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ABSTRACT

The method based on reconstruction and discrimination has made significant
progress in unsupervised industrial anomaly detection (IAD) by using generative
models to accurately reconstruct normal regions while exhibiting reconstruction
failures in anomalous areas. However, current methodologies present two pri-
mary limitations. First, reliance on synthetic anomalies and reconstruction loss
metrics introduces inadequate supervisory guidance for targeted model optimiza-
tion. Second, uniform optimization strategies applied indiscriminately across all
image regions neglect spatial discrepancies in model confidence levels. We pro-
pose Pseudo-Label Supervision in Unsupervised Industrial Anomaly Detection
(PLSAD), a novel framework integrating unsupervised learning with pseudo-label
supervision. Our methodology focuses on the differences between the original
images and the synthetic anomaly images,thereby decoupling reconstruction pro-
cesses from discriminative feature learning. This dual-stream architecture not only
enhances feature representation robustness but also mitigates error propagation
through explicit separation of learning objectives. Furthermore, we introduce
Adaptive Intersection-over-Union Weighting (AIW), which dynamically evaluates
the model’s local performance through pseudo-label and synthetic ground truth
alignment, and automatically emphasizes challenging regions. Comprehensive
experiments on three IAD benchmarks (MVTec-AD, MVTec-LOCO, VisA) con-
firm PLSAD’s competitive performance in both detection accuracy and anomaly
localization.

1 INTRODUCTION

Anomaly detection aims to identify and localize data instances that deviate from normal observations.
Due to the high cost of labeling and the unpredictable nature of defects, unsupervised deep learning-
based anomaly detection methods have rapidly advanced. These methods are trained exclusively on
normal samples. Reconstruction-based approaches (such as autoencoders |Akcay et al.|(2018) and
generative adversarial networks Schlegl et al.| (2019)) exploit their capacity to reconstruct normal
patterns and utilize reconstruction errors to detect anomalous regions, rendering them mainstream
solutions. However, their reliance on unsupervised learning restricts their capability to detect subtle
and hard-to-identify anomalies, as they lack explicit supervisory signals necessary for optimizing
discriminative feature learning. This paper proposes a Pseudo-Label Supervised Anomaly Detection
(PLSAD) mechanism that introduces pseudo-labels into unsupervised training, thereby bridging the
performance gap between unsupervised and fully supervised methods.

The advanced reconstruction-based method employs a dual-network architecture: a reconstruction
sub-network rectifies synthetic anomalies, while a discrimination sub-network segments the anomalies
by comparing the original and reconstructed images. Despite their considerable effectiveness, these
methods exhibit certain limitations: 1. Single training perspective: The discriminative model
frequently employs concatenated synthetic anomaly images and reconstructed images as input during
training, but the reconstructed images are not the ”standard references.” This singular loss formulation
is often insufficiently comprehensive, resulting in a “lack of drive” in the later stages of training.
2. Neglect of model confidence: Existing methods uniformly treat all regions during training,
disregarding the spatial variability in reconstruction quality. Regions with poor reconstruction
require stronger supervision to optimize decision boundaries, whereas excessive supervision in
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Figure 1: (a) Upper: Segmentation loss curves of the discriminative network. The lower section
depicts IoU curves comparing the predicted anomalous masks with synthetic anomalous masks
(manually generated ground truth). (b) Upper left: The original test sample and its true anomalous
mask (GT), presented as an example to illustrate the motivation behind our method. From left to
right: results showing poor model performance, followed by improved performance achieved via our
weighted synthesis approach for different regions during anomalous feature learning.

well-reconstructed regions can degrade model performance and even lead to overfitting to synthetic
anomalies.

To overcome the limitations, PLSAD introduces a pseudo-label supervised mechanism that generates
supervisory signals from synthesized anomalies while maintaining an unsupervised paradigm. This
approach enhances the discrimination path between original images and synthetic images, while
simultaneously considering the reconstruction quality and the abnormal clues arising from differences
with the original images. As indicated by the red curves in the upper half of Figure|l|(a), although
the trend resembles that of conventional loss, it reveals greater disparities. By explicitly aligning the
reconstruction discrepancies with synthetic anomalies through pseudo-labels, we simulate the pseudo-
label guiding mechanism in semi-supervised learning. This helps reduce prediction uncertainty and
improve model stability. Moreover, as demonstrated by the yellow dashed box in Figure[I] (a), the
segmentation loss and IoU scores exhibit a degree of complementarity. Using this characteristic, we
assign higher loss weights to low IoU areas (which indicate poor reconstruction capability), dynam-
ically focusing the model on challenging regions. Figure [I](b) illustrates the training mechanism
of our method, which improves the performance of the model by weighted learning of synthetic
anomalies in different regions.

Our main contributions are as follows: 1. We identify and address a critical limitation in
reconstruction-based anomaly detection: the lack of direct supervisory signals for discriminative fea-
ture learning. Our pseudo-label supervision mechanism provides targeted guidance for distinguishing
normal from anomalous regions without requiring expensive manual annotations. 2. We propose
PLSAD, a novel framework that integrates pseudo-labels into unsupervised anomaly detection by
creating an additional learning path between original and synthetically anomalous images. This
dual-path architecture effectively decouples the reconstruction process from discriminative learning,
resulting in more robust feature representations, reduced error propagation, and enhanced model
stability. 3. We introduce Adaptive IoU Weighting (AIW), a dynamic weighting mechanism that
intelligently modulates pseudo-label supervision based on the model’s region-specific performance.
By assigning higher weights to areas with low IoU scores (indicating poor reconstruction capa-
bility), AIW focuses on challenging regions while preventing overfitting to synthetic patterns. 4.
Additionally, we provide extensive quantitative and qualitative evidence across multiple industrial
datasets (MVTec-AD, MVTec-LOCO, and VisA) showing that our method achieves state-of-the-art
performance on challenging tasks, including detection (99.4% image-level AU-ROC on MVTec-AD)
and localization (93.5% PRO score).

