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ABSTRACT

Test-Time Adaptation (TTA) methods use unlabeled test data to dynamically ad-
just models in response to distribution changes. However, existing TTA methods
are not tailored for practical use on edge devices with limited computational ca-
pacity, resulting in a latency-accuracy trade-off. To address this problem, we pro-
pose SNAP-TTA, a sparse TTA framework that significantly reduces adaptation
frequency and data usage, delivering latency reductions proportional to adapta-
tion rate. It achieves competitive accuracy even with an adaptation rate as low as
0.01, demonstrating its ability to adapt infrequently while utilizing only a small
portion of the data compared to full adaptation. Our approach involves (i) Class
and Domain Representative Memory (CnDRM), which identifies key samples that
are both class-representative and domain-representative to facilitate adaptation
with minimal data, and (ii) Inference-only Batch-aware Memory Normalization
(IoBMN), which leverages representative samples to adjust normalization layers
on-the-fly during inference, aligning the model effectively to changing domains.
When combined with five state-of-the-art TTA algorithms, SNAP-TTA maintains
the performances of these methods even with much-reduced adaptation rates from
0.01 to 0.5, making it suitable for edge devices serving latency-sensitive applica-
tions.

1 INTRODUCTION

Deep learning models often suffer from performance degradation under domain shifts caused by
environmental changes or noise (Quiñonero-Candela et al., 2008). Test-Time Adaptation (TTA)
offers a promising solution for domain shifts by utilizing only unlabeled test data without requir-
ing source data. While TTA algorithms have advanced in complexity to improve accuracy in data
streams (Wang et al., 2021; Niu et al., 2022; Wang et al., 2022; Yuan et al., 2023; Niu et al., 2023;
Song et al., 2023), they are typically designed for resource-rich servers, overlooking the computa-
tional and memory limitations crucial for real-world deployment. Operations such as backpropaga-
tion, data augmentation, and model ensembling (Wang et al., 2022; Yuan et al., 2023; Zhang et al.,
2022) result in substantial latency and memory consumption, making state-of-the-art (SOTA) TTA
methods inefficient for practical use (Section 2).

For edge devices with limited computational power, such as mobile devices or IoT sensors, the adap-
tation latency from TTA methods becomes a critical bottleneck, particularly in latency-sensitive ap-
plications such as autonomous driving and real-time health monitoring. Moreover, the model must
keep up with the data stream in those applications, but high computational overhead could cause it
to miss critical samples, resulting in inference lags and reduced accuracy. This issue is exacerbated
with fast data streams, such as high-frame-rate videos or high-performance sensors. For example,
even a slight delay in processing sensor data can lead to dangerous situations in autonomous driv-
ing. A high adaptation latency that accumulates with each batch not only undermines real-time
performance but also limits the potential of TTA algorithms in latency-sensitive applications.

In online TTA scenarios that require rapid response to incoming data streams on resource-
constrained devices, Sparse TTA (STTA), which adapts occasionally rather than at every batch, can
offer a practical solution by reducing the adaption overhead. However, naı̈ve STTA may result in
performance degradation as it utilizes far less data (e.g., 0.1) for model adaptation (Figure 1). The
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Figure 1: Comparison of average latency per batch and classification accuracy between the Orig-
inal TTA and Sparse TTA approaches on edge devices processing an online data stream. With an
adaptation rate of 0.33, adaptation occurs once every three batches, reducing latency relative to the
adaptation rate but leading to a significant accuracy drop than fully adapting original TTA.

effectiveness of STTA hinges on selecting proper samples from a large pool, ensuring that the model
maintains adequate performance with fewer updates (detailed analysis in Section 4).

Conventional TTA approaches that adopt sampling strategies are designed for non-i.i.d data (Gong
et al., 2022; Niu et al., 2023; Yuan et al., 2023) or noisy data (Gong et al., 2023). They do not aim
for data efficiency and thus yield high sample usage for updates. While EATA (Niu et al., 2022) ex-
cludes unreliable samples and utilizes fewer samples, it suffers from performance degradation when
attempting more aggressive reductions. Data-efficient deep learning demonstrated that selecting
easy, class-representative samples is effective when the sampling ratio is low (e.g., below 0.4) (Xia
et al., 2022; Choi et al., 2024). However, these methods rely on ground-truth label information,
which is typically unavailable in TTA scenarios.

We propose SNAP-TTA: Sparse Network Adaptation for Practical Test-Time Adaptation, a low-
latency TTA framework designed for resource-constrained devices. SNAP-TTA addresses the chal-
lenge of balancing adaptation accuracy with computational efficiency in STTA, where only a small
subset of data is used for updates. To that end, SNAP-TTA has two key technical enablers: First, it
introduces a sampling strategy that combines class-representative and domain-representative sam-
ples. This approach enables the model to adapt effectively to domain shifts even with minimal
data. Class and Domain Representative Memory (CnDRM) selects these critical samples by using
pseudo-label confidence in a prediction-balanced manner for class-representative samples, and by
identifying the domain-representative samples closest to the center of the target domain’s feature
embedding (Section 3.1). Second, Inference-only Batch-aware Memory Normalization (IoBMN)
refines the normalization process during inference by utilizing CnDRM’s class-domain representa-
tive statistics, leveraging the representativeness of these selected samples to correct skewed feature
distributions at each inference step. This ensures that the model effectively adapts to domain shifts
without back-propagation, maintaining alignment with the evolving data distribution (Section 3.2).
These two components are integrated to perform adaptation, minimizing accuracy drop and latency
in real-world domain-shifted scenarios.

SNAP-TTA is designed to work together with existing TTA methods orthogonally; thus, we eval-
uated SNAP-TTA integrated with existing SOTA TTA algorithms under diverse adaptation rates.
Specifically, we evaluated SNAP-TTA with five SOTA TTA algorithms (Tent(Wang et al., 2021),
EATA(Niu et al., 2022), SAR(Niu et al., 2023),CoTTA(Wang et al., 2022), and RoTTA(Yuan et al.,
2023)) on three common TTA benchmarks (CIFAR10-C, CIFAR100-C (Hendrycks & Dietterich,
2019a), and ImageNet-C (Hendrycks & Dietterich, 2019b)). SNAP-TTA effectively reduces latency
while minimizing performance drops in existing TTA methods. For instance, on our implementa-
tion in Raspberry Pi 4(Raspberry Pi Foundation, 2019) testbed, SNAP-TTA achieved up to 87.5%
latency reduction at an adaptation rate of 0.1. In CIFAR10-C, SNAP-TTA-integrated methods con-
sistently outperformed their original counterparts, showing up to 13.38% accuracy gain for CoTTA
at an adaptation rate of 0.01. In addition, SNAP-TTA integration performed comparable accuracy to
the original TTA methods under full adaptation settings. For instance, it achieved 77.12%∼81.74%
accuracy for Tent at various adaptation rates, whereas the full adaptation accuracy was 80.43% in
CIFAR10-C.
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2 PRELIMINARIES

We focus on the Test-Time Adaptation (TTA) latency challenges specific to edge devices, highlight-
ing the constraints of adapting models in real-time environments with limited resources. Detailed
related works are in Appendix A.

Test-Time Adaptation and Its Latency Challenge on Edge Devices. In unsupervised domain
adaptation, the source domain data DS = XS ,Y is drawn from the distribution PS(x, y), while
the target domain data DT = X T ,Y follows PT (x, y), typically without known labels yj . Given
a pre-trained model f(·; Θ) on the source domain DS , test-time adaptation (TTA) (Wang et al.,
2021) adjusts the model to the target distribution PT using only target instances xj , updating the
parameters Θ to reduce domain discrepancy.

When applied to resource-constrained devices, however, current TTA approaches face significant
latency challenges. In real-time applications that require rapid inference, online TTA becomes im-
practical due to the need for adaptation at every batch (Figure 4, detailed latency tracking reported
in Appendix E.3). Our experiment on Raspberry Pi 4 (Raspberry Pi Foundation, 2019) showed
a minimum of 3.83 seconds latency per batch for existing TTA methods. This indicates existing
methods could not handle real-time applications with fast data streams and strict latency require-
ments, such as autonomous driving (Tampuu et al., 2024; Liu et al., 2023). TTA methods such as
CoTTA use computationally intensive operations such as data augmentations and ensemble models
at the cost of increased latency. Relatively lightweight algorithms incur non-negligible latency from
adaptation processes such as backpropagation, which becomes bottlenecks in resource-constrained
devices without the parallel processing capabilities and memory bandwidth of GPUs.

A recent work (Alfarra et al., 2024), recognizing latency as a problem, proposed a TTA evaluation
protocol that penalizes methods that are slower than the data stream rate. Instead of penalizing a
model for being slow, we utilize Sparse TTA, where the model actively chooses to adapt at sparse
intervals for the goal of maintaining a real-time inference rate. As real deployments involve devices
with different computational capabilities and data streams of varying speeds, we believe a framework
that effectively maintains various TTA methods’ performance across different latency requirements
is crucial.

Sparse Test-Time Adaptation and Adaptation rates. Sparse Test-Time Adaptation (STTA) aims
to efficiently adapt models by reducing both the frequency of updates and the number of samples
used per update, which is essential for minimizing latency in edge devices. The concept of adaptation
rate plays a central role in STTA, as it controls both the update frequency and the number of data
points used. Unlike Original Test-Time Adaptation (TTA), which uses full batches of data and can
create significant computational overhead, STTA employs an adaptation rate to limit updates and
data usage proportionally, thus introducing sparsity (Figure 1).

By adjusting the adaptation rate, STTA can minimize latency and computational costs while main-
taining adaptation performance. This rate defines how sparsely updates occur and the proportion
of samples used for updates compared to the Original TTA, enabling efficient model adjustments
to distribution shifts. The balance between adaptation accuracy and computational efficiency makes
STTA particularly suitable for environments that demand both quick responses and minimal resource
usage.

3 METHODOLOGY

SNAP-TTA framework resolves the high latency and inefficiency issue of existing Test-Time Adap-
tation (TTA) methods. By introducing a Sparse TTA (STTA) strategy combined with a novel sam-
pling method, SNAP-TTA minimizes adaptation delays while maintaining accuracy. The overall
system, illustrated in Figure 2, consists of two primary components: (i) Class and Domain Rep-
resentative Memory (CnDRM) for efficient sampling and (ii) Inference-only Batch-aware Memory
Normalization (IoBMN) to correct feature distribution shifts during inference. Together, these com-
ponents enable effective STTA with minimal computational overhead.
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Figure 2: Design overview of SNAP-TTA. The framework consists of two primary components:
(a) Class and Domain Representative Memory (CnDRM), which efficiently selects representative
samples to minimize adaptation overhead, and (b) Inference-only Batch-aware Memory Normal-
ization (IoBMN), which corrects feature distribution shifts during inference. Together, these com-
ponents implement the Sparse TTA (STTA) strategy, reducing latency while maintaining model
accuracy.

3.1 CLASS AND DOMAIN REPRESENTATIVE MEMORY (CNDRM)

CnDRM is a core component of SNAP-TTA that addresses the challenges of efficient data sampling
for STTA. In STTA, the adaptation rate directly impacts the number of samples used, necessitating
a careful sampling strategy to optimize performance with minimal data. Given this limited sampling
ratio, CnDRM selects both class and domain-representative samples to maintain model performance
while minimizing adaptation overhead.

Motivation. Data sampling is crucial in data-efficient deep learning, especially when working
with a limited number of samples. In high data sampling ratio scenarios, score-based methods pri-
oritize difficult or rare samples, often achieving performance comparable to full-dataset training.
However, when the sampling ratio is low, selecting easy and class-representative samples becomes
more effective (Choi et al., 2024). This method selects samples that minimize differences in loss
gradients or curvature, ensuring that the generalizability is retained even with fewer samples. Simi-
larly, the Moderate Coreset (Xia et al., 2022) paper demonstrates that at low sampling ratios of 0.2
to 0.4, the distance from the class center significantly impacts performance, with samples closer to
the center being particularly effective in scenarios with high label noise. In the STTA setting, where
ground truth labels are unavailable and the probability of incorrect predictions is high, selecting rep-
resentative samples based on potentially incorrect predictions resembles a high label noise situation.
Therefore, selecting class-representative easy samples could provide some benefit to STTA.

However, if the model must perform STTA at an even lower adaptation rate (e.g., 0.1) due to the
latency limits, selecting class-representative samples alone would be insufficient (Table 4). Unlike
traditional classification tasks, STTA is an unsupervised domain adaptation, which requires iden-
tifying target domain-representative samples that reflect the distributional shift between the source
and target domains. In these cases, we argue that focusing on domain-representative instances is
just as crucial, as selecting samples that best capture the domain shift can help the model retain
generalizability with minimal data. Therefore, selecting both class-representative and domain-
representative samples could enhance STTA performance in low-data environments, where each
sample must contribute significantly to model adaptation.

Critera 1: Class Representation. CnDRM selects samples with higher confidence scores to avoid
the issues caused by low-confidence samples. Low-confidence samples are typically located near
decision boundaries and are more likely to carry incorrect pseudo-labels. This strategy ensures that
the adaptation process is guided by stable learning signals, which is important in the absence of
ground-truth labels. By focusing on high-confidence samples, CnDRM mitigates the risk of prop-
agating errors resulting from incorrect pseudo-labels, thereby supporting more effective and stable
adaptation (Details in Appendix E.2). The confidence score C(x) for each sample x is calculated
as: C(x) = maxy∈Y p(y|x; Θ) where p(y|x; Θ) is the softmax probability for class y. Only sam-
ples with confidence above a predefined threshold τconf are retained. For a balanced representa-
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tion across diverse classes, CnDRM selects these high-confidence samples in a prediction-balanced
manner. This balance helps maintain the model’s overall classification capability and prevents bias
towards certain classes when only a low sample ratio is available for adaptation. By leveraging both
high confidence and prediction balance, CnDRM effectively selects class-representative samples
that are diverse and reliable, even without access to ground-truth labels.
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Figure 3: Samping visualization and accuracy comparison
between the closest 20% and farthest 20% samples from
the domain centroid (based on Wasserstein distance) on
ImageNet-C Gaussian noise.

Critera 2: Domain Representation.
In addition to class-representative
sampling, CnDRM selects domain-
representative samples to facilitate
adaptation to new domain condi-
tions. Building on the efficient class-
representative sampling criteria, we
argue that selecting samples close to
the domain centroid would enhance
performance in STTA. Our prelimi-
nary experiment results validate im-
proved performance when selecting
samples near the centroid (Figure 3).
For ImageNet-C Gaussian noise, TTA with the closest 20% of samples achieved 26.65% accuracy,
whereas the farthest 20% showed a lower accuracy of 18.52%.

As early layers in deep learning models tend to retain domain-specific features (Zeiler & Fergus,
2014; Lee et al., 2018; Segu et al., 2023), we utilize the hidden features of early layers to identify
domain-representative samples (Appendix E.1). We use the feature statistics (mean and variance) of
the first normalization layer to evaluate domain representation. This choice is made as domain dis-
crepancies can be effectively reduced through normalization adjustments (Nado et al., 2020; Schnei-
der et al., 2020). Domain discrepancies in hidden features are substantially reduced after passing
through a single normalization layer, significantly minimizing domain shift differences (Li et al.,
2016). While deeper layers provide detailed information, using the first layer balances capturing
domain-specific information and maintaining computational efficiency.

The domain centroid cdomain is computed using a momentum-based update of batch statistics from
the normalization layer: µdomain ← (1 − β)µdomain + βµt and σ2

domain ← (1 − β)σ2
domain +

βσ2
t , where µt and σ2

t are the mean and variance of the current batch t, and β is the momentum
parameter. In our preliminary study, we found that using only the mean and standard deviation
values before the first normalization was sufficient to calculate the domain centroid. The sampled
instances effectively represented the domain and were correctly positioned in the embedding space
for each criterion (Figure 3).

To determine domain-representative samples, CnDRM calculates the Wasserstein distance between
each sample’s feature statistics and the domain centroid. The Wasserstein distance measures the
similarity between two distributions by considering their mean and variance, evaluating how well a
sample represents the domain. It is useful for capturing domain characteristics, leading to its wide
use in domain generalization (Segu et al., 2023). For each sample xt, the feature statistics (µxt , σxt)
are taken from the input to the normalization layer, and the Wasserstein distance W (xt, cdomain) is
given by:

W (xt, cdomain) =
√

(µxt − µdomain)2 + (σxt − σdomain)2. (1)

Memory Management Algorithm. The memory management in CnDRM maintains efficiency
without introducing additional overhead. To achieve this, the memory size is kept equal to the batch
size for minimal resource usage. Within this fixed memory, samples are managed by balancing the
number of samples per class based on predictions so that each class remains well-represented. For
domain adaptation, samples in memory are periodically replaced with new samples that are closer
to the domain centroid and meet the confidence threshold to retain only the most class-domain
representative samples. Algorithm 1 has details.
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Algorithm 1 Class and Domain Representative Memory (CnDRM)

Require: test data stream xt, memory M with capacity N , confidence threshold τconf , sample unit
for memory s, adaptation rate 1/k

1: for batch b ∈ {1, . . . , B} do
2: Ŷb ← f(b; Θ)
3: for each sample xt in batch b do
4: ŷt ← Ŷb[t]
5: confidence← C(xt; Θ)
6: ct(µxt , σxt)← mean and variance of early hidden feature
7: wxt ←W (xt, cdomain)
8: if confidence > τconf then ▷ Class-representative samples
9: Add st(xt, ŷt, ct, wxt) to M ▷ Add samples in prediction-balanced manner

10: if |M | > N then
11: L∗ ← class with most samples in M
12: if ŷt /∈ L∗ then ▷ Removes domain-centroid farthest sample
13: smax dist ← argmaxsi∈M∧ŷi∈L∗ wxi

14: else
15: smax dist ← argmaxsi∈M∧ŷi=ŷt

wxi

16: Remove smax dist from M

17: cdomain ← (1− β)cdomain + βct ▷ Update domain-centroid
18: Recalculate wsi for all si in M
19: if b mod k == 0 then ▷ Adaptation occurs every k batches
20: Update model Θ using samples in M

3.2 INFERENCE-ONLY BATCH-AWARE MEMORY NORMALIZATION (IOBMN)

Motivation. In Sparse Test-Time Adaptation (STTA) scenarios, models must adapt to domain
shifts despite having limited opportunities for updates. In this setting, maintaining robust perfor-
mance becomes challenging as the stored memory statistics, derived from representative adaptation
batches, may not fully align with subsequent inference batches, especially when updates are skipped.
This can lead to a potential mismatch between the stored statistics and the current data distribution.
Traditional normalization methods, which solely rely on test batches’ statistics, struggle to address
these subtle shifts effectively. To tackle this issue, we introduce the Inference-only Batch-aware
Memory Normalization (IoBMN) module, which leverages the robustness of class-domain repre-
sentative statistics while dynamically adjusting for mismatches that arise in skipped batches. By
primarily basing normalization on stable, representative memory statistics and selectively adapting
with recent inference data, IoBMN efficiently corrects for distributional shifts, ensuring both robust-
ness and adaptability in STTA conditions. This approach significantly enhances model stability in
sparse adaptation scenarios, as shown in our ablation study in Section 4.

Approach. Given a feature map f ∈ RB×C×L, where B is the batch size, C is the number of
channels, and L is the number of spatial locations, the batch-wise statistics µ̄c and σ̄2

c for the c-th
channel are calculated as follows:

µ̄c =
1

B × L

B∑
b=1

L∑
l=1

fb,c,l, σ̄2
c =

1

B × L

B∑
b=1

L∑
l=1

(fb,c,l − µb,c), (2)

where µ̄m and σ̄2
m are calculated from the most recent adapted CnDRM samples in the same way

with Equation 2, using the memory capacity M with m representing the memory. We assume that
µm and σ2

m follow the sampling distribution of the feature map size L and memory capacity M .
The corresponding variances for the memory mean µm and variance σ2

m are calculated as:

s2µm
:=

σ̄2
m

C ×M
, s2σ2

m
:=

2σ̄4
m

C ×M − 1
. (3)

For the normalization process to adapt efficiently to the current inference batch statistics, IoBMN
corrects (µ̄m, σ̄2

m) only when µ̄c (and σ̄2
c ) significantly differ from µ̄m (and σ̄2

m) through soft shrink-
age function:

µIoBMN
m = µ̄m + Sλ(µ̄c − µ̄m;αsµm

), (σIoBMN
m )2 = σ̄2

m + Sλ(σ̄
2
c − σ̄2

m;αsσ2
m
), (4)

6
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where α ≥ 0 in IoBMN controls the reliance on the normalization layer statistics. A larger α gives
more weight to the last adapted memory normalization statistics, whereas a smaller α emphasizes
the current inference batch normalization statistics. The soft shrinkage function Sλ(x;λ) is defined
as:

Sλ(x;λ) =


x− λ if x > λ,

x+ λ if x < −λ, and
0 otherwise,

where λ is the threshold, s is a scaling factor, and x is the input. The function allows for propor-
tional adjustments based on the magnitude of the values, where smaller values are adjusted less and
larger values more, preserving the critical information inherent in the adapted memory normalization
statistics.

