref}}^i$. Similarly for scalar outputs, the
230 following relative RMSE is computed:

$$\text{RRMSE}_s(\mathbf{s}_{\text{ref}}, \mathbf{s}_{\text{pred}}) = \left(\frac{1}{n_\star} \sum_{i=1}^{n_\star} \frac{|s_{\text{ref}}^i - s_{\text{pred}}^i|^2}{|s_{\text{ref}}^i|^2} \right)^{1/2}.$$

231 The score of a submission, `total_error`, is the mean over fields and scalars RRMSEs.

232 5.3 Benchmark results

233 All individual RRMSE and `total_error` for each method applied to each dataset are reported in
234 Table 4. These results are considered neither exhaustive, nor definitive.

235 We provide the community with online benchmarking applications hosted on Hugging Face as
236 competitions with no end date, see Hugging Face benchmark collection. Each benchmark comes with
237 a visualization application of the datasets, a description of inputs and outputs and detailed instructions
238 for accessing the data and constructing a prediction file. Anyone can register and submit a prediction:
239 submissions are automatically ranked based on `total_error` as defined in Section 5.2. Hence, the
240 benchmark results presented here will be updated in the future. See Section C for additional details
241 on the benchmarking applications.

242 We notice that MMGP, Vi-Transformer/Augur and MARIO models perform particularly well on our
243 steady-state datasets, while DAFNO has only been evaluated on our unique time-dependent dataset.

244 6 Conclusion and perspectives

245 **Limitations.** PLAID is designed to accommodate a wide range of complex scenarios and remains
246 adaptable to emerging use cases that may not be fully addressed by the current datamodel. We
247 plan to expand our collection with more diverse and large-scale datasets of industrial relevance,
248 complemented by benchmarking applications accessible to the community.

249 **Roadmap.** Future developments include the creation of generic PyTorch dataloaders for PLAID,
250 and the standardization of evaluation metrics and training/inference pipelines based on PLAID.

¹commercial solution from Augur company

Field, scalar output	MGN	MMGP	Vi-Transf.	Augur	DAFNO	MARIO
Tensile2d						
U1	0.0788	0.0016	0.0344	<u>0.0093</u>	-	-
U2	0.1237	0.0013	0.0424	<u>0.0135</u>	-	-
sig11	0.1726	0.0037	0.0715	<u>0.0187</u>	-	-
sig22	0.0560	0.0015	0.0341	<u>0.0099</u>	-	-
sig12	0.0570	0.0026	0.0494	<u>0.0121</u>	-	-
<i>max_von_mises</i>	0.0185	0.0050	<u>0.0145</u>	0.0219	-	-
<i>max_U2_top</i>	0.0292	0.0042	<u>0.0210</u>	0.0344	-	-
<i>max_sig22_top</i>	0.0030	0.0016	<u>0.0022</u>	0.0030	-	-
total_error	0.0673	0.0027	0.0337	<u>0.0154</u>	-	-
2D_MultiSchHypEl						
u1	0.0400	-	0.0350	0.0140	-	-
u2	0.0444	-	0.0356	0.0164	-	-
P11	<u>0.0383</u>	-	0.0611	0.0185	-	-
P12	<u>0.0670</u>	-	0.1016	0.0316	-	-
P22	<u>0.0383</u>	-	0.0614	0.0189	-	-
P21	<u>0.0663</u>	-	0.1005	0.0311	-	-
psi	<u>0.0443</u>	-	0.0580	0.0239	-	-
<i>effective_energy</i>	<u>0.0111</u>	-	0.0108	0.0313	-	-
total_error	<u>0.0437</u>	-	0.0580	0.0232	-	-
2D_ElPlDynamics						
U_x	-	-	-	-	0.0025	-
U_y	-	-	-	-	0.0291	-
total_error	-	-	-	-	0.0158	-
Rotor37						
Density	0.0114	0.0039	0.0370	<u>0.0055</u>	-	-
Pressure	0.0114	0.0039	0.0366	<u>0.0053</u>	-	-
Temperature	0.0024	0.0009	0.0074	<u>0.0012</u>	-	-
<i>Massflow</i>	0.0061	0.0007	0.0058	<u>0.0028</u>	-	-
<i>Compression_ratio</i>	0.0060	0.0007	0.0055	<u>0.0028</u>	-	-
<i>Efficiency</i>	0.0071	0.0009	0.0067	<u>0.0019</u>	-	-
total_error	0.0074	0.0019	0.0165	<u>0.0033</u>	-	-
2D_profile						
Mach	<u>0.0604</u>	0.0514	0.0699	-	-	-
Pressure	0.0466	0.0335	<u>0.0430</u>	-	-	-
Velocity-x	<u>0.0735</u>	0.0585	0.0854	-	-	-
Velocity-y	<u>0.0566</u>	0.0483	0.0570	-	-	-
total_error	<u>0.0593</u>	0.0480	0.0638	-	-	-
VKI-LS59						
nut	0.1656	0.0822	0.1489	<u>0.0641</u>	-	0.0259
mach	0.0451	0.0309	0.0643	<u>0.0245</u>	-	0.0112
Q	0.0716	0.0023	0.0228	<u>0.0076</u>	-	0.0052
<i>power</i>	0.0403	0.0057	0.0168	0.0108	-	0.0077
<i>Pr</i>	0.0068	<u>0.0026</u>	0.0042	0.0050	-	0.0018
<i>Tr</i>	0.0001	0.0000	0.0001	0.0000	-	0.0000
<i>eth_is</i>	0.1912	<u>0.1224</u>	0.1311	0.1732	-	0.0453
<i>angle_out</i>	0.0263	<u>0.0033</u>	0.0061	0.0040	-	0.0023
total_error	0.0684	<u>0.0312</u>	0.0493	0.0362	-	0.0124

Table 4: RRMSE and total_error on PLAID benchmarks, best on each line is **bold**, second best is underlined.

251 **References**

252 [1] Jerald A Brotzge, Don Berchoff, DaNa L Carlis, Frederick H Carr, Rachel Hogan Carr, Jordan J
253 Gerth, Brian D Gross, Thomas M Hamill, Sue Ellen Haupt, Neil Jacobs, et al. Challenges
254 and opportunities in numerical weather prediction. *Bulletin of the American Meteorological
255 Society*, 104(3):E698–E705, 2023.

256 [2] Marco Viceconti and Peter Hunter. The virtual physiological human: ten years after. *Annual
257 review of biomedical engineering*, 18(1):103–123, 2016.

258 [3] Egle Samanidou, Elmar Zschischang, Dietrich Stauffer, and Thomas Lux. Agent-based models
259 of financial markets. *Reports on Progress in Physics*, 70(3):409, 2007.

260 [4] Olgierd Cecil Zienkiewicz and Robert Leroy Taylor. *The finite element method for solid and
261 structural mechanics*. Elsevier, 2005.

262 [5] William H Press. *Numerical recipes 3rd edition: The art of scientific computing*. Cambridge
263 university press, 2007.

264 [6] Olgierd Cecil Zienkiewicz and PB Morice. *The finite element method in engineering science*,
265 volume 1977. McGraw-hill London, 1971.

266 [7] Leo Breiman. Random forests. *Machine learning*, 45:5–32, 2001.

267 [8] C.K.I. Williams and C.E. Rasmussen. *Gaussian processes for machine learning*, volume 2.
268 MIT press Cambridge, MA, 2006.

269 [9] Stefano Marelli and Bruno Sudret. *UQLab: A Framework for Uncertainty Quantification in
270 Matlab*, pages 2554–2563. 2015.

271 [10] Michaël Baudin, Anne Dutfoy, Bertrand Iooss, and Anne-Laure Popelin. *OpenTURNS:
272 An Industrial Software for Uncertainty Quantification in Simulation*, pages 1–38. Springer
273 International Publishing, Cham, 2016.

274 [11] B. M. Adams, W. J. Bohnhoff, K. R. Dalbey, M. S. Ebeida, J. P. Eddy, M. S. Eldred, R. W.
275 Hooper, P. D. Hough, K. T. Hu, J. D. Jakeman, M. Khalil, K. A. Maupin, J. A. Monschke, E. E.
276 Prudencio, E. M. Ridgway, P. Robbe, A. A. Rushdi, D. T. Seidl, J. A. Stephens, L. P. Swiler,
277 and J. G. Winokur. Dakota 6.21.0 documentation. Technical Report SAND2024-15492O,
278 Sandia National Laboratories, Albuquerque, NM, November 2024. Available online from
279 <http://snl-dakota.github.io>.

280 [12] Sébastien Da Veiga, Clément Bénard, Thierry Gonon, et al. Lagun. <https://gitlab.com/drti/lagun>, 2025.

282 [13] David Amsallem, Matthew Zahr, Youngsoo Choi, and Charbel Farhat. Design optimization
283 using hyper-reduced-order models. *Structural and Multidisciplinary Optimization*, 51(4):919–
284 940, 2015.

285 [14] F. Casenave, N. Akkari, F. Bordeu, C. Rey, and D. Ryckelynck. A nonintrusive distributed
286 reduced-order modeling framework for nonlinear structural mechanics—application to elas-
287 toviscoplastic computations. *International Journal for Numerical Methods in Engineering*,
288 121(1):32–53, 2020.

289 [15] T. Daniel, F. Casenave, N. Akkari, and D. Ryckelynck. Model order reduction assisted by
290 deep neural networks (rom-net). *Advanced Modeling and Simulation in Engineering Sciences*,
291 7:1–27, 2020.

292 [16] Kookjin Lee and Kevin T Carlberg. Model reduction of dynamical systems on nonlinear mani-
293 folds using deep convolutional autoencoders. *Journal of Computational Physics*, 404:108973,
294 2020.

295 [17] Youngkyu Kim, Youngsoo Choi, David Widemann, and Tarek Zohdi. A fast and accurate
296 physics-informed neural network reduced order model with shallow masked autoencoder.
297 *Journal of Computational Physics*, 451:110841, 2022.

298 [18] Nicolas Barral, Tommaso Taddei, and Ishak Tifouti. Registration-based model reduction of
 299 parameterized PDEs with spatio-parameter adaptivity. *Journal of Computational Physics*,
 300 499:112727, 2024.

301 [19] Fabien Casenave, Brian Staber, and Xavier Roynard. MMGP: a Mesh Morphing Gaussian
 302 Process-based machine learning method for regression of physical problems under non-
 303 parametrized geometrical variability. *Advances in Neural Information Processing Systems*, 36,
 304 2024.

305 [20] Abbas Kabalan, Fabien Casenave, Felipe Bordeu, Virginie Ehrlacher, and Alexandre Ern.
 306 Elasticity-based morphing technique and application to reduced-order modeling. *Applied
 307 Mathematical Modelling*, 141:115929, 2025.

308 [21] Abbas Kabalan, Fabien Casenave, Felipe Bordeu, and Virginie Ehrlacher. O-MMGP: Optimal
 309 Mesh Morphing Gaussian Process regression for solving PDEs with non-parametric geometric
 310 variations. *arXiv preprint arXiv:2502.11632*, 2025.

311 [22] Raphaël Carpintero Perez, Sébastien da Veiga, Josselin Garnier, and Brian Staber. Learning
 312 signals defined on graphs with optimal transport and Gaussian process regression, 2025.

313 [23] Raphaël Carpintero Perez, Sébastien Da Veiga, Josselin Garnier, and Brian Staber. Gaussian
 314 process regression with Sliced Wasserstein Weisfeiler-Lehman graph kernels. In *International
 315 Conference on Artificial Intelligence and Statistics*, pages 1297–1305. PMLR, 2024.

316 [24] J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, and G.E. Dahl. Neural message passing
 317 for quantum chemistry. In *International conference on machine learning*, pages 1263–1272.
 318 PMLR, 2017.

319 [25] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P.W. Battaglia. Learning mesh-based
 320 simulation with graph networks. In *International Conference on Learning Representations*,
 321 2021.

322 [26] M. Fortunato, T. Pfaff, P. Wirnsberger, A. Pritzel, and P. Battaglia. Multiscale meshgraphnets.
 323 *arXiv preprint arXiv:2210.00612*, 2022.

324 [27] K.R. Allen, T. Lopez-Guevara, K. Stachenfeld, A. Sanchez-Gonzalez, P. Battaglia, J. Ham-
 325 rick, and T. Pfaff. Physical design using differentiable learned simulators. *arXiv preprint
 326 arXiv:2202.00728*, 2022.

327 [28] L. Harsch and S. Riedelbauch. Direct prediction of steady-state flow fields in meshed domain
 328 with graph networks. *arXiv preprint arXiv:2105.02575*, 2021.

329 [29] P. Baque, E. Remelli, F. Fleuret, and P. Fua. Geodesic convolutional shape optimization. In
 330 *International Conference on Machine Learning*, pages 472–481. PMLR, 2018.

331 [30] M. Lino, C. Cantwell, A.A. Bharath, and S. Fotiadis. Simulating continuum mechanics with
 332 multi-scale graph neural networks. *arXiv preprint arXiv:2106.04900*, 2021.

333 [31] M. Lino, S. Fotiadis, A.A. Bharath, and C.D. Cantwell. Multi-scale rotation-equivariant graph
 334 neural networks for unsteady eulerian fluid dynamics. *Physics of Fluids*, 34(8), 2022.