2 RELATED WORK

2.1 UNSUPERVISED INDUSTRIAL ANOMALY DETECTION.

Visual detection based on deep learning has achieved significant progress with the aid of supervised
learning |[Kwon et al.| (2019); Ruff et al.| (2021)). However, in real-world industrial scenarios, the
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scarcity of defect samples, the high cost of annotation, and the lack of prior knowledge about defects
often render supervised methods ineffective. Recently, unsupervised industrial anomaly detection
(IAD) algorithms have been increasingly applied to industrial tasks, where the training set contains
only normal samples for each category, while the test set comprises both normal and abnormal
samples.. Unsupervised IAD methods are primarily categorized into three types: reconstruction-
based methods, synthesis-based methods, and embedding-based methods. In this paper, we focus on
reconstruction-based methods. Feature embedding-based methods have recently achieved state-of-
the-art performance and can be specifically categorized into: teacher-student architecture |Bergmann
et al.| (2020); [Deng & Li (2022), normalizing flow Rezende & Mohamed| (2015)); Rudolph et al.
(2021)), memory bankRoth et al.|(2022)); \(Cohen & Hoshen| (2020), and one-class classification|[Sohn
et al.| (2020D).

Reconstruction-based methods [Haselmann et al.| (2018)); Ristea et al.| (2022)); [Zavrtanik et al.| (2021c)
include approaches based on autoencoders |Bergmann et al.|(2019b); Zavrtanik et al.|(2021b)); Chen
et al.[(2023)), generative adversarial networks Yan et al.|(2022); Duan et al.| (2023)), Transformers You
et al.| (2022); |Yao et al.| (2023)), and diffusion models [Lu et al.|(2023);|Zhang et al.|(2023)). Although
these methods have been widely adopted in recent years, they require substantial training time and
generally underperform compared to feature embedding-based approaches, thus posing challenges
for practical industrial deployment. Many anomaly detection methods rely on image reconstruction
and identify anomalies based on the reconstruction error. Autoencoders are commonly employed for
this purpose and are often trained using adversarial loss functions.

2.2 PSEUDO-LABEL TECHNIQUES

Pseudo-labeling, a technique originally rooted in semi-supervised learning, leverages model predic-
tions on unlabeled data as supervisory signals to enhance training robustness [Lee et al.|(2013)). In
classical semi-supervised classification, high-confidence predictions are treated as pseudo-labels to
expand the labeled dataset |Sohn et al.| (2020a). However, these methods require partial anomaly
annotations or complex iterative refinement, limiting their practicality in fully unsupervised industrial
settings.

PLSAD markedly differs from existing methods by incorporating pseudo-label supervision within
a purely unsupervised framework. Unlike the implicit error comparison employed in DRAEM,
PLSAD explicitly aligns reconstruction discrepancies with synthetic anomalies via pseudo-labels,
effectively simulating semi-supervised learning. Moreover, it dynamically optimizes regions ex-
hibiting low reconstruction quality, thereby mitigating the homogenization bias observed in current
optimization strategies. Although PLSAD generates artificial labels, it fundamentally operates within
a reconstruction-based unsupervised paradigm. While previous pseudo-label methods aimed at
increasing noise [Im et al.| (2025) and improving model distribution generalization [Pan et al.| (2025)),
our approach emphasizes targeted optimization within specific latent spaces.

3 METHOD

3.1 MODEL ARCHITECTURE

Our method is an unsupervised reconstruction-based anomaly detection approach, where the PLSAD
architecture, illustrated in Figure [2| comprises a reconstruction network and a discriminative network.
The synthesized anomalous image I, is fed into the reconstruction network, which detects and
reconstructs anomalies by generating semantically plausible normal content, while preserving the
nonanomalous regions of the input image unchanged. Subsequently, the discriminative network
produces an accurate anomaly segmentation map M,,,.. based on the concatenation of the recon-
structed and anomalous inputs. Building upon this, we introduce the concatenated normal-anomaly
inputs. Since the synthesized anomalies can provide accurate segmentation maps, the unsupervised
approach transitions to supervised (though it is a form of pseudo-supervision because the anomalies
are artificially generated), resulting in an anomaly segmentation map M,,,, which is then binarized
and compared with the ground truth via IoU.
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Figure 2: The architecture of PLSAD consists of a reconstruction network and a discriminative
network. At the top of the diagram is a generic reconstruction-based process, where the reconstruc-
tion network repairs the abnormal synthesized image. Subsequently, the input and output of the
reconstruction network are connected and fed into the discriminative network, which outputs the
anomalous map M,,... Below is the pseudo-label supervised process, where normal images are
connected with the abnormal synthesized image, similarly inputting into the discriminative network
to produce the anomalous map M.

3.1.1 RECONSTRUCTION AND DISCRIMINATION NETWORKS

Reconstructive Network: A U-Net-style encoder-decoder architecture trained to restore artificially
corrupted images I, (generated via synthetic anomaly injection) to their original normal state I™. The
reconstruction loss combines pixel-level (L2) distance and patch-based structural similarity (SSIM)
Wang et al.| (2004) to enforce both global fidelity and local texture consistency:

Lyee(I™, Iree) = ALssir (1™, 1) + (I — I,,)?, (1
where Lggrs is computed as:
1
Lssi(I" Iee) = 3 D (1= SSIM(I", Iec) i) @
c,w,h

with H x W denoting the image dimensions and A balancing the two terms.

Discriminative Network: A U-Net-based module that takes channel-wise concatenated inputs
I. = [I,I,¢.](original and reconstructed images) and outputs an anomaly score map M,. The
sub-network automatically learns a defect-sensitive distance measure through Focal Loss [Lin et al.
(2017):

Lseg(Mcu Mpre = NT Z pre Ma log(Mpre) + MI;YT@( - Ma) log(l - Mpre)} )

c,w,h
3)
where M, is the synthetic anomaly mask and M, is the predicted mask.