Finally, the output of the IoBMN for each feature fb,c,l is computed as:

IoBMN(fb,c,l; µ̄m, σ̄2
m, µIoBMN

m , (σIoBMN
m )2) := γ · fb,c,l − µIoBMN

m√
(σIoBMN

m )2 + ϵ
+ β, (5)

where γ and β are learnable affine parameters of normalization layer, and ϵ is a small constant added
for numerical stability. In our experiments, we chose α = 4 to effectively handle various out-of-
distribution scenarios. The parameter s is a hyperparameter that determines the degree of adjustment
desired and can be tuned based on specific requirements.

IoBMN utilizes CnDRM’s class-domain representative statistics and adjusts them based on the cur-
rent inferencing batch statistics. This dual-statistic approach allows IoBMN to correct the outdated
and skewed distribution of the memory, ensuring alignment with the data distribution at each infer-
ence point. By leveraging the statistics of the data used during model update points, IoBMN adapts
effectively without significant computational overhead. Additionally, this method mitigates the per-
formance degradation caused by the prolonged intervals between adaptations so that the model re-
mains well-aligned with the evolving data distribution.

4 EXPERIMENTS

This section outlines our experimental setup and presents the results obtained under various STTA
settings. Refer to Appendix B for further details.

Scenario. We examined how different adaptation rates affect performance to simulate a scenario
requiring a certain latency threshold for latency-sensitive applications. We varied the adaptation
rate to observe its impact on both model accuracy and latency. The main evaluation was run with
diverse adaptation rates (0.01, 0.03, 0.05, 0.1, 0.3, and 0.5). We report the average accuracy and
standard deviation from three random seeds. Latency measurement was done on our Raspberry Pi
4 (Raspberry Pi Foundation, 2019) testbed.

Dataset and Model. We used three standard TTA benchmarks: CIFAR10-C, CIFAR100-
C (Hendrycks & Dietterich, 2019a) and ImageNet-C (Hendrycks & Dietterich, 2019b). These
datasets include 15 different types of corruption with five levels of severity, and we used the high-
est one. CIFAR10-C/CIFAR100-C has 10,000 test data with 10/100 classes, and ImageNet-C has
50,000 test data with 1,000 classes for each corruption. We employed ResNet18 (He et al., 2016)
as the backbone network, utilizing models pre-trained on CIFAR10 and CIFAR100 (Krizhevsky &
Hinton, 2009). We also use ResNet50 (He et al., 2016) and ViT (Dosovitskiy, 2020) pre-trained on
ImageNet (Deng et al., 2009) from the TorchVision (maintainers & contributors, 2016) library.

Baselines. SNAP-TTA is designed to integrate with existing TTA algorithms. Therefore, testing
existing TTA algorithms under different adaptation rates serves as our baseline (implementation
details including hyperparameters are in Appendix B.1). We selected five SOTA TTA algorithms:
(i) Tent (Wang et al., 2021) updates only BN affine parameters, (ii) CoTTA (Wang et al., 2022)
updates the entire model parameters using a teacher-student framework, (iii) EATA (Niu et al.,
2022), (iv) SAR(Niu et al., 2023), and (v) RoTTA(Yuan et al., 2023). For efficiency evaluation, we
compared our method against BN stats (Nado et al., 2020; Schneider et al., 2020).
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Table 1: STTA classification accuracy (%) and latency per batch (s) comparing with and without
SNAP-TTA on ImageNet-C through Adaptation Rates (AR) (0.3, 0.1, and 0.05).AR is the ratio
of the number of backpropagation occurrences to the total, and thus represents the reduction in
adaptation latency compared to full adaptation (AR=1). More results on diverse AR (0.5, 0.03 and
0.01) are on Appendix C.1. Bold numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg. Lat.

Source 3.00 3.70 2.64 17.90 9.74 14.72 22.45 16.60 23.06 24.00 59.11 5.37 16.50 20.88 32.63 18.15 16.60
BN stats 14.29 15.06 14.89 13.30 13.38 23.78 35.22 31.78 30.26 44.40 62.39 15.14 40.42 45.25 36.53 29.00 17.36
Tent 27.03 28.98 28.64 24.66 23.63 38.70 45.77 44.82 38.06 54.59 64.61 16.84 51.64 55.54 49.38 39.53 38.33
CoTTA 13.12 13.98 13.94 12.44 12.18 23.74 35.22 31.78 30.26 44.40 62.40 15.13 40.42 45.26 36.53 28.72 300.23
EATA 29.62 31.79 31.17 26.89 26.30 40.65 47.44 46.29 40.78 55.57 64.97 38.02 52.66 56.03 50.26 42.56 31.98
SAR 17.49 22.04 21.21 11.62 12.60 39.76 44.13 45.98 29.39 55.13 63.71 17.34 52.31 56.09 49.35 35.21 78.15

1

RoTTA 20.60 22.83 19.81 10.46 10.10 21.31 31.83 39.66 32.09 46.08 62.22 20.27 42.54 47.47 40.67 31.20 87.00

Tent 23.63 25.18 24.80 21.81 20.97 34.11 43.60 41.44 36.98 52.66 64.21 22.74 48.96 53.46 46.80 37.42 27.34
+ SNAP 26.60 28.21 27.94 24.37 22.39 36.45 44.36 42.64 38.54 52.91 64.26 33.47 48.58 53.90 47.41 39.47 28.84

CoTTA 11.74 12.74 12.68 11.77 11.62 22.64 34.97 31.05 29.81 44.24 62.12 13.73 40.31 45.19 36.71 28.09 205.22
+ SNAP 15.26 16.00 15.83 13.81 14.13 24.84 36.46 32.58 31.73 46.04 63.52 15.69 42.18 46.74 38.00 30.19 208.10

EATA 27.35 29.03 28.62 23.94 23.45 37.21 46.18 44.05 39.19 54.52 64.54 32.20 51.22 55.00 49.27 40.38 20.27
+ SNAP 29.48 31.20 30.69 26.68 25.90 38.24 46.60 44.62 39.31 54.82 64.44 32.87 51.41 55.41 49.78 41.43 22.16

SAR 28.12 29.30 29.63 22.37 23.88 39.34 45.36 45.69 36.73 54.91 64.11 10.96 52.22 55.76 49.60 39.20 36.44
+ SNAP 32.63 34.69 34.26 28.91 27.96 43.51 47.79 48.27 42.41 56.45 64.77 32.76 53.74 57.21 51.67 43.80 38.01

RoTTA 16.90 17.88 17.25 12.89 12.51 23.96 35.26 36.26 32.32 47.25 63.98 17.46 42.77 48.21 39.35 30.95 59.32

0.3

+ SNAP 18.63 19.94 19.35 14.88 14.34 25.88 36.47 37.13 33.32 47.74 63.96 19.08 42.98 48.73 40.27 32.18 60.31

Tent 22.00 23.51 23.07 19.38 18.86 32.15 42.29 39.70 34.33 51.62 63.70 15.79 47.74 52.35 45.54 35.47 18.01
+ SNAP 26.21 27.85 27.50 23.62 22.73 36.01 44.11 42.19 38.15 52.95 64.57 30.23 48.56 53.71 47.09 39.03 18.76

CoTTA 10.97 11.92 11.98 11.45 11.38 22.39 34.96 30.88 29.89 44.09 61.96 13.08 40.20 45.27 36.71 27.81 161.98
+ SNAP 15.13 16.03 15.91 13.86 14.02 24.90 36.51 32.56 31.81 46.02 63.60 15.69 41.94 46.78 38.03 30.19 163.24

EATA 22.43 23.78 23.26 19.38 19.42 32.18 43.22 40.65 36.64 52.38 63.87 24.59 48.13 52.89 46.33 36.61 16.00
+ SNAP 26.10 27.29 27.13 22.38 22.15 33.45 43.92 40.96 36.68 52.71 63.77 27.93 48.47 53.23 47.46 38.24 17.45

SAR 26.12 27.56 26.93 22.51 23.35 36.03 44.48 43.19 37.26 53.82 64.15 19.87 50.78 54.78 48.43 38.62 21.39
+ SNAP 30.28 31.97 31.30 26.67 26.31 39.66 46.08 45.43 40.26 54.76 64.62 36.12 51.26 55.42 49.63 41.99 23.99

RoTTA 14.77 15.59 15.33 13.17 13.19 23.85 35.38 32.73 30.77 45.22 63.08 15.62 41.05 46.15 37.19 29.54 45.98

0.1

+ SNAP 15.35 16.20 16.01 13.67 13.66 24.27 35.62 33.04 31.02 45.38 62.95 15.96 41.06 46.17 37.44 29.85 47.47

Tent 23.77 24.65 24.44 20.54 20.27 32.73 43.57 40.82 35.92 52.78 63.82 15.95 49.33 53.46 47.19 36.62 16.93
+ SNAP 29.12 30.46 30.30 25.77 25.22 38.21 46.14 44.29 39.95 54.65 65.47 33.81 50.83 55.59 49.21 41.27 17.55

CoTTA 11.03 11.91 11.75 11.03 11.20 22.30 34.98 30.87 29.78 43.99 61.87 12.92 40.26 45.23 36.63 27.72 152.94
+ SNAP 15.22 15.97 15.93 13.91 14.05 24.87 36.48 32.60 31.65 46.09 63.59 15.67 42.00 46.71 37.96 30.18 153.34

EATA 19.53 20.65 20.72 16.74 16.96 29.11 41.22 37.96 34.84 50.75 63.29 19.86 45.92 51.15 44.13 34.19 15.82
+ SNAP 22.83 23.95 23.62 19.43 19.70 30.34 41.59 38.06 35.06 50.98 63.30 23.72 46.26 51.52 45.46 35.72 16.44

SAR 23.25 24.23 23.66 19.98 20.38 33.05 43.04 40.73 36.06 52.61 64.09 20.17 49.00 53.35 46.73 36.69 19.98
+ SNAP 27.54 29.03 28.66 24.05 23.42 36.28 44.12 42.89 38.54 53.24 64.25 31.83 48.79 54.04 47.80 39.63 20.94

RoTTA 14.42 15.22 15.02 13.25 13.31 23.79 35.27 32.09 30.43 44.71 62.64 15.24 40.63 45.55 36.75 29.22 43.32

0.05

+ SNAP 14.65 15.48 15.29 13.43 13.45 23.93 35.33 32.18 30.53 44.71 62.58 15.41 40.64 45.55 36.81 29.33 44.71

Table 2: STTA classification accuracy (%) and latency per batch (s) comparing with and with-
out SNAP-TTA on CIFAR10/100-C at Adaptation Rate 0.1. Numbers in parentheses represent the
performance difference of SNAP-TTA compared to full adaptation Bold numbers are the highest
accuracy. More results on other adaptation rates are in Appendix C.2 and C.3.

Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg. Lat.

CIFAR10-C
Tent 67.32 69.39 60.69 85.34 63.82 83.52 84.70 79.68 77.79 83.75 88.53 83.12 75.18 77.82 71.47 76.81 (-3.62) 2.80 (-29.47%)
+ SNAP 70.22 71.48 63.08 87.35 65.74 85.89 86.38 81.93 80.00 85.62 90.34 87.47 76.44 79.63 72.72 78.95 (1.48) 3.08 (-22.42%)
CoTTA 59.11 60.26 56.07 72.23 56.77 73.55 72.20 68.05 66.68 72.88 77.66 65.95 65.67 64.12 65.16 66.42 (-11.58) 4.92 (-93.14%)
+ SNAP 71.70 73.54 66.70 85.16 66.83 84.30 84.88 81.02 80.61 84.20 89.84 81.71 76.60 79.66 75.71 78.83 (+0.83) 4.93 (-93.12%)
EATA 66.65 68.96 59.73 84.93 63.26 83.10 84.53 79.28 77.46 83.48 88.12 82.46 74.49 77.48 70.43 76.29 (-5.27) 2.52 (-35.88%)
+ SNAP 69.29 70.49 61.71 87.32 65.48 85.96 86.64 81.44 79.56 85.47 90.50 86.84 76.32 79.64 72.51 78.61 (-2.95) 2.87 (-26.97%)
SAR 66.11 68.18 59.15 84.91 62.87 82.33 84.27 79.23 77.58 83.21 88.29 82.60 74.65 75.92 70.79 76.01 (-3.04) 2.85 (-50.43%)
+ SNAP 67.76 70.68 60.82 86.78 64.73 85.29 86.22 80.82 79.30 84.95 91.33 86.59 75.72 78.72 71.24 78.06(-0.99) 2.98 (-48.17%)
RoTTA 63.12 64.84 56.72 84.49 62.15 82.53 83.84 78.03 76.13 82.88 87.48 81.49 73.75 76.04 68.24 74.78 (-2.22) 2.91 (-50.93%)
+ SNAP 65.35 66.99 58.09 86.77 63.63 85.47 86.01 80.54 78.38 84.99 90.00 85.99 75.67 78.14 70.09 77.07 (+0.07) 2.94 (-50.42%)

CIFAR100-C
Tent 43.55 44.25 37.95 62.56 41.80 59.45 62.13 53.04 51.60 56.76 64.60 61.19 51.01 56.42 46.28 52.84 (-2.92) 3.34 (-27.49%)
+ SNAP 46.51 47.68 39.92 65.39 44.14 63.29 64.53 55.20 55.55 59.71 68.05 64.90 53.91 59.28 49.58 55.84 (+0.08) 3.67 (-19.17%)
CoTTA 28.53 29.53 26.45 42.19 30.34 44.69 41.88 34.44 33.93 39.03 45.49 31.17 37.25 36.17 36.84 35.86 (-13.53) 4.94 (-93.40%)
+ SNAP 41.72 42.62 37.46 58.43 41.24 57.33 57.96 50.34 51.17 52.29 63.59 51.32 49.68 54.78 47.89 50.52 (+1.13) 4.95 (-93.38%)
EATA 38.41 39.03 32.29 61.07 38.45 58.21 60.62 49.59 49.19 54.23 62.88 57.39 49.00 53.01 42.05 49.70 (-1.04) 3.13 (-27.17%)
+ SNAP 40.62 41.53 34.31 64.08 40.29 61.32 63.04 52.00 51.77 56.85 65.98 61.96 51.05 55.67 44.80 52.35 (+1.61) 3.51 (-17.50%)
SAR 43.92 45.28 38.64 63.36 42.58 60.36 62.78 53.39 52.23 57.54 65.41 60.88 52.07 56.80 47.16 53.49 (-4.45) 2.95 (-56.16%)
+ SNAP 46.29 47.60 39.95 65.26 44.00 63.09 64.97 55.08 55.17 59.73 68.13 64.72 53.84 58.98 49.54 55.76 (-2.18) 3.09 (-53.73%)
RoTTA 36.28 37.12 31.38 61.20 38.36 58.26 60.30 49.20 48.21 53.54 62.80 56.78 49.61 52.28 41.26 49.11 (-2.44) 2.96 (-55.92%)
+ SNAP 37.83 38.42 32.38 63.73 39.72 61.32 62.58 51.38 51.18 55.61 65.70 61.39 51.36 54.51 42.85 51.33 (-0.22) 2.99 (-55.41%)

Overall performance across various adaptation rates. Table 1, 2 and Appedix C summarize
the performance comparison of baseline state-of-the-art (SOTA) TTA methods and SNAP-TTA in-
tegration across various adaptation rates (0.01 to 0.5) on CIFAR10/100-C and ImageNet-C. These
results reveal that while Sparse TTA achieves a substantial reduction in adaptation latency up to
87.5% conventional SOTA algorithms suffer significant accuracy degradation under sparse adapta-
tion settings (Table 3, Figure 4). In contrast, SNAP-TTA demonstrates a robust ability to mitigate
this performance drop. Leveraging minimal updates with only a few samples, SNAP-TTA consis-
tently outperforms baseline methods and shows competitive accuracy even when compared to fully
adapted models. Furthermore, in certain scenarios, SNAP-TTA achieves accuracy gains over the
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+ SNAP-TTA

Tent

+ SNAP-TTA

EATA

+ SNAP-TTA

SAR

+ SNAP-TTA

RoTTA

+ SNAP-TTA

CoTTA

55.76

Acc.

55.84

50.74

52.35

57.94

55.76

51.55

51.33

49.39

50.70

Figure 4: Latency and accuracy comparison
of original TTA methods and their SNAP-
TTA integration on CIFAR100-C. SNAP-
TTA significantly enhances the efficiency.

Table 3: Latency reduction and accuracy gaps of
SNAP-TTA (adaptation rate 0.1) compared by origi-
nal TTA, tested on Raspberry Pi 4. Performance av-
eraged over 15 CIFAR10-C corruptions. Numbers in
parentheses represent the performance difference of
SNAP-TTA compared to full adaptation.

Latency per batch (s) Accuracy (%)Methods Original TTA SNAP-TTA naive STTA SNAP-TTA
Tent 3.97 2.20 (-44.0%) 76.81 (-3.62) 78.95 (-1.48)
CoTTA 71.68 8.96 (-87.5%) 66.42 (-11.58) 78.83 (+0.83)
EATA 3.93 2.18 (-44.6%) 76.29 (-5.27) 78.61 (-2.95)
SAR 5.75 2.30 (-60.1%) 76.01 (-3.04) 78.06 (-0.99)
RoTTA 5.93 2.25 (-62.0%) 74.78 (-2.27) 77.07 (+0.07)

original counterparts, highlighting its adaptability and effectiveness. These results underscore the
capability of SNAP-TTA to balance efficiency and performance, providing a significant advantage
in sparse adaptation scenarios while maintaining or even enhancing classification accuracy. This
validates the effectiveness of utilizing class-domain representative samples in the STTA setting.

Furthermore, Figure 5 shows more computationally complex and latency-intensive methods such as
CoTTA tend to have greater performance gain when integrated with SNAP-TTA. This is because
methods that update the entire model parameters are more susceptible to the influence of specific
adaptation samples, leading to significant performance drops under sparse update conditions, which
SNAP-TTA’s CnDRM and IoBMN effectively mitigate. In addition, adaptation rates of 0.5 or 0.3,
which represent relatively high adaptation frequencies, sometimes can achieves even better perfor-
mance with SNAP-TTA than the original TTA, despite in the STTA setting. This is likely because
the sampling rate was not critically low but rather comparable to that of existing data-efficient meth-
ods such as EATA (Niu et al., 2022), allowing SNAP-TTA to achieve performance gains similar to
various sampling-based TTA methods (Niu et al., 2022; 2023; Gong et al., 2022; 2023) using fewer
yet effective samples. Overall, SNAP-TTA significantly reduced the average latency per batch while
effectively maintaining accuracy, highlighting its benefits for resource-constrained environments.
More details on all other adaptation rates are reported in Appendix C.0.1

acc
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Figure 5: Classification accuracy on CIFAR10-C
with varying adaptation rates. SNAP-TTA consis-
tently mitigates accuracy drop across all rates.

Table 4: Classification accuracy (%) compari-
son of ablative settings on the STTA (adapta-
tion rate 0.1). Performance averaged over 15
CIFAR10-C corruptions.

Methods Tent CoTTA EATA SAR RoTTA

Naı̈ve 76.81 66.42 76.29 76.01 74.78
Random 77.08 65.61 76.59 76.33 75.01
LowEntropy 75.66 63.19 74.89 74.41 72.60
CRM 77.77 65.71 77.18 74.36 75.27

CnDRM 77.46 77.69 77.17 76.85 75.64
CnDRM+EMA 78.02 72.19 77.05 76.84 76.18
CnDRM+IoBMN 78.95 78.83 78.61 78.06 77.07

Contribution of individual components of SNAP-TTA. We conducted an ablative evaluation to
understand the effects of the individual components of SNAP-TTA (Table 4; more results on diverse
adaptation rates and datasets are on Appendix D). CRM denotes prediction-balanced sampling with
a confidence threshold (same as the Class-Representative criteria of CnDRM), and CnDRM denotes
both Class and Domain Representative sampling (the first component of SNAP-TTA). For inference,
the default uses test batch normalization statistics, EMA uses the exponential moving average of the
test batch, and IoBMN uses memory samples’ statistics corrected to match that of the test batch (the
second component of SNAP-TTA).

Contrary to the hypothesis that low-entropy samples are beneficial for TTA (Niu et al., 2022; 2023),
LowEntropy performed worse than Rand for STTA. This can be attributed to the limited updates
of STTA, resulting in poor or longer convergence times due to low entropy minimization loss.
CRM, originally used for data-efficient supervised deep learning (Choi et al., 2024; Xia et al., 2022),
performed better than Rand. However, as CRM on TTA inevitably relies on uncertain pseudo la-
bels instead of the ground truth, its performance remains lower than utilizing domain representa-
tive features (CnDRM) (note that TTA is unsupervised domain adaptation rather than training from
scratch (Xia et al., 2022)). The highest accuracy was achieved when inference was performed us-
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Table 5: Classification accuracy (%) on ImageNet-C through Adaptation Rate 0.1 using ViT-based
model. Bold numbers are the highest accuracy.

Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.

Tent 40.56 41.30 41.69 35.76 31.81 42.01 38.02 44.33 53.53 20.69 72.41 30.42 45.87 51.95 56.11 43.10
+ SNAP-TTA 40.98 41.72 42.18 37.16 32.30 42.89 38.44 46.19 52.50 53.11 72.25 39.25 46.77 51.53 55.99 46.22
EATA 20.12 21.52 21.40 20.90 23.42 15.71 18.00 16.12 28.35 22.24 35.97 11.33 19.78 20.22 19.99 21.00
+ SNAP-TTA 40.74 43.22 43.11 40.63 44.59 51.58 50.63 54.77 58.32 61.50 73.91 33.85 60.19 63.35 63.01 52.23
SAR 21.45 23.02 23.17 23.67 24.64 15.98 14.62 7.70 31.49 8.94 41.33 6.82 17.35 22.39 22.49 20.34
+ SNAP-TTA 37.59 38.27 36.78 38.58 39.99 49.00 45.77 43.96 56.61 59.96 73.02 19.69 54.30 61.16 61.85 47.77

ing IoBMN, which primarily utilizes memory statistics and only shifts slightly to the test batch
on demand. These results collectively indicate that utilizing CnDRM and IoBMN of SNAP-TTA
enhances performance in a low-latency STTA scenario.