335 [32] Y. Cao, M. Chai, M. Li, and C. Jiang. Efficient learning of mesh-based physical simulation
 336 with bi-stride multi-scale graph neural network. 2023.

337 [33] PhysicsNeMo Contributors. Nvidia physicsnemo: An open-source framework for
 338 physics-based deep learning in science and engineering. <https://github.com/NVIDIA/physicsnemo>, February 2023.

340 [34] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
 341 In *ICLR Workshop on Representation Learning on Graphs and Manifolds*, 2019.

342 [35] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
 343 Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
 344 Deep graph library: A graph-centric, highly-performant package for graph neural networks.
 345 *arXiv preprint arXiv:1909.01315*, 2019.

346 [36] Jingmin Sun, Yuxuan Liu, Zecheng Zhang, and Hayden Schaeffer. Towards a foundation
 347 model for partial differential equations: Multioperator learning and extrapolation. *Phys. Rev.*
 348 *E*, 111:035304, Mar 2025.

349 [37] Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Parker, Ruben Ohana, Miles Cranmer,
 350 Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse,
 351 Mariel Pettee, Tiberiu Tesileanu, Kyunghyun Cho, and Shirley Ho. Multiple physics pretraining
 352 for spatiotemporal surrogate models. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
 353 U. Paquet, J. Tomczak, and C. Zhang, editors, *Advances in Neural Information Processing*
 354 *Systems*, volume 37, pages 119301–119335. Curran Associates, Inc., 2024.

355 [38] Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles
 356 Cranmer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois
 357 Lanusse, Mariel Pettee, Tiberiu Tesileanu, Kyunghyun Cho, and Shirley Ho. Multiple physics
 358 pretraining for physical surrogate models, 2024.

359 [39] Joschka Birk, Anna Hallin, and Gregor Kasieczka. Omnidet- α : the first cross-task foundation
 360 model for particle physics. *Machine Learning: Science and Technology*, 5(3):035031, aug
 361 2024.

362 [40] Liu Yang, Siting Liu, Tingwei Meng, and Stanley J. Osher. In-context operator learning with
 363 data prompts for differential equation problems. *Proceedings of the National Academy of*
 364 *Sciences*, 120(39), September 2023.

365 [41] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
 366 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
 367 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

368 [42] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
 369 the Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
 370 Armand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and efficient founda-
 371 tion language models, 2023.

372 [43] Meta AI. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation,
 373 2025. <https://ai.meta.com/blog/llama-4-multimodal-intelligence>.

374 [44] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
 375 Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse
 376 text for language modeling. *arXiv preprint arXiv:2101.00027*, 2020.

377 [45] Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cap-
 378 pelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The
 379 refinedweb dataset for falcon llm: outperforming curated corpora with web data, and web data
 380 only. *arXiv preprint arXiv:2306.01116*, 2023.

381 [46] Junhao Zhao. LLMDaHub: Awesome Datasets for LLM Training, 2023. <https://github.com/Zjh-819/LLMDaHub>.

383 [47] Yang Liu, Jiahuan Cao, Chongyu Liu, Kai Ding, and Lianwen Jin. Datasets for large language
 384 models: A comprehensive survey, 2024.

385 [48] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
 386 Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-
 387 5b: An open large-scale dataset for training next generation image-text models. *Advances in*
 388 *Neural Information Processing Systems*, 35:25278–25294, 2022.

389 [49] Haoping Bai, Shancong Mou, Tatiana Likhomanenko, Ramazan Gokberk Cinbis, Oncel Tuzel,
 390 Ping Huang, Jiulong Shan, Jianjun Shi, and Meng Cao. Vision datasets: A benchmark for
 391 vision-based industrial inspection, 2023.

392 [50] Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Ekaterina Deyneka, Hsiang wei Chao,
 393 Byung Eun Jeon, Yuwei Fang, Hsin-Ying Lee, Jian Ren, Ming-Hsuan Yang, and Sergey
 394 Tulyakov. Panda-70m: Captioning 70m videos with multiple cross-modality teachers, 2024.

395 [51] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
 396 Dirk Pflüger, and Mathias Niepert. Pdebenc: An extensive benchmark for scientific machine
 397 learning. *Advances in Neural Information Processing Systems*, 35:1596–1611, 2022.

398 [52] Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized
 399 pde modeling. *arXiv preprint arXiv:2209.15616*, 2022.

400 [53] Zhongkai Hao, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi
 401 Zhang, Songming Liu, Lu Lu, et al. PINNacle: A Comprehensive Benchmark of Physics-
 402 Informed Neural Networks for Solving PDEs. *arXiv preprint arXiv:2306.08827*, 2023.

403 [54] Georg Kohl, Li-Wei Chen, and Nils Thuerey. Benchmarking autoregressive conditional
 404 diffusion models for turbulent flow simulation. *arXiv*, 2023.

405 [55] Florent Bonnet, Jocelyn Mazari, Paola Cinnella, and Patrick Gallinari. Airfrans: High fidelity
 406 computational fluid dynamics dataset for approximating reynolds-averaged navier–stokes
 407 solutions. *Advances in Neural Information Processing Systems*, 35:23463–23478, 2022.

408 [56] Artur Toshev, Gianluca Galletti, Fabian Fritz, Stefan Adami, and Nikolaus Adams. La-
 409 grangebench: A lagrangian fluid mechanics benchmarking suite. *Advances in Neural Infor-
 410 mation Processing Systems*, 36, 2024.

411 [57] Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-
 412 Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, et al. The era5 global
 413 reanalysis. *Quarterly Journal of the Royal Meteorological Society*, 146(730):1999–2049,
 414 2020.

415 [58] Sungduk Yu, Walter Hannah, Liran Peng, Jerry Lin, Mohamed Aziz Bhouri, Ritwik Gupta,
 416 Björn Lütjens, Justus Christopher Will, Gunnar Behrens, Julius Busecke, Nora Loose, Charles I
 417 Stern, Tom Beucler, Bryce Harrop, Benjamin R Hillman, Andrea Jenney, Savannah Ferretti,
 418 Nana Liu, Anima Anandkumar, Noah D Brenowitz, Veronika Eyring, Nicholas Geneva, Pierre
 419 Gentine, Stephan Mandt, Jaideep Pathak, Akshay Subramaniam, Carl Vondrick, Rose Yu, Laure
 420 Zanna, Tian Zheng, Ryan Abernathey, Fiaz Ahmed, David C Bader, Pierre Baldi, Elizabeth
 421 Barnes, Christopher Bretherton, Peter Caldwell, Wayne Chuang, Yilun Han, Yu Huang,
 422 Fernando Iglesias-Suarez, Sanket Jantre, Karthik Kashinath, Marat Khairoutdinov, Thorsten
 423 Kurth, Nicholas Lutsko, Po-Lun Ma, Griffin Mooers, J. David Neelin, David Randall, Sara
 424 Shamekh, Mark A Taylor, Nathan Urban, Janni Yuval, Guang Zhang, and Michael Pritchard.
 425 Climsim: A large multi-scale dataset for hybrid physics-ml climate emulation, 2024.

426 [59] Steeven Janny, Aurélien Benetteau, Madiha Nadri, Julie Digne, Nicolas Thome, and Christian
 427 Wolf. Eagle: Large-scale learning of turbulent fluid dynamics with mesh transformers. In
 428 *International Conference on Learning Representations (ICLR)*, 2023.

429 [60] Sheikh Md Shakeel Hassan, Arthur Feeney, Akash Dhruv, Jihoon Kim, Youngjoon Suh,
 430 Jaiyoung Ryu, Yoonjin Won, and Aparna Chandramowlishwaran. BubbleML: A multi-physics
 431 dataset and benchmarks for machine learning. In *Advances in Neural Information Processing
 432 Systems*, 2023.

433 [61] Wai Tong Chung, Bassem Akoush, Pushan Sharma, Alex Tamkin, Ki Sung Jung, Jacqueline H.
 434 Chen, Jack Guo, Davy Brouzet, Mohsen Talei, Bruno Savard, Alexei Y. Poludnenko, and
 435 Matthias Ihme. Turbulence in focus: Benchmarking scaling behavior of 3D volumetric super-
 436 resolution with BLASTNet 2.0 data. *Advances in Neural Information Processing Systems
 437 (NeurIPS)*, 36, 2023.

438 [62] Neil Ashton, Charles Mockett, Marian Fuchs, Louis Fliessbach, Hendrik Hetmann, Thilo
 439 Knacke, Norbert Schonwald, Vangelis Skaperdas, Grigoris Fotiadis, Astrid Walle, Burkhard
 440 Hupertz, and Danielle Maddix. Drivaerml: High-fidelity computational fluid dynamics dataset
 441 for road-car external aerodynamics, 2024.

442 [63] Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina Agocs, Miguel Beneitez,
 443 Marsha Berger, Blakesly Burkhardt, Stuart Dalziel, Drummond Fielding, et al. The well: a
 444 large-scale collection of diverse physics simulations for machine learning. *Advances in Neural
 445 Information Processing Systems*, 37:44989–45037, 2024.

446 [64] Fabien Casenave, Xavier Roynard, et al. PLAID: Physics Learning AI Datamodel. <https://gitlab.com/drti/plaid>, 2025.

447

448 [65] Marc Poinot and Christopher L Rumsey. Seven keys for practical understanding and use of
449 cgns. In *2018 AIAA Aerospace Sciences Meeting*, page 1503, 2018.

450 [66] Quentin Lhoest, Albert Villanova del Moral, Patrick von Platen, Thomas Wolf, Mario Šaško,
451 Yacine Jernite, Abhishek Thakur, Lewis Tunstall, Suraj Patil, Mariama Drame, Julien Chau-
452 mond, Julien Plu, Joe Davison, Simon Brandeis, Victor Sanh, Teven Le Scao, Kevin Canwen
453 Xu, Nicolas Patry, Steven Liu, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger,
454 Nathan Raw, Sylvain Lesage, Anton Lozhkov, Matthew Carrigan, Théo Matussière, Leandro
455 von Werra, Lysandre Debut, Stas Bekman, and Clément Delangue. *huggingface/datasets*: 2.8.0,
456 December 2022.

457 [67] Felipe Bordeu et al. MUSCAT: Mesh Utilities and Solver for Computational Analysis Toolkit.
458 <https://gitlab.com/drti/muscat>, 2025.

459 [68] Felipe Bordeu, Fabien Casenave, and Julien Cortial. Basictools: a numerical simulation
460 toolbox. *Journal of Open Source Software*, 8(86):5142, 2023.

461 [69] Fabien Casenave, Xavier Roynard, and Brian Staber. Tensile2d: 2D quasistatic non-linear
462 structural mechanics solutions, under geometrical variations , February 2025.

463 [70] Mines ParisTech and ONERA the French aerospace lab. Zset: nonlinear material & structure
464 analysis suite. <http://www.zset-software.com>, 1981-present.

465 [71] Brian Staber and Fabien Casenave. 2D_Multiscale_Hyperelasticity: a 2D quasistatic non-linear
466 structural mechanics with finite elasticity and topology variations , February 2025.

467 [72] Igor A. Baratta, Joseph P. Dean, Jørgen S. Dokken, Michal Habera, Jack S. Hale, Chris N.
468 Richardson, Marie E. Rognes, Matthew W. Scroggs, Nathan Sime, and Garth N. Wells.
469 DOLFINx: the next generation FEniCS problem solving environment. preprint, 2023.

470 [73] Julien Yvonnet. *Computational homogenization of heterogeneous materials with finite ele-
471 ments*, volume 258. Springer, 2019.

472 [74] William PIAT and Fabien Casenave. 2D_ElastoPlastoDynamics: 2D dynamic non-linear
473 structural mechanics dataset, with a non-linear non-local constitutive law , April 2025.

474 [75] OpenRadioss Community. Openradioss: Open-source finite element solver for dynamic event
475 analysis, 2022. <https://openradioss.org/>.

476 [76] Xavier Roynard, Fabien Casenave, and Brian Staber. Rotor37: a 3D CFD RANS dataset, under
477 geometrical variations of a compressor blade , February 2025.

478 [77] Cambier, Laurent, Heib, Sébastien, and Plot, Sylvie. The onera elsa cfd software: input from
479 research and feedback from industry. *Mechanics & Industry*, 14(3):159–174, 2013.

480 [78] Fabien Casenave and Nissrine Akkari. 2D_profile: 2D external aero CFD RANS dataset,
481 under geometrical variations , April 2025.

482 [79] Michele Alessandro Bucci, Luca Saverio, and Fabien Casenave. VKI-LS59: a 2D internal
483 aero CFD RANS dataset, under geometrical variations , February 2025.

484 [80] Arthur Poulain, Cédric Content, Denis Sipp, Georgios Rigas, and Eric Garnier. Broadcast: A
485 high-order compressible cfd toolbox for stability and sensitivity using algorithmic differentia-
486 tion. *Computer Physics Communications*, 283:108557, 2023.

487 [81] Xavier Roynard, Fabien Casenave, and Brian Staber. AirfRANS_original, February 2025.

488 [82] Xavier Roynard, Fabien Casenave, and Brian Staber. AirfRANS_clipped, February 2025.

489 [83] Xavier Roynard, Fabien Casenave, and Brian Staber. AirfRANS_remeshed, February 2025.