3.1.2 SIMULATED ANOMALY GENERATION

We employ the DTD dataset|Cimpoi et al.| (2014) as the source of anomalous textures and utilize the
Perlin noise generator Perlin| (1985) to synthesize noise patterns capturing diverse anomaly shapes.
Because noise may randomly spread beyond target regions, we constrain anomalies to plausible areas
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Figure 3: Left: Simulated anomaly generation process. Based on M, samples are taken from the
anomaly texture /44 and placed on the normal image I™ to generate the anomaly image I}, where
B3 controls the anomaly region’s transparency. Right: Process of \g,,. The IoU with the abnormal
ground truth mask is computed to obtain the reciprocal of Agp.

using a foreground-background separation strategy. The anomaly mask M, is generated by binarizing
the synthesized patterns at a uniformly sampled threshold.

Inspired by RandAugment |Cubuk et al.| (2020), we further enhance textures through stochastic
augmentation. The augmented texture image /%Y and anomaly mask M, are blended with the original
image I, as illustrated in Figure[3[a). The augmented training image I, is formulated as:

Ma :Mfore,@Mnoise; Ia:E®I+(1_6)(Ma®1)+ﬁ(Ma®Idtd)7 (4)

where M, denotes the inverse of M,, ® is element-wise multiplication, and 3 € [0.1, 1.0] controls
the blending opacity.

In our experiments, replacing synthetic textures with the realistic SDAS dataset|Zhang et al.| (2024)
did not improve performance. We attribute this to the advantage of generating near out-of-distribution
appearances, which facilitate the model’s learning of discriminative distance functions by amplifying
the differences between normal and anomalous patterns.

3.2 PSEUDO-LABEL SUPERVISED MECHANISM

Traditional reconstruction methods only use the concatenation of the reconstructed image and the
abnormal synthesized image as the input for the discriminative model. Although this design enables
the model to compare repaired and anomalous regions, it inherently ties the discriminative learning
process to the performance of the reconstruction sub-network. Any reconstruction errors (e.g.,
over-smoothing or incomplete inpainting) propagate directly into the discriminative input, thereby
introducing noise that destabilizes training.

To address this limitation, we add the concatenation of the original normal image and the abnormal
synthesized image [I™, I}] as input, which also outputs anomaly predictions M,,s, and we use Focal
Loss to compute the discrepancy: Lgyp = Lseqg(Ma, Mps), where M, denotes the synthetic anomaly
mask. This approach not only offers a more diverse perspective but also mitigates error propagation
by disentangling discriminative learning from reconstruction artifacts, thereby enhancing the stability
of PLSAD.

3.3 ADAPTIVE IoU WEIGHTING (AIW)

As seen from Figure [T[(a), the pseudo-supervisory loss has a significant impact on the overall loss,
and how to control this loss is a key factor in achieving better model performance. Therefore, to
accommodate the varying regional reconstruction capabilities, we propose dynamically weighting the
pseudo-supervisory loss based on the Intersection over Union (IoU). We apply the p-th percentile
threshold to binarize the predicted anomaly map M,,,, yielding the anomaly segmentation prediction

Myp;, and compute the IoU between the two masks as IOU = %ZB%Z . IoU effectively reflects the
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Table 1: Comparison of PLSAD with different SOTA methods on MVTec-AD datasets. -/ - /- /-
denotes image-level AUROC%, pixel-level AUROC%, pixel-level AP% and pixel-level PRO%.

MVTecAD DRAEM PatchCore SimpleNet EfficientAD RealNet PLSAD
(ICCV 2021) (CVPR 2022) (CVPR 2023) (WACV 2024) (CVPR 2024) (Ours)

Carpet 97.0/93.6/54.9/87.7  98.7/99.0/62.7/94.9  99.7/98.2/-/-  97.4/96.9/83.0/91.1  99.8/99.2/-/97.0 | 99.0/96.5/68.7/93.4
Grid 99.9/99.3/54.6/98.0  98.2/98.7/32.5/93.9  99.7/98.8/-/-  99.1/97.0/41.3/88.8  100.0/99.5/-/97.1 | 100.0/99.4/66.3/98.0
Leather 100.0/99.2/74.7/98.1  100.0/99.3/45.6/97.4  100.0/99.2/-/-  86.7/98.3/50.8/97.1 ~ 99.9/99.7/-/96.4 | 100.0/97.2/63.2/95.3
Tile 99.6/99.5/96.3/98.0  98.7/95.6/54.6/90.6  99.8/97.0/-/-  100.0/96.5/72.7/88.4  99.6/99.3/-/95.3 | 100.0/99.1/93.1/97.2
Wood 99.1/96.4/64.7/90.7  99.2/95.0/47.7/89.4  100.0/94.5/-/-  98.8/93.6/54.3/87.4  99.2/98.2/-/91.2 | 100.0/94.4/64.4/89.6
texture 99.1/97.6/69.0/94.5  99.0/97.5/48.6/93.2  99.8/97.5/-/-  96.4/96.5/60.4/90.6  99.7/99.2/-/95.4 | 99.8/97.3/71.1/94.7
Bottle 99.2/99.3/90.9/97.3  100.0/98.6/76.8/95.7  100.0/98.0/-/-  100.0/98.6/83.0/94.6  100.0/99.3/-/95.6 | 99.6/98.8/86.8/94.7
Cable 91.8/94.9/47.5/79.3  99.5/98.4/65.3/92.5  99.9/97.6/-/-  95.2/97.3/65.7/86.8 ~ 99.1/98.1/-/90.4 | 96.4/96.1/64.8/86.0
Capsule 98.5/92.4/39.3/89.8  98.1/98.8/44.2/95.8  97.7/98.9/-/-  94.4/98.8/50.4/96.0  99.3/99.3/-/82.3 | 98.7/96.7/49.2/92.7
Hazelnut 100.0/99.4/84.6/98.5  100.0/98.7/53.7/93.8  100.0/97.9/-/-  99.5/96.1/58.2/91.4  100.0/99.7/-/93.5 | 100.0/99.6/91.4/98.5
Metal nut | 98.7/99.1/92.6/96.1  100.0/98.4/87.0/91.4 100.0/98.8/-/-  98.4/98.4/90.5/91.9  99.7/98.6/-/96.5 | 100.0/99.1/93.7/96.4
Pill 98.9/97.2/58.4/88.6  96.6/97.4/77.7/94.5  99.0/98.6/-/-  96.8/97.4/79.3/95.9  98.3/99.0/-/84.4 | 98.4/98.4/78.9/95.2
Screw 93.9/96.2/42.0/86.2  98.1/99.4/35.4/96.4  98.2/99.3/-/-  93.7/98.1/38.3/89.9  97.7/99.5/-/185.2 | 99.6/98.8/59.3/94.0
Toothbrush | 100.0/97.5/37.6/89.4 100.0/98.7/37.2/91.8  99.7/98.5/-/-  100.0/98.6/51.1/94.5  99.4/98.7/-/90.9 | 100.0/99.3/68.0/96.3
Transistor | 93.1/83.4/44.0/73.1 100.0/96.3/61.0/83.7 100.0/97.6/-/-  99.5/93.6/71.4/85.4  99.7/98.0/-/86.6 | 99.2/90.4/46.6/82.2
Zipper 100.0/98.8/77.7/96.5  99.4/98.8/59.5/96.1  99.9/98.9/-/-  95.2/97.5/63.9/91.7  99.6/99.2/-/88.8 | 100.0/97.5/68.3/93.1
object 97.4/95.8/61.5/89.5  99.2/98.4/59.8/93.2  99.4/98.4/-/-  97.3/97.4/65.2/91.8  99.3/98.9/-/89.4 | 99.2/97.5/70.7/92.9
average ‘ 98.0/96.4/64.0/91.1  99.1/98.1/56.1/93.2  99.6/98.1/-/-  97.0/97.1/63.6/91.4  99.4/99.0/-/91.4 ‘ 99.4/97.4/70.8/93.5