Validation of SNAP-TTA on Vision Transformer (ViT) based Model. To validate the effective-
ness of SNAP-TTA on the Vision Transformer (ViT) (Dosovitskiy, 2020), we conducted experiments
on ImageNet-C with adaptation rate of 0.1. Since ViT uses layer normalization (LN), we adjusted
CnDRM and IoBMN to use LN from instances, demonstrating that the core concepts of selecting
domain-representative samples and mitigating shift in normalization statistics can be applied effec-
tively to a different normalization type (details in Appendix F.3). The results in Table 5 confirm
consistent accuracy gains of SNAP-TTA with significant latency decrease, regardless of model and
normalization types.

5 DISCUSSION AND CONCLUSION

Limitations and future work. Our work could be optimized for more realistic data streams, such
as continuous domain adaptation scenarios (Appendix F.2). For instance, the adaptation rate can
be dynamically altered based on the need for adaptation (i.e., the data distribution just changed).
Additionally, while SNAP-TTA employed a fixed confidence threshold in CnDRM as a safeguard
to filter noisy samples, its adaptability could be improved. Dynamically adjusting the threshold
based on data characteristics presents a promising direction for future research to enhance sampling
efficiency and overall performance.

Moreover, while we focused on reducing adaptation latency, memory overhead is another con-
cern. We note that SNAP-TTA introduces negligible additional memory overhead, as detailed in
the Appendix E.4, where related analysis and tracking information from real-device experiments
are provided. Additionally, we demonstrate in the Appendix E.5 that SNAP-TTA can be effectively
used alongside memory-efficient TTA methods such as MECTA (Hong et al., 2023), showcasing its
compatibility and practicality. Future works could further explore optimizing SNAP-TTA for both
latency and memory.

Conclusion We raised the overlooked issue of latency of TTA methods, which is particularly
relevant for applications on resource-constrained edge devices. To this end, we propose SNAP-TTA,
a Sparse TTA (STTA) framework that could be applied to existing TTA methods to significantly
reduce their latency while maintaining competitive accuracy. For effective performance in an STTA
setting, we utilize class-domain representative memory of samples for adaptation. Furthermore, we
optimize inference by adapting normalization layers using representative samples to account for
domain shifts. Extensive experiments and ablative studies demonstrate SNAP-TTA’s effectiveness
in latency and adaptation accuracy.

REPRODUCIBILITY STATEMENT

Details of the experiments, including datasets, scenarios, and hyperparameters for
reproducibility, are provided in the Appendix B. Additionally, we share the link
(https://anonymous.4open.science/r/SNAPTTA-DD0E) of an anonymous repository contain-
ing our source code and instructions to validate the reproducibility.
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A RELATED WORK

Test-time adaptation. Test-time adaptation (TTA) aims to improve model performance on Out-of-
Distribution (OOD) data by using only the unlabeled test data stream to adapt the model. Test-time
normalization (Nado et al., 2020; Schneider et al., 2020) adjusts the batch normalization (BN) statis-
tics using test data to improve performance. Other works mainly involve updating the parameters
of the model during test-time. Tent (Wang et al., 2021) adapts the affine parameters of the BN lay-
ers to minimize the entropy of its predictions. EATA (Niu et al., 2022) builds upon Tent, sampling
reliable and non-redundant samples and utilizing an anti-forgetting regularizer for efficiency. Other
works introduce more complex schemes, primarily to improve robustness against more practical
test-time scenarios. CoTTA (Wang et al., 2022) addresses a continually changing test-time environ-
ment by using weight-averaged and augmentation-averaged predictions with stochastic restoring.
SAR (Niu et al., 2023) filters samples with large and noisy gradients to stabilize the model during
wilder test-time scenarios. RoTTA (Yuan et al., 2023) targets a practical test-time setting of changing
distributions and correlative sampling by introducing a memory bank and a teacher-student model.

Test-time adaptation on edge devices. TTA on edge devices primarily inherit the chal-
lenges of on-device learning: limited memory and increased latency from general resource con-
straints (Lin et al., 2020). Several memory-efficient TTA works have been proposed in this re-
gard. MECTA (Hong et al., 2023) aims to reduce the memory consumption of gradient-based TTA,
proposing an adaptive normalization layer to reduce the intermediate caches for backpropagation.
Another work EcoTTA (Song et al., 2023) proposes memory-efficient continual TTA by adapting
lightweight meta networks instead of the originals to reduce the size of intermediate activations. De-
spite works to promote memory-efficiency, the latency of TTA, especially on resource-constrained
edge devices, has been generally overlooked. While many adaptation-based TTA (Wang et al.,
2021; Niu et al., 2022; 2023; Yuan et al., 2023) update only the affine parameters for general time
and memory concerns, they still involve computationally-heavy operations every batch, which can
lead to high latency on edge devices. A recent work (Alfarra et al., 2024) introduces a more realistic
TTA evaluation protocol that penalizes slow TTA methods by providing them with fewer samples
for adaptation. We build on from this notion, proposing a sparse TTA setting to reduce the latency
of existing TTA methods, but at a minimal cost to performance.

Data-efficient deep learning. Data-efficient deep learning methods enable deep learning models
to achieve competitive performance with less data. Among these methods, data selection, or data
sampling, involves utilizing a small subset of the training data in an attempt to match that of full-
dataset training. A branch of data-selection is score-based selection, which scores each sample based
on some predefined metric, such as a sample’s influence (Koh & Liang, 2017), difficulty (Toneva
et al., 2019; Paul et al., 2021), prediction confidence (Pleiss et al., 2020), or consistency (Jiang et al.,
2021), and selects samples with scores in a certain range. Another set of data-selection methods
involve optimization-based selection, which formulates an optimization problem to find a optimal
subset that can best approximate full-dataset training (Mirzasoleiman et al., 2020; Yang et al., 2023;
Pooladzandi et al., 2022). While these approaches work well in their preconceived settings, they
generally suffer performance drop as their settings change, such as a change in sampling ratio. More
recent works like the Moderate Coreset (Xia et al., 2022) proposes a more robust selection approach
by using the distance of a sample to the class center as a score criterion, for an effective representa-
tion of the dataset. While our proposed sparse TTA setting is more challenging than the conventional
data-efficient setting, as we cannot access ground truths labels nor make assumptions regarding the
model, we utilize similar ideas of representative sampling as motivation for our method.

B EXPERIMENT DETAILS

All experiments presented in this paper were conducted using three random seeds (0, 1, 2), and
we report the average accuracies along with their corresponding standard deviations. To ensure
efficiency in experimentation, accuracy measurements were obtained using NVIDIA GeForce RTX
3090 GPUs, as the performance differences attributable to the random seed are negligible. Latency
measurements were conducted on a Raspberry Pi 4 (Raspberry Pi Foundation, 2019), equipped with
a Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.8GHz CPU and 4GB RAM.
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B.1 BASELINE IMPLEMENTATION DETAILS

In this study, we utilized the official implementations of the baseline methods. To ensure consistency,
we adopted the reported best hyperparameters documented in the respective papers or source code
repositories as much as possible. Also, we present information about the implementation specifics
of the baseline methods and provide a comprehensive overview of our experimental setup, including
detailed descriptions of the employed hyperparameters.

We adopt hyperparameters from the original papers or the official code of the baselines for con-
sistency. To assess the generality of SNAP-TTA, the test batch sizes were set to 16 for all baseline
methods to ensure a fair comparison. To minimize overhead and maintain consistency with inference
batches, we set the size of CnDRM equal to the batch size. TTA is conducted in an online manner,
with adaptation or inference performed per batch. When there was a conflict between the imple-
mentation of SNAP-TTA and certain components of the existing baseline methods, we prioritized
SNAP-TTA’s features for fair evaluation at the STTA setting.

For Tent (Wang et al., 2021), we update the BN affine parameters using the SGD opti-
mizer (Loshchilov & Hutter, 2017) with a learning rate of l = 1e − 3 for CIFAR10/100C and
l = 1e − 4 for ImageNet-C. For separate experimentation on the ViT, we used a learning rate of
l = 2e − 4. For CoTTA (Wang et al., 2022), we update all model parameters using the Adam
optimizer (Kingma & Ba, 2015) with a learning rate of l = 1e − 4. Furthermore, we set CoTTA’s
teacher model EMA factor to α = 0.99, the restoration factor to p = 0.1, and the anchor proba-
bility to pth = 0.9. For EATA (Niu et al., 2022), we use the SGD optimizer with a learning rate of
l = 1e − 4. We set the entropy threshold as E0 = 0.4 × ln |N |, where N is the total number of
classes. For SAR (Niu et al., 2023), we use SAM (Foret et al., 2021) with the base optimizer as SGD
with a learning rate of l = 1e− 3. For fair evaluation, we replaced the sample filtering scheme with
SNAP-TTA’s CnDRM. For RoTTA (Yuan et al., 2023), we use the SGD optimizer with a learning
rate of l = 1e−3. For fair evaluation, we replaced RoTTA’s RBN and CSTU with SNAP-TTA’s Cn-
DRM and IoBMN. For the teacher-student structure, we set the teacher model’s exponential moving
average update rate as v = 1e− 3.

Finally, we list the hyperparameters specific to the components of SNAP-TTA. The confidence
threshold for CnDRM τconf is set to 0.4 for CIFAR10-C, 0.45 for CIFAR100-C, and 0.5 for
ImageNet-C. The entropy threshold for our ablation study τentr is set to log(10)×0.40 for CIFAR10-
C and log(100) × 0.40 for CIFAR100-C, as referenced in a previous work using entropy-based fil-
tering (Niu et al., 2022). Additionally, the parameters for the soft shrinkage function in IoBMN are
fixed with α = 4 for Tent, CoTTA, SAR, RoTTA, and α = 2 for EATA.

C DETAILED EXPERIMENT RESULTS

In this section, we provide detailed experimental results for the performance comparison of SNAP-
TTA across a wide range of adaptation rates. We evaluated the performance on CIFAR10-C,
CIFAR100-C, and ImageNet-C datasets with adaptation rates of 0.01, 0.03, 0.05, 0.1, 0.3, and 0.5,
and across five state-of-the-art (SOTA) TTA algorithms: Tent, EATA, SAR, CoTTA, and RoTTA.
This comprehensive evaluation resulted in a total of 150 combinations (3 datasets, 6 adaptation rates,
5 algorithms).

The results demonstrate that, regardless of the adaptation rate, dataset, or the TTA algorithm,
integrating SNAP-TTA consistently outperforms the baseline methods. Specifically, SNAP-TTA
achieved the highest accuracy across nearly all of these 150 combinations, effectively demonstrat-
ing its robustness in both high and low adaptation settings. For CIFAR10-C and CIFAR100-C,
SNAP-TTA showed substantial performance improvements compared to the baseline, even at very
low adaptation rates (e.g., 0.01 and 0.05). Similarly, for ImageNet-C, SNAP-TTA maintained supe-
rior accuracy across diverse corruption types.

These results highlight that SNAP-TTA effectively balances adaptation and latency, ensuring optimal
performance even when the adaptation rate is sparse and regardless of the underlying TTA algorithm.
This consistent superiority across all 150 combinations underscores SNAP-TTA’s suitability for
practical, real-world applications on resource-constrained devices.
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C.1 IMAGENET-C

Table 6: STTA classification accuracy (%) comparing with and without SNAP-TTA on ImageNet-C
through Adaptation Rates(AR) (0.5, 0.3, and 0.1), including results for full adaptation (AR=1). Bold
numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
3.00 3.70 2.64 17.90 9.74 14.72 22.45 16.60 23.06 24.00 59.11 5.37 16.50 20.88 32.63 18.15Source ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00
14.29 15.06 14.89 13.30 13.38 23.78 35.22 31.78 30.26 44.40 62.39 15.14 40.42 45.25 36.53 29.07BN stats ±0.05 ±0.02 ±0.08 ±0.08 ±0.08 ±0.05 ±0.06 ±0.04 ±0.07 ±0.14 ±0.11 ±0.05 ±0.10 ±0.04 ±0.16 ±0.07
27.03 28.98 28.64 24.66 23.63 38.70 45.77 44.82 38.06 54.59 64.61 16.84 51.64 55.54 49.38 39.53Tent ±0.05 ±0.08 ±0.29 ±0.27 ±0.25 ±0.10 ±0.12 ±0.08 ±0.35 ±0.08 ±0.10 ±1.51 ±0.10 ±0.15 ±0.07 ±0.24
13.12 13.98 13.94 12.44 12.18 23.74 35.22 31.78 30.26 44.40 62.40 15.13 40.42 45.26 36.53 28.72CoTTA ±0.08 ±0.07 ±0.01 ±0.10 ±0.04 ±0.04 ±0.06 ±0.05 ±0.06 ±0.14 ±0.11 ±0.03 ±0.10 ±0.04 ±0.16 ±0.07
29.62 31.79 31.17 26.89 26.30 40.65 47.44 46.29 40.78 55.57 64.97 38.02 52.66 56.03 50.26 42.56EATA ±0.02 ±0.09 ±0.19 ±0.03 ±0.15 ±0.12 ±0.06 ±0.09 ±0.05 ±0.08 ±0.08 ±0.08 ±0.20 ±0.04 ±0.16 ±0.10
17.49 22.04 21.21 11.62 12.60 39.76 44.13 45.98 29.39 55.13 63.71 17.34 52.31 56.09 49.35 35.21SAR ±0.40 ±1.44 ±0.96 ±0.72 ±0.97 ±0.63 ±0.11 ±0.23 ±0.30 ±0.20 ±0.08 ±0.61 ±0.08 ±0.18 ±0.13 ±0.47
20.60 22.83 19.81 10.46 10.10 21.31 31.83 39.66 32.09 46.08 62.22 20.27 42.54 47.47 40.67 31.20

1

RoTTA ±0.07 ±0.09 ±0.24 ±0.04 ±0.26 ±0.27 ±0.23 ±0.18 ±0.18 ±0.23 ±0.27 ±0.49 ±0.29 ±0.23 ±0.10 ±0.21

25.24 26.86 26.35 23.26 22.41 35.99 44.60 42.96 37.68 53.60 64.40 21.35 50.23 54.32 47.93 38.48Tent ±0.10 ±0.27 ±0.08 ±0.06 ±0.05 ±0.09 ±0.10 ±0.13 ±0.17 ±0.15 ±0.12 ±0.94 ±0.12 ±0.15 ±0.04 ±0.17
28.05 29.97 29.39 25.73 23.39 38.49 45.65 44.21 39.57 53.90 64.52 34.39 49.99 54.88 48.72 40.72+ SNAP-TTA ±0.00 ±0.04 ±0.19 ±0.15 ±0.06 ±0.17 ±0.03 ±0.09 ±0.10 ±0.10 ±0.09 ±1.83 ±0.14 ±0.07 ±0.09 ±0.21
11.99 13.04 12.86 11.90 11.64 22.92 35.06 31.20 29.97 44.28 62.16 14.02 40.39 45.29 36.58 28.22CoTTA ±0.13 ±0.20 ±0.10 ±0.07 ±0.07 ±0.02 ±0.06 ±0.09 ±0.06 ±0.07 ±0.07 ±0.09 ±0.05 ±0.09 ±0.12 ±0.09
15.16 15.96 15.86 13.98 14.13 24.69 36.51 32.59 31.71 45.98 63.62 15.72 42.05 46.71 37.93 30.17+ SNAP-TTA ±0.14 ±0.02 ±0.14 ±0.04 ±0.00 ±0.09 ±0.07 ±0.16 ±0.06 ±0.09 ±0.05 ±0.04 ±0.09 ±0.24 ±0.14 ±0.09
28.62 30.12 29.94 25.34 24.48 38.94 46.85 45.20 40.03 55.04 64.84 34.48 52.06 55.57 49.85 41.42EATA ±0.10 ±0.10 ±0.14 ±0.20 ±0.44 ±0.10 ±0.25 ±0.12 ±0.01 ±0.06 ±0.07 ±0.41 ±0.24 ±0.13 ±0.05 ±0.16
30.00 31.88 31.47 26.93 26.64 39.16 47.23 45.36 39.75 55.30 64.52 33.75 52.29 55.66 50.48 42.03+ SNAP-TTA ±0.29 ±0.17 ±0.13 ±0.21 ±0.28 ±0.15 ±0.07 ±0.13 ±0.14 ±0.14 ±0.10 ±0.07 ±0.09 ±0.18 ±0.08 ±0.15
26.74 28.56 28.77 19.90 21.50 39.97 44.98 45.95 34.22 55.04 63.93 6.58 52.50 55.98 49.71 38.29SAR ±0.25 ±1.75 ±0.13 ±0.21 ±0.38 ±0.10 ±0.12 ±0.17 ±0.80 ±0.05 ±0.03 ±0.64 ±0.10 ±0.19 ±0.09 ±0.33
31.58 33.22 33.77 26.47 26.26 44.01 47.94 48.77 42.51 56.96 64.86 28.31 54.23 57.55 51.90 43.22+ SNAP-TTA ±0.38 ±2.44 ±0.56 ±1.69 ±0.94 ±0.10 ±0.04 ±0.12 ±0.09 ±0.13 ±0.10 ±10.99 ±0.08 ±0.16 ±0.19 ±1.20
18.17 19.59 18.49 12.32 11.79 23.56 34.62 37.84 32.91 47.86 63.94 18.68 43.21 48.54 40.20 31.45RoTTA ±0.05 ±0.03 ±0.10 ±0.11 ±0.13 ±0.15 ±0.14 ±0.11 ±0.06 ±0.05 ±0.16 ±0.42 ±0.08 ±0.23 ±0.23 ±0.14
20.43 22.03 21.05 15.47 14.49 26.36 36.46 38.98 34.15 48.41 64.02 20.74 43.66 49.16 41.05 33.10

0.5

+ SNAP-TTA ±0.03 ±0.08 ±0.11 ±0.11 ±0.07 ±0.06 ±0.10 ±0.09 ±0.12 ±0.13 ±0.13 ±0.23 ±0.10 ±0.10 ±0.15 ±0.11
23.63 25.18 24.80 21.81 20.97 34.11 43.60 41.44 36.98 52.66 64.21 22.74 48.96 53.46 46.80 37.42Tent ±0.08 ±0.37 ±0.28 ±0.02 ±0.18 ±0.07 ±0.04 ±0.05 ±0.04 ±0.15 ±0.13 ±0.04 ±0.16 ±0.07 ±0.09 ±0.12
26.60 28.21 27.94 24.37 22.39 36.45 44.36 42.64 38.54 52.91 64.26 33.47 48.58 53.90 47.41 39.47+ SNAP-TTA ±0.20 ±0.19 ±0.33 ±0.36 ±0.12 ±0.07 ±0.13 ±0.07 ±0.15 ±0.06 ±0.10 ±0.44 ±0.10 ±0.14 ±0.11 ±0.17
11.74 12.74 12.68 11.77 11.62 22.64 34.97 31.05 29.81 44.24 62.12 13.73 40.31 45.19 36.71 28.09CoTTA ±0.09 ±0.06 ±0.07 ±0.17 ±0.14 ±0.14 ±0.07 ±0.01 ±0.13 ±0.05 ±0.06 ±0.02 ±0.15 ±0.08 ±0.09 ±0.09
15.26 16.00 15.83 13.81 14.13 24.84 36.46 32.58 31.73 46.04 63.52 15.69 42.18 46.74 38.00 30.19+ SNAP-TTA ±0.16 ±0.09 ±0.06 ±0.04 ±0.01 ±0.03 ±0.13 ±0.03 ±0.08 ±0.21 ±0.06 ±0.08 ±0.07 ±0.05 ±0.14 ±0.08
27.35 29.03 28.62 23.94 23.45 37.21 46.18 44.05 39.19 54.52 64.54 32.20 51.22 55.00 49.27 40.38EATA ±0.04 ±0.15 ±0.27 ±0.06 ±0.60 ±0.30 ±0.13 ±0.20 ±0.22 ±0.01 ±0.06 ±0.62 ±0.16 ±0.10 ±0.21 ±0.21
29.48 31.20 30.69 26.68 25.90 38.24 46.60 44.62 39.31 54.82 64.44 32.87 51.41 55.41 49.78 41.43+ SNAP-TTA ±0.14 ±0.04 ±0.11 ±0.14 ±0.25 ±0.01 ±0.22 ±0.06 ±0.19 ±0.06 ±0.13 ±0.29 ±0.25 ±0.06 ±0.14 ±0.14
28.12 29.30 29.63 22.37 23.88 39.34 45.36 45.69 36.73 54.91 64.11 10.96 52.22 55.76 49.60 39.20SAR ±0.13 ±0.89 ±0.17 ±0.47 ±0.33 ±0.18 ±0.11 ±0.18 ±0.79 ±0.07 ±0.02 ±1.33 ±0.19 ±0.13 ±0.08 ±0.34
32.63 34.69 34.26 28.91 27.96 43.51 47.79 48.27 42.41 56.45 64.77 32.76 53.74 57.21 51.67 43.80+ SNAP-TTA ±0.11 ±0.23 ±0.18 ±0.27 ±0.29 ±0.14 ±0.03 ±0.11 ±0.13 ±0.09 ±0.07 ±3.04 ±0.13 ±0.28 ±0.12 ±0.35
16.90 17.88 17.25 12.89 12.51 23.96 35.26 36.26 32.32 47.25 63.98 17.46 42.77 48.21 39.35 30.95RoTTA ±0.15 ±0.11 ±0.08 ±0.17 ±0.05 ±0.03 ±0.16 ±0.01 ±0.07 ±0.02 ±0.13 ±0.18 ±0.09 ±0.24 ±0.15 ±0.11
18.63 19.94 19.35 14.88 14.34 25.88 36.47 37.13 33.32 47.74 63.96 19.08 42.98 48.73 40.27 32.18