490 [84] Mouadh Yagoubi, David Danan, Milad Leyli-Abadi, et al. ML4CFD Competition: Restrospective
491 Analysis. *Work in progress*, 2025.

492 [85] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
493 Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
494 Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
495 recognition at scale, 2021.

496 [86] Ning Liu, Siavash Jafarzadeh, and Yue Yu. Domain Agnostic Fourier Neural Operators, 2023.

497 [87] Giovanni Catalani. MARIO: Multiscale Aerodynamic Resolution Invariant Operator, 2025.
498 <https://github.com/giovannicatalani/MARIO>.

499 [88] Giovanni Catalani, Siddhant Agarwal, Xavier Bertrand, Frédéric Tost, Michael Bauerheim, and
500 Joseph Morlier. Neural fields for rapid aircraft aerodynamics simulations. *Scientific Reports*,
501 14(1):25496, 2024.

502 [89] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
503 networks, 2017.

504 [90] Abbas Kabalan, Fabien Casenave, Felipe Bordeu, Virginie Ehrlacher, and Alexandre Ern.
505 Morphing techniques for model order reduction with non parametric geometrical variabilities.
506 In *16ème Colloque National en Calcul de Structures*, 2024.

507 [91] Rudy Geelen, Laura Balzano, and Karen Willcox. Learning latent representations in high-
508 dimensional state spaces using polynomial manifold constructions. In *2023 62nd IEEE
509 Conference on Decision and Control (CDC)*, pages 4960–4965. IEEE, 2023.

510 [92] Nicolas Barral, Tommaso Taddei, and Ishak Tifouti. Registration-based model reduction of
511 parameterized PDEs with spatio-parameter adaptivity. *Journal of Computational Physics*,
512 499:112727, 2024.

513 [93] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
514 *arXiv preprint arXiv:2001.04451*, 2020.

515 [94] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
516 with linear complexity. *arXiv preprint arXiv:2006.04768*, 2020.

517 [95] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
518 Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
519 Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
520 recognition at scale, 2021.

521 [96] Ashok Kumar Durairaj and Anandan Chinnalagu. Transformer based contextual model for
522 sentiment analysis of customer reviews: A fine-tuned bert. *International Journal of Advanced
523 Computer Science and Applications*, 12(11), 2021.

524 [97] Suhaima Jamal and Hayden Wimmer. An improved transformer-based model for detecting
525 phishing, spam, and ham: A large language model approach, 2023.

526 [98] Xiang Dai, Ilias Chalkidis, Sune Darkner, and Desmond Elliott. Revisiting transformer-based
527 models for long document classification, 2022.

528 [99] Enze Xie, Wenhui Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, and Ping Luo.
529 Segformer: Simple and efficient design for semantic segmentation with transformers, 2021.

530 [100] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and Vladlen Koltun. Point transformer,
531 2021.

532 [101] Jundou Jiang, Guanxiong Li, Yi Jiang, Laiping Zhang, and Xiaogang Deng. Transcfd: A
533 transformer-based decoder for flow field prediction. *Engineering Applications of Artificial
534 Intelligence*, 123:106340, 2023.

535 [102] Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang,
536 Tong He, and Hengshuang Zhao. Point transformer v3: Simpler, faster, stronger, 2024.

537 [103] George Karypis and Vipin Kumar. Metis – unstructured graph partitioning and sparse matrix
 538 ordering system, version 2.0. 01 1995.

539 [104] Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson.
 540 Fast context adaptation via meta-learning, 2019.

541 **A Details on the ML models used in the benchmark**

542 We briefly present the main competing methods that we used for the benchmark. We also highlight
 543 some practical details about their implementation. Readers are encouraged to refer directly to the
 544 papers introducing the methods for further information.

545 **A.1 MGN**

546 **A.1.1 Method**

547 MeshGraphNet (MGN) [25], introduced by T. Pfaff et al., is a framework designed for learning mesh-
 548 based simulations using graph neural networks. The model is capable of being trained to simulate
 549 dynamic solutions by passing messages over a meshed domain, predicting acceleration at each mesh
 550 node at a given time step. This prediction allows for the calculation of the output field at the next time
 551 step through forward integration. Specifically, MGN is trained using one-step supervision and can be
 552 applied iteratively to generate long trajectories during inference. The architecture of MeshGraphNet
 553 is composed of encoding, processing, and decoding steps. In this work, MGN has been adapted to
 554 predict steady-state fields.

555 We utilize the following features as input (see Figure 5 for the workflow diagram):

- 556 • the distance of each node to the boundary,
- 557 • the type of node,
- 558 • the coordinates of the node.

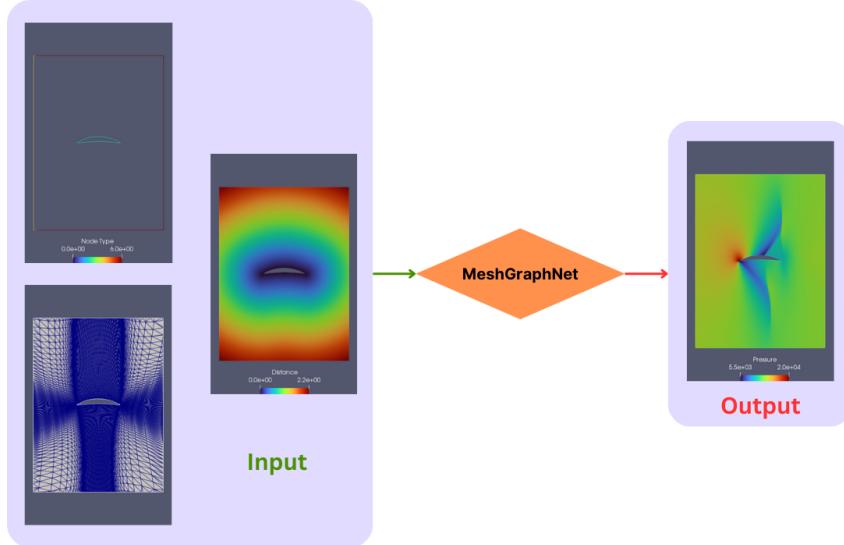


Figure 5: Illustration of MGN workflow to predict steady-state pressure field of a sample from the 2D_profile dataset.

559 **A.1.2 Experiments**

560 In this section, we provide a summary of the experiments conducted on various datasets.

561 For all datasets, we trained two separate models: one focused on field predictions and the other
 562 on scalar predictions. For scalar outputs, a readout layer taken from [89] is added to the model.
 563 Except for the 2D_profile dataset, we only required a single model since it does not include scalar
 564 prediction tasks.

565 The LeakyReLU is chosen as the activation function, and all models are trained for 1000 epochs.

566 The input node features consist of those introduced in the previous section, combined with input
 567 scalars if they exist. Given two node coordinates x_i and x_j , the calculation for edge features is based
 568 on $\exp(-\|x_i - x_j\|_2^2/(2h^2))$, where h represents the median value of the edge lengths within the
 569 mesh.

570 The rest of architecture details and training information are outlined in Table 5 and Table 6.

Dataset	Message Passing Steps	Latent Size	Nbe epochs	Batch size	Training Time	Hardware
Tensile2d	10	16	1000	1	3h46min	1 × A100
2D_MultiScHypEl	10	32	1000	1	5h54min	1 × A100
Rotor37	10	64	1000	1	19h24min	1 × A100
2D_profile	10	128	1000	1	17h27min	1 × A100
VKI-LS59	10	64	1000	1	16h32min	1 × A100

Table 5: Field MGN: Architecture details and training statistics across datasets.

Dataset	Message Passing Steps	Latent Size	Nbe epochs	Batch size	Training Time	Hardware
Tensile2d	10	32	1000	1	4h6min	1 × A100
2D_MultiScHypEl	10	16	1000	1	6h	1 × A100
Rotor37	10	16	1000	1	10h	1 × A100
VKI-LS59	10	16	1000	1	9h13min	1 × A100

Table 6: Scalar MGN: Architecture details and training statistics across datasets.

571 A.2 MMGP

572 A.2.1 Method

573 We refer the reader to [19] for a complete presentation of the Mesh Morphing Gaussian Process
 574 (MMGP) method. MMGP combines four main ingredients: (i) mesh morphing, (ii) finite element
 575 interpolation, (iii) dimensionality reduction, and (iv) Gaussian process regression. Together, these
 576 enable learning mappings between geometries and solution fields for PDEs, even when the input
 577 geometry is provided as non-parametrized meshes.

578 An overview of the workflow is illustrated in Figure 6, which should be read from left to right. On the
 579 left are sample-specific input geometries; on the right are the corresponding solution fields defined on
 580 these geometries.

581 Since input meshes are not parametrized, they must first be embedded into a learnable space. MMGP
 582 does this by interpreting mesh vertex coordinates as continuous fields (e.g., the x -coordinate field
 583 shown in the left column of Figure 6, exhibiting vertical iso-lines). Each mesh is then deterministically
 584 morphed onto a reference geometry—the unit disk in this 2D example, but it can be one of the training
 585 samples shape. Next, each sample morphed coordinate fields are projected onto a common mesh of
 586 the reference geometry via finite element interpolation. This ensures all samples share a consistent
 587 discretization, making them compatible with standard dimensionality reduction techniques like PCA.
 588 The result is a compact, fixed-size representation of the geometry. When scalar inputs are present,
 589 they can be concatenated to the reduced vector.

590 A similar procedure is applied to the output fields: morphing onto the reference geometry, projection
 591 onto the common mesh, and PCA compression yield low-dimensional field representations aligned
 592 with the geometric embeddings.

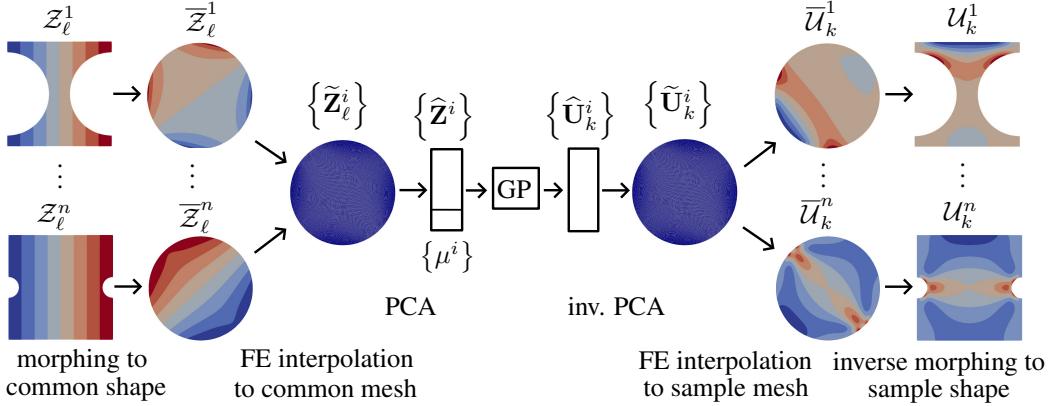


Figure 6: Illustration of the MMGP inference workflow for the prediction of an output field of interest [19].

593 These deterministic preprocessing steps transform the original complex problem—mapping between
 594 high-dimensional and irregularly discretized fields—into a standard regression task between low-
 595 dimensional vectors. This enables the use of classical regression models; we adopt Gaussian process
 596 regression due to its robustness, accuracy, and built-in uncertainty quantification.

597 MMGP offers several practical advantages: it handles large meshes efficiently, produces interpretable
 598 models, and delivers high accuracy in our experiments, with uncertainty estimates. In industrial design
 599 applications, where data can lie on low-dimensional manifolds, small models like MMGP can be
 600 especially effective—provided that the reparametrization (or embedding) is constructed appropriately,
 601 here with the morphing.

602 The main limitations of MMGP are tied to the morphing step, which currently requires problem-
 603 specific setup, and the fact that morphing and interpolation must still be performed at inference time.
 604 These challenges are addressed in recent works [20, 90], which introduce automatic alignment and
 605 online-efficient morphing strategies. Further improvements are proposed in [21], where optimization
 606 techniques are used to generate morphings that maximize PCA compression.

607 All mesh and field operations are implemented using the Muscat library [67, 68]. An upcoming
 608 release will include a GPU-accelerated finite element interpolation routine, significantly improving
 609 inference latency.

610 Additional improvement of MMGP are possible, by replacing the linear decoder of the PCA by a
 611 non-linear one that accounts for high-order interactions among the selected POD modes and includes
 612 a rotation of the POD basis and a polynomial correction, as proposed in [91].

613 Physics-based models compatible with the morphing, finite element interpolation and dimensionality
 614 reduction of MMGP have been proposed. The physics equation can be efficiently assembled and
 615 solved on the low-dimension space spanned by the PCA modes obtained after morphing, instead of
 616 using data-driven low-dimensional models. In [92], a hyper-reduced least-square Petrov-Galerkin
 617 scheme is used to reduced the Navier-Stokes equations, with morphing. While much more compli-
 618 cated to utilize, we expect such methods to greatly improve the accuracy, with a moderate additional
 619 computation cost.

620 A.2.2 Experiments

621 Hyperparameters and training statistics for the MMGP experiments are listed in Table 7. We first
 622 mention that MMGP has not been applied to the 2D_E1P1Dynamics and 2D_MultiScHypE1 datasets,
 623 since the method is yet to be extended to variable topology settings.