model’s discriminative ability in the anomalous regions; when IoU is large, the model’s ability in
that region is strong, and vice versa. We leverage this metric to weight the pseudo-supervisory term,
implementing it via a simple subtraction: Ag,, =1 — IOU.

3.4 INFERENCE AND LOSS

During inference, the output of the discriminative network is a pixel-level anomaly detection mask
M,, which can be directly used for image-level anomaly score estimation, i.e., to determine whether
there is an anomaly in the image. Firstly, M, is smoothed using a mean filtering convolutional layer
to aggregate local anomaly response information. The final image-level anomaly score 7 is computed
by taking the maximum value of the smoothed anomaly score map:

(&)

where fsfx.r is a mean filter of size s f X sf, and * denotes the convolution operation. The training
loss consists of three parts: reconstruction loss, segmentation loss, and pseudo-supervision loss,
expressed as: The total training objective jointly optimizes both sub-networks:

n= mal.(Mo *fsfxsf)v

L= »C'r‘ec + Eseg + )\supcsup

n n (©)
= )\LSSIIW(I 7Irec) + (I - Irec)2 + Lfocal(Ma; Mpre) + Asupoocal(Mav Mps)~

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. MVTec-AD |Bergmann et al.| (2019a) comprises 5,354 high-res images from various
domains, with 3,629 anomaly-free training images and 1,725 test images (both normal and abnormal),
along with pixel-level annotations. MVTec-LOCO Bergmann et al.[(2022) offers 3,644 images from
five industrial categories with structural anomalies (e.g., scratches, dents, contaminations) and logical
anomalies (e.g., misplaced or missing objects). VisA [Zou et al.| (2022) contains 10,821 high-res
images (9,621 normal; 1,200 anomalous) spanning 12 object classes, which are grouped into Complex
Structures, Multiple Instances, and Single Instances.

Evaluation Metric. We evaluated the performance at both the image-level and the pixel-level,
using the Area Under the Receiver Operating Characteristic curve (AU-ROC, AUC) as the primary
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Table 2: Comparison of PLSAD with different SOTA methods on MVTec-AD datasets. -/ - / - /-
denotes image-level AUROC%, pixel-level AUROC%, pixel-level AP% and pixel-level PRO%.

VisA DRAEM PatchCore SimpleNet RealNet PLSAD

candle 94.4/97.3/93.7 98.6/99.5/94.0 98.7/98.8/94.9  95.0/99.0/- | 95.4/97.1/93.1
capsules 76.3/99.1/84.5 81.6/99.5/85.5 91.7/94.9/90.6 88.1/97.6/- | 93.0/98.5/92.2
cashew 90.7/88.2/51.8  97.3/98.9/94.5 97.0/99.0/89.2  95.9/97.6/- | 97.4/92.1/91.5
chewinggum | 94.2/97.1/60.4 99.1/99.1/84.6  99.8/97.3/83.4 100.0/99.8/- | 97.8/99.2/88.8
fryum 97.4/92.7/93.1 96.2/93.8/85.3 98.4/91.2/86.9  95.3/95.2/- | 98.9/96.6/96.1
macaronil 95.0/99.7/96.7 97.5/99.8/95.4 99.4/98.9/98.7 98.2/99.7/- | 96.8/99.4/97.9
macaroni2 96.2/99.9/99.6 78.1/99.1/94.4 82.9/97.7/93.9  91.8/99.3/- | 95.6/99.7/97.0
pcbl 54.8/90.5/74.3 98.5/99.9/94.3 99.5/99.6/92.7 97.1/99.4/- | 96.7/99.2/89.9
pcb2 77.8/90.5/83.4 97.3/99.0/89.2 99.5/97.3/90.9 97.5/97.8/- | 98.7/94.6/83.0
pcb3 94.5/98.6/89.9  97.9/99.2/90.9 99.0/99.2/92.9  97.6/98.4/- | 98.0/95.7/89.6
pcb4 93.4/88.0/82.1 99.6/98.6/90.1 99.6/96.7/82.7  99.2/98.6/- | 99.2/97.7/90.9
pipe_fryum | 99.4/90.9/91.7 99.8/99.1/95.7 99.7/99.0/93.6  99.9/98.6/- | 97.3/97.5/95.3
average 88.7/94.4/83.4 95.1/98.8/91.2 97.1/97.5/90.9 96.3/98.4/- | 97.1/97.3/92.1