0.3

+ SNAP-TTA ±0.07 ±0.08 ±0.06 ±0.08 ±0.05 ±0.03 ±0.03 ±0.02 ±0.11 ±0.17 ±0.06 ±0.21 ±0.07 ±0.17 ±0.20 ±0.09
22.00 23.51 23.07 19.38 18.86 32.15 42.29 39.70 34.33 51.62 63.70 15.79 47.74 52.35 45.54 35.47Tent ±3.47 ±3.92 ±3.85 ±2.30 ±2.06 ±3.40 ±2.45 ±3.27 ±0.60 ±2.30 ±0.29 ±4.61 ±2.84 ±2.27 ±2.98 ±2.71
26.21 27.85 27.50 23.62 22.73 36.01 44.11 42.19 38.15 52.95 64.57 30.23 48.56 53.71 47.09 39.03+ SNAP-TTA ±4.92 ±5.36 ±5.30 ±4.23 ±4.11 ±5.57 ±3.72 ±4.49 ±3.37 ±3.47 ±1.18 ±5.15 ±4.29 ±3.31 ±4.09 ±4.17
10.97 11.92 11.98 11.45 11.38 22.39 34.96 30.88 29.89 44.09 61.96 13.08 40.20 45.27 36.71 27.81CoTTA ±0.32 ±0.32 ±0.18 ±0.04 ±0.34 ±0.02 ±0.15 ±0.14 ±0.09 ±0.23 ±0.05 ±0.28 ±0.18 ±0.16 ±0.10 ±0.17
15.13 16.03 15.91 13.86 14.02 24.90 36.51 32.56 31.81 46.02 63.60 15.69 41.94 46.78 38.03 30.19+ SNAP-TTA ±0.06 ±0.09 ±0.04 ±0.00 ±0.07 ±0.05 ±0.05 ±0.06 ±0.12 ±0.06 ±0.10 ±0.04 ±0.09 ±0.09 ±0.12 ±0.07
22.43 23.78 23.26 19.38 19.42 32.18 43.22 40.65 36.64 52.38 63.87 24.59 48.13 52.89 46.33 36.61EATA ±0.05 ±0.16 ±0.43 ±0.26 ±0.51 ±0.31 ±0.19 ±0.15 ±0.16 ±0.27 ±0.05 ±1.52 ±0.40 ±0.12 ±0.14 ±0.32
26.10 27.29 27.13 22.38 22.15 33.45 43.92 40.96 36.68 52.71 63.77 27.93 48.47 53.23 47.46 38.24+ SNAP-TTA ±0.09 ±0.13 ±0.20 ±0.32 ±0.14 ±0.27 ±0.08 ±0.16 ±0.01 ±0.09 ±0.10 ±0.18 ±0.24 ±0.10 ±0.17 ±0.15
26.12 27.56 26.93 22.51 23.35 36.03 44.48 43.19 37.26 53.82 64.15 19.87 50.78 54.78 48.43 38.62SAR ±0.17 ±0.01 ±0.11 ±0.24 ±0.21 ±0.21 ±0.09 ±0.09 ±0.32 ±0.21 ±0.11 ±2.10 ±0.12 ±0.18 ±0.07 ±0.28
30.28 31.97 31.30 26.67 26.31 39.66 46.08 45.43 40.26 54.76 64.62 36.12 51.26 55.42 49.63 41.99+ SNAP-TTA ±0.16 ±0.24 ±0.12 ±0.34 ±0.37 ±0.25 ±0.04 ±0.09 ±0.13 ±0.23 ±0.05 ±0.67 ±0.06 ±0.20 ±0.06 ±0.20
14.77 15.59 15.33 13.17 13.19 23.85 35.38 32.73 30.77 45.22 63.08 15.62 41.05 46.15 37.19 29.54RoTTA ±0.04 ±0.04 ±0.04 ±0.07 ±0.10 ±0.05 ±0.05 ±0.03 ±0.04 ±0.15 ±0.12 ±0.02 ±0.10 ±0.07 ±0.13 ±0.07
15.35 16.20 16.01 13.67 13.66 24.27 35.62 33.04 31.02 45.38 62.95 15.96 41.06 46.17 37.44 29.85

0.1

+ SNAP-TTA ±0.03 ±0.01 ±0.07 ±0.09 ±0.07 ±0.03 ±0.01 ±0.07 ±0.04 ±0.11 ±0.08 ±0.08 ±0.11 ±0.07 ±0.19 ±0.07
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Table 7: STTA classification accuracy (%) comparing with and without SNAP-TTA on ImageNet-C
through Adaptation Rates(AR) (0.05, 0.03, and 0.01). Bold numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
23.77 24.65 24.44 20.54 20.27 32.73 43.57 40.82 35.92 52.78 63.82 15.95 49.33 53.46 47.19 36.62Tent ±0.40 ±0.43 ±0.58 ±0.70 ±0.69 ±0.30 ±0.14 ±0.15 ±0.33 ±0.12 ±0.02 ±1.18 ±0.18 ±0.09 ±0.03 ±0.35
29.12 30.46 30.30 25.77 25.22 38.21 46.14 44.29 39.95 54.65 65.47 33.81 50.83 55.59 49.21 41.27+ SNAP-TTA ±0.09 ±0.22 ±0.48 ±0.20 ±0.23 ±0.43 ±0.00 ±0.13 ±0.07 ±0.15 ±0.09 ±1.10 ±0.13 ±0.10 ±0.03 ±0.23
11.03 11.91 11.75 11.03 11.20 22.30 34.98 30.87 29.78 43.99 61.87 12.92 40.26 45.23 36.63 27.72CoTTA ±0.30 ±0.57 ±0.33 ±0.24 ±0.46 ±0.18 ±0.05 ±0.08 ±0.01 ±0.11 ±0.06 ±0.36 ±0.19 ±0.17 ±0.07 ±0.21
15.22 15.97 15.93 13.91 14.05 24.87 36.48 32.60 31.65 46.09 63.59 15.67 42.00 46.71 37.96 30.18+ SNAP-TTA ±0.08 ±0.11 ±0.03 ±0.06 ±0.12 ±0.04 ±0.00 ±0.07 ±0.04 ±0.03 ±0.07 ±0.05 ±0.03 ±0.09 ±0.09 ±0.06
19.53 20.65 20.72 16.74 16.96 29.11 41.22 37.96 34.84 50.75 63.29 19.86 45.92 51.15 44.13 34.19EATA ±0.31 ±0.66 ±0.75 ±0.41 ±0.58 ±0.49 ±0.27 ±0.18 ±0.23 ±0.21 ±0.13 ±1.26 ±0.35 ±0.17 ±0.09 ±0.41
22.83 23.95 23.62 19.43 19.70 30.34 41.59 38.06 35.06 50.98 63.30 23.72 46.26 51.52 45.46 35.72+ SNAP-TTA ±0.10 ±0.34 ±0.30 ±0.09 ±0.19 ±0.56 ±0.08 ±0.11 ±0.21 ±0.18 ±0.13 ±0.30 ±0.16 ±0.16 ±0.18 ±0.21
23.25 24.23 23.66 19.98 20.38 33.05 43.04 40.73 36.06 52.61 64.09 20.17 49.00 53.35 46.73 36.69SAR ±0.21 ±0.34 ±0.30 ±0.09 ±0.16 ±0.30 ±0.16 ±0.02 ±0.12 ±0.09 ±0.07 ±0.84 ±0.11 ±0.10 ±0.11 ±0.20
27.54 29.03 28.66 24.05 23.42 36.28 44.12 42.89 38.54 53.24 64.25 31.83 48.79 54.04 47.80 39.63+ SNAP-TTA ±0.16 ±0.05 ±0.04 ±0.16 ±0.08 ±0.12 ±0.10 ±0.11 ±0.07 ±0.07 ±0.05 ±0.24 ±0.23 ±0.19 ±0.08 ±0.12
14.42 15.22 15.02 13.25 13.31 23.79 35.27 32.09 30.43 44.71 62.64 15.24 40.63 45.55 36.75 29.22RoTTA ±0.06 ±0.05 ±0.10 ±0.11 ±0.07 ±0.03 ±0.08 ±0.05 ±0.07 ±0.13 ±0.14 ±0.09 ±0.10 ±0.07 ±0.16 ±0.09
14.65 15.48 15.29 13.43 13.45 23.93 35.33 32.18 30.53 44.71 62.58 15.41 40.64 45.55 36.81 29.33

0.05

+ SNAP-TTA ±0.06 ±0.02 ±0.08 ±0.09 ±0.09 ±0.03 ±0.05 ±0.04 ±0.05 ±0.16 ±0.10 ±0.04 ±0.09 ±0.10 ±0.14 ±0.08
21.76 22.76 22.58 19.06 18.90 30.85 42.34 38.94 35.53 51.58 63.42 18.61 47.96 52.41 45.56 35.48Tent ±0.17 ±0.35 ±0.17 ±0.04 ±0.12 ±0.22 ±0.12 ±0.26 ±0.31 ±0.18 ±0.11 ±0.91 ±0.26 ±0.21 ±0.08 ±0.23
26.42 28.20 27.81 23.79 22.82 35.77 44.80 42.37 38.81 53.34 64.95 30.05 49.28 54.16 47.57 39.34+ SNAP-TTA ±0.14 ±0.26 ±0.37 ±0.46 ±0.21 ±0.11 ±0.16 ±0.34 ±0.14 ±0.06 ±0.11 ±0.62 ±0.17 ±0.09 ±0.08 ±0.22
10.61 12.36 11.78 11.66 11.32 22.25 35.01 30.88 29.84 44.09 61.83 12.92 40.26 45.20 36.58 27.77CoTTA ±0.18 ±0.36 ±0.57 ±0.57 ±0.26 ±0.11 ±0.18 ±0.24 ±0.07 ±0.11 ±0.16 ±0.12 ±0.19 ±0.11 ±0.09 ±0.22
15.29 16.02 16.00 13.99 14.06 24.78 36.54 32.62 31.70 46.01 63.49 15.69 42.05 46.75 37.97 30.20+ SNAP-TTA ±0.08 ±0.07 ±0.09 ±0.07 ±0.11 ±0.05 ±0.07 ±0.06 ±0.08 ±0.01 ±0.04 ±0.04 ±0.18 ±0.19 ±0.08 ±0.08
17.17 18.34 17.94 14.48 15.04 26.31 39.47 35.51 33.41 49.16 63.06 18.01 44.16 49.90 42.47 32.30EATA ±0.41 ±0.19 ±0.36 ±0.82 ±0.22 ±0.25 ±0.33 ±0.50 ±0.33 ±0.19 ±0.05 ±0.88 ±0.31 ±0.09 ±0.31 ±0.35
20.75 21.87 21.28 17.34 17.90 28.08 39.84 36.27 33.54 49.50 63.04 20.86 44.68 49.97 43.53 33.90+ SNAP-TTA ±0.32 ±0.41 ±0.35 ±0.30 ±0.34 ±0.34 ±0.16 ±0.13 ±0.11 ±0.12 ±0.07 ±0.33 ±0.28 ±0.13 ±0.03 ±0.23
20.38 21.34 21.18 18.24 18.28 30.56 41.63 38.57 35.23 51.19 63.74 20.40 47.32 52.02 44.81 34.99SAR ±0.10 ±0.14 ±0.36 ±0.18 ±0.27 ±0.08 ±0.12 ±0.17 ±0.28 ±0.22 ±0.04 ±0.20 ±0.09 ±0.09 ±0.19 ±0.17
25.11 26.27 26.00 22.02 21.25 33.51 42.86 40.83 37.09 51.87 63.83 28.36 47.19 52.63 45.80 37.64+ SNAP-TTA ±0.23 ±0.31 ±0.10 ±0.49 ±0.56 ±0.31 ±0.14 ±0.16 ±0.21 ±0.18 ±0.10 ±0.29 ±0.34 ±0.06 ±0.30 ±0.25
14.36 15.12 14.95 13.30 13.34 23.78 35.23 31.89 30.33 44.52 62.48 15.20 40.50 45.36 36.63 29.13RoTTA ±0.04 ±0.03 ±0.08 ±0.08 ±0.08 ±0.04 ±0.05 ±0.04 ±0.07 ±0.11 ±0.12 ±0.01 ±0.11 ±0.07 ±0.17 ±0.07
14.45 15.21 15.06 13.35 13.42 23.83 35.26 31.92 30.36 44.53 62.47 15.27 40.50 45.39 36.65 29.18

0.03

+ SNAP-TTA ±0.04 ±0.02 ±0.08 ±0.08 ±0.07 ±0.04 ±0.06 ±0.02 ±0.08 ±0.10 ±0.09 ±0.04 ±0.10 ±0.08 ±0.16 ±0.07
17.09 17.70 17.69 14.91 15.25 25.23 38.66 34.15 32.28 48.14 62.65 15.76 43.44 49.14 41.18 31.55Tent ±0.14 ±0.10 ±0.13 ±0.23 ±0.09 ±0.25 ±0.27 ±0.27 ±0.21 ±0.21 ±0.16 ±0.48 ±0.23 ±0.04 ±0.10 ±0.19
20.66 21.73 21.55 18.46 18.28 29.88 40.63 36.97 34.89 49.85 64.29 22.64 45.13 50.77 43.17 34.59+ SNAP-TTA ±0.02 ±0.12 ±0.18 ±0.34 ±0.33 ±0.12 ±0.14 ±0.21 ±0.10 ±0.26 ±0.10 ±0.14 ±0.29 ±0.07 ±0.51 ±0.19
11.11 13.24 11.86 10.85 10.97 22.18 34.96 30.88 29.63 44.09 61.71 12.81 40.16 45.14 36.73 27.75CoTTA ±0.61 ±0.12 ±0.65 ±0.59 ±0.98 ±0.05 ±0.18 ±0.14 ±0.21 ±0.21 ±0.22 ±0.53 ±0.20 ±0.22 ±0.12 ±0.34
15.09 16.00 15.83 13.84 14.06 24.70 36.47 32.59 31.66 46.10 63.62 15.60 42.03 46.74 38.17 30.17+ SNAP-TTA ±0.04 ±0.09 ±0.14 ±0.09 ±0.02 ±0.07 ±0.02 ±0.11 ±0.03 ±0.15 ±0.07 ±0.06 ±0.10 ±0.01 ±0.20 ±0.08
14.85 15.61 15.69 13.26 13.37 23.72 36.18 32.57 31.14 46.06 62.35 13.88 41.91 47.00 38.88 29.76EATA ±0.13 ±0.21 ±0.21 ±0.04 ±0.06 ±0.19 ±0.13 ±0.09 ±0.06 ±0.29 ±0.09 ±0.35 ±0.17 ±0.15 ±0.09 ±0.15
16.73 17.55 17.30 14.35 14.64 24.13 36.83 32.81 31.09 46.63 62.20 15.26 42.34 47.44 39.81 30.61+ SNAP-TTA ±0.12 ±0.10 ±0.19 ±0.09 ±0.10 ±0.36 ±0.23 ±0.08 ±0.10 ±0.19 ±0.16 ±0.54 ±0.12 ±0.18 ±0.34 ±0.19
16.08 17.04 16.69 14.72 14.78 25.92 37.85 34.07 32.25 47.66 63.15 17.20 43.05 48.78 40.14 31.29SAR ±0.08 ±0.07 ±0.10 ±0.16 ±0.12 ±0.13 ±0.05 ±0.24 ±0.11 ±0.13 ±0.05 ±0.15 ±0.20 ±0.09 ±0.20 ±0.13
18.89 19.45 19.70 16.70 16.55 27.69 38.57 35.34 33.09 48.08 63.04 20.39 42.95 48.76 40.99 32.68+ SNAP-TTA ±0.15 ±0.15 ±0.12 ±0.14 ±0.15 ±0.16 ±0.11 ±0.22 ±0.09 ±0.31 ±0.07 ±0.12 ±0.29 ±0.26 ±0.33 ±0.18
14.30 15.06 14.89 13.30 13.37 23.78 35.22 31.79 30.27 44.40 62.40 15.16 40.42 45.27 36.54 29.08RoTTA ±0.05 ±0.03 ±0.07 ±0.07 ±0.08 ±0.04 ±0.06 ±0.04 ±0.06 ±0.14 ±0.11 ±0.06 ±0.10 ±0.05 ±0.16 ±0.07
14.30 15.07 14.92 13.30 13.38 23.78 35.22 31.78 30.26 44.41 62.40 15.15 40.43 45.27 36.54 29.08

0.01

+ SNAP-TTA ±0.06 ±0.03 ±0.08 ±0.08 ±0.07 ±0.04 ±0.06 ±0.04 ±0.07 ±0.14 ±0.11 ±0.05 ±0.09 ±0.04 ±0.15 ±0.07
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C.2 CIFAR10-C

Table 8: STTA classification accuracy (%) comparing with and without SNAP-TTA on CIFAR10-C
through Adaptation Rates(AR) (0.5, 0.3, and 0.1), including results for full adaptation (AR=1). Bold
numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
22.13 29.25 22.53 54.54 55.10 67.45 64.37 78.25 69.93 74.26 91.29 35.45 77.20 46.56 73.38 57.45Source ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00
63.72 65.67 57.14 84.99 62.72 83.86 84.26 78.98 76.95 83.32 88.46 84.60 73.96 76.61 68.79 75.60BN stats ±0.48 ±0.12 ±0.25 ±0.31 ±0.23 ±0.48 ±0.30 ±0.30 ±0.08 ±0.17 ±0.16 ±0.17 ±0.18 ±0.02 ±0.42 ±0.24
73.66 76.18 68.04 86.61 67.12 85.73 86.24 82.34 81.56 86.02 89.99 87.16 76.40 82.95 76.45 80.43Tent ±0.88 ±0.94 ±1.32 ±0.50 ±0.76 ±0.38 ±0.09 ±0.94 ±0.64 ±0.18 ±0.16 ±2.50 ±0.82 ±0.15 ±0.46 ±0.71
71.95 73.97 67.03 83.91 66.75 82.64 83.34 79.92 79.49 82.41 88.39 80.14 75.38 79.24 75.42 78.00CoTTA ±0.32 ±0.48 ±0.66 ±0.20 ±0.08 ±0.34 ±0.19 ±0.09 ±0.13 ±0.23 ±0.18 ±0.17 ±0.09 ±0.07 ±0.25 ±0.23
75.82 77.61 69.63 87.14 69.41 85.96 87.08 83.42 82.28 86.58 90.40 89.26 77.62 83.35 77.77 81.56EATA ±0.50 ±0.27 ±0.87 ±0.29 ±0.68 ±0.39 ±0.27 ±0.38 ±0.29 ±0.41 ±0.17 ±0.39 ±0.28 ±0.32 ±0.20 ±0.38
73.52 74.03 65.45 85.69 65.01 84.63 85.01 81.47 80.91 84.18 88.70 86.23 74.94 81.20 74.84 79.05SAR ±1.53 ±0.46 ±1.81 ±0.37 ±0.35 ±0.53 ±0.34 ±0.37 ±0.72 ±0.09 ±0.12 ±0.16 ±0.03 ±0.28 ±0.69 ±0.52
66.54 68.60 60.27 85.73 64.84 84.68 85.01 80.15 78.02 84.13 89.00 84.91 75.06 77.96 70.12 77.00

1

RoTTA ±0.46 ±0.23 ±0.46 ±0.35 ±0.63 ±0.36 ±0.45 ±0.56 ±0.06 ±0.09 ±0.27 ±0.19 ±0.15 ±0.16 ±0.36 ±0.32