624 We notice that Rotor37 and VKI-LS59 do not require morphing, since the samples' meshes have the
 625 same number of nodes. In Tensile2d and 2D_profile, systematic morphing strategies to align the
 626 shapes are sufficient, with respectively Tutte barycentric embedding [19, Ann B] and elasticity-based
 627 automatic morphing [20].

628 Since the VKI-LS59 dataset exhibits discontinuities due to the presence of shock waves, a non-linear
 629 decoder [91] was employed to reconstruct the fields of interest. For the compression of the mach

630 fields, 5 POD modes and a polynomial order of 3 were used, while 40 POD modes were retained for
 631 the compression of the nut fields. Since polynomial decoders are prone to overfitting, the number of
 632 modes and the polynomial order were selected through a k -fold cross-validation procedure on the
 633 training set.

634 Since the solution fields of `2D_profile` and `VKI-LS59` feature complex structures (e.g. shocks
 635 of variable position), we expect the involved optimal morphing strategy from [21] to significantly
 636 improve the results of MMGP on these cases.

Dataset	Morphing	PCA modes (shape)	PCA modes (field)	GP kernel	Training time	Hardware
<code>Tensile2d</code>	Tutte [19, Ann B]	8	8	Matérn 5/2	13min02s	128 cores
<code>Rotor37</code>	None	32	64	Matérn 5/2	6min13s	128 cores
<code>2D_profile</code>	Elasticity [20]	16	32	RBF	18min32s**	12 cores
<code>VKI-LS59</code>	None	13	5-3/40-1*	Matérn 5/2	4min13s	64 cores

Table 7: Hyperparameters and training statistics for the MMGP experiments (on an AMD EPYC 9534 CPU). Training times include all preprocessing (morphing, finite element interpolation and dimensionality reduction), in addition to the training of the Gaussian processes. *For `VKI-LS59`, X-Y stands for the number of modes and polynomial order of the decoder for the `mach` and `nut` fields respectively. **Not including morphing time (which takes approximately 10min on 300 cores).

637 A.3 Vi-Transformer and Augur

638 A.3.1 Method

639 **Transformers for long context range regression.** The natural way of dealing with mesh-based
 640 regression problems is to use GNN models which rely on message-passing. Although these are great
 641 at capturing information locally, they struggle to retrieve it at long distances. Indeed, the smallest
 642 number of GNN layers needed to have a receptive field that covers the whole graph is half the
 643 diameter of the graph. This becomes computationally impractical in the context of large simulation
 644 meshes. This behavior is analogous to Convolutional Neural Networks (CNNs) in Computer Vision
 645 (CV) where long-range dependencies are only captured at the deeper levels of the network. One way
 646 of alleviating this is to consider transformer architectures, which compute similarities between all
 647 the input tokens simultaneously thanks to the attention mechanism, thus removing the need to have
 648 infeasibly deep networks.

649 **Transformers on very large data.** One of the main challenges of transformers in this case is to
 650 handle the large size of the meshes (in the order of tens of thousands of points per mesh, and up to
 651 millions with practical industrial problems). Currently, the computational bottleneck of transformers
 652 is a widely considered subject: given N tokens of dimension D , the critical issue of self attention is
 653 that one needs $N^2 \times D$ operations where $D \approx D$ is the size of the embedding of each token, and N^2
 654 is the cost to compute the Gram matrix of the N tokens (this computation cost is also a memory one
 655 as storing the matrix requires also $N^2 D$ numbers).

656 Many papers have focused on the possibility to linearize the cost of self-attention, for example:

- 657 • [93] introduces Reformer which considers the formulation of the attention mechanism :
 658 $\text{softmax}\left(\frac{QK}{\sqrt{D}}\right)$ with the key and query matrices (respectively K and Q), capitalizing on the
 659 fact that for a given query Q_i , only the keys which provide high dot products with Q_i will
 660 have a significant impact on the value of $\text{softmax}\left(\frac{Q_i K^T}{\sqrt{D}}\right)$. Therefore, Reformer makes
 661 use of locality-sensitive hashing for only computing the $Q_i K_j^T$ products with the p keys that
 662 are closest to a query, where $p \in \mathbb{N}$ is a chosen hyperparameter, efficiently linearizing the
 663 self attention.
- 664 • [94] introduces Linformer. Coarsely, Linformer relies on the Nyström approximation to
 665 approximate the Gram matrix of self attention. Precisely, while the Nyström approximation
 666 replaces an $n \times n$ symmetric matrix A by UU^T where U is only $n \times k$ containing the eigenvec-

667 tors of largest eigenvalue, Linformer offers to learn E, F such that $\text{softmax}\left(\frac{QK}{\sqrt{D}}\right) \approx EF^T$.
668 This also offers a linear approximation of the self attention computation.

669 This has also been tackled in CV tasks [95], where self-attention is not applied on pixels directly
670 but on pixel-patches that aggregate pixel neighborhoods into tokens, thus drastically reducing the
671 self-attention’s input sequence length.

672 **Transformers for large scale point-wise regression.** The most used transformer architectures are
673 in one of two categories. The auto-regressive sequence-to-sequence transformers, mostly used in
674 Natural Language Processing (NLP) for text generation, and the sequence-to-class ones which are
675 used both in NLP, as in sentiment analysis [96], spam detection [97], long document classification
676 [98], and CV with image classification [95].

677 Both are quite different from the point-wise regression objective of the PLAID benchmarks. Indeed,
678 the first method generates new token sequences of arbitrary lengths, while the second only makes use
679 of transformer encoders with neural network heads to obtain a probability distribution on a set of
680 classes.

681 Some work has been conducted in order to tackle regression problems with transformers:

- 682 • Segformer [99] addresses this in the case of image segmentation; it uses a multiscale U-type
683 transformer to sequentially downscale the input image, and uses a multiscale MLP head to
684 decode these downsampled states into the output segmentation mask.
- 685 • Point Transformer [100] also uses a U-style encoder-decoder architecture, this time on 3D
686 point-cloud data for both segmentation and classification.
- 687 • TransCFD [101] tackles airfoil surrogate CFD modeling by using a decoder-only architecture
688 from a latent embedding of the input geometry. It relies on structured regular grids (images)
689 of the inputs, and not arbitrary mesh discretizations.
- 690 • Point Transformer V3 [102] groups points together and computes attention scores within
691 these groups. Local and long-distance information are captured through different serializa-
692 tions of the input mesh.

693 Both Segformer and TransCFD make use of the regular nature of their data to precisely decode (and/or
694 encode) the output (and/or input) fields. Point Transformers, on the other hand, handle unstructured
695 point-cloud data. Although these methods fit the nature of the PLAID benchmark, we propose lighter
696 methods that stick more closely to the classical transformer model.

697 **Vi-Transformer for mesh field regression.** The chosen approach relies on a transformer encoder
698 architecture and is analogous to Vision Transformers (Vi-Transformer). Rather than considering each
699 node of the mesh as a token by its own, the encoder takes as input tokenized point-cloud patches.
700 Local information is kept within the patches while long-range information is retrieved through the
701 transformer’s mapping, which compares all token pairs together. The general architecture of the
702 Vi-Transformer is depicted in Figure 7.

703 **Augur Transformer model.** Augur has developed Transformer models specifically designed
704 for numerical simulations. These models share fundamental architectural similarities with Vision
705 Transformers (ViT), where the computational mesh is decomposed into patches. Each patch is
706 embedded into a latent space, resulting in the input tokens for the Transformer architecture. This
707 approach enables information exchange between local patches across long spatial distances, similar
708 to how ViTs process image data.

709 The key innovation in Augur’s approach lies in the decoding mechanism, addressing a critical
710 question: how to properly reconstruct the output field from the processed sequence of tokens? In
711 traditional ViT architectures, direct reconstruction from individually processed tokens can result
712 in discontinuities at patch interfaces due to insufficient global context integration. Augur models
713 overcome this limitation by incorporating a global information vector that aggregates data from all
714 tokens. The decoder then uses a combination of point-specific information, processed local features,
715 and global context to produce a more robust and consistent output field. Furthermore, unlike ViTs,
716 Augur models do not treat scalar predictions as constant fields but instead derive them directly from

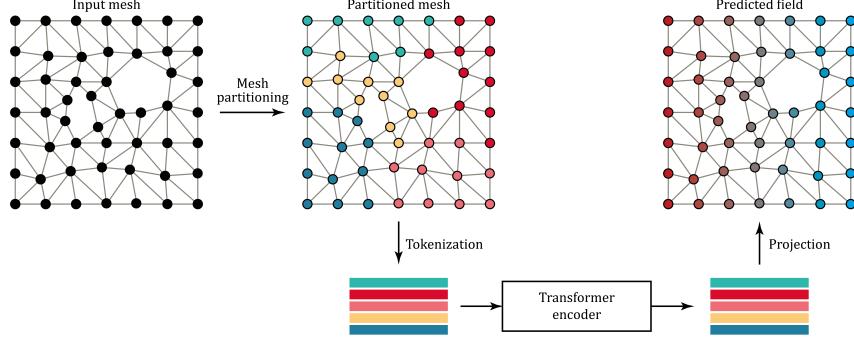


Figure 7: Vi-Transformer architecture. Input meshes are partitioned using the Metis domain decomposition algorithm [103]. Each such sub-domain is then tokenized before passing through the transformer encoder. In the end, each token is decoded into its domain’s corresponding fields. Input scalars are embedded during the tokenization procedure while output scalars are estimated as uniform fields.

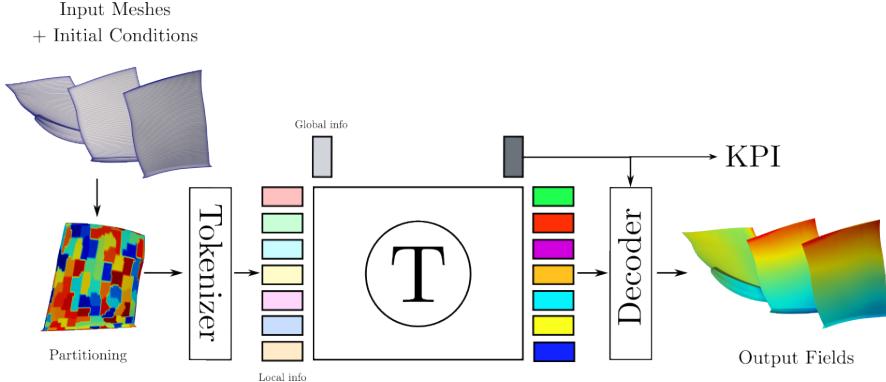


Figure 8: Augur Transformer architecture: Input meshes are partitioned using the Metis domain decomposition algorithm. Each subdomain is then tokenized before being passed through the Transformer. An additional global tensor is added to the Transformer to gather global information. Output fields are reconstructed using a decoder that leverages both local and global information. Output scalars (KPIs) are predicted directly from the global tensor.

717 the global information vector, enhancing prediction accuracy. The general architecture of the Augur
 718 model is depicted in Figure 8.

719 A.3.2 Experiments

720 Both the Vi-Transformer and Augur models rely on a relatively small number of hyperparameters.
 721 These include the patch size (i.e., the number of nodes per patch), the latent dimension onto which
 722 the aggregated patches are projected, and the Transformer encoder hyperparameters, such as the
 723 number of heads, the number of transformer encoder layers and the dimension of the feedforward
 724 layer. Table 8 details the hyperparameters for the Vi-Transformer, while Table 9 outlines those for the
 725 Augur model.

726 A.4 DAFNO

727 DAFNO belongs to the Operator Approximator class of architectures, i.e. it builds mappings between
 728 two function spaces. The use of the Fast Fourier Transform (FFT) within the different layers leads to
 729 the sampling of the input function on a regular grid, thus falling back to a finite dimension space. This
 730 architecture has the advantage of learning transformation in the frequency domain which provides a
 731 significant advantage compared to CNNs on several physical problems.

Dataset	Patch size	Latent dimension	Feedforward dimension	Nb encoder layers	Training time	Hardware
Tensile2d	50	6400	2048	5	3h18	$3 \times$ A30
2D_MultiScHypEl	10	512	256	5	1h56	$3 \times$ A30
Rotor37	100	256	256	10	33min	$3 \times$ A30
2D_profile	50	1024	1024	5	36min	$3 \times$ A30
VKI-LS59	50	6400	2048	5	1h27	$3 \times$ A30

Table 8: (Vi-Transformer) Hyperparameters and training statistics for the Vi-Transformer experiments. Training times include all preprocessing (domain decomposition, tokenization), in addition to the training of the model itself. The number of attention heads is kept at 16 for all experiments.

Dataset	Patch size	Latent dimension	Feedforward dimension	Nb encoder layers	Training time	Hardware
Tensile2d	16	512	2048	8	1h11	$1 \times$ RTX 2080Ti
2D_MultiScHypEl	4	128	512	8	7h48	$1 \times$ RTX 2080Ti
Rotor37	32	256	1024	8	2h30	$1 \times$ RTX 2080Ti
VKI-LS59	64	512	2048	4	2h15	$1 \times$ RTX 2080Ti

Table 9: (Augur) Hyperparameters and training statistics for the Augur experiments. Training times include all preprocessing (domain decomposition, tokenization), in addition to the training of the model itself.