Table 3: Comparison of PLSAD
with different SOTA methods on
MVTec-LOCO datasets. [-AUC
denotes average image-level AU-

Table 4: PLSAD Module Ablation Experiments. The results
for image-level AUROC%, pixel-level AUROC%, and PRO%
are reported separately. fg/PLS/AIW denotes constraining
anomaly generation to the foreground region, pseudo-label

ROC% supervision, dynamic IoU weight module.
LOCO I-AUC fg PLS AIW | I-AUC P-AUC PRO
DRAEM 83.0 98.0 96.4 91.1
PatchCore 81.6 v 98.1 97.0 92.3
SimpleNet 77.6 v 99.3 95.9 90.4
AST 83.7 v v 98.8 96.6 90.8
EfficientAD 90.7 v v 99.5 96.3 90.5
PLSAD 92.7 v v v 99.4 97.4 93.5

metric for quantifying image-level (I-AUC) and pixel-level (P-AUC) performance. To ensure a more
equitable treatment of anomaly regions of varying sizes, we employed the Per-Region-Overlap (PRO)
metric for anomaly segmentation. And report the pixel-wise average precision metric (AP), which
is more appropriate for highly imbalanced classes and in particular for surface anomaly detection,
where the precision plays an important role.

Implementation Details. The reconstructive sub-network is formulated as an encoder-decoder archi-
tecture, and the discriminative sub-network uses a U-Net Ronneberger et al.|(2015)-like architecture.
Refer to[Zavrtanik et al.|(2021al) for details. The Describable Textures Dataset (DTD) [Cimpoi et al.
(2014) is used as the anomaly source dataset. In our experiments, the network is trained for 800
epochs, and the Adam optimizer is used with a learning rate of 10 4 and is multiplied by 0.1 after
400 and 600 epochs.

4.2 MAIN RESULTS

We compared our approach with currently representative unsupervised industrial anomaly detection
methods [Zavrtanik et al.[(2021a); Roth et al.| (2022)); Liu et al.|(2023)); | Batzner et al.[(2024); Zhang
et al.| (2024)); Rudolph et al.| (2023) in the literature on the MVTec-AD, MVTec-LOCO, and VisA
datasets. We evaluated the detection and segmentation capabilities of the model using multiple
metrics, with DRAEM serving as the baseline method. The results of other methods reported in the
table are derived from a mix of our own tests and data from other published articles. The best results
are highlighted in bold, and the second-best results are underline.
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Table 5: Changing the Weighting Method. The left side shows the results of changing the mapping
function, while the right side presents the results of applying different multiples for pseudo-label
supervised weighting. We report the average image-level AU-ROC and PRO scores on the MVTecAD
dataset, with the scores for specific categories provided in the appendix.

Weighting | w/o \ iou inc dec e ke 1.0 1.5 2.0 Asup
I-AUC 98.85 9745 99.06 9894 98.84 | 98.85 9891 98.88 | 99.38
PRO 90.86 88.77 9091 9244 9235 | 90.86 9191 92.44 | 93.51
202 s | e
s ()
— Aen(-k)
1.0
\‘
~L
0.5 <"
—__
0 =
Epoch original A=1 A=2 inc dec  PLSAD
(@) (b)

Figure 4: (a) Visualization of different function expressions. (b) Qualitative results of different
functions. The first column is the original image and ground truth.

As shown in Table|l| we evaluated PLSAD on the MVTec-AD and presented the image-level AUC,
pixel-level AUC, pixel-level AP, and PRO scores for different methods on a per-category basis.
PLSAD demonstrated competitive results, improving by 1.4/1.0/6.9/2.4% respectively compared to
the baseline, and reducing the error rate by 70/30/20/30%. Particularly in pixel-level evaluations
of AP and PRO, it achieved the best scores, indicating that region-based pseudo-label supervision
enables the model to enhance its pixel-level capabilities, and more precisely localize and segmentation
of anomalous regions.

In Table[2] we evaluated PLSAD on the VisA and presented the image-level AUC, pixel-level AUC,
and PRO scores for different methods on a per-category basis. PLSAD exhibits a relatively balanced
performance across all categories, with minimal fluctuations in scores between them, indicating
that our method is more universally applicable to different types of anomalous objects. Among
these, I-AUC and PRO achieved the highest Although PLSAD is not the highest scoring in some
datasets and categories, it shows a significant improvement over the baseline scores, reflecting the
effectiveness of the pseudo-supervision. In Table [3] we evaluated PLSAD on the MVTec-LOCO
and presented the average image-level AUC. Scores for categories will be provided in the appendix.
MVTec-LOCO is the most challenging dataset among the three, but it is also the dataset where
PLSAD shows the greatest improvement over the baseline, increasing by 9.7%

4.3 EMPIRICAL STUDIES

4.3.1 EFFECTIVENESS OF DIFFERENT COMPONENTS OF PLSAD

We investigate the effectiveness of each component of PLSAD in Table[d We presented the image-
level AUC, pixel-level AUC, and PRO scores on MVTevc-AD. When the foreground constraint is not
used, the image-level score performs best, while the pixel-level score decreases. Both Pseudo Label
Supervision (PLS) and Adaptive IoU Weighting (AIW) adjustments can further enhance the results.
In summary, the foreground (fg) constraint regulates the anomalous generation areas and reduces
background interference. PLS provides explicit supervisory signals, enhancing discriminability, while
AIW dynamically optimizes challenging areas, balancing global and local learning. The collaborative
effects among these components achieve a performance balance optimization in both image-level
anomaly detection and pixel-level localization tasks.
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Figure 5: Qualitative results of PLSAD on the MVTec-AD.

4.3.2 ADAPTIVE WEIGHTING STRATEGY

As shown in Table [5] we employed different weighting methods to replace AIW, one of which
involves changing the dynamic mapping approach, while another uses different multiples of Agy,.