73.44 75.93 67.18 86.52 67.28 85.25 86.23 82.24 80.35 85.39 89.80 87.77 77.00 82.08 75.58 80.14Tent ±0.61 ±0.44 ±0.78 ±0.17 ±1.78 ±0.49 ±0.42 ±0.77 ±0.14 ±0.20 ±0.28 ±0.27 ±0.65 ±0.68 ±0.60 ±0.55
75.17 77.66 68.78 88.25 69.18 87.11 88.19 84.21 82.72 87.34 91.63 86.30 78.76 83.43 77.28 81.74+ SNAP-TTA ±0.00 ±0.78 ±1.26 ±0.38 ±0.51 ±0.18 ±0.13 ±0.29 ±0.45 ±0.51 ±0.12 ±1.07 ±0.28 ±0.18 ±0.50 ±0.44
65.08 66.67 61.30 77.50 61.36 77.70 77.37 74.05 72.86 77.43 82.69 72.44 70.52 70.94 69.79 71.85CoTTA ±0.26 ±0.21 ±0.16 ±0.48 ±0.15 ±0.37 ±0.37 ±0.22 ±0.44 ±0.19 ±0.30 ±0.72 ±0.07 ±0.27 ±0.10 ±0.29
71.89 74.18 66.92 85.46 67.57 84.27 84.91 81.10 80.62 84.06 90.16 82.14 76.75 80.23 75.98 79.08+ SNAP-TTA ±0.45 ±0.33 ±0.19 ±0.32 ±0.26 ±0.22 ±0.18 ±0.09 ±0.46 ±0.24 ±0.17 ±0.33 ±0.16 ±0.38 ±0.50 ±0.28
73.95 75.82 68.00 86.83 67.83 85.27 86.48 82.63 80.99 85.45 89.86 87.61 77.01 82.13 76.11 80.40EATA ±0.22 ±0.18 ±0.70 ±0.25 ±0.50 ±0.39 ±0.15 ±0.50 ±0.05 ±0.16 ±0.18 ±0.53 ±0.31 ±0.18 ±0.45 ±0.32
74.85 77.63 68.43 88.53 69.70 87.19 88.16 83.87 82.84 87.18 91.54 89.62 78.91 83.76 77.36 81.97+ SNAP-TTA ±0.51 ±0.46 ±0.43 ±0.17 ±0.69 ±0.35 ±0.18 ±0.42 ±0.33 ±0.15 ±0.12 ±0.38 ±0.48 ±0.14 ±0.22 ±0.33
69.10 72.37 63.22 85.18 64.30 83.94 85.07 80.11 79.64 83.91 88.64 84.21 75.70 79.10 72.92 77.83SAR ±1.63 ±1.05 ±0.44 ±0.25 ±1.02 ±0.12 ±0.45 ±0.17 ±0.60 ±0.37 ±0.10 ±0.30 ±0.34 ±0.52 ±0.09 ±0.50
73.98 75.48 66.41 86.63 68.15 85.50 86.53 81.62 80.20 85.06 91.46 87.04 77.22 81.16 75.53 80.13+ SNAP-TTA ±0.48 ±0.65 ±1.26 ±0.15 ±0.07 ±0.15 ±0.10 ±0.39 ±0.17 ±0.27 ±0.03 ±0.11 ±0.45 ±0.27 ±0.23 ±0.32
65.02 66.84 58.38 85.26 63.51 83.81 84.66 79.26 76.76 83.46 88.27 83.47 74.43 77.39 69.13 75.98RoTTA ±0.04 ±0.52 ±0.33 ±0.42 ±0.18 ±0.15 ±0.20 ±0.29 ±0.49 ±0.21 ±0.04 ±0.05 ±0.16 ±0.29 ±0.41 ±0.25
66.03 68.09 58.88 87.09 64.55 85.70 86.48 80.97 78.87 85.29 90.28 86.22 76.05 78.76 70.51 77.58

0.5

+ SNAP-TTA ±0.14 ±0.15 ±0.06 ±0.27 ±0.07 ±0.03 ±0.02 ±0.22 ±0.20 ±0.22 ±0.13 ±0.10 ±0.22 ±0.22 ±0.35 ±0.16
71.18 74.06 65.44 85.93 66.01 84.37 85.90 81.31 79.80 84.80 89.58 84.01 75.96 80.46 74.09 78.86Tent ±0.99 ±0.80 ±1.17 ±0.28 ±0.97 ±0.14 ±0.17 ±0.40 ±0.09 ±0.25 ±0.23 ±0.30 ±0.30 ±0.39 ±0.54 ±0.47
74.95 77.29 67.59 88.27 67.46 86.97 87.64 83.46 82.45 86.72 91.22 87.79 78.26 82.61 75.79 81.23+ SNAP-TTA ±0.84 ±0.55 ±0.46 ±0.27 ±0.26 ±0.21 ±0.16 ±0.40 ±0.19 ±0.19 ±0.21 ±0.98 ±0.35 ±0.38 ±0.32 ±0.39
63.01 64.38 58.95 75.43 59.65 76.08 75.47 71.75 70.33 75.52 80.94 70.53 68.75 67.87 67.55 69.75CoTTA ±0.12 ±0.64 ±0.74 ±0.61 ±0.48 ±0.58 ±0.16 ±0.55 ±0.48 ±0.32 ±0.49 ±0.51 ±0.65 ±0.30 ±0.37 ±0.47
71.39 73.57 66.29 85.22 66.71 84.20 84.64 80.77 80.56 84.06 89.85 81.86 76.48 79.94 75.69 78.75+ SNAP-TTA ±0.31 ±0.27 ±0.10 ±0.22 ±0.19 ±0.18 ±0.13 ±0.21 ±0.32 ±0.15 ±0.17 ±0.08 ±0.07 ±0.24 ±0.27 ±0.19
70.98 73.70 65.73 86.01 66.71 84.36 86.10 80.92 79.87 84.48 89.29 86.33 76.19 80.66 73.98 79.02EATA ±1.05 ±0.28 ±1.68 ±0.35 ±0.81 ±0.23 ±0.38 ±0.47 ±0.09 ±0.04 ±0.19 ±0.31 ±0.20 ±0.58 ±0.52 ±0.48
74.19 76.64 67.89 87.93 68.56 87.08 87.89 83.56 82.20 86.60 91.11 88.94 78.10 83.03 75.83 81.30+ SNAP-TTA ±0.38 ±0.68 ±0.19 ±0.25 ±0.20 ±0.05 ±0.34 ±0.30 ±0.25 ±0.23 ±0.22 ±0.61 ±0.14 ±0.20 ±0.43 ±0.30
69.10 72.37 63.22 85.18 64.30 83.94 85.07 80.11 79.64 83.91 88.64 84.21 75.70 79.10 72.92 77.83SAR ±1.63 ±1.05 ±0.44 ±0.25 ±1.02 ±0.12 ±0.45 ±0.17 ±0.60 ±0.37 ±0.10 ±0.30 ±0.34 ±0.52 ±0.09 ±0.50
72.72 75.25 65.78 86.53 66.19 85.53 86.40 81.61 80.53 85.08 91.41 86.74 77.23 81.00 74.52 79.77+ SNAP-TTA ±0.94 ±0.30 ±1.06 ±0.16 ±0.60 ±0.26 ±0.27 ±0.45 ±0.64 ±0.23 ±0.14 ±0.08 ±0.41 ±0.37 ±1.04 ±0.46
64.09 66.07 57.58 84.97 62.66 83.06 84.08 78.60 76.40 82.86 88.03 83.21 74.14 76.35 68.70 75.39RoTTA ±0.44 ±0.13 ±0.63 ±0.20 ±0.15 ±0.18 ±0.17 ±0.34 ±0.36 ±0.05 ±0.22 ±0.24 ±0.58 ±0.47 ±0.17 ±0.29
65.83 67.57 58.39 86.97 64.22 85.63 86.39 80.75 78.90 85.21 90.19 85.92 75.92 78.91 70.42 77.41

0.3

+ SNAP-TTA ±0.18 ±0.19 ±0.29 ±0.33 ±0.16 ±0.18 ±0.09 ±0.15 ±0.08 ±0.17 ±0.16 ±0.21 ±0.09 ±0.05 ±0.37 ±0.18
67.32 69.39 60.69 85.34 63.82 83.52 84.70 79.68 77.79 83.75 88.53 83.12 75.18 77.82 71.47 76.81Tent ±0.93 ±0.96 ±0.36 ±0.24 ±0.41 ±0.13 ±0.15 ±0.41 ±0.50 ±0.08 ±0.49 ±0.66 ±0.68 ±0.69 ±0.44 ±0.48
70.22 71.48 63.08 87.35 65.74 85.89 86.38 81.93 80.00 85.62 90.34 87.47 76.44 79.63 72.72 78.95+ SNAP-TTA ±0.44 ±0.91 ±0.04 ±0.20 ±0.26 ±0.25 ±0.32 ±0.33 ±0.21 ±0.14 ±0.22 ±0.11 ±0.12 ±0.14 ±0.39 ±0.27
59.11 60.26 56.07 72.23 56.77 73.55 72.20 68.05 66.68 72.88 77.66 65.95 65.67 64.12 65.16 66.42CoTTA ±0.43 ±0.56 ±0.65 ±0.69 ±0.64 ±0.68 ±0.94 ±0.63 ±0.52 ±0.56 ±1.15 ±1.17 ±0.83 ±0.95 ±0.58 ±0.73
71.70 73.54 66.70 85.16 66.83 84.30 84.88 81.02 80.61 84.20 89.84 81.71 76.60 79.66 75.71 78.83+ SNAP-TTA ±0.40 ±0.21 ±0.02 ±0.19 ±0.39 ±0.08 ±0.20 ±0.25 ±0.24 ±0.23 ±0.08 ±0.20 ±0.20 ±0.14 ±0.25 ±0.20
66.65 68.96 59.73 84.93 63.26 83.10 84.53 79.28 77.46 83.48 88.12 82.46 74.49 77.48 70.43 76.29EATA ±0.43 ±0.47 ±0.15 ±0.27 ±0.36 ±0.24 ±0.15 ±0.44 ±0.42 ±0.13 ±0.09 ±0.24 ±0.20 ±0.69 ±0.25 ±0.30
69.29 70.49 61.71 87.32 65.48 85.96 86.64 81.44 79.56 85.47 90.50 86.84 76.32 79.64 72.51 78.61+ SNAP-TTA ±0.39 ±0.57 ±0.37 ±0.42 ±0.38 ±0.29 ±0.21 ±0.34 ±0.47 ±0.23 ±0.38 ±0.36 ±0.21 ±0.12 ±0.32 ±0.34
66.11 68.18 59.15 84.91 62.87 82.33 84.27 79.23 77.58 83.21 88.29 82.60 74.65 75.92 70.79 76.01SAR ±0.59 ±0.83 ±0.72 ±0.45 ±0.27 ±0.60 ±0.13 ±0.32 ±0.43 ±0.18 ±0.09 ±0.57 ±0.46 ±0.77 ±0.40 ±0.45
67.76 70.68 60.82 86.78 64.73 85.29 86.22 80.82 79.30 84.95 91.33 86.59 75.72 78.72 71.24 78.06+ SNAP-TTA ±0.22 ±0.14 ±1.08 ±0.26 ±0.43 ±0.10 ±0.11 ±0.23 ±0.48 ±0.28 ±0.17 ±0.14 ±0.26 ±0.35 ±0.46 ±0.31
63.12 64.84 56.72 84.49 62.15 82.53 83.84 78.03 76.13 82.88 87.48 81.49 73.75 76.04 68.24 74.78RoTTA ±0.33 ±0.21 ±0.30 ±0.04 ±0.17 ±0.30 ±0.02 ±0.29 ±0.71 ±0.16 ±0.08 ±0.11 ±0.14 ±0.29 ±0.27 ±0.23
65.35 66.99 58.09 86.77 63.63 85.47 86.01 80.54 78.38 84.99 90.00 85.99 75.67 78.14 70.09 77.07

0.1

+ SNAP-TTA ±0.20 ±0.15 ±0.18 ±0.18 ±0.18 ±0.13 ±0.21 ±0.11 ±0.24 ±0.43 ±0.23 ±0.03 ±0.17 ±0.06 ±0.23 ±0.18
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Table 9: STTA classification accuracy (%) comparing with and without SNAP-TTA on CIFAR10-C
through Adaptation Rates(AR) (0.05, 0.03, and 0.01). Bold numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
64.65 67.08 58.48 85.00 62.61 82.76 84.63 79.01 77.66 83.32 88.00 82.34 74.16 77.11 69.40 75.75Tent ±0.55 ±0.58 ±0.42 ±0.60 ±0.44 ±0.70 ±0.55 ±0.74 ±0.91 ±0.48 ±0.56 ±0.93 ±0.10 ±0.60 ±0.48 ±0.57
67.71 69.84 59.53 87.10 64.66 85.73 86.35 80.68 78.92 85.60 90.19 86.72 76.16 78.86 70.95 77.93+ SNAP-TTA ±0.38 ±0.82 ±1.10 ±0.15 ±0.25 ±0.20 ±0.20 ±0.23 ±0.14 ±0.08 ±0.31 ±0.20 ±0.17 ±0.42 ±0.30 ±0.33
59.27 61.18 56.33 72.22 57.37 74.27 72.61 70.03 68.68 74.82 79.72 65.57 66.92 64.13 65.25 67.22CoTTA ±0.66 ±1.12 ±0.06 ±1.43 ±1.10 ±1.46 ±1.11 ±1.02 ±0.92 ±1.09 ±1.07 ±1.38 ±1.14 ±1.27 ±0.98 ±1.05
71.42 73.31 65.91 85.23 67.01 84.19 84.91 80.80 80.56 84.19 90.00 82.09 76.31 79.79 75.18 78.73+ SNAP-TTA ±0.29 ±0.12 ±0.13 ±0.11 ±0.21 ±0.20 ±0.14 ±0.19 ±0.34 ±0.14 ±0.23 ±0.35 ±0.05 ±0.29 ±0.21 ±0.20
64.68 67.01 58.07 84.90 62.56 82.64 84.57 78.77 77.16 83.09 87.80 81.62 74.05 76.99 69.31 75.55EATA ±0.31 ±0.37 ±0.24 ±0.54 ±0.33 ±0.67 ±0.61 ±0.71 ±0.92 ±0.44 ±0.47 ±0.59 ±0.28 ±0.41 ±0.71 ±0.51
67.36 68.73 59.35 87.05 64.36 85.62 86.48 81.31 78.73 85.33 90.03 86.31 76.04 78.79 70.90 77.76+ SNAP-TTA ±0.33 ±0.26 ±0.37 ±0.22 ±0.18 ±0.18 ±0.25 ±0.24 ±0.22 ±0.15 ±0.24 ±0.07 ±0.12 ±0.27 ±0.38 ±0.23
64.79 66.32 57.58 84.66 62.46 81.42 84.13 78.87 77.20 82.62 88.10 82.12 74.04 75.38 69.13 75.25SAR ±0.13 ±0.86 ±0.69 ±0.72 ±0.26 ±1.52 ±0.34 ±0.26 ±0.81 ±1.24 ±0.41 ±0.74 ±0.05 ±0.80 ±0.52 ±0.62
66.00 68.85 58.47 86.54 63.06 85.26 86.13 80.38 78.17 85.17 90.93 85.96 75.27 77.37 70.61 77.21+ SNAP-TTA ±0.17 ±0.75 ±0.42 ±0.25 ±0.28 ±0.09 ±0.38 ±0.09 ±0.27 ±0.13 ±0.36 ±0.20 ±0.31 ±0.28 ±0.30 ±0.29
63.21 64.87 56.60 84.64 62.16 82.31 84.13 78.16 76.39 82.90 87.44 81.47 73.59 76.02 68.09 74.80RoTTA ±0.37 ±0.62 ±0.28 ±0.52 ±0.31 ±0.63 ±0.56 ±0.71 ±0.95 ±0.62 ±0.46 ±0.65 ±0.42 ±0.40 ±0.33 ±0.52
65.28 66.91 57.88 86.75 63.51 85.48 86.17 80.46 78.38 85.24 89.99 85.82 75.66 77.98 70.15 77.05

0.05

+ SNAP-TTA ±0.32 ±0.22 ±0.06 ±0.25 ±0.13 ±0.13 ±0.10 ±0.23 ±0.26 ±0.13 ±0.23 ±0.03 ±0.16 ±0.19 ±0.29 ±0.18
64.36 66.21 57.65 84.73 62.95 83.07 84.50 78.46 76.99 83.00 88.07 82.62 73.93 76.50 68.82 75.46Tent ±0.43 ±0.16 ±1.01 ±0.48 ±0.52 ±0.50 ±0.32 ±0.82 ±0.32 ±0.36 ±0.43 ±0.34 ±0.23 ±0.46 ±0.48 ±0.46
66.32 68.38 59.00 86.93 64.04 85.58 86.35 80.78 78.68 85.34 90.08 86.19 75.77 78.37 70.49 77.49+ SNAP-TTA ±0.61 ±0.71 ±0.52 ±0.19 ±0.24 ±0.34 ±0.05 ±0.10 ±0.02 ±0.05 ±0.10 ±0.31 ±0.05 ±0.06 ±0.08 ±0.23
60.38 61.26 56.71 72.44 57.58 74.64 72.73 69.68 68.34 74.64 79.52 67.28 67.42 64.89 66.19 67.58CoTTA ±1.71 ±1.94 ±2.47 ±2.23 ±1.85 ±1.74 ±2.61 ±2.03 ±2.02 ±2.52 ±2.37 ±1.89 ±1.77 ±0.79 ±1.73 ±1.98
71.12 73.68 66.34 85.30 66.64 84.25 84.55 80.88 80.11 84.06 89.89 81.98 76.27 79.77 75.35 78.68+ SNAP-TTA ±0.47 ±0.29 ±0.24 ±0.01 ±0.12 ±0.34 ±0.13 ±0.15 ±0.15 ±0.14 ±0.14 ±0.37 ±0.19 ±0.26 ±0.08 ±0.21
63.99 65.95 57.39 84.71 62.66 83.11 84.44 78.42 76.63 82.97 88.00 82.55 73.85 76.46 68.91 75.34EATA ±0.87 ±0.44 ±1.05 ±0.48 ±0.62 ±0.52 ±0.33 ±0.75 ±0.26 ±0.26 ±0.47 ±0.34 ±0.33 ±0.29 ±0.56 ±0.50
66.16 67.60 58.81 86.95 64.06 85.49 86.34 80.79 78.65 85.24 90.09 86.23 75.88 78.48 70.56 77.42+ SNAP-TTA ±0.03 ±0.41 ±0.36 ±0.13 ±0.17 ±0.36 ±0.08 ±0.01 ±0.25 ±0.13 ±0.12 ±0.08 ±0.18 ±0.10 ±0.47 ±0.19
63.72 65.75 57.89 84.37 62.45 81.47 82.46 78.32 76.79 81.93 88.60 82.72 73.89 74.55 68.79 74.91SAR ±0.46 ±0.29 ±0.65 ±0.81 ±0.69 ±1.61 ±2.95 ±0.81 ±0.24 ±1.33 ±0.68 ±0.29 ±0.43 ±0.98 ±0.61 ±0.85
65.40 67.68 58.37 86.72 63.11 85.10 86.18 79.93 78.05 84.92 90.93 85.58 75.30 77.22 69.97 76.96+ SNAP-TTA ±0.33 ±0.60 ±0.45 ±0.18 ±0.16 ±0.16 ±0.29 ±0.17 ±0.31 ±0.22 ±0.35 ±0.14 ±0.14 ±0.30 ±0.30 ±0.27
63.36 65.10 56.64 84.62 62.41 82.96 84.35 78.10 76.42 82.69 87.90 82.34 73.56 76.09 68.39 75.00RoTTA ±0.80 ±0.55 ±0.56 ±0.49 ±0.79 ±0.67 ±0.43 ±0.80 ±0.23 ±0.25 ±0.53 ±0.32 ±0.25 ±0.44 ±0.31 ±0.50
65.27 67.05 58.05 86.79 63.48 85.46 86.25 80.39 78.34 85.19 90.10 85.94 75.67 78.04 69.75 77.05

0.03

+ SNAP-TTA ±0.32 ±0.19 ±0.22 ±0.21 ±0.18 ±0.33 ±0.09 ±0.08 ±0.15 ±0.10 ±0.16 ±0.08 ±0.12 ±0.09 ±0.27 ±0.17
62.43 64.13 55.85 84.03 62.21 82.47 83.87 77.71 76.55 82.75 87.35 81.83 73.24 75.34 67.73 74.50Tent ±1.70 ±1.51 ±1.35 ±1.07 ±1.20 ±0.88 ±0.93 ±0.66 ±0.18 ±0.14 ±1.11 ±1.81 ±1.33 ±1.18 ±1.50 ±1.10
65.51 67.26 58.05 86.89 63.53 85.44 85.97 80.58 78.35 85.12 90.09 85.86 75.66 78.38 70.12 77.12+ SNAP-TTA ±0.24 ±0.31 ±0.34 ±0.28 ±0.07 ±0.33 ±0.20 ±0.12 ±0.12 ±0.16 ±0.21 ±0.11 ±0.08 ±0.21 ±0.33 ±0.21
59.75 59.44 54.47 71.12 57.11 72.47 72.83 66.05 65.14 69.75 75.12 64.31 66.22 62.65 64.76 65.41CoTTA ±4.69 ±6.21 ±5.57 ±5.10 ±4.35 ±4.52 ±4.80 ±7.60 ±7.65 ±9.79 ±6.79 ±6.46 ±4.50 ±5.27 ±5.36 ±5.91
71.79 73.61 65.98 85.34 66.76 84.26 84.93 80.64 80.38 83.94 89.98 82.47 76.48 79.61 75.60 78.79+ SNAP-TTA ±0.22 ±0.29 ±0.58 ±0.36 ±0.26 ±0.12 ±0.21 ±0.45 ±0.30 ±0.42 ±0.08 ±0.64 ±0.26 ±0.24 ±0.29 ±0.31
62.36 63.92 55.73 84.05 62.24 82.38 83.90 77.66 76.48 82.67 87.34 81.82 73.30 75.31 67.76 74.46EATA ±1.73 ±1.66 ±1.39 ±1.10 ±1.18 ±0.85 ±0.93 ±0.72 ±0.15 ±0.17 ±1.12 ±1.81 ±1.24 ±1.20 ±1.52 ±1.12
65.49 67.19 57.93 86.92 63.65 85.42 85.97 80.46 78.13 85.07 90.03 85.87 75.69 78.20 70.03 77.07+ SNAP-TTA ±0.29 ±0.04 ±0.40 ±0.41 ±0.18 ±0.28 ±0.24 ±0.18 ±0.27 ±0.13 ±0.10 ±0.20 ±0.11 ±0.13 ±0.46 ±0.23
62.50 64.13 55.65 82.30 62.22 77.21 80.11 77.66 76.75 79.12 89.45 81.97 73.39 69.39 67.83 73.31SAR ±1.69 ±1.83 ±1.38 ±3.37 ±1.21 ±6.27 ±6.19 ±0.80 ±0.34 ±3.28 ±1.79 ±1.97 ±1.21 ±5.48 ±1.65 ±2.57
65.06 66.93 57.66 86.76 62.78 85.05 85.94 79.95 77.62 84.65 90.72 85.48 75.34 75.72 69.61 76.62+ SNAP-TTA ±0.17 ±0.11 ±0.51 ±0.29 ±0.24 ±0.21 ±0.48 ±0.18 ±0.37 ±0.21 ±0.62 ±0.35 ±0.13 ±1.35 ±0.25 ±0.36
62.25 63.71 55.59 84.05 62.17 82.32 83.86 77.56 76.39 82.64 87.27 81.75 73.21 75.15 67.75 74.38RoTTA ±1.65 ±1.68 ±1.46 ±1.12 ±1.37 ±0.83 ±0.90 ±0.75 ±0.24 ±0.10 ±1.12 ±1.82 ±1.21 ±1.27 ±1.48 ±1.13
65.32 66.94 57.85 86.91 63.44 85.32 85.98 80.49 78.22 85.04 90.01 85.77 75.75 78.15 70.06 77.02