732 A.4.1 Method

733 The DAFNO model deals separately with the input fields and the geometry of the problem [86]:
734 let $u : \mathbb{R}^2 \rightarrow \mathbb{R}^k$ be our input fields and $\chi_\Omega : \mathbb{R}^2 \rightarrow \{0, 1\}$ be the characteristic function of the
735 domain Ω . Let $W \in \mathbb{R}^{k \times k}$, $W^* \in \mathbb{R}^{k \times k}$, $c \in \mathbb{R}^k$ be the learnable parameters, let $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ be
736 a scalar non-linear function (sigmoid, ReLU, or tanH) to be applied elementwise. A layer of the
737 DAFNO architecture is defined by the following operator:

$$\mathcal{J}[u](x) = \sigma(Wu(x) + c + \mathcal{F}^{-1}[W^* \mathcal{F}[(u(x) - u(\cdot)) \chi_\Omega(\cdot) \chi_\Omega(x)]](x)) \quad (1)$$

$$= \sigma(Wu(x) + c + \chi_\Omega(x) \mathcal{I}[\chi_\Omega(\cdot) u(\cdot)](x) - u(x) \mathcal{I}[\chi_\Omega(\cdot)](x)), \quad (2)$$

738 where $\mathcal{I}[f](x) = \mathcal{F}^{-1}[W^* \mathcal{F}[u](\cdot)](x)$, with \mathcal{F} denoting the FFT operator. Equation (1) shows
739 the interest of using the DAFNO architecture: the FFT in operator only considers values inside the
740 domain Ω . Moreover the FFT is computed over the local variation of the input field rather than the
741 input field itself ($u(x) - u(\cdot)$ instead of $u(\cdot)$) making the layer, by design, seek features within local
742 variations. The DAFNO network ends up being a composition of one or multiple of such layers. The
743 mask χ_Ω is used at each layer unaltered to make sure that no noise outside the domain may perturb
744 the prediction.

745 FNO models and variant can only predict on regular grids (this is due to the use of the FFT). This is a
746 common constraint shared with some neural networks such as CNNs. This means that, in order to
747 predict on an unstructured mesh, a preprocessing and postprocessing of the fields are needed. The
748 preprocessing consists in a projection of the original mesh to a regular grid where the FNO is able
749 to produce a prediction. Then, a postprocessing projecting back from the regular grid to the original
750 mesh needs to be performed to compare the prediction to reference fields. The projection operations
751 were performed using Muscat [68, 67].

752 A.4.2 Experiments

753 The DAFNO architecture can build transient predictions on various geometries and topology, the
754 only dataset introduced in Section 4 that meets these three characteristics is the 2D_E1P1Dynamics
755 dataset.

756 **Training procedure.** The training was performed in a autoregressive manner: given the input fields
757 at time t , the model has to predict the fields at time $t + dt$ very much like an explicit solver would do.

758 Once trained, one may build the whole transient field prediction by applying the model recursively
 759 on the initial conditions. A key choice involves selecting inputs that are informative enough for the
 760 model to accurately predict the system dynamics.
 761 On top of the fields provided by the dataset (U_x and U_y) we added two coordinate fields (one for x
 762 and one for y) and we computed a fifth input: a smoothed mask $\chi_{\Omega}^{\text{smooth}}$ as suggested by the original
 763 DAFNO paper [86] along with being a drop in replacement of χ_{Ω} in the DAFNO layers. This smooth
 764 quantity is richer than its discontinuous counterpart since it provides insight on how close we are
 765 from the border of the geometry. We are summarizing the input/output quantities in Table 10.

Attribute	Simulation at t	Input DAFNO	Output DAFNO
Mesh		-	-
U_x			
U_y			
$\chi_{\Omega}^{\text{smooth}}$	-		

Table 10: Features throughout the learning process, " - " means the field is not available/used at the given stage. The simulation at t (column 1) can be projected to a regular grid (column 2). The regular fields along with coordinates fields x and y make input features for the DAFNO model which in turns predicts the fields at $t + dt$ (column 3).

766 The training was parallelized on 40 GPUs (A100) and lasted 6 hours. Inference and thus testing can
 767 be performed on a single GPU to compute the metrics presented in Table 4.

768 **Model and training parametrization.** We summarize the model parametrization in Table 11 and
 769 training procedure in Table 12.

Model parameters	Layer count	Channel hidden layers	Padding	Fourier modes	Activation Function
Value	8	64	8	20×20	GELU

Table 11: DAFNO: parametrization of the model.

770 A.5 MARIO

771 Modulated Aerodynamic Resolution-Invariant Operator (MARIO) is a deep learning model designed
 772 to approximate the solution operator of a partial differential equation (PDE) [87], involving geometric
 773 variability. It leverages Conditional Neural Fields (or Implicit Neural Representations) to learn

Training parameters	Epochs	Optimizer	Learning rate	Batch size	Loss
Value	1800	Adam	0.0003	60	Pixel-wise L_2

Table 12: DAFNO: parametrization of the training.

774 the mapping between spatial coordinates from a mesh, geometric information (e.g., via the signed
775 distance function, SDF), inflow conditions, and the resulting physical field. Unlike mesh-based
776 methods, INRs represent continuous fields through neural network parameterizations, enabling
777 resolution-independent predictions and flexible evaluation. MARIO extends this approach to handle
778 multiple geometries and operating conditions through a conditioning mechanism.

779 **A.5.1 Method**

780 **Modulated INR architecture.** MARIO implements a conditional neural field approach where
781 a single neural network architecture can represent multiple distinct signals through a conditioning
782 mechanism. The conditioning variable $z = [\mu_{\text{geom}}, \mu]$ encodes both geometric parameterization μ_{geom}
783 and operating conditions μ (e.g., angle of attack, Mach number, Reynolds number).

784 The main network is a multilayer perceptron (MLP) where the layer outputs are modulated by
785 sample-specific vectors:

$$f_{\theta, \phi}(x) = W_L(\eta_{L-1} \circ \eta_{L-2} \circ \dots \circ \eta_1 \circ \gamma(x)) + b_L \quad (3)$$

$$\eta_l(\cdot) = \text{ReLU}(W_l(\cdot) + b_l + \phi_l(z)) \quad (4)$$

786 where $\phi_l(z) = [h_\psi(z)]_l \in \mathbb{R}^{d_l}$ are layer-specific modulation vectors obtained from the hypernetwork
787 h_ψ that processes the conditioning variable z . The main network parameters θ are shared for all
788 samples and consist of the weights and biases matrices W_l, b_l . In MARIO, an explicit shape encoding
789 μ_{geom} is used as input of the architecture to properly model geometric variability. In many real-world
790 applications, a geometric parameterization is not available or insufficient to capture complex shapes.
791 Therefore, a learning mechanism to obtain compact geometric representations from the SDF fields
792 is adopted. These encoding process leverages a separate Neural Field encoder, that maps input
793 coordinates to output SDF values, while fitting latent shape representations.

794 **Geometry encoding mechanism.** For each geometry's signed distance function (SDF), a meta-
795 learning optimization procedure based on CAVIA [104] adapts a shared neural network $f_{\theta_{in}, \phi_{in}}$ to
796 represent different shapes. Given the shared network parameters θ_{in} and hypernetwork parameters ψ ,
797 the latent representation $\mu_{\text{geom}} = z_{in}^{(K)}$ for geometry i is obtained by solving:

$$z_{in}^{(0)} = 0 \quad (5)$$

$$z_{in}^{(k+1)} = z_{in}^{(k)} - \alpha \nabla_{z_{in}^{(k)}} \mathcal{L}_{in}(f_{\theta_{in}, \phi_{in}}(x), sdf_i), \quad \text{for } 0 \leq k \leq K-1 \quad (6)$$

798 where $\phi_{in} = h_\psi(z_{in}^{(k)})$, α is the inner loop learning rate, and K is the number of optimization steps
799 (typically set to 3). The loss \mathcal{L}_{in} measures the reconstruction error between the true SDF field and its
800 prediction over a sampling grid defined on the input domain.

801 This optimization process, illustrated in Figure 9, yields a compact latent code $\mu_{\text{geom}} = z_{in}^{(K)}$ that
802 captures the essential geometric features.

803 **Fourier feature encoding.** To address the spectral bias inherent in neural networks, MARIO
804 employs Fourier feature encoding for the input coordinates:

$$\gamma(x) = [\cos(2\pi \mathbf{B}x), \sin(2\pi \mathbf{B}x)] \quad (7)$$

805 where $\mathbf{B} \in \mathbb{R}^{m \times d}$ contains frequency vectors sampled from a Gaussian distribution $\mathcal{N}(0, \sigma)$. This
806 encoding enables the network to better capture high-frequency details in the output fields.

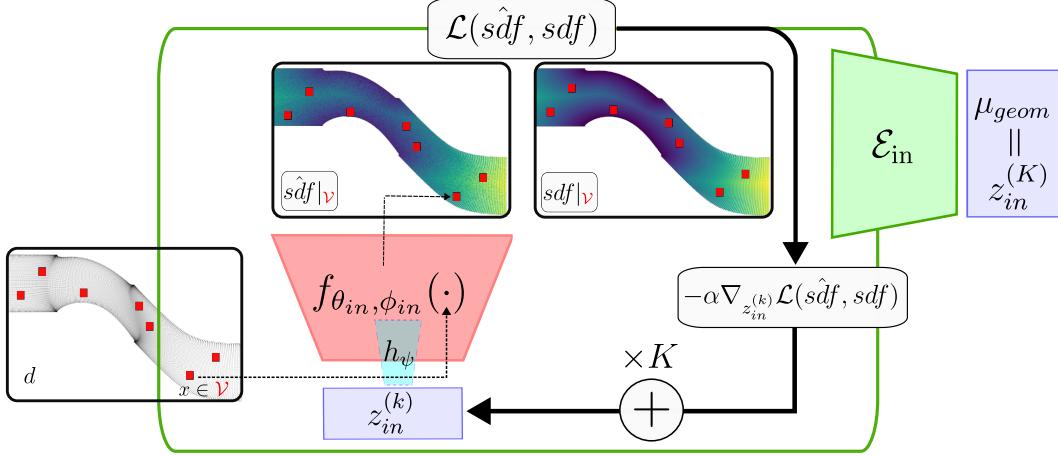


Figure 9: MARIO geometry encoding process.

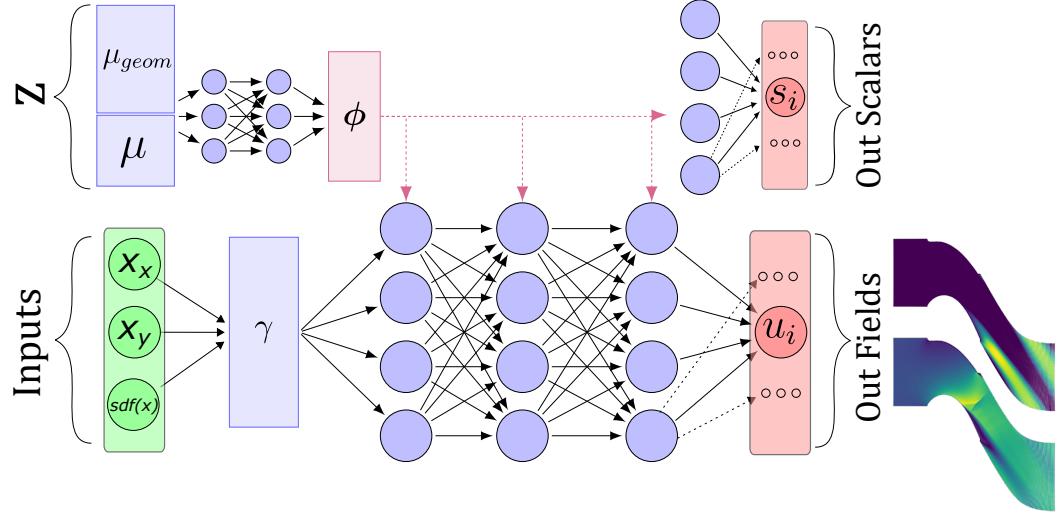


Figure 10: MARIO architecture.

807 **Scalar output prediction.** In addition to predicting coordinate-dependent fields, MARIO can also
 808 predict global scalar quantities for each sample. Since these scalar outputs are global properties of
 809 the solution (e.g., power coefficients, efficiency metrics), they depend only on the sample-specific
 810 information encoded in the modulation vectors. The scalar prediction is therefore implemented as:

$$s = W_s \cdot \phi_{agg} + b_s \quad (8)$$

811 where ϕ_{agg} represents an aggregation of the modulation vectors produced by the hypernetwork. This
 812 single-layer transformation efficiently leverages the already learned sample representation without
 813 requiring additional feature extraction.

814 The architecture of MARIO is illustration in Figure 10.

815 **Training procedure.** MARIO is trained using a weighted loss function that balances field prediction
 816 accuracy and scalar output accuracy:

$$\mathcal{L} = \alpha \cdot \mathcal{L}_{\text{field}} + (1 - \alpha) \cdot \mathcal{L}_{\text{scalar}} \quad (9)$$

817 where $\alpha \in [0, 1]$ is a weighting parameter. The field loss $\mathcal{L}_{\text{field}}$ is computed as the mean squared error
 818 between predicted and target fields across spatial locations, while the scalar loss $\mathcal{L}_{\text{scalar}}$ is the mean
 819 squared error of the global quantities.