Changing Mapping Methods. We replaced AIW with different function mapping methods, which
include: no weighting strategy (w/o \), using iou directly (iou), increasing with training iterations
(inc), decreasing with training iterations (dec), and inverse Sigmoid function (e™%). Ay, represents
our method. It can be observed that the changes in the image-level metric I-AUC are not significant.
However, when using mappings that have a trend significantly different from that of A, the pixel-
level metrics show a noticeable decline. For example, metrics such as IoU and Inc improve as the
training epochs increase, but their trends are opposite to that of Ag,.

Using Multiple \,,,. We replace Adaptive IoU Weighting (AIW) with a static weighting method,
setting A,y to a constant value of 1, 1.5, and 2 throughout the training process. As shown in Table
[l we evaluated AU-ROC and PRO on the MVTec-AD dataset and listed the average values (with
specific scores for each category provided in the appendix). It can be observed that when the weight
of the pseudo-supervisory loss increases, the image-level metric scores slightly increase, but the pixel-
level metric scores significantly decrease. We believe that direct comparison of pseudo-supervisory
loss provides more global discriminative information, but excessive focus on the original differences
can lead to reduced reconstruction performance, which in turn diminishes the model’s segmentation
capability.

4.4 QUANTITATIVE RESULTS

Figure [5] presents the qualitative results of PLSAD on the MVTec-AD dataset. The first column
shows the original images and ground truth, the second and third columns display the anomaly map
and segmentation mask predictions of DRAEM and RealNet, respectively, and the fourth column
shows the results of PLSAD. It can be observed that PLSAD exhibits superior performance.

5 CONCLUSION

In this work, we propose PLSAD, which introduces an effective method for unsupervised industrial
anomaly detection by integrating pseudo-label supervision into a reconstruction-based anomaly
detection framework. The pseudo-supervision mechanism enhances sensitivity to subtle anomalies.
And the Adaptive IoU weighting dynamically prioritizes challenging regions, ensuring robust gen-
eralization to diverse defect patterns. Experimental results on industrial datasets demonstrate that
PLSAD achieves improvements in both detection and localization tasks.
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6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimen-
tation was involved. All datasets used, including MVTec-ADBergmann et al. (2019a),MVTec-LOCO
Bergmann et al.|(2022) and VisA dataset|Zou et al.| (2022)), were sourced in compliance with relevant
usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or dis-
criminatory outcomes in our research process. No personally identifiable information was used, and
no experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code
and datasets have been made publicly available in an anonymous repository to facilitate replication
and verification. The experimental setup, including training steps, model configurations, and hardware
details, is described in detail in the paper. We have also provided a full description of AIW, to assist
others in reproducing our experiments.
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Table 6: Comparison of PLSAD with different SOTA methods on MVTec-AD datasets. I-AUC,
I-AP, P-AUC, and PRO denote image-level AUROC%, image-level AP%, pixel-level AUROC%, and
pixel-level PRO%.

MVTec-LOCO Baseline PLSAD

I-AUC I-AP P-AUC PRO | I-AUC I-AP P-AUC PRO
breakfast_box 83.65 9135 55.89 68.87 | 9230 9429 7855 72.68
juice_bottle 97.02 9895 9521 8837 | 98.70 98.83 93.65 85.32
pushpins 7498 8299 7296 43.08 | 9530 89.90 78.55 54.75
screw_bag 7390 84.02 70.79 4529 | 8234 8894 77.57 55.68
splicing_connectors | 85.42 92.13 69.78 61.95| 95.00 94.54 69.12 80.14
average 8299 89.89 7293 6151 | 9273 9330 7949 69.71

Table 7: The full result of changing the mapping function. We report the average image-level
AU-ROC and PRO scores on the MVTecAD dataset.

MVTec-AD w/o \ iou inc dec e kz Asup

Carpet 98.87/93.89 87.43/79.25 99.35/88.48 99.15/93.51 97.47/90.48 | 99.03/93.44
Grid 96.65/95.05 99.66/94.49 100.0/96.45 100.0/98.26 100.0/98.38 | 100.0/97.98
Leather 100.0/98.42 100.0/96.03 100.0/93.51 100.0/98.52 100.0/98.82 | 100.0/95.65
Tile 100.0/98.37 98.34/88.41 100.0/98.18 100.0/97.86 99.92/94.45 | 99.86/97.21
Wood 99.82/69.99 100.0/81.43 100.0/87.09 99.91/90.43 100.0/81.90 | 100.0/89.61
Bottle 99.52/94.31 97.06/86.37 99.20/83.46 97.61/88.92 98.65/95.27 | 99.60/94.73
Cable 96.00/82.77 90.92/74.95 95.53/78.06 96.17/79.61 94.77/78.15 | 96.38/86.02

Capsule 98.68/93.68 96.41/93.34 98.72/93.98 98.92/95.03 97.44/94.51 | 98.68/92.69
Hazelnut 99.96/96.94 100.0/96.65 99.89/98.39 100.0/98.16 99.92/98.08 | 100.0/98.49
Metal_nut 99.56/95.71  99.95/95.84 100.0/97.36 100.0/97.15 99.90/97.11 | 100.0/96.42
Pill 98.39/94.59 98.47/94.24 97.29/93.48 98.69/95.20 99.07/94.53 | 98.36/95.17
Screw 98.38/96.30 98.85/92.04 99.34/95.33 95.69/94.20 98.77/97.00 | 99.56/93.99
Toothbrush | 100.0/96.80 98.88/92.79 100.0/96.40 100.0/94.56 100.0/96.97 | 100.0/96.28
Transistor 96.95/65.43  96.54/76.57 96.54/70.98 98.00/71.06 96.75/74.88 | 99.16/82.22
Zipper 100.0/90.72  99.29/89.13  100.0/92.47 99.89/94.10  99.94/94.75 | 100.0/93.10
average 98.85/90.86 97.45/88.77 99.05/90.91 98.93/92.44 98.84/92.35 | 99.37/93.53

A LIMITATION AND DISCUSSION

Limitations Despite its strong performance, PLSAD has several limitations that warrant further
investigation. First, the framework’s reliance on synthetic anomalies introduces a domain gap between
simulated and real-world defects. While the foreground constraint and adaptive weighting mitigate
this issue to some extent, subtle or highly context-dependent anomalies (e.g., material fatigue cracks
with no visible texture changes) may still evade detection due to insufficient simulation diversity.
Second, the computational overhead of the dual-path discriminative sub-network and dynamic
IoU weighting could hinder real-time deployment on edge devices, particularly for high-resolution
industrial imagery. Third, the foreground constraint assumes accurate object segmentation masks,
which may not always be available in practical scenarios with cluttered backgrounds or overlapping
objects. Finally, PLSAD’s performance on logical anomalies (e.g., missing components in assemblies)
remains suboptimal compared to structural defects, as logical anomalies often require higher-level
semantic reasoning beyond pixel-level reconstruction.