0.01

+ SNAP-TTA ±0.25 ±0.12 ±0.29 ±0.31 ±0.24 ±0.22 ±0.14 ±0.24 ±0.20 ±0.15 ±0.06 ±0.24 ±0.11 ±0.07 ±0.47 ±0.21
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C.3 CIFAR100-C

Table 10: STTA classification accuracy (%) comparing with and without SNAP-TTA on CIAFR100-
C through Adaptation Rates(AR) (0.5, 0.3, and 0.1), including results for full adaptation (AR=1).
Bold numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
10.26 11.87 6.48 35.16 20.33 44.42 42.13 45.99 34.84 41.12 66.37 19.54 50.59 22.68 45.48 33.15Source ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00
36.90 37.96 32.13 62.65 39.14 60.05 61.16 50.68 50.38 54.81 64.40 60.33 50.48 53.49 41.98 50.44BN stats ±0.10 ±0.24 ±0.44 ±0.26 ±0.19 ±0.42 ±0.05 ±0.13 ±0.09 ±0.24 ±0.05 ±0.12 ±0.24 ±0.11 ±0.49 ±0.21
46.71 48.06 40.98 65.19 44.10 62.78 63.95 55.43 55.46 59.32 67.43 63.83 53.89 59.40 49.91 55.76Tent ±0.29 ±0.47 ±0.13 ±0.40 ±0.41 ±0.24 ±0.23 ±0.36 ±0.49 ±0.30 ±0.17 ±0.42 ±0.15 ±0.32 ±0.66 ±0.33
42.14 42.92 37.92 55.40 41.01 55.18 55.39 49.46 50.61 50.86 61.35 47.44 48.69 54.38 48.11 49.39CoTTA ±0.34 ±0.44 ±0.18 ±0.12 ±0.39 ±0.10 ±0.58 ±0.23 ±0.63 ±0.31 ±0.27 ±0.37 ±0.18 ±0.16 ±0.65 ±0.33
38.42 39.96 32.64 62.35 38.73 59.93 61.07 50.50 50.79 55.30 64.38 60.63 49.66 53.63 43.02 50.74EATA ±0.41 ±0.47 ±0.71 ±0.41 ±0.33 ±0.17 ±0.19 ±0.36 ±0.34 ±0.23 ±0.12 ±0.13 ±0.32 ±0.41 ±0.20 ±0.32
50.75 52.00 43.87 65.44 46.30 63.60 64.68 58.41 58.26 61.34 68.03 67.68 54.53 61.52 52.72 57.94SAR ±0.44 ±0.22 ±0.40 ±0.39 ±0.22 ±0.17 ±0.09 ±0.48 ±0.09 ±0.40 ±0.15 ±0.31 ±0.25 ±0.21 ±0.21 ±0.27
38.54 39.85 33.73 63.45 40.74 60.54 62.03 51.61 51.75 56.20 65.14 61.55 51.22 54.42 42.50 51.55

1

RoTTA ±0.22 ±0.24 ±0.37 ±0.17 ±0.32 ±0.19 ±0.26 ±0.09 ±0.14 ±0.31 ±0.10 ±0.14 ±0.14 ±0.22 ±0.35 ±0.22

43.96 45.42 36.57 62.28 36.57 59.96 61.90 53.25 53.14 57.36 65.20 60.14 49.72 57.62 46.83 52.66Tent ±0.85 ±1.34 ±1.57 ±0.13 ±2.97 ±0.59 ±0.48 ±0.72 ±1.70 ±0.22 ±0.20 ±2.77 ±0.08 ±0.61 ±0.52 ±0.98
49.06 50.43 41.49 65.55 44.09 63.31 65.62 57.62 56.81 60.75 68.72 67.52 54.08 61.15 51.54 57.18+ SNAP-TTA ±0.00 ±0.13 ±0.80 ±0.24 ±0.06 ±0.53 ±0.37 ±0.09 ±0.31 ±0.48 ±0.31 ±0.64 ±0.19 ±0.14 ±0.11 ±0.29
34.31 35.16 31.42 47.78 34.99 48.91 47.79 41.27 41.42 43.77 52.16 38.30 42.25 44.12 41.58 41.68CoTTA ±0.09 ±0.46 ±0.28 ±0.45 ±0.40 ±0.48 ±0.46 ±0.86 ±0.37 ±0.57 ±0.27 ±0.46 ±0.49 ±0.41 ±0.22 ±0.42
41.28 42.23 37.17 58.29 40.70 57.32 57.78 49.85 50.82 52.21 63.69 51.30 49.41 55.15 47.92 50.34+ SNAP-TTA ±0.46 ±0.16 ±0.19 ±0.21 ±0.08 ±0.12 ±0.09 ±0.38 ±0.11 ±0.28 ±0.18 ±0.23 ±0.14 ±0.09 ±0.25 ±0.20
38.02 39.48 32.77 61.68 38.42 59.11 60.63 50.15 49.92 54.60 63.43 58.70 49.42 53.08 42.62 50.13EATA ±0.22 ±0.15 ±0.17 ±0.38 ±0.07 ±0.09 ±0.18 ±0.25 ±0.67 ±0.13 ±0.21 ±0.44 ±0.22 ±0.20 ±0.21 ±0.24
39.75 41.14 34.15 63.75 40.55 61.09 62.81 52.12 52.12 56.47 65.73 61.85 51.14 55.75 44.86 52.22+ SNAP-TTA ±0.11 ±0.26 ±0.10 ±0.23 ±0.21 ±0.08 ±0.19 ±0.08 ±0.30 ±0.18 ±0.23 ±0.34 ±0.28 ±0.15 ±0.51 ±0.22
49.00 50.00 42.99 65.10 45.21 62.51 64.43 55.78 56.59 60.21 67.33 65.17 53.90 60.22 51.28 56.65SAR ±0.61 ±0.42 ±0.30 ±0.44 ±0.41 ±0.20 ±0.43 ±0.27 ±0.46 ±0.48 ±0.44 ±0.46 ±0.50 ±0.29 ±0.23 ±0.40
51.71 52.79 44.95 66.59 47.84 64.40 66.15 59.02 59.12 62.62 69.15 68.20 55.89 62.66 53.77 58.99+ SNAP-TTA ±0.46 ±0.08 ±0.54 ±0.10 ±0.01 ±0.18 ±0.28 ±0.20 ±0.37 ±0.16 ±0.06 ±0.16 ±0.26 ±0.31 ±0.23 ±0.23
37.12 38.34 32.54 62.25 38.91 59.52 61.19 50.22 49.91 54.69 63.74 59.40 50.32 53.29 41.94 50.22RoTTA ±0.09 ±0.20 ±0.22 ±0.09 ±0.13 ±0.19 ±0.21 ±0.23 ±0.56 ±0.15 ±0.19 ±0.47 ±0.29 ±0.29 ±0.15 ±0.23
38.33 39.12 32.93 64.01 40.36 61.30 62.96 51.77 51.54 56.15 66.13 61.67 51.60 54.90 43.14 51.73

0.5

+ SNAP-TTA ±0.30 ±0.24 ±0.28 ±0.15 ±0.44 ±0.38 ±0.16 ±0.22 ±0.19 ±0.28 ±0.05 ±0.17 ±0.24 ±0.23 ±0.36 ±0.25
44.41 46.79 38.72 62.98 39.79 60.38 62.25 52.47 53.69 57.47 65.80 60.13 50.03 58.21 47.23 53.36Tent ±0.80 ±0.72 ±1.17 ±0.28 ±0.92 ±0.53 ±0.33 ±0.76 ±0.65 ±0.63 ±0.28 ±2.70 ±0.60 ±0.81 ±0.43 ±0.77
49.23 50.15 42.19 65.85 45.12 63.39 64.91 57.45 57.13 60.72 68.86 66.65 54.25 61.38 51.80 57.27+ SNAP-TTA ±0.04 ±0.48 ±0.75 ±0.15 ±1.15 ±0.28 ±0.26 ±0.51 ±0.37 ±0.17 ±0.31 ±1.52 ±0.41 ±0.54 ±0.68 ±0.51
31.74 32.66 29.28 44.98 32.96 46.51 44.96 38.57 38.16 41.91 49.38 35.53 40.04 40.77 39.12 39.11CoTTA ±0.43 ±0.38 ±0.15 ±0.45 ±0.56 ±0.48 ±0.37 ±0.90 ±0.78 ±0.39 ±0.86 ±0.33 ±0.61 ±0.67 ±0.43 ±0.52
41.44 42.49 37.08 58.27 40.99 57.24 57.68 50.36 51.09 51.66 63.50 50.90 49.49 54.75 47.81 50.32+ SNAP-TTA ±0.38 ±0.09 ±0.13 ±0.24 ±0.37 ±0.37 ±0.17 ±0.22 ±0.18 ±0.22 ±0.13 ±0.52 ±0.26 ±0.42 ±0.13 ±0.26
37.97 39.47 32.69 61.45 37.96 59.02 60.79 49.73 49.55 54.63 63.38 58.16 49.07 53.17 42.49 49.97EATA ±0.04 ±0.34 ±0.12 ±0.19 ±0.17 ±0.28 ±0.12 ±0.05 ±0.38 ±0.41 ±0.07 ±0.21 ±0.24 ±0.41 ±0.44 ±0.23
40.03 41.39 34.91 63.58 40.29 61.58 62.56 51.85 51.78 56.13 65.70 61.68 51.25 55.28 44.80 52.19+ SNAP-TTA ±0.26 ±0.29 ±0.58 ±0.15 ±0.28 ±0.12 ±0.25 ±0.25 ±0.21 ±0.01 ±0.22 ±0.29 ±0.35 ±0.23 ±0.17 ±0.24
49.00 50.00 42.99 65.10 45.21 62.51 64.43 55.78 56.59 60.21 67.33 65.17 53.90 60.22 51.28 56.65SAR ±0.61 ±0.42 ±0.30 ±0.44 ±0.41 ±0.20 ±0.43 ±0.27 ±0.46 ±0.48 ±0.44 ±0.46 ±0.50 ±0.29 ±0.23 ±0.40
50.63 52.03 44.89 66.28 47.08 64.32 65.90 57.98 58.09 61.88 69.17 67.82 55.47 62.02 53.09 58.44+ SNAP-TTA ±0.31 ±0.32 ±0.54 ±0.13 ±0.26 ±0.09 ±0.21 ±0.27 ±0.49 ±0.24 ±0.42 ±0.29 ±0.29 ±0.31 ±0.15 ±0.29
36.83 37.94 32.00 61.90 38.67 59.15 60.97 49.92 49.32 54.62 63.71 58.31 49.79 52.88 41.59 49.84RoTTA ±0.18 ±0.22 ±0.05 ±0.20 ±0.10 ±0.14 ±0.24 ±0.23 ±0.38 ±0.21 ±0.18 ±0.11 ±0.22 ±0.34 ±0.27 ±0.21
38.11 39.21 32.80 63.72 40.01 61.51 62.74 51.37 51.49 55.68 65.90 61.56 51.50 54.67 43.01 51.55

0.3

+ SNAP-TTA ±0.13 ±0.23 ±0.14 ±0.13 ±0.23 ±0.13 ±0.16 ±0.15 ±0.30 ±0.25 ±0.13 ±0.29 ±0.08 ±0.13 ±0.19 ±0.18
43.55 44.25 37.95 62.56 41.80 59.45 62.13 53.04 51.60 56.76 64.60 61.19 51.01 56.42 46.28 52.84Tent ±0.66 ±0.54 ±0.72 ±0.47 ±0.04 ±0.20 ±0.21 ±0.84 ±0.39 ±0.15 ±0.56 ±1.68 ±0.39 ±0.27 ±0.49 ±0.51
46.51 47.68 39.92 65.39 44.14 63.29 64.53 55.20 55.55 59.71 68.05 64.90 53.91 59.28 49.58 55.84+ SNAP-TTA ±0.35 ±0.23 ±0.48 ±0.11 ±0.60 ±0.18 ±0.38 ±0.47 ±0.11 ±0.33 ±0.17 ±0.90 ±0.30 ±0.16 ±0.75 ±0.37
28.53 29.53 26.45 42.19 30.34 44.69 41.88 34.44 33.93 39.03 45.49 31.17 37.25 36.17 36.84 35.86CoTTA ±0.90 ±0.86 ±0.60 ±1.19 ±0.77 ±1.07 ±0.62 ±0.84 ±1.07 ±0.89 ±1.36 ±0.60 ±0.80 ±1.20 ±0.71 ±0.90
41.72 42.62 37.46 58.43 41.24 57.33 57.96 50.34 51.17 52.29 63.59 51.32 49.68 54.78 47.89 50.52+ SNAP-TTA ±0.25 ±0.60 ±0.13 ±0.13 ±0.21 ±0.07 ±0.30 ±0.38 ±0.18 ±0.16 ±0.20 ±0.36 ±0.21 ±0.28 ±0.35 ±0.25
38.41 39.03 32.29 61.07 38.45 58.21 60.62 49.59 49.19 54.23 62.88 57.39 49.00 53.01 42.05 49.70EATA ±0.53 ±0.45 ±0.32 ±0.36 ±0.29 ±0.47 ±0.36 ±0.30 ±0.34 ±0.50 ±0.28 ±0.62 ±0.65 ±0.60 ±0.15 ±0.42
40.62 41.53 34.31 64.08 40.29 61.32 63.04 52.00 51.77 56.85 65.98 61.96 51.05 55.67 44.80 52.35+ SNAP-TTA ±0.26 ±0.49 ±0.24 ±0.30 ±0.21 ±0.24 ±0.16 ±0.53 ±0.40 ±0.43 ±0.09 ±0.34 ±0.09 ±0.28 ±0.15 ±0.28
43.92 45.28 38.64 63.36 42.58 60.36 62.78 53.39 52.23 57.54 65.41 60.88 52.07 56.80 47.16 53.49SAR ±0.52 ±0.55 ±0.28 ±0.25 ±0.44 ±0.42 ±0.23 ±0.86 ±0.28 ±0.32 ±0.41 ±0.88 ±0.59 ±0.13 ±0.20 ±0.43
46.29 47.60 39.95 65.26 44.00 63.09 64.97 55.08 55.17 59.73 68.13 64.72 53.84 58.98 49.54 55.76+ SNAP-TTA ±0.68 ±0.06 ±0.21 ±0.18 ±0.22 ±0.25 ±0.36 ±0.24 ±0.17 ±0.24 ±0.09 ±0.44 ±0.31 ±0.35 ±0.65 ±0.30
36.28 37.12 31.38 61.20 38.36 58.26 60.30 49.20 48.21 53.54 62.80 56.78 49.61 52.28 41.26 49.11RoTTA ±0.15 ±0.41 ±0.27 ±0.07 ±0.15 ±0.24 ±0.47 ±0.23 ±0.14 ±0.23 ±0.40 ±0.51 ±0.24 ±0.41 ±0.11 ±0.27
37.83 38.42 32.38 63.73 39.72 61.32 62.58 51.38 51.18 55.61 65.70 61.39 51.36 54.51 42.85 51.33

0.1

+ SNAP-TTA ±0.13 ±0.36 ±0.20 ±0.09 ±0.38 ±0.18 ±0.19 ±0.18 ±0.13 ±0.07 ±0.29 ±0.21 ±0.09 ±0.24 ±0.33 ±0.21

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 11: STTA classification accuracy (%) comparing with and without SNAP-TTA on CIFAR100-
C through Adaptation Rates(AR) (0.05, 0.03, and 0.01). Bold numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
40.69 41.55 35.14 62.26 40.26 58.92 61.06 51.21 50.00 55.52 64.05 58.45 50.50 54.68 44.36 51.24Tent ±0.35 ±0.62 ±0.38 ±0.52 ±0.23 ±0.60 ±0.43 ±0.88 ±0.31 ±0.33 ±0.62 ±1.06 ±0.80 ±0.26 ±0.69 ±0.54
42.87 44.87 37.60 65.01 42.22 62.22 63.72 54.03 53.68 58.03 67.05 63.08 52.97 57.67 46.94 54.13+ SNAP-TTA ±0.37 ±0.70 ±0.08 ±0.01 ±0.35 ±0.31 ±0.45 ±0.46 ±0.39 ±0.47 ±0.50 ±0.10 ±0.15 ±0.12 ±0.13 ±0.31
26.15 26.89 25.26 39.48 28.34 41.41 38.77 32.06 30.84 35.56 41.60 28.52 34.99 33.60 34.54 33.20CoTTA ±0.60 ±0.32 ±0.44 ±0.71 ±0.74 ±0.76 ±1.14 ±0.85 ±0.65 ±1.12 ±1.36 ±0.79 ±0.45 ±0.82 ±0.54 ±0.75
42.02 42.70 37.67 58.30 41.57 57.47 58.02 50.55 51.31 52.34 63.63 51.25 49.76 54.94 47.98 50.63+ SNAP-TTA ±0.21 ±0.13 ±0.31 ±0.26 ±0.37 ±0.14 ±0.18 ±0.27 ±0.32 ±0.17 ±0.16 ±0.49 ±0.18 ±0.05 ±0.12 ±0.22
38.46 39.05 33.47 61.07 38.52 58.16 60.59 49.60 49.18 54.41 63.15 57.06 49.09 52.87 42.49 49.81EATA ±0.14 ±0.58 ±0.23 ±0.63 ±0.29 ±0.46 ±0.48 ±0.55 ±0.47 ±0.24 ±0.43 ±1.37 ±0.88 ±0.42 ±0.34 ±0.50
40.49 41.64 34.37 64.28 40.38 61.52 63.17 51.66 52.12 56.50 66.03 62.01 51.76 55.66 44.83 52.43+ SNAP-TTA ±0.21 ±0.43 ±0.15 ±0.20 ±0.51 ±0.30 ±0.18 ±0.53 ±0.52 ±0.21 ±0.36 ±0.12 ±0.12 ±0.23 ±0.32 ±0.29
40.28 41.62 35.35 62.84 40.37 59.51 61.68 51.29 50.66 55.60 64.43 58.49 50.90 54.82 44.64 51.50SAR ±0.07 ±0.62 ±0.04 ±0.26 ±0.41 ±0.38 ±0.28 ±0.81 ±0.38 ±0.40 ±0.62 ±0.82 ±0.64 ±0.27 ±0.43 ±0.43
41.76 44.24 36.89 64.34 41.54 62.13 63.39 53.24 52.91 57.54 66.89 62.41 52.70 57.23 46.63 53.59+ SNAP-TTA ±0.29 ±0.44 ±0.21 ±0.38 ±0.37 ±0.15 ±0.24 ±0.33 ±0.02 ±0.22 ±0.60 ±0.50 ±0.15 ±0.47 ±0.57 ±0.33
36.38 37.38 31.78 61.44 38.26 58.18 60.19 48.98 48.30 53.50 62.73 56.52 49.37 52.19 41.60 49.12RoTTA ±0.12 ±0.42 ±0.45 ±0.06 ±0.20 ±0.42 ±0.53 ±0.18 ±0.28 ±0.17 ±0.42 ±0.90 ±0.49 ±0.19 ±0.28 ±0.34
37.67 38.66 32.47 63.95 40.18 61.33 62.52 51.47 51.32 55.67 65.89 61.24 51.47 54.52 42.84 51.41