820 **Key advantages.** MARIO presents three major benefits: (i) it is resolution-invariant and can be
 821 evaluated at arbitrary spatial locations; (ii) it overcomes spectral bias through multiscale Fourier
 822 encodings; and (iii) it adapts to geometry-specific variations via bias modulation using the auxiliary
 823 network h_ψ .

824 **A.5.2 Experiment**

825 **Model and training parametrization.** The model parametrization and training procedure are
 826 provided respectively in Tables 13 and 14.

Model param.	Geom. Hypernet. depth	Geom. Hypernet. width	Geom. latent dim	Hypernet. depth	Hypernet. width	INR depth	INR width	Nb of frequencies
Value	1	128	16	3	256	6	256	64

Table 13: MARIO: parametrization of the model.

Training param.	Epochs	Optimizer	Learning rate	Batch size	Training time	Training hardware	Loss ($\alpha = 0.8$)
Value	2000	AdamW	0.001	4	30h	1 \times A100	MSE

Table 14: MARIO: parametrization of the training.

827 We notice that MARIO is significantly longer to train than the other tested models.

828 **B Additional details on PLAID**

829 We illustrate further the capabilities of PLAID by providing some additional commands to retrieve
 830 information from our datasets directly from Hugging Face.

831 **B.1 Tensile2d**

832 Tensile2d is a simple dataset, for which standard and simple PLAID commands are sufficient to
 833 retrieve the data:

```

1  from datasets import load_dataset
2  from plaid.containers.sample import Sample
3  import pickle
4
5  # Load the dataset
6  hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")
7
8  # Get split ids
9  ids_train = hf_dataset.description["split"]["train_500"]
10
11 # Get inputs/outputs names
12 in_scalars_names = hf_dataset.description["in_scalars_names"]
13 out_fields_names = hf_dataset.description["out_fields_names"]
14
15 # Get samples
16 sample = Sample.model_validate(pickle.loads(hf_dataset[ids_train[0]]["sample"]))
17
18 # Examples of data retrievals
19 nodes = sample.get_nodes()
20 elements = sample.get_elements()
```

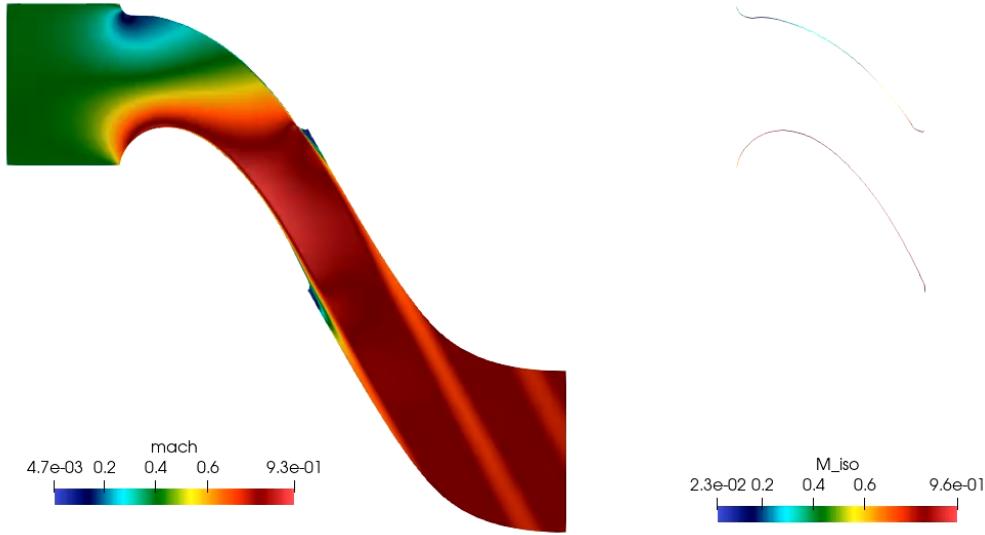


Figure 11: Illustration of the first sample in the train split of VKI-LS59: (left) fluid domain, (right) blade surface domain.

```

21 nodal_tags = sample.get_nodal_tags()
22
23 for sn in ["P", "p1", "p2", "p3", "p4", "p5"]:
24     scalar = sample.get_scalar(sn)
25
26 # outputs
27 for fn in ["U1", "U2", "q", "sig11", "sig22", "sig12"]:
28     field = sample.get_field(fn)
29
30 for sn in ["max_von_mises", "max_q", "max_U2_top", "max_sig22_top"]:
31     scalar = sample.get_scalar(sn)
32

```

834 The geometrical support in PLAID samples can be easily converted to Muscat meshes:

```

1 from Muscat.Bridges import CGNSBridge
2 CGNS_tree = sample.get_mesh()
3 mesh = CGNSBridge.CGNSToMesh(CGNS_tree)

```

835 **B.2 VKI-LS59**

836 VKI-LS59 also contains stationary configurations, meaning only one time step per sample, but
837 features a complex geometrical setting, with a 2D fluid domain and a 1D blade surface domain, see
838 Figure 11.

839 The fluid domain contains 2D elements in a 2D ambient space, hence is contained in the CGNS base
840 called "Base_2_2". For the blade surface domain, we have 1D elements in a 2D ambient space: the
841 CGNS base is then "Base_1_2". The corresponding data are retrieved as follows:

```

1 from datasets import load_dataset
2 from plaid.containers.sample import Sample
3 import pickle
4
5 # Load the first sample of the train split
6 hf_dataset = load_dataset("PLAID-datasets/VKI-LS59", split="all_samples")

```

```

7  ids_train = hf_dataset.description["split"]["train"]
8  sample = Sample.model_validate(pickle.loads(hf_dataset[ids_train[0]]["sample"]))
9
10 # Examples of data retrievals
11 for fn in ["sdf", "ro", "rou", "rov", "roe", "nut", "mach"]:
12     field = sample.get_field(fn, base_name="Base_2_2")
13     M_iso = sample.get_field("M_iso", base_name="Base_1_2")
14     for sn in sample.get_scalar_names():
15         scalar = sample.get_scalar(sn)
16
17     nodes_fluid = sample.get_nodes(base_name="Base_2_2")
18     nodes_blade_surface = sample.get_nodes(base_name="Base_1_2")
19     elements_fluid = sample.get_elements(base_name="Base_2_2")
20     elements_blade_surface = sample.get_elements(base_name="Base_1_2")
21     nodal_tag_fluid = sample.get_nodal_tags(base_name="Base_2_2")

```

842 The meshes for the fluid domain and blade surface domain can also be converted to Muscat meshes:

```

1  from Muscat.Bridges import CGNSBridge
2  CGNS_tree = sample.get_mesh()
3  mesh_fluid = CGNSBridge.CGNSToMesh(CGNS_tree, baseNames=["Base_2_2"])
4  mesh_blade = CGNSBridge.CGNSToMesh(CGNS_tree, baseNames=["Base_1_2"])

```

843 B.3 2D_ElPlDynamics

844 2D_ElPlDynamics contains additional complexity: time-dependent data and a field located at the
845 center of the elements. When retrieving data, the default location of the fields is at the vertices. For
846 other type of fields, location mush be specified. Furthermore, in 2D_ElPlDynamics, the mesh is
847 different from one sample to another, but stays constant through the time sequence within a sample.
848 Hence, to prevent useless duplication of data, we link the geometrical support of the second to last
849 time step data to the mesh of the first time step. The corresponding commands are provided below:

```

1  from datasets import load_dataset
2  from plaid.containers.sample import Sample
3  import pickle
4
5  # Load the first sample of the train split
6  hf_dataset = load_dataset("PLAID-datasets/2D_ElastoPlastoDynamics",
7  ↪ split="all_samples")
7  ids_train = hf_dataset.description["split"]["train"]
8  sample = Sample.model_validate(pickle.loads(hf_dataset[ids_train[0]]["sample"]))
9
10 # Examples of data retrievals
11 time_steps = sample.get_all_mesh_times()
12
13 for time in time_steps:
14     for fn in ["U_x", "U_y"]:
15         field = sample.get_field(fn, time = time)
16         field = sample.get_field("EROSION_STATUS", location="CellCenter", time = time)
17
18     CGNS_tree_t0 = sample.get_mesh(time = 0.)
19     CGNS_tree_t1 = sample.get_mesh(time = 0.01, apply_links = True, in_memory = True)

```

850 C Benchmarking online applications

851 Anyone wishing to participate in our benchmarks, hosted at huggingface.co/PLAIDcompetitions,
852 should create a Hugging Face account. However, no account is required to browse the website or view

853 the leaderboards. To participate, users simply need to train their model independently and submit
 854 predictions on the testing set. We do not require participants to upload their models. Two separate
 855 leaderboards are maintained, each based on a hidden subset of the test set, in order to discourage
 856 tentatives to overfit on the testing set.

857 We illustrate the benchmarking application using the VKI-LS59 dataset as an example.

858 Figure 12 shows the benchmark homepage. A navigation menu is available on the left-hand side,
 859 allowing users to browse the site and log in. This page also provides examples of the dataset output
 860 fields and includes a visualization tool, where users can select a training sample ID and an output
 861 field to display.

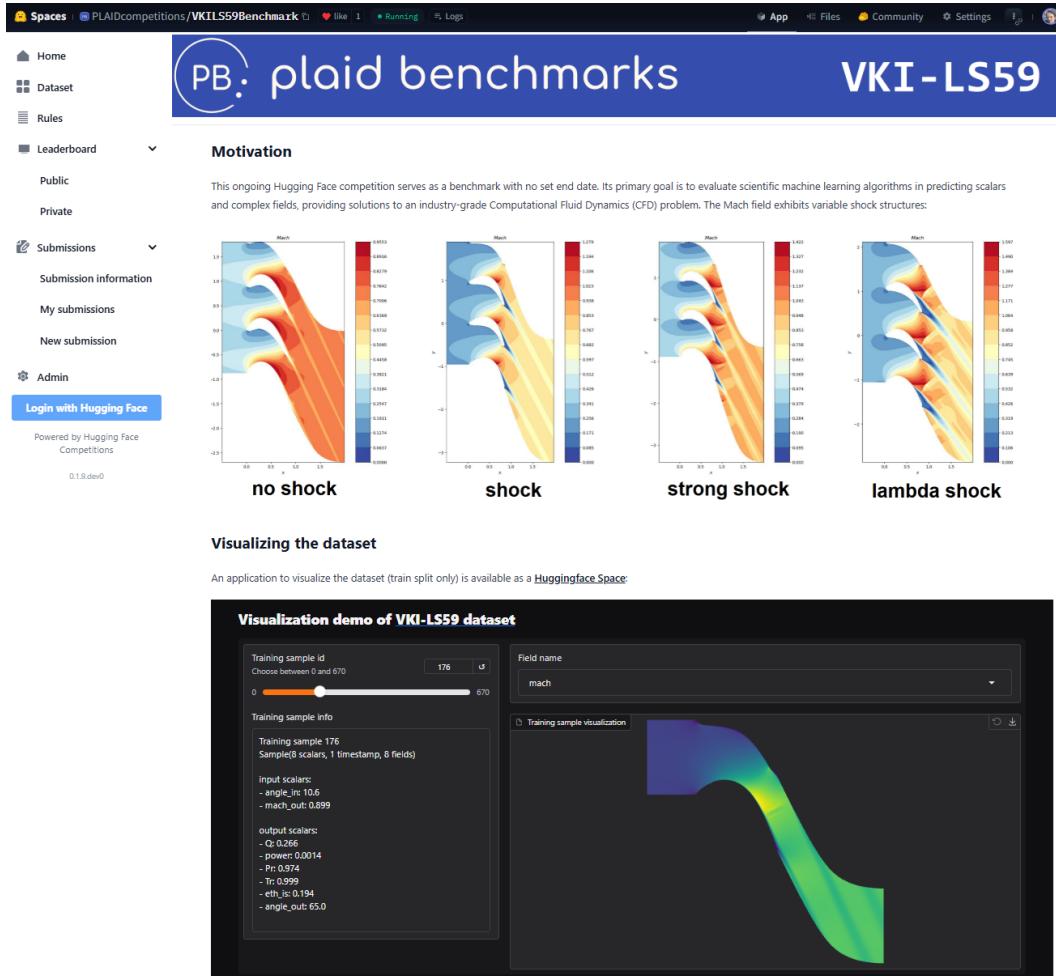


Figure 12: "Home" page of the benchmarking application on the VKI-LS59 dataset.

862 Figure 13 provides detailed instructions on how to retrieve the dataset, including a description of
 863 the inputs and outputs used in the benchmark. Example commands are also provided to retrieve the
 864 samples and the required associated data.

865 The set of rules applying to the benchmark is presented in Figure 14.

866 Figure 15 provides detailed instructions on how to generate and submit the prediction file. The
 867 scoring function used for evaluation is also described.