Discussion We illustrate the reason behind the improved model performance of our method through
the trend of loss changes throughout the entire training process. As shown in Figure[Ifa), the trend
of pseudo-supervision is similar to that of reconstruction supervision but more pronounced, which
is due to its comparison with the original image, resulting in greater differences. However, overly
explicit guidance may cause the model to converge to local optima. Therefore, we require a precise
pixel-level adjustment factor to control the strength of pseudo-supervision by predicting the quality
of the mask. It is evident that the mask intersection-over-union (IoU) has achieved this goal.
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Table 8: The full result of applying different multiples for pseudo-label supervised weighting. We
report the average image-level AU-ROC and PRO scores on the MVTecAD dataset.

1.0 15 20 Noup

MVTec-AD | T9G¢ PRO | LAUC PRO | LAUC PRO | LAUC PRO
Carpet 0887 93.89 | 97.99 91.09 | 9506 88.06 | 99.03 9344
Grid 96.65 95.05 | 100.00 98.61 | 100.00 98.93 | 100.00 97.98
Leather 100.00 9842 | 100.00 98.46 | 100.00 97.79 | 100.00 95.29
Tile 100.00 9837 | 100.00 96.22 | 100.00 98.54 | 99.86 9721
Wood 99.82  69.99 | 100.00 91.94 | 100.00 93.68 | 100.00 89.61
Bottle 99.52 9431 | 99.04 84.16 | 98.41 9349 | 99.60 94.73
Cable 96.00 8277 | 94.60 80.67 | 97.60 8327 | 9638 86.02
Capsule 98.68 93.68 | 98.40 9354 | 9736 91.53 | 98.68 92.69

Hazelnut 99.96 96.94 | 100.00 96.99 | 100.00 99.04 | 100.00 98.49
Metal_nut 99.56  95.71 | 100.00 97.57 | 99.80 95.57 | 100.00 96.42
Pill 98.39 9459 | 98.25 9352 | 97.89 92.84 | 9836 95.17
Screw 98.38 9630 | 99.11 96.55| 99.61 96.49 | 99.56 93.99
Toothbrush | 100.00 96.80 | 100.00 97.10 | 100.00 93.33 | 100.00 96.28
Transistor 9695 6543 | 9620 67.66 | 97.58 76.03 | 99.16 82.22
Zipper 100.00 90.72 | 100.00 94.58 | 99.94 88.06 | 100.00 93.10
average 98.85 90.86 | 9891 9191 | 98.88 9244 | 99.38 93.51

The trade-offs observed in PLSAD’s design highlight inherent challenges in unsupervised anomaly
detection. For instance, while foreground constraints improve pixel-level precision, they slightly
reduce image-level AUROC by suppressing background false positives—a necessary compromise
for industrial applications prioritizing localization accuracy. Similarly, the pseudo-supervision
mechanism introduces a delicate balance: overly strict alignment with synthetic anomalies risks
overfitting, while insufficient constraints fail to leverage the benefits of explicit guidance. The
dynamic weighting strategy, though effective, requires careful calibration of IoU thresholds to avoid
over-prioritizing noisy regions. Interestingly, PLSAD’s performance on the LOCO dataset (focused
on logical anomalies) suggests that reconstruction-based methods inherently struggle with semantic
deviations unrelated to texture or structure, where logical anomaly detection demanded hybrid
approaches combining reconstruction and symbolic reasoning or introduce auxiliary modules (such
as autoencoders). Furthermore, the framework’s dependency on synthetic data generation raises
questions about its scalability to niche industrial domains with rare or proprietary defect types, where
anomaly simulation may lack sufficient prior knowledge.

Future Directions To address these limitations, several promising directions emerge: 1. Cross-
Domain Synthetic Anomaly Generation: Leveraging diffusion models or physics-based simulators
to synthesize anomalies that better mimic real-world defect evolution (e.g., corrosion progression,
mechanical wear). 2. Efficient Architecture Design: Exploring lightweight variants of PLSAD,
such as replacing the U-Net backbone with vision transformers optimized for edge deployment, or
adopting knowledge distillation to compress the dual-path discriminative network.

B ADDITIONAL EXPERIMENTS

B.1 FULL RESULT IN VISA

We provide the complete results on the VisA datasets in Table [f] As shown in the Table, we
evaluated the anomaly detection and localization capabilities and presented the image-level AUC,
pixel-level AUC, pixel-level AP, and PRO scores for different methods on a per-category basis.

PLSAD demonstrated competitive results, improving by 9.73/3.41/6.56/8.20% respectively compared
to the baseline, and reducing the error rate by 57/33/24/21%.

B.2 FULL RESULT OF THE MAPPING FUNCTION

We provide the complete results about Table[5|on the MV Tec datasets in Table[7]and Table
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Table 9: The results of PLSAD with different reconstructive networks on MVTec-AD, MVTec-LOCO,
and VisA dataset. In LOCO and VisA, from left to right, denotes image-level AUROC%, pixel-level
AUROC%, and pixel-level PRO%. The average value is marked with a gray background.