0.05

+ SNAP-TTA ±0.12 ±0.21 ±0.12 ±0.16 ±0.20 ±0.47 ±0.35 ±0.14 ±0.36 ±0.21 ±0.24 ±0.15 ±0.14 ±0.15 ±0.38 ±0.23
38.55 39.28 33.77 61.64 39.66 58.83 60.89 49.45 49.51 54.64 63.48 57.29 50.34 53.44 43.28 50.27Tent ±0.17 ±0.15 ±0.16 ±0.25 ±0.39 ±0.48 ±0.29 ±0.51 ±0.78 ±0.42 ±0.58 ±0.33 ±0.34 ±0.38 ±0.26 ±0.37
41.22 42.20 35.31 64.48 40.82 61.96 63.50 52.84 52.36 57.18 66.50 62.17 52.12 56.48 45.72 52.99+ SNAP-TTA ±0.33 ±0.27 ±0.36 ±0.06 ±0.60 ±0.02 ±0.30 ±0.40 ±0.40 ±0.33 ±0.02 ±0.41 ±0.17 ±0.18 ±0.40 ±0.28
27.11 27.73 25.87 40.25 29.52 42.16 39.60 32.74 32.23 36.60 43.33 29.13 36.45 34.51 35.96 34.21CoTTA ±1.11 ±2.05 ±1.41 ±2.62 ±1.49 ±2.21 ±2.51 ±2.42 ±1.71 ±2.75 ±2.80 ±2.42 ±1.82 ±1.66 ±1.75 ±2.05
41.77 42.85 37.50 58.61 41.15 57.65 58.05 50.45 51.34 52.72 63.49 51.63 49.87 55.24 48.14 50.70+ SNAP-TTA ±0.24 ±0.19 ±0.08 ±0.22 ±0.16 ±0.22 ±0.32 ±0.65 ±0.20 ±0.35 ±0.07 ±0.61 ±0.17 ±0.13 ±0.36 ±0.26
37.94 38.63 32.00 61.02 39.08 58.52 60.28 48.73 49.15 53.89 63.03 56.64 49.45 52.93 42.11 49.56EATA ±0.32 ±0.21 ±0.91 ±0.33 ±0.30 ±0.66 ±0.42 ±0.32 ±0.97 ±0.53 ±0.34 ±0.49 ±0.47 ±0.35 ±0.44 ±0.47
39.87 41.12 34.48 64.14 40.27 61.91 63.09 52.37 51.93 56.36 66.02 61.88 51.83 55.60 44.59 52.36+ SNAP-TTA ±0.89 ±0.20 ±0.08 ±0.23 ±0.09 ±0.00 ±0.43 ±0.42 ±0.44 ±0.26 ±0.05 ±0.15 ±0.04 ±0.11 ±0.45 ±0.26
38.33 39.19 33.15 61.77 39.78 59.09 61.02 49.67 49.86 54.71 63.59 57.45 50.37 53.67 42.88 50.30SAR ±0.25 ±0.26 ±0.43 ±0.21 ±0.06 ±0.33 ±0.25 ±0.54 ±0.65 ±0.31 ±0.49 ±0.18 ±0.39 ±0.32 ±0.51 ±0.35
39.84 41.83 34.94 63.70 40.49 61.45 63.17 52.27 51.91 56.69 65.91 61.31 51.68 56.06 44.95 52.41+ SNAP-TTA ±0.07 ±0.78 ±0.28 ±0.26 ±0.16 ±0.28 ±0.07 ±0.51 ±0.17 ±0.25 ±0.27 ±0.52 ±0.22 ±0.18 ±0.16 ±0.28
36.24 36.94 31.15 60.87 38.28 58.25 59.88 48.43 48.17 53.32 62.73 56.18 49.23 52.12 41.28 48.87RoTTA ±0.03 ±0.21 ±0.09 ±0.17 ±0.14 ±0.53 ±0.36 ±0.52 ±0.61 ±0.47 ±0.46 ±0.34 ±0.39 ±0.31 ±0.61 ±0.35
37.85 38.68 32.78 63.97 39.75 61.41 62.57 51.53 51.38 55.68 65.56 61.25 51.53 54.84 42.96 51.45

0.03

+ SNAP-TTA ±0.20 ±0.20 ±0.31 ±0.24 ±0.17 ±0.16 ±0.52 ±0.27 ±0.28 ±0.37 ±0.20 ±0.13 ±0.19 ±0.26 ±0.33 ±0.25
36.08 36.95 31.31 61.03 38.09 57.63 58.76 48.24 48.65 53.45 62.14 55.07 48.59 51.82 40.68 48.57Tent ±0.42 ±0.21 ±0.47 ±0.51 ±0.56 ±0.53 ±0.31 ±0.47 ±0.87 ±0.19 ±0.49 ±2.13 ±0.25 ±0.58 ±0.04 ±0.54
38.40 39.40 33.26 63.85 40.36 61.23 62.79 51.92 51.73 56.20 65.83 60.95 51.82 54.75 43.53 51.73+ SNAP-TTA ±0.06 ±0.16 ±0.10 ±0.11 ±0.36 ±0.34 ±0.24 ±0.06 ±0.00 ±0.34 ±0.17 ±0.29 ±0.00 ±0.30 ±0.16 ±0.18
26.59 27.92 24.86 41.34 28.91 43.09 40.11 34.33 33.32 37.99 44.78 28.80 36.26 34.70 35.67 34.58CoTTA ±1.64 ±1.79 ±1.51 ±2.21 ±1.96 ±2.85 ±2.87 ±1.61 ±2.67 ±2.03 ±3.61 ±2.18 ±1.90 ±1.66 ±1.47 ±2.13
42.05 42.91 37.50 58.70 41.22 57.38 58.14 50.39 51.13 52.23 63.42 51.74 49.87 54.84 47.72 50.62+ SNAP-TTA ±0.05 ±0.17 ±0.08 ±0.12 ±0.36 ±0.17 ±0.33 ±0.68 ±0.43 ±0.12 ±0.35 ±0.17 ±0.50 ±0.09 ±0.25 ±0.26
36.10 37.05 31.03 60.86 37.83 57.64 58.77 48.02 48.75 53.37 62.18 54.95 48.55 51.89 40.75 48.51EATA ±0.27 ±0.59 ±0.34 ±0.50 ±0.37 ±0.57 ±0.32 ±0.50 ±1.26 ±0.09 ±0.43 ±2.22 ±0.15 ±0.65 ±0.02 ±0.55
38.54 39.78 33.11 63.82 39.98 61.33 62.53 51.76 51.50 56.03 65.94 61.16 51.47 54.52 43.67 51.68+ SNAP-TTA ±0.14 ±0.15 ±0.22 ±0.10 ±0.53 ±0.20 ±0.24 ±0.12 ±0.32 ±0.44 ±0.19 ±0.11 ±0.04 ±0.27 ±0.04 ±0.21
36.04 37.02 31.38 61.13 38.07 58.00 59.08 48.44 48.84 53.52 62.57 55.19 48.87 52.01 40.71 48.72SAR ±0.00 ±0.26 ±0.30 ±0.35 ±0.44 ±0.59 ±0.36 ±0.47 ±0.92 ±0.16 ±0.50 ±2.20 ±0.15 ±0.57 ±0.19 ±0.50
37.91 38.85 32.92 63.17 39.35 60.51 62.01 51.11 50.48 55.47 65.07 59.69 51.24 54.10 42.80 50.98+ SNAP-TTA ±0.39 ±0.25 ±0.38 ±0.23 ±0.45 ±0.51 ±0.26 ±0.11 ±0.28 ±0.41 ±0.16 ±0.15 ±0.15 ±0.47 ±0.06 ±0.28
35.55 36.34 30.55 60.76 37.42 57.50 58.57 47.87 48.31 53.11 61.90 54.70 48.25 51.37 40.29 48.16RoTTA ±0.33 ±0.31 ±0.45 ±0.50 ±0.50 ±0.56 ±0.30 ±0.28 ±0.97 ±0.23 ±0.62 ±1.98 ±0.08 ±0.62 ±0.11 ±0.52
37.82 38.72 32.60 63.53 39.80 61.00 62.27 51.42 51.33 55.71 65.64 60.89 51.50 54.27 42.92 51.30

0.01

+ SNAP-TTA ±0.16 ±0.05 ±0.10 ±0.01 ±0.49 ±0.37 ±0.23 ±0.06 ±0.12 ±0.42 ±0.14 ±0.18 ±0.18 ±0.19 ±0.47 ±0.21

D ADDITIONAL RESULTS ON ABLATION STUDY

In this section, we provide additional details on the ablation study to evaluate the contributions of the
CnDRM and IoBMN components in SNAP-TTA. Specifically, we measured the average accuracy
across 15 corruption types on CIFAR10-C and CIFAR100-C datasets under varying adaptation rates
(0.3, 0.1, 0.05) to thoroughly assess the effectiveness of each component.

Tables 12, 13, 14, 15, and 16 summarize the results for different combinations of CnDRM and
IoBMN across these adaptation rates. The results indicate that the combination of CnDRM (Class
and Domain Representative sampling) and IoBMN (inference using memory statistics corrected to
match the test batch) consistently yields the highest accuracy. This trend is observed across all
evaluated adaptation rates, suggesting that both components contribute significantly to enhancing
adaptation performance.

Moreover, individual evaluations show that each component has a distinct positive effect, as evi-
denced by consistently higher accuracy compared to using no adaptation or only a single compo-
nent. This emphasizes the complementary nature of CnDRM and IoBMN, which together provide
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robust adaptation capabilities for domain-shifted scenarios. These tables provide further insight into
the benefits of each configuration and how the synergy of CnDRM and IoBMN results in improved
robustness against various corruptions.

Table 12: STTA classification accuracy (%) of ablative settings on the CIFAR10-C, adaptation rate
0.5. Averaged over all 15 corruptions. Bold numbers are the highest accuracy.

Methods Tent CoTTA EATA SAR RoTTA

naı̈ve 78.86 69.75 79.02 77.83 75.39
Random 78.90 66.04 78.97 77.77 75.06
LowEntropy 78.68 63.74 78.42 76.21 72.83
CRM 80.32 66.50 80.14 75.78 75.49

CnDRM 79.62 77.68 79.63 78.22 75.85
CnDRM+EMA 80.96 72.42 80.27 78.19 76.73
CnDRM+IoDMN 81.23 78.75 81.30 79.77 77.41

Table 13: STTA classification accuracy (%) of ablative settings on the CIFAR10-C, adaptation rate
0.05. Averaged over all 15 corruptions. Bold numbers are the highest accuracy.

Methods Tent CoTTA EATA SAR RoTTA

naı̈ve 75.75 67.22 75.55 75.25 74.80
Random 75.82 65.90 75.56 75.27 74.91
LowEntropy 74.07 64.08 73.73 73.58 72.83
CRM 76.55 66.14 76.06 74.02 75.23

CnDRM 76.53 77.67 76.29 76.18 75.61
CnDRM+EMA 76.86 71.69 75.98 75.43 75.95
CnDRM+IoDMN 77.93 78.73 77.76 77.21 77.05

Table 14: STTA classification accuracy (%) of ablative settings on the CIFAR100-C, adaptation rate
0.3. Averaged over all 15 corruptions. Bold numbers are the highest accuracy.

Methods Tent CoTTA EATA SAR RoTTA

naı̈ve 53.36 39.11 49.97 56.65 49.84
Random 53.00 33.49 49.24 56.06 49.00
LowEntropy 53.53 32.29 45.51 55.84 44.77
CRM 54.21 32.86 47.42 56.40 46.68

CnDRM 55.15 50.02 51.36 57.72 50.74
CnDRM+EMA 55.39 41.34 50.11 57.68 49.88
CnDRM+IoDMN 57.27 50.32 52.19 58.44 51.55

Table 15: STTA classification accuracy (%) of ablative settings on the CIFAR100-C, adaptation rate
0.1. Averaged over all 15 corruptions. Bold numbers are the highest accuracy.

Methods Tent CoTTA EATA SAR RoTTA

naı̈ve 52.84 35.86 49.70 53.49 49.11
Random 52.68 33.18 49.39 53.42 48.84
LowEntropy 51.76 32.30 46.03 52.15 45.18
CRM 52.43 32.54 47.68 53.12 47.01

CnDRM 54.46 50.06 51.41 55.24 50.47
CnDRM+EMA 54.36 41.63 50.21 54.84 49.95
CnDRM+IoDMN 55.84 50.52 52.35 55.76 51.33

Table 16: STTA classification accuracy (%) of ablative settings on the CIFAR100-C, adaptation rate
0.05. Averaged over all 15 corruptions. Bold numbers are the highest accuracy.

Methods Tent CoTTA EATA SAR RoTTA

naı̈ve 51.24 33.20 49.81 51.50 49.12
Random 51.35 33.71 49.57 51.48 48.98
LowEntropy 49.79 32.36 46.65 49.51 45.41
CRM 50.17 32.74 47.47 50.49 46.58

CnDRM 52.86 50.08 51.47 53.09 50.44
CnDRM+EMA 52.68 41.43 50.32 52.80 50.04
CnDRM+IoDMN 54.13 50.63 52.43 53.59 51.41
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E ADDITIONAL ABLATE ANALYSIS

E.1 DOMAIN INFLUENCE IN EARLY LAYER REPRESENTATIONS

PCA Feature 1

P
C

A
 F

ea
tu

re
 2

Noise (Gau.)

Blur (Mot.)

Weather (Snow.)

Digital (Cont.)

Figure 6: PCA embedding of
early layer features for one
domain from each of the four
main CIFAR10-C corruption
categories, showing clear sep-
aration between domains.

In deep learning models, early layers capture low-level features
such as textures, edges, and frequency components (Zeiler & Fer-
gus, 2014). These features are inherently domain-specific, making
these layers more sensitive to shifts in input data distribution—a
critical challenge for tasks requiring domain adaptation and gener-
alization (Lee et al., 2018; Segu et al., 2023). This sensitivity arises
because early layers encapsulate domain-specific patterns that may
not generalize to new distributions. Under the covariate shift as-
sumption (Quiñonero-Candela et al., 2008), while input distribu-
tions differ between source and target domains, the conditional dis-
tribution of labels remains the same. This discrepancy between in-
put distributions makes early layers particularly vulnerable to do-
main shifts.

Visualizing early layer feature embeddings using 2D PCA on
CIFAR-10C domains reveals distinct domain-specific patterns,
highlighting the significant influence of domain information in
these representations (Figure 6). Our preliminary experiments further confirm that sparse TTA,
using the Wasserstein distance between moving batch normalization statistics and instance-specific
statistics derived from early layer hidden features, can significantly improve performance. Selecting
instances closer to the target domain distribution center using this distance metric yields better adap-
tation results, as demonstrated by performance comparisons between the top 20% and bottom 20%
of samples (Figure 3). These findings emphasize the crucial role of domain-sensitive early layers in
achieving effective adaptation.

E.2 ANALYSIS ON CONFIDENCE THRESHOLD ON PSEUDO-LABEL ACCURACY

We analyzed the impact of using a confidence threshold for pseudo-label selection by comparing ran-
dom sampling with high-confidence sampling across three benchmarks: CIFAR10-C, CIFAR100-C,
and ImageNet-C. Table 17 shows that high-confidence sampling consistently outperformed random
sampling, achieving significantly higher pseudo-label accuracy in all datasets. This result demon-
strates the effectiveness of selecting high-confidence samples to improve the quality of pseudo-
labels, thereby enhancing model adaptation under domain shift conditions.

Table 17: Pseudo-label accuracy comparison between random and high-confidence sampling on
three benchmakrs: CIFAR10-C, CIFAR100-C, and ImageNet-C. Bold numbers are the highest ac-
curacy.

CIFAR10-C CIFAR100-C ImageNet-C

Random 69.91 45.30 23.90
HighConf 74.80 59.38 59.40

E.3 LATENCY TRACKING OF SNAP-TTA ON DIVERSE EDGE-DEVICES

To evaluate the latency efficiency of SNAP-TTA on resource-constrained edge devices, we mea-
sured the adaptation latency across three devices: NVIDIA Jetson Nano (NVIDIA Corporation,
2019), Raspberry Pi 4 (Raspberry Pi Foundation, 2019), and Raspberry Pi Zero 2 W (Raspberry Pi
Foundation, 2021). These experiments compared the latency of SNAP-TTA with the Original TTA
framework, specifically focusing on five state-of-the-art TTA algorithms: Tent (Wang et al., 2021),
EATA (Niu et al., 2022), SAR (Niu et al., 2023), RoTTA (Yuan et al., 2023), and CoTTA (Wang
et al., 2022). The experiments were conducted at an adaptation rate of 0.1, demonstrating the effec-
tiveness of SNAP-TTA in reducing adaptation latency while maintaining competitive accuracy.
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Figure 7: Latency comparison between SNAP-TTA and Original TTA across five state-of-the-art
TTA algorithms (Tent, EATA, SAR, RoTTA, CoTTA) on three edge devices: (a) NVIDIA Jetson
Nano, (b) Raspberry Pi 4, and (c) Raspberry Pi Zero 2 W. SNAP-TTA demonstrates significant
latency reductions while maintaining competitive adaptation performance. The experiments were
conducted at an adaptation rate of 0.1.

Figure 7 illustrates the latency performance for each device. It is evident that SNAP-TTA achieves
a significant reduction in adaptation latency compared to the Original TTA framework. Notably, the
latency reduction was proportional to the adaptation rate, validating the efficiency of SNAP-TTA
in sparse adaptation scenarios. For instance, the latency for CoTTA was reduced by up to 87.5%
on the Raspberry Pi 4, emphasizing the practical benefits of SNAP-TTA in latency-sensitive envi-
ronments. Additionally, similar trends were observed across other devices, including the resource-
limited Raspberry Pi Zero 2 W.

The results confirm that SNAP-TTA not only ensures substantial latency reductions but also adapts
effectively to real-world conditions on diverse edge devices, proving its suitability for deployment
in latency-sensitive applications.

E.4 MEMORY OVERHEAD OF SNAP-TTA

The SNAP-TTA framework achieves substantial latency reduction and accuracy improvements with
minimal memory overhead, even under resource-constrained scenarios like edge devices. In this
section, we present both a theoretical analysis of the memory requirements and empirical results
obtained from evaluations on a Raspberry Pi 4(Raspberry Pi Foundation, 2019) (CPU-only edge
device).

The memory overhead of SNAP-TTA arises from two main components: (1) the memory buffer
in Class and Domain Representative Memory (CnDRM) for storing representative samples, in-
cluding both feature statistics (mean and variance) and the raw image samples, and (2) the statis-
tics required for Inference-only Batch-aware Memory Normalization (IoBMN). For a batch size
B, the total theoretical memory overhead can be expressed as: Memory Overhead = B ×
(Image Size + 2× Feature Dimension× Bytes per Value)+Feature Dimension×Bytes per Value×
2. The last term accounts for the storage of IoBMN statistics (mean and variance for each feature
channel). The image size is calculated based on the dataset resolution and data type.

For ResNet18 on CIFAR10-C, CIFAR10 images have a resolution of 32 × 32 × 3 with each value
stored as 1 byte. For a feature dimension of 512 and batch size B = 16, the total overhead is:
Image Overhead = 16×(32×32×3×1) = 49, 152 bytes (48 KB), Feature Overhead (CnDRM) =
16 × (512 × 2 × 4) = 65, 536 bytes (64 KB), Feature Overhead (IoBMN) = 512 × 2 × 4 =
4, 096 bytes (4 KB). Thus, the total memory overhead is: Total Overhead = 48 KB + 64 KB +
4 KB = 116 KB.

For ResNet50 on ImageNet-C, ImageNet images have a resolution of 224 × 224 × 3, stored
as 1 byte per value. For a feature dimension of 2048 and batch size B = 16, the total
overhead is: Image Overhead = 16 × (224 × 224 × 3 × 1) = 12, 044, 928 bytes (11.5 MB),
Feature Overhead (CnDRM) = 16 × (2048 × 2 × 4) = 262, 144 bytes (256 KB),
Feature Overhead (IoBMN) = 2048 × 2 × 4 = 16, 384 bytes (16 KB). Thus, the total memory
overhead is: Total Overhead = 11.5 MB + 256 KB + 16 KB ≈ 11.77 MB.
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Table 18 shows the empirical memory usage of SNAP-TTA compared to Original TTA methods
(Tent, EATA, CoTTA, SAR, and RoTTA). The results were averaged across three seeds of exper-
iments and represent the memory footprint observed in a CPU-only edge device, Raspberry Pi 4.
While minor variations in measurements are expected due to the nature of CPU memory footprint
tracking, the results robustly indicate that the actual memory overhead of SNAP-TTA on edge de-
vices is extremely low across all algorithms, ranging from 0.02% to 1.74%. Furthermore, while peak
memory usage is either slightly increased or remains comparable to Original TTA methods, the av-
erage memory usage of SNAP-TTA is consistently lower. This is because SNAP-TTA performs
backpropagation infrequently, which is the most memory-intensive operation in TTA.

Table 18: Comparison of memory usage (Average Memory, Peak Memory, and Memory Overhead)
between Original TTA and SNAP-TTA (adaptation rate 0.3) across various methods (Tent, EATA,
CoTTA, SAR, and RoTTA) tested on Raspberry Pi 4. Bold numbers are the lowest memory usage.