868 Figure 16 illustrates the user's submissions page and the submission interface.

869 Figure 17 shows the public leaderboard as it appeared at the time of submission of this work.

Spaces PLAIDcompetitions/VKI-LS59Benchmark 1 like 1 Running Logs App Files Community Settings

PB: plaid benchmarks VKI-LS59

Home

Dataset

Rules

Leaderboard ▾ **Downloading the dataset**

The dataset used for the competition is based on the VKI-LS59 blade and is provided in [Plaid format](#):

- on [Zenodo](#)
- as a [Huggingface dataset](#)

Plaid, which stands for "Physics Learning AI Datamodel," enables the handling of heterogeneous physics datasets. A dataset and its associated learning problems are self-contained within a Plaid file. Details on accessing the information are provided below.

Submission information

My submissions

New submission

Using the dataset

To use the dataset, you need to install `plaid>=0.1`, which is available as a [Conda package](#) or from the [sources](#).

In the competition, we use a subset of the dataset with the following specifications:

- Splits:** "train" and "test"
- Inputs:**
 - 2 scalars: "angle_in" and "mach_out"
 - Geometrical support (the mesh). Redundant information is available in the form of the signed distance function field "sdf"
- Outputs:**
 - 6 scalars: "q", "power", "Pr", "Tr", "eth_is" and "angle_out"
 - 2 fields: "mach" and "nut"

Note that the dataset does not contain outputs for the "test" split.

Retrieving Samples

Depending on whether you use the Zenodo or Hugging Face dataset, there are slight differences in how to retrieve the samples:

- Hugging Face dataset:**

```
from datasets import load_dataset
from plaid.containers.sample import Sample
import pickle

hf_dataset = load_dataset("PLAID-datasets/VKI-LS59", split="all_samples")

ids_train = hf_dataset.description['split']['train']
ids_test = hf_dataset.description['split']['test']

sample_train_0 = Sample.model_validate(pickle.loads(hf_dataset[ids_train[0]]["sample"]))
sample_test_0 = Sample.model_validate(pickle.loads(hf_dataset[ids_test[0]]["sample"]))
```

More information can be found in the [Hugging Face support documentation for Plaid](#)

- Zenodo:**

```
from plaid.containers.dataset import Dataset
from plaid.problem_definition import ProblemDefinition

dataset = Dataset()
dataset._load_from_dir_('path/to/plaid/dataset', verbose = True)

problem = ProblemDefinition()
problem._load_from_dir_('path/to/plaid/problem_definition')

ids_train = problem.get_split('train')
ids_test = problem.get_split('test')

sample_train_0 = dataset[ids_train[0]]
sample_test_0 = dataset[ids_test[0]]
```

Retrieving Data from Samples

Once samples are obtained, the following commands to retrieve the data are common to both cases:

```
# inputs
nodes = sample.get_nodes(base_name="Base_2_2")
elements = sample.get_elements(base_name="Base_2_2")
nodal_tags = sample.get_nodal_tags(base_name="Base_2_2")
sdf = sample.get_field("sdf", base_name="Base_2_2")
angle_in = sample.get_scalar("angle_in")
mach_out = sample.get_scalar("mach_out")

# outputs
mach = sample.get_field("mach", base_name="Base_2_2")
nut = sample.get_field("nut", base_name="Base_2_2")

for sn in ["q", "power", "Pr", "Tr", "eth_is", "angle_out"]:
    outscalar = sample.get_scalar(sn)
```

- Fields:** 1D arrays
- Nodes:** 2D NumPy arrays
- Elements:** Dictionaries with element type names as keys and 2D connectivity arrays as values
- Nodal Tags:** Dictionaries with tag names as keys and 1D arrays of corresponding node indices as values

Figure 13: "Dataset" page of the benchmarking application on the VKI-LS59 dataset.

The screenshot shows the 'Rules' page of a competition application. The top navigation bar includes 'Spaces', 'PLAICompetitions/VKI-LS59Benchmark', 'App', 'Files', 'Community', 'Settings', and a user icon. The main header features the logo 'PB: plaid benchmarks' and the dataset name 'VKI-LS59'. The left sidebar has a 'Home' link and sections for 'Dataset', 'Rules', and 'Leaderboard'. The 'Leaderboard' section is expanded, showing 'Public' and 'Private' tabs, and a dropdown for 'Submissions' with 'Submission information', 'My submissions', and 'New submission' options. An 'Admin' section is also present. A 'Login with Hugging Face' button is at the bottom of the sidebar. The main content area contains a note: 'For detailed instructions on how to participate, please refer to the [Dataset and Submission Information](#) section.' Below this is a large section titled 'Rules' with the following points:

- **Submission Requirements:**
 - Users must submit predictions generated using their own computing resources.
 - Outputs for the test split are not publicly available.
- **Scoring:**
 - Scores are computed on two subsets of the test split: **public** and **private**.
 - The IDs for these subsets are not provided.
 - The public leaderboard reflects scores from the public subset only.
 - The private leaderboard is visible only to admins.
- **Leaderboard Privacy:**
 - Users have the option to modify their displayed name on the leaderboard for privacy reasons.
- **Submission Limits:**
 - Users are limited to 10 submissions per day.
- **Administrative Rights:**
 - Admins reserve the right to update the scoring function and reset the leaderboard at any time.
- **Competition Duration and Rewards:**
 - The competition has no set end date.
 - No rewards are offered for participation.
- **Disclaimer:**
 - This competition is a private initiative and is not affiliated with any organization. No claims can be made against the organizers.

Figure 14: "Rules" page of the benchmarking application on the VKI-LS59 dataset.

Important Points:

- Submission Limits: You are limited to 10 submissions per day.
- Leaderboard Visibility: The public leaderboard is visible to everyone, while the private leaderboard is visible only to admins.
- Submission description: If you wish to be recognized by the admins, please include your contact information in the submission description. Feel free to publicly share your ranking as of a specific date.
- Login: Even if you are already logged into your Hugging Face account, you must also log in to the competition. You can find the login option in the lower-left part of the screen.
- Asking for help: If you encounter any difficulty, including issues with the website (e.g., a non-working leaderboard or problems with the "My Submissions" page), please contact fabien.casenave@gmail.com.

Create a submission file

Models are to be trained on the input/output pairs of the "train" split, and evaluated on the "test" split input.

A submission takes the form of ".pkl" file to generate in the exact same form as the reference solution file, which has been generated in the following way:

```

reference = []
for i, id in enumerate(ids_test):
    reference.append({})
    sample = dataset[id]
    for fn in ['nut', 'mach']:
        reference[i][fn] = sample.get_field(fn, base_name="Base_2_2")
    for sn in ['Q', 'power', 'Pr', 'Tr', 'eth_is', 'angle_out']:
        reference[i][sn] = sample.get_scalar(sn)

with open('reference.pkl', 'wb') as file:
    pickle.dump(reference, file)

```

Your job is to construct a prediction file in the same fashion, replacing the `get_field` and `get_scalar` by your model predictions. Once your submission file is created, upload it in the "New submission" section.

Scoring

Submissions (and the reference) contain output predictions on the "test" split. This split is subdivided into two subsets: private and public. The corresponding IDs for these subsets are not provided. The public and private metrics are computed respectively on these sets using the following function:

```

def _metric(ref_split, pred_split):
    assert len(ref_split) == len(pred_split)
    errors = np.zeros(len(ref_split))
    for i in range(len(ref_split)):
        for fn in ['nut', 'mach']:
            errors[i] += (np.linalg.norm(pred_split[i][fn] - ref_split[i][fn])**2)/(ref_split[i][fn].shape[0]*np.linalg.norm(ref_split[i][fn], ord = np.inf)**2)
        for sn in ['Q', 'power', 'Pr', 'Tr', 'eth_is', 'angle_out']:
            errors[i] += ((pred_split[i][sn] - ref_split[i][sn])**2)/(ref_split[i][sn]**2)
    for fn in ['nut', 'mach']:
        errors[fn] = np.sqrt(errors[fn]/len(ref_split))
    for sn in ['Q', 'power', 'Pr', 'Tr', 'eth_is', 'angle_out']:
        errors[sn] = np.sqrt(errors[sn]/len(ref_split))
    return errors

```

Ranking is computed based on the `total_error`, which is the mean of the individual errors.

Figure 15: "Submission information" page of the benchmarking online application on the VKI-LS59 dataset.

Datetime	Submission ID	Public Score	Submission Comment	Selected Status
2025-04-09 05:27:48	ef60759-3260-4e17-88e6-473c6b13584	{"total_error": 0.4830082996030108, "nut": 0.15470466328828658, "mach": 0.33625448390724966, "Q": 0.5370589560247506, "power": 0.5682767424180806, "Pr": 0.5441628726960683, "Tr": 0.5777148031591368, "eth_is": 0.5384251699608344, "angle_out": 0.6074667053696792}		SUCCESS

Figure 16: "My submissions" page of the benchmarking application on the VKI-LS59 dataset.

rank	id	total_error	nut	mach	Q	power	Pr	Tr	eth_is	angle_out	submission_datetime
1	MARIO	0.0124	0.0259	0.0112	0.0052	0.0077	0.0018	0	0.0453	0.0023	2025-05-07 12:54:54
2	MMGd+	0.0312	0.0822	0.0309	0.0023	0.0057	0.0026	0	0.1224	0.0033	2025-04-23 10:05:21
3	Augur	0.0362	0.0641	0.0245	0.0076	0.0108	0.005	0	0.1732	0.004	2025-04-28 14:32:14
4	Vi-Transformer	0.0493	0.1489	0.0643	0.0228	0.0168	0.0042	0.0001	0.1311	0.0061	2025-04-23 08:28:37
5	MGN	0.0684	0.1656	0.0451	0.0716	0.0403	0.0068	0.0001	0.1912	0.0263	2025-05-05 11:24:36

Figure 17: "Public leaderboard" page of the benchmarking application on the VKI-LS59 dataset.

870 **NeurIPS Paper Checklist**

871 **1. Claims**

872 Question: Do the main claims made in the abstract and introduction accurately reflect the
873 paper's contributions and scope?

874 Answer: **[Yes]**

875 Justification: Claims are made in the abstract and the last two paragraphs on the introduction.
876 Section 3, 4 and 5 directly address the claimed contributions, namely the proposed standard
877 and implementation, the datasets and the benchmarking results and tools.

878 Guidelines:

- 879 • The answer NA means that the abstract and introduction do not include the claims
880 made in the paper.
- 881 • The abstract and/or introduction should clearly state the claims made, including the
882 contributions made in the paper and important assumptions and limitations. A No or
883 NA answer to this question will not be perceived well by the reviewers.
- 884 • The claims made should match theoretical and experimental results, and reflect how
885 much the results can be expected to generalize to other settings.
- 886 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
887 are not attained by the paper.

888 **2. Limitations**

889 Question: Does the paper discuss the limitations of the work performed by the authors?

890 Answer: **[Yes]**

891 Justification: In the conclusion (Section 6), we mention that PLAID may not currently
892 address all possible future complex scenario, but can be adapted. We also infer that the
893 dataset collection and benchmarks can be completed by new data and methods, and provide
894 a future roadmap for PLAID. We specify in Section 5.3 that the benchmark results are not
895 exhaustive.

896 Guidelines:

- 897 • The answer NA means that the paper has no limitation while the answer No means that
898 the paper has limitations, but those are not discussed in the paper.
- 899 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 900 • The paper should point out any strong assumptions and how robust the results are to
901 violations of these assumptions (e.g., independence assumptions, noiseless settings,
902 model well-specification, asymptotic approximations only holding locally). The authors
903 should reflect on how these assumptions might be violated in practice and what the
904 implications would be.
- 905 • The authors should reflect on the scope of the claims made, e.g., if the approach was
906 only tested on a few datasets or with a few runs. In general, empirical results often
907 depend on implicit assumptions, which should be articulated.
- 908 • The authors should reflect on the factors that influence the performance of the approach.
909 For example, a facial recognition algorithm may perform poorly when image resolution
910 is low or images are taken in low lighting. Or a speech-to-text system might not be
911 used reliably to provide closed captions for online lectures because it fails to handle
912 technical jargon.
- 913 • The authors should discuss the computational efficiency of the proposed algorithms
914 and how they scale with dataset size.
- 915 • If applicable, the authors should discuss possible limitations of their approach to
916 address problems of privacy and fairness.
- 917 • While the authors might fear that complete honesty about limitations might be used by
918 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
919 limitations that aren't acknowledged in the paper. The authors should use their best
920 judgment and recognize that individual actions in favor of transparency play an impor-
921 tant role in developing norms that preserve the integrity of the community. Reviewers
922 will be specifically instructed to not penalize honesty concerning limitations.

923 3. Theory assumptions and proofs

924 Question: For each theoretical result, does the paper provide the full set of assumptions and
925 a complete (and correct) proof?

926 Answer: [NA]

927 Justification: The paper does not include theoretical results.

928 Guidelines:

- 929 • The answer NA means that the paper does not include theoretical results.
- 930 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
931 referenced.
- 932 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 933 • The proofs can either appear in the main paper or the supplemental material, but if
934 they appear in the supplemental material, the authors are encouraged to provide a short
935 proof sketch to provide intuition.
- 936 • Inversely, any informal proof provided in the core of the paper should be complemented
937 by formal proofs provided in appendix or supplemental material.
- 938 • Theorems and Lemmas that the proof relies upon should be properly referenced.

939 4. Experimental result reproducibility

940 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
941 perimental results of the paper to the extent that it affects the main claims and/or conclusions
942 of the paper (regardless of whether the code and data are provided or not)?