MVTec-AD | I-AUC I-AP P-AUC P-AP | LOCO 909 67.6 31.7
Carpet 98.4 99.5 95.4 61.8 | breakfast_box 923 857 503
Grid 97.7  99.3 94.8 30.6 | juice_bottle 98.7 83.6 42.0
Leather 100.0 100.0  99.0 68.4 | pushpins 953 63.4 437
Tile 100.0 100.0  98.7 93.5 | screw_bag 733 476 39
Wood 100.0 100.0 955 73.2 | splicing_connectors | 95.0 57.8 18.7
textures 99.2  99.8 96.7 65.5 | VisA 97.0 972 92.1
Bottle 99.7 999 98.9 89.0 | candle 954 97.1 93.1
Cable 95.6  97.1 94.6 54.3 | capsules 93.0 985 922
Capsule 974 995 95.5 52.1 | cashew 97.4 92.1 915
Hazelnut 100.0 100.0 995 86.2 | chewinggum 97.8 99.2 88.8
Metal _nut 100.0 100.0  99.6 97.4 | fryum 97.8 96.6 96.1
Pill 984  99.7 98.0 52.3 | macaronil 96.8 99.4 979
Screw 99.5 99.9 61.5 25.3 | macaroni2 956 99.7 97.0
Toothbrush 994  99.8 98.0 50.3 | pebl 96.7 99.0 89.9
Transistor 97.7 97.6 81.0 334 | pcb2 98.7 943 83.0
Zipper 100.0 100.0  98.1 72.8 | pcb3 98.0 957 89.6
object 98.8  99.3 92.5 61.3 | pcb4 99.2 97.7 90.9
average 98.9 995 93.9 62.7 | pipe_fryum 973 975 953

Table 10: Comparison of PLSAD with different SOTA methods on MVTec-AD datasets. I-AUC,
I-AP, P-AUC, and PRO denote image-level AUROC%, image-level AP%, pixel-level AUROC%, and
pixel-level PRO%.

MVTec-AD SDAS+DRAEM SDAS+PLSAD PLSAD

Category I-AUC P-AUC P-AP PRO | I-AUC P-AUC P-AP PRO | -AUC P-AUC P-AP PRO
Carpet 98.8 95.0 66.6 903 | 973 922 502 853 | 99.0 96.5 68.7 934
Grid 100.0 99.5 68.5 985 | 1000 99.6 70.1 98.0 | 100.0 994 663 98.0
Leather 99.3 98.6 704 97.3 | 100.0 98.3 68.0 96.8 | 1000 972 632 953
Tile 100.0 994 958 981 | 96.1 96.8 864 89.7 | 100.0  99.1 93.1 972
Wood 98.8 93.0 685 874 | 98.0 90.8 59.0 80.0 | 1000 944 644 89.6
textures 99.4 97.1 740 943 | 983 95.5 66.7 899 | 99.8 97.3 71.1 947
Bottle 98.5 95.3 845 923 | 97.1 954 732 862 | 99.6 988 86.8 94.7
Cable 94.4 92.7 623 828 | 929 932 619 728 | 964 96.1 64.8 86.0
Capsule 97.3 97.3 571 945 | 933 97.1 454 91.1 | 987 96.7 492 927

Hazelnut 100.0  99.1 82,6 97.1 | 99.9 97.8 86.2 935 | 100.0 996 914 98.5
Metal_nut 99.8 98.0 877 962 | 984 98.5 89.8 942 | 100.0 99.1 937 964
Pill 97.2 99.2 844 971 | 931 950 61.6 87.6| 984 984 789 952
Screw 96.3 988 59.7 953 | 746 96.1 58.1 88.1 | 99.6 988 593 940
Toothbrush | 100.0 992  67.6 954 | 989 985 539 943 | 100.0 993 68.0 96.3
Transistor 92.6 86.0 423 738 | 982 73.6 307 714 | 99.2 904  46.6 82.2

Zipper 99.6 984 753 943 | 988 959  53.1 86.1 | 100.0 975 68.3 93.1
object 97.6 964 703 919 | 945 94.1 61.4 865 | 99.2 97.5 707 929
average 98.2 96.6 71.5 92.7 | 95.8 946 632 87.7| 994 974 708 93.5

Table [7] shows the results of changing the mapping function, while Table [§]presents the results of
applying different multiples for pseudo-label supervised weighting. We report the average image-level
AU-ROC and PRO scores.

B.3 USE MORE REALISTIC ANOMALIES

In PLSAD, we use the DTD dataset to synthesize anomalies. This approach is more primitive and
straightforward than generative models for creating anomalies. To investigate whether the form of
anomalies impacts model performance, we replace the DTD dataset with more realistic anomalies
from SDAS [Zhang et al.| (2024). In Table[I0} replacing synthetic textures with the realistic SDAS
dataset did not improve performance. We attribute this to the benefits of generating near-out-of-
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Figure 6: Qualitative results of PLSAD on the MVTec-AD.

distribution appearances, which help models learn discriminative distance functions by amplifying
deviations between normal and anomalous patterns.

B.4 USE OTHER RECONSTRUCTION MODELS

We utilize the reconstruction model trained on DDAD as a replacement. The choice of DDAD is not
only due to its outstanding performance but also because it employs a generative method based on
reconstructing random noise, which significantly differs from our approach. As shown in Table[9] the
results of [-AUC and PRO on MVTec-AD before and after the replacement are presented.

C MORE QUALITATIVE RESULTS

Figure [6] presents the qualitative results of PLSAD on the MVTec-AD dataset. The first column
shows the original images and ground truth, the second and third columns display the anomaly map
and segmentation mask predictions of DRAEM and PLSAD. It can be observed that PLSAD exhibits
superior performance.

Algorithm 1 algorithm of Simulated Anomaly Generation

Input: training image I™; abnormal texture image 19?; foreground mask Mj,,..; poisson noise
mask M,,,;se; transparency [3;
Output: abnormal image I
1: Intersection of the My, and M,,,ise , Obtain the anomaly mask M, ;
2: Abnormal texture image and abnormal mask dot multiplication: I%¢ © M,;
3: Training image and inverse of the anomaly mask dot multiplication: I" ® (1 — M,);
4: Multiply by transparency and then add: 8 [I%? ® M,] + (1 — 8) [I" ® (1 — M,)] return I’
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D ALGORITHM

The following algorithm is the process is used to obtain abnormal images.

E LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
does not contribute to plagiarism or scientific misconduct.
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