Average Mem (MB) Peak Mem (MB) Mem Overhead (MB)Methods Original TTA SNAP-TTA Original TTA SNAP-TTA SNAP - Original

Tent 764.24 751.35 822.93 828.46 5.52 (0.67%)
CoTTA 1133.52 1099.64 1211.21 1227.99 16.78 (1.13%)
EATA 816.69 749.95 847.73 862.51 14.78 (1.74%)
SAR 786.65 753.69 863.77 865.18 1.41 (0.02%)
RoTTA 933.23 871.64 972.23 983.94 11.71 (1.20%)

These findings demonstrate that SNAP-TTA’s memory overhead is negligible compared to its
benefits in latency reduction and accuracy improvements. By leveraging a small memory
buffer for representative samples and minimizing backpropagation operations, SNAP-TTA not only
achieves a lightweight memory profile but also becomes more efficient in terms of average memory
usage compared to Original TTA. This lightweight design, combined with its advantages in latency
and accuracy, underscores the practicality of SNAP-TTA for deployment in latency-sensitive appli-
cations on edge devices.

E.5 INTEGRATION OF SNAP-TTA WITH MEMORY-EFFICIENT TTA ALGORITHM:
MECTA (HONG ET AL., 2023)

This section evaluates the integration of SNAP-TTA with MECTA, a memory-efficient TTA al-
gorithm, to demonstrate its applicability for resource-constrained edge devices. The experimental
setup follows the evaluation settings presented in the MECTA paper to ensure a fair and consistent
comparison. Specifically, we analyze the performance of Tent and EATA, enhanced with MECTA
and further integrated with SNAP-TTA, using the ResNet50 model with a batch size of 64 on the
ImageNet-C dataset.

Table 19 presents the classification accuracy and peak memory usage for Tent+MECTA
and EATA+MECTA configurations with and without SNAP-TTA. Integrating SNAP-TTA with
Tent+MECTA improves accuracy from 35.21% to 39.52%, while reducing peak memory usage by
approximately 30% compared to the Tent baseline. Similarly, SNAP-TTA boosts the accuracy of
EATA+MECTA from 35.55% to 42.86% while maintaining an efficient memory footprint.

Table 19: Comparison of classification (%) and memory peak (MB) in STTA with an adaptation rate
of 0.1. MECTA significantly reduces memory consumption, and SNAP-TTA is applied alongside it
to boost the performance of sparse adaptation. The accuracy is the average over 15 corruptions in
ImageNet-C. Bold numbers indicate either the lowest memory usage or the highest accuracy.

Methods Accuracy (%) Max Memory (MB)

Tent 35.21 6805.26
+MECTA 37.62 4620.25 (-32.10%)
+ MECTA + SNAP-TTA 39.52 4622.12 (-32.08%)

EATA 35.55 6541.02
+MECTA 41.41 4512.38 (-31.01%)
+ MECTA + SNAP-TTA 42.86 4535.44 (-30.66%)
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Further details are provided in Table 20, which evaluates the combination of SNAP-TTA with
MECTA across various corruption types and adaptation rates (AR = 0.3, 0.1, and 0.05). These
results show that SNAP-TTA consistently outperforms baseline configurations across all adaptation
rates and corruption types. This demonstrates the robustness of SNAP-TTA when integrated with
MECTA and its suitability for real-world applications.

By adhering to the evaluation settings of the MECTA paper, this study ensures high reliability and
comparability of results. The findings confirm that SNAP-TTA is highly compatible with MECTA,
significantly improving both accuracy and memory efficiency. This synergy highlights the potential
of combining SNAP-TTA and MECTA for deployment in resource-constrained environments such
as edge devices.

Table 20: Evaluation of SNAP-TTA with MECTA on ImageNet-C through Adaptation Rates(AR)
(0.3, 0.1, and 0.05). Bold numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.

28.20 30.13 29.58 23.07 23.35 34.49 45.95 40.97 35.68 55.66 66.56 14.72 53.09 57.16 50.74 39.29Tent + MECTA ±0.30 ±0.41 ±0.08 ±0.22 ±0.47 ±0.13 ±0.13 ±0.15 ±0.41 ±0.04 ±0.06 ±0.47 ±0.18 ±0.05 ±0.15 ±0.22
30.49 31.98 31.66 26.29 26.19 38.47 47.38 43.79 40.12 56.38 66.81 28.87 53.53 57.61 50.86 42.03+ SNAP-TTA ±0.26 ±0.14 ±0.21 ±0.32 ±0.02 ±0.30 ±0.11 ±0.11 ±0.12 ±0.05 ±0.07 ±0.28 ±0.09 ±0.10 ±0.08 ±0.15
32.18 34.85 33.06 28.80 29.18 41.02 49.24 47.10 41.56 57.35 66.27 34.56 55.38 58.19 52.87 44.11EATA + MECTA ±0.60 ±0.49 ±0.31 ±0.22 ±0.18 ±0.26 ±0.08 ±0.20 ±0.25 ±0.12 ±0.05 ±0.12 ±0.10 ±0.04 ±0.26 ±0.22
33.67 35.76 34.86 30.35 30.29 42.78 49.55 47.46 42.32 57.50 66.18 39.08 55.38 58.35 52.72 45.08

0.3

+ SNAP-TTA ±0.19 ±0.24 ±0.10 ±0.11 ±0.04 ±0.06 ±0.10 ±0.10 ±0.05 ±0.15 ±0.06 ±0.81 ±0.16 ±0.12 ±0.02 ±0.15
24.94 26.73 25.63 21.11 21.46 32.11 44.05 38.22 36.36 53.92 66.48 18.50 50.80 55.67 48.33 37.62Tent + MECTA ±0.15 ±0.20 ±0.07 ±0.22 ±0.18 ±0.02 ±0.19 ±0.27 ±0.09 ±0.12 ±0.02 ±0.45 ±0.12 ±0.18 ±0.11 ±0.16
27.49 28.90 28.26 23.49 23.76 34.92 45.18 40.21 38.40 53.78 66.54 27.72 51.00 55.48 47.61 39.52+ SNAP-TTA ±0.08 ±0.14 ±0.16 ±0.17 ±0.12 ±0.06 ±0.13 ±0.09 ±0.18 ±0.14 ±0.03 ±0.20 ±0.20 ±0.13 ±0.17 ±0.13
29.42 31.72 29.44 24.41 25.48 37.04 47.10 43.60 39.43 55.95 66.42 28.85 53.70 57.34 51.20 41.41EATA + MECTA ±0.67 ±0.30 ±0.32 ±0.74 ±0.45 ±0.18 ±0.15 ±0.19 ±0.38 ±0.13 ±0.14 ±1.18 ±0.15 ±0.15 ±0.36 ±0.37
31.26 32.71 32.22 27.31 27.61 38.88 47.83 44.52 40.58 56.42 66.24 35.38 53.67 57.39 50.83 42.86

0.1

+ SNAP-TTA ±0.11 ±0.17 ±0.17 ±0.46 ±0.28 ±0.28 ±0.09 ±0.14 ±0.05 ±0.06 ±0.21 ±0.63 ±0.17 ±0.13 ±0.12 ±0.20
21.22 23.19 21.90 18.69 19.39 29.89 42.02 36.53 35.23 51.75 66.23 19.64 48.43 53.54 45.43 35.54Tent + MECTA ±0.13 ±0.22 ±0.13 ±0.18 ±0.20 ±0.13 ±0.10 ±0.22 ±0.05 ±0.15 ±0.04 ±0.27 ±0.03 ±0.13 ±0.11 ±0.14
23.93 25.37 24.10 20.42 21.14 31.83 42.68 37.53 36.31 51.42 66.19 23.84 48.62 53.20 44.57 36.74+ SNAP-TTA ±0.27 ±0.22 ±0.15 ±0.18 ±0.07 ±0.06 ±0.04 ±0.16 ±0.20 ±0.17 ±0.04 ±0.24 ±0.05 ±0.17 ±0.17 ±0.15
24.97 26.95 21.87 21.19 21.94 33.61 45.11 40.92 37.73 54.64 66.60 23.03 51.87 56.60 49.15 38.41EATA + MECTA ±0.42 ±0.27 ±3.29 ±0.90 ±0.45 ±0.08 ±0.11 ±0.19 ±0.42 ±0.10 ±0.07 ±0.59 ±0.35 ±0.25 ±0.23 ±0.51
28.39 30.10 29.45 24.32 25.12 35.54 46.04 41.87 39.16 55.12 66.61 30.34 52.06 56.42 49.11 40.64

0.05

+ SNAP-TTA ±0.57 ±0.38 ±0.22 ±0.20 ±0.07 ±0.20 ±0.27 ±0.07 ±0.15 ±0.01 ±0.09 ±0.34 ±0.24 ±0.11 ±0.07 ±0.20

F ADDITIONAL DISCUSSIONS

F.1 EFFICIENT STRATEGY FOR RE-CALCULATION OF SAMPLE’S DISTANCE

The domain centroid in our framework is updated using a momentum-based approach to effectively
capture recent shifts in the target domain. This ensures that the centroid remains adaptive to evolving
distributions without being overly influenced by temporary fluctuations. However, during sparse
adaptation (SA), where model updates occur at extended intervals, the data distribution can shift
substantially between updates. Consequently, distances calculated for older samples may become
outdated, leading to inconsistencies when comparing them to more recently added samples that are
evaluated based on the updated centroid.

To address this issue efficiently, our Class and Domain Representative Memory (CnDRM) recalcu-
lates the distance of samples only when the shift in the domain centroid exceeds a predefined signif-
icance threshold. Specifically, if the change in the domain centroid ∆cdomain surpasses a threshold
τ∆, the distances of all samples in memory are updated to reflect the new domain conditions. This
threshold-based approach ensures that recalculations occur only when necessary, thereby minimiz-
ing computational costs while maintaining the representativeness of the memory.

In practice, we observed that the performance was not significantly affected as long as the threshold
τ∆ was not set too high, indicating robustness to the choice of threshold. Based on these observa-
tions, we set τ∆ = 0.1 and used this value consistently for all evaluations. By focusing recalculations
on significant shifts, this strategy preserves consistency in sample selection, ensuring that both older
and newer samples are compared fairly in the context of the current domain characteristics without
excessive computational overhead.
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F.2 STRATEGY FOR CONTINUOUS DOMAIN SHIFT SETTING

In our proposed framework, the centroid used for selecting domain-representative samples naturally
adapts to changes in the domain as new data is encountered. This mechanism inherently ensures
that the centroid evolves to reflect the characteristics of the current domain, allowing for effective
performance even under continual Test-Time Adaptation (TTA) scenarios, where the domain may
gradually or abruptly shift during adaptation.

Instead of employing additional mechanisms like z-score evaluation to detect domain shifts, we rely
on the natural adaptability of the centroid to adjust to the incoming data. This simplifies the de-
sign and avoids unnecessary overhead while maintaining robustness. As the domain characteristics
evolve, the centroid continuously aligns with the new domain without requiring explicit detection of
changes or manual intervention.

To validate the effectiveness of SNAP-TTA under continual domain shift scenarios, we conducted
experiments across various benchmark datasets with incremental and abrupt domain shifts. Table 21
summarizes the results, demonstrating that SNAP-TTA maintains strong performance across evolv-
ing domains without requiring additional computational overhead for explicit domain shift detection.

Table 21: Performance of SNAP-TTA under continual domain shift scenarios. The table reports the
accuracy (%) for different datasets with incremental and abrupt shifts. Bold numbers are the highest
accuracy.

AR Method Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.

24.68 19.65 5.12 0.63 0.43 0.40 0.44 0.41 0.30 0.33 0.42 0.24 0.32 0.31 0.31 3.60Tent ±0.45 ±1.27 ±1.22 ±0.05 ±0.02 ±0.04 ±0.06 ±0.03 ±0.03 ±0.04 ±0.05 ±0.04 ±0.02 ±0.05 ±0.04 ±0.23
28.71 30.60 22.91 6.13 1.62 0.87 0.88 0.64 0.64 0.66 0.75 0.44 0.60 0.63 0.61 6.45+ SNAP-TTA ±0.66 ±1.82 ±2.25 ±0.90 ±0.20 ±0.13 ±0.07 ±0.08 ±0.06 ±0.05 ±0.01 ±0.05 ±0.08 ±0.07 ±0.07 ±0.43
10.99 12.21 11.54 11.28 11.13 22.08 34.80 30.69 29.45 43.87 61.92 12.76 40.03 44.99 36.43 27.61CoTTA ±0.40 ±0.04 ±0.30 ±0.13 ±0.15 ±0.07 ±0.18 ±0.10 ±0.04 ±0.19 ±0.09 ±0.16 ±0.13 ±0.14 ±0.16 ±0.15
15.19 15.97 15.91 13.94 14.18 24.76 36.50 32.61 31.76 46.14 63.60 15.60 42.17 46.77 38.08 30.21

0.1

+ SNAP-TTA ±0.17 ±0.11 ±0.02 ±0.04 ±0.03 ±0.07 ±0.23 ±0.04 ±0.06 ±0.10 ±0.14 ±0.04 ±0.02 ±0.06 ±0.12 ±0.08
23.31 27.08 22.71 9.72 4.14 2.03 1.16 0.66 0.45 0.47 0.61 0.33 0.47 0.47 0.46 6.27Tent ±0.37 ±1.13 ±2.50 ±3.35 ±3.00 ±1.53 ±0.75 ±0.22 ±0.12 ±0.09 ±0.16 ±0.09 ±0.08 ±0.08 ±0.07 ±0.90
27.10 33.41 31.78 19.85 16.94 14.75 12.46 5.53 2.69 1.47 1.52 0.67 0.88 0.89 0.84 11.39+ SNAP-TTA ±0.23 ±0.10 ±0.62 ±0.79 ±1.50 ±2.53 ±4.27 ±2.30 ±1.18 ±0.49 ±0.40 ±0.09 ±0.10 ±0.10 ±0.07 ±0.98
11.04 12.25 11.73 11.62 11.25 22.05 34.89 30.73 29.50 44.09 61.87 12.87 40.15 45.06 36.53 27.71CoTTA ±0.38 ±0.39 ±0.42 ±0.10 ±0.59 ±0.13 ±0.13 ±0.20 ±0.17 ±0.18 ±0.09 ±0.18 ±0.17 ±0.19 ±0.14 ±0.23
15.20 15.89 15.93 13.81 14.15 24.74 36.68 32.51 31.71 46.11 63.48 15.73 42.20 46.69 38.05 30.19

0.05

+ SNAP-TTA ±0.15 ±0.02 ±0.10 ±0.04 ±0.03 ±0.16 ±0.27 ±0.04 ±0.20 ±0.05 ±0.09 ±0.19 ±0.12 ±0.10 ±0.04 ±0.10

These results indicate that SNAP-TTA effectively handles both incremental and abrupt domain
shifts, consistently outperforming baseline methods. By leveraging the natural adaptability of the
centroid, SNAP-TTA provides a robust solution for continual domain adaptation in real-world sce-
narios. Notably, SNAP-TTA mitigates catastrophic forgetting not only through its sparse adaptation
strategy but also by leveraging domain centroid-based sampling, allowing performance to be sus-
tained longer in continual shift scenarios. Unlike Tent, CoTTA is specifically designed for continual
domain shift environments, which highlights its superior performance under such conditions.

Future work could explore augmenting this adaptive mechanism by incorporating techniques like
z-score evaluation to enable even more responsive adjustments. For instance, a z-score-based ap-
proach could further refine the centroid’s responsiveness to subtle, gradual domain shifts by moni-
toring discrepancies between incoming data statistics and the current centroid. Such enhancements
could make the system even more effective at handling continual domain evolution, particularly in
scenarios with complex or noisy data streams.

F.3 MODIFICATION FOR LAYER NORMALIZATION OF VIT

The main text describes the use of Batch Normalization (BN) statistics for calculating domain cen-
troids and centroid-instance distances, with subsequent adjustment of memory statistics to match the
target test batch using the Inference-only Batch-aware Memory Normalization (IoBMN) method.
Specifically, these calculations leverage the mean and variance across batches as follows:

µ̄c =
1

B × L

B∑
b=1

L∑
l=1

fb,c,l, σ̄2
c =

1

B × L

B∑
b=1

L∑
l=1

(fb,c,l − µb,c)
2, (6)

where B represents the batch size, L the number of spatial locations, and c the channel index.
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However, modern models like Vision Transformer (ViT) utilize Layer Normalization (LN) instead
of BN. Unlike BN, which calculates statistics across the entire batch, LN normalizes each instance
independently by using the statistics calculated over individual feature dimensions. Specifically, for
a feature vector fb belonging to the b-th instance, LN computes:

µb =
1

C

C∑
c=1

fb,c, σ2
b =

1

C

C∑
c=1

(fb,c − µb)
2, (7)

where C is the number of channels. This difference implies that LN operates without batch-level
interactions, focusing solely on within-instance normalization, which makes the method inherently
more suitable for handling variable batch sizes, particularly in latency-sensitive applications like
those considered in our Test-Time Adaptation (TTA) setting.

Despite the differences between BN and LN, the fundamental mechanism of using feature statistics
to capture domain information remains valid. The key domain characteristics in early layer features
are preserved in both normalization types, enabling the construction of a domain centroid that re-
flects the distributional characteristics of the test data. For LN, this centroid can be computed by
aggregating across instances instead of across batches:

µ̄LN
c =

1

M

M∑
b=1

µb, σ̄2LN
c =

1

M

M∑
b=1

σ2
b , (8)

where M is memory capacity. This modified approach allows the domain centroid to still represent
the overall domain-specific characteristics effectively, despite the lack of direct batch-level statistics.

Furthermore, this methodology extends seamlessly to other normalization layers, such as Group
Normalization (GN). In GN, the statistics are computed across smaller groups of channels within
each instance, but the procedure for aggregating these statistics to form a domain centroid remains
the same—by averaging the group-level statistics across instances.

To maintain the core concept of selecting domain-representative samples with minimal modifica-
tions, we continue to use the memory of high-confidence domain-representative samples in the
Inference-only Batch-aware Memory Normalization (IoBMN) strategy. The adjustment for LN re-
quires: 1. Calculating LN-specific centroids as described in Equation 8. 2. Replacing BN statistics
with LN statistics in the IoBMN module, thereby aligning the feature normalization during inference
with the domain-representative information derived from memory.

The effectiveness of this modification was validated experimentally, as shown in Table 5, where ViT
models using LN showed improved performance even under sparse TTA conditions. This indicates
that, with minimal adjustments, SNAP-TTA remains effective for ViT with LN. The core principle
of utilizing domain-representative statistics for aligning test-time feature distributions continues to
provide significant benefits, ensuring robust adaptation in shifting domains with limited latency and
computational overhead.

F.4 IMPACT OF MEMORY SIZE ON SNAP-TTA PERFORMANCE

The memory size of the Class and Domain Representative Memory (CnDRM) in SNAP-TTA has
implications for both performance and privacy. Increasing memory size allows storing more sam-
ples, which intuitively could improve adaptation. However, such an approach raises privacy con-
cerns and needs additional memory and latency when storing sensitive samples. To evaluate the
trade-off, we conducted experiments on ImageNet-C under Gaussian noise corruption, using Tent +
SNAP-TTA(adaptation rate 0.3) with a batch size of 16 and varying the memory size.

Table 22: Performance compari-
son with varying memory sizes on
ImageNet-C (Gaussian noise).

Memory Size Accuracy (%)
16 (Base) 26.60

32 28.44
64 28.89

128 28.60

As shown in Table 22, increasing the memory size beyond
the base configuration of 16 does not lead to significant per-
formance gains. This observation highlights the efficiency of
SNAP-TTA’s representative sampling strategy, which priori-
tizes storing samples based on proximity to class and domain
centroids. The saturation in accuracy suggests that a carefully
aligned memory size to the batch size is sufficient to balance
computational efficiency, performance, and privacy considera-
tions.
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In conclusion, to minimize computational overhead while ensuring robust test-time adaptation, the
memory size in SNAP-TTA is designed to align with the batch size. This configuration addresses
privacy and memory overhead risks by limiting the number of stored samples without compromising
adaptation effectiveness.

F.5 EFFECT OF LEARNING RATE ON SPARSE AND FULL ADAPTATION

To investigate the impact of learning rates on the performance of SNAP-TTA and baseline methods,
we conducted experiments under sparse adaptation settings. Initially, the same learning rate was
applied for each SOTA TTA algorithms across all adaptation rates to ensure fair comparisons (Ta-
ble 6, 7, 8, 9, 10,and 11). However, as sparse adaptation inherently limits the number of updates,
the updates might be insufficient at lower adaptation rates and explored the effect of increasing the
learning rate.

The results, summarized in Table 23, reveal that higher learning rates improve the accuracy of both
the naive baseline and SNAP-TTA under sparse settings. Notably, while the naive TTA baseline
benefits from a higher learning rate, its performance still falls short of that achieved with full adap-
tation. In contrast, SNAP-TTA surpasses the performance of full adaptation at optimal learning
rates, demonstrating its ability to leverage sparse adaptation effectively. At the same time, applying
these higher learning rates to full adaptation results in model instability and collapse, underscoring
the need to carefully tune learning rates based on adaptation frequency. Therefore, we selected a
stable learning rate of 1 × 10−4 for the evaluations in our work that balances model convergence
and performance across all adaptation rates. These findings suggest that SNAP-TTA not only adapts
effectively under sparse settings but also maintains robustness under optimized learning rates.

Table 23: Accuracy (%) with varying Learning Rates (LR) on ImageNet-C Gaussian noise adapta-
tion rate 0.3.

LR Tent(Full) Tent(STTA) Tent+SNAP CoTTA(Full) CoTTA(STTA) CoTTA+SNAP EATA(Full) EATA(STTA) EATA+SNAP

2× 10−3 2.31 7.04 13.69 13.31 11.88 14.67 0.36 0.59 0.75
1× 10