943 Answer: [Yes]

944 Justification: PLAID: the code is provided and extensively documented, including tutorials
945 for converting anyone how data into the PLAID data model; instructions and advice are
946 given for anyone to download and inspect the datasets. Benchmarking: applications and
947 detailed instructions are provided for anyone to participate and update the benchmarks.

948 Guidelines:

- 949 • The answer NA means that the paper does not include experiments.
- 950 • If the paper includes experiments, a No answer to this question will not be perceived
951 well by the reviewers: Making the paper reproducible is important, regardless of
952 whether the code and data are provided or not.
- 953 • If the contribution is a dataset and/or model, the authors should describe the steps taken
954 to make their results reproducible or verifiable.
- 955 • Depending on the contribution, reproducibility can be accomplished in various ways.
956 For example, if the contribution is a novel architecture, describing the architecture fully
957 might suffice, or if the contribution is a specific model and empirical evaluation, it may
958 be necessary to either make it possible for others to replicate the model with the same
959 dataset, or provide access to the model. In general, releasing code and data is often
960 one good way to accomplish this, but reproducibility can also be provided via detailed
961 instructions for how to replicate the results, access to a hosted model (e.g., in the case
962 of a large language model), releasing of a model checkpoint, or other means that are
963 appropriate to the research performed.
- 964 • While NeurIPS does not require releasing code, the conference does require all submis-
965 sions to provide some reasonable avenue for reproducibility, which may depend on the
966 nature of the contribution. For example
 - 967 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
968 to reproduce that algorithm.
 - 969 (b) If the contribution is primarily a new model architecture, the paper should describe
970 the architecture clearly and fully.
 - 971 (c) If the contribution is a new model (e.g., a large language model), then there should
972 either be a way to access this model for reproducing the results or a way to reproduce
973 the model (e.g., with an open-source dataset or instructions for how to construct
974 the dataset).

975 (d) We recognize that reproducibility may be tricky in some cases, in which case
976 authors are welcome to describe the particular way they provide for reproducibility.
977 In the case of closed-source models, it may be that access to the model is limited in
978 some way (e.g., to registered users), but it should be possible for other researchers
979 to have some path to reproducing or verifying the results.

980 **5. Open access to data and code**

981 Question: Does the paper provide open access to the data and code, with sufficient instruc-
982 tions to faithfully reproduce the main experimental results, as described in supplemental
983 material?

984 Answer: **[Yes]**

985 Justification: The PLAID library is provided in open-source and documented. All the
986 mentioned datasets are provided in open-data. Benchmarking application are provided and
987 available for anyone to use and contribute to.

988 Guidelines:

- 989 • The answer NA means that paper does not include experiments requiring code.
- 990 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 991 • While we encourage the release of code and data, we understand that this might not be
992 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
993 including code, unless this is central to the contribution (e.g., for a new open-source
994 benchmark).
- 995 • The instructions should contain the exact command and environment needed to run to
996 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 997 • The authors should provide instructions on data access and preparation, including how
998 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 999 • The authors should provide scripts to reproduce all experimental results for the new
1000 proposed method and baselines. If only a subset of experiments are reproducible, they
1001 should state which ones are omitted from the script and why.
- 1002 • At submission time, to preserve anonymity, the authors should release anonymized
1003 versions (if applicable).
- 1004 • Providing as much information as possible in supplemental material (appended to the
1005 paper) is recommended, but including URLs to data and code is permitted.

1006 **6. Experimental setting/details**

1007 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
1008 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
1009 results?

1010 Answer: **[Yes]**

1011 Justification: Learning tasks are formalized in the PLAID standard, and information on split
1012 and inputs/outputs are provided in Section 4. Details on the models used in the benchmarks
1013 are provided in Section A.

1014 Guidelines:

- 1015 • The answer NA means that the paper does not include experiments.
- 1016 • The experimental setting should be presented in the core of the paper to a level of detail
1017 that is necessary to appreciate the results and make sense of them.
- 1018 • The full details can be provided either with the code, in appendix, or as supplemental
1019 material.

1020 **7. Experiment statistical significance**

1021 Question: Does the paper report error bars suitably and correctly defined or other appropriate
1022 information about the statistical significance of the experiments?

1023 Answer: **[No]**

1026 Justification: While our contributions focus on the PLAID standard and implementation,
1027 the datasets and the benchmarking, it would have been very computationally demanding to
1028 train each model of the benchmark many times to include mean and standard deviations for
1029 every experiment. Besides, ranking in the benchmark is made from a single prediction.

1030 Guidelines:

- 1031 • The answer NA means that the paper does not include experiments.
- 1032 • The authors should answer "Yes" if the results are accompanied by error bars, confi-
1033 dence intervals, or statistical significance tests, at least for the experiments that support
1034 the main claims of the paper.
- 1035 • The factors of variability that the error bars are capturing should be clearly stated (for
1036 example, train/test split, initialization, random drawing of some parameter, or overall
1037 run with given experimental conditions).
- 1038 • The method for calculating the error bars should be explained (closed form formula,
1039 call to a library function, bootstrap, etc.)
- 1040 • The assumptions made should be given (e.g., Normally distributed errors).
- 1041 • It should be clear whether the error bar is the standard deviation or the standard error
1042 of the mean.
- 1043 • It is OK to report 1-sigma error bars, but one should state it. The authors should
1044 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
1045 of Normality of errors is not verified.
- 1046 • For asymmetric distributions, the authors should be careful not to show in tables or
1047 figures symmetric error bars that would yield results that are out of range (e.g. negative
1048 error rates).
- 1049 • If error bars are reported in tables or plots, The authors should explain in the text how
1050 they were calculated and reference the corresponding figures or tables in the text.

1051 8. Experiments compute resources

1052 Question: For each experiment, does the paper provide sufficient information on the com-
1053 puter resources (type of compute workers, memory, time of execution) needed to reproduce
1054 the experiments?

1055 Answer: [Yes]

1056 Justification: Details are provided in Section A.

1057 Guidelines:

- 1058 • The answer NA means that the paper does not include experiments.
- 1059 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
1060 or cloud provider, including relevant memory and storage.
- 1061 • The paper should provide the amount of compute required for each of the individual
1062 experimental runs as well as estimate the total compute.
- 1063 • The paper should disclose whether the full research project required more compute
1064 than the experiments reported in the paper (e.g., preliminary or failed experiments that
1065 didn't make it into the paper).

1066 9. Code of ethics

1067 Question: Does the research conducted in the paper conform, in every respect, with the
1068 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

1069 Answer: [Yes]

1070 Justification: The NeurIPS Code of Ethics has been read and acknowledged by the first
1071 author. In particular, the research did not involve real data of real people, is not concerned by
1072 safety, security, discrimination, surveillance, deception & harassment, environment, human
1073 rights, bias and fairness. Impact mitigation measures are applicable.

1074 Guidelines:

- 1075 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- 1076 • If the authors answer No, they should explain the special circumstances that require a
1077 deviation from the Code of Ethics.

1078 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
1079 eration due to laws or regulations in their jurisdiction).

1080 **10. Broader impacts**

1081 Question: Does the paper discuss both potential positive societal impacts and negative
1082 societal impacts of the work performed?

1083 Answer: [NA]

1084 Justification: The paper deals with ML for physics, with main application for design
1085 processes in the industry.

1086 Guidelines:

1087 • The answer NA means that there is no societal impact of the work performed.
1088 • If the authors answer NA or No, they should explain why their work has no societal
1089 impact or why the paper does not address societal impact.
1090 • Examples of negative societal impacts include potential malicious or unintended uses
1091 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
1092 (e.g., deployment of technologies that could make decisions that unfairly impact specific
1093 groups), privacy considerations, and security considerations.
1094 • The conference expects that many papers will be foundational research and not tied
1095 to particular applications, let alone deployments. However, if there is a direct path to
1096 any negative applications, the authors should point it out. For example, it is legitimate
1097 to point out that an improvement in the quality of generative models could be used to
1098 generate deepfakes for disinformation. On the other hand, it is not needed to point out
1099 that a generic algorithm for optimizing neural networks could enable people to train
1100 models that generate Deepfakes faster.
1101 • The authors should consider possible harms that could arise when the technology is
1102 being used as intended and functioning correctly, harms that could arise when the
1103 technology is being used as intended but gives incorrect results, and harms following
1104 from (intentional or unintentional) misuse of the technology.
1105 • If there are negative societal impacts, the authors could also discuss possible mitigation
1106 strategies (e.g., gated release of models, providing defenses in addition to attacks,
1107 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
1108 feedback over time, improving the efficiency and accessibility of ML).

1109 **11. Safeguards**

1110 Question: Does the paper describe safeguards that have been put in place for responsible
1111 release of data or models that have a high risk for misuse (e.g., pretrained language models,
1112 image generators, or scraped datasets)?

1113 Answer: [NA]

1114 Justification: The paper deals with ML for physics, with no apparent risk of misuse.

1115 Guidelines:

1116 • The answer NA means that the paper poses no such risks.
1117 • Released models that have a high risk for misuse or dual-use should be released with
1118 necessary safeguards to allow for controlled use of the model, for example by requiring
1119 that users adhere to usage guidelines or restrictions to access the model or implementing
1120 safety filters.
1121 • Datasets that have been scraped from the Internet could pose safety risks. The authors
1122 should describe how they avoided releasing unsafe images.
1123 • We recognize that providing effective safeguards is challenging, and many papers do
1124 not require this, but we encourage authors to take this into account and make a best
1125 faith effort.

1126 **12. Licenses for existing assets**

1127 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
1128 the paper, properly credited and are the license and terms of use explicitly mentioned and
1129 properly respected?

1130 Answer: [Yes]

1131 Justification: Origin and license of the AirfRANS dataset is correctly reported (origin in the
1132 paper, origin and license in the Zenodo and Hugging Face repos). The rest of the propose
1133 material is original, the chosen license for PLAID and the datasets is provided in the repos.

1134 Guidelines:

- 1135 • The answer NA means that the paper does not use existing assets.
- 1136 • The authors should cite the original paper that produced the code package or dataset.
- 1137 • The authors should state which version of the asset is used and, if possible, include a
1138 URL.
- 1139 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 1140 • For scraped data from a particular source (e.g., website), the copyright and terms of
1141 service of that source should be provided.
- 1142 • If assets are released, the license, copyright information, and terms of use in the
1143 package should be provided. For popular datasets, paperswithcode.com/datasets
1144 has curated licenses for some datasets. Their licensing guide can help determine the
1145 license of a dataset.
- 1146 • For existing datasets that are re-packaged, both the original license and the license of
1147 the derived asset (if it has changed) should be provided.
- 1148 • If this information is not available online, the authors are encouraged to reach out to
1149 the asset's creators.

1150 13. New assets

1151 Question: Are new assets introduced in the paper well documented and is the documentation
1152 provided alongside the assets?

1153 Answer: [Yes]

1154 Justification: The PLAID library, the datasets and the benchmarking application are all
1155 described and documented in details.

1156 Guidelines:

- 1157 • The answer NA means that the paper does not release new assets.
- 1158 • Researchers should communicate the details of the dataset/code/model as part of their
1159 submissions via structured templates. This includes details about training, license,
1160 limitations, etc.
- 1161 • The paper should discuss whether and how consent was obtained from people whose
1162 asset is used.
- 1163 • At submission time, remember to anonymize your assets (if applicable). You can either
1164 create an anonymized URL or include an anonymized zip file.

1165 14. Crowdsourcing and research with human subjects

1166 Question: For crowdsourcing experiments and research with human subjects, does the paper
1167 include the full text of instructions given to participants and screenshots, if applicable, as
1168 well as details about compensation (if any)?

1169 Answer: [NA]

1170 Justification: The paper does not involve crowdsourcing nor research with human subjects.

1171 Guidelines:

- 1172 • The answer NA means that the paper does not involve crowdsourcing nor research with
1173 human subjects.
- 1174 • Including this information in the supplemental material is fine, but if the main contribu-
1175 tion of the paper involves human subjects, then as much detail as possible should be
1176 included in the main paper.
- 1177 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
1178 or other labor should be paid at least the minimum wage in the country of the data
1179 collector.

1180 15. Institutional review board (IRB) approvals or equivalent for research with human 1181 subjects

1182 Question: Does the paper describe potential risks incurred by study participants, whether
1183 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
1184 approvals (or an equivalent approval/review based on the requirements of your country or
1185 institution) were obtained?

1186 Answer: [NA]

1187 Justification: The paper does not involve crowdsourcing nor research with human subjects.

1188 Guidelines:

- 1189 1190 • The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
- 1191 1192 • Depending on the country in which research is conducted, IRB approval (or equivalent)
1193 may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
- 1194 1195 • We recognize that the procedures for this may vary significantly between institutions
1196 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
- 1197 1198 • For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

1199 16. Declaration of LLM usage

1200 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1201 non-standard component of the core methods in this research? Note that if the LLM is used
1202 only for writing, editing, or formatting purposes and does not impact the core methodology,
1203 scientific rigorousness, or originality of the research, declaration is not required.

1204 Answer: [NA]

1205 Justification: The core method development in this research does not involve LLMs as any
1206 important, original, or non-standard components.

1207 Guidelines:

- 1208 1209 • The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
- 1210 1211 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
for what should or should not be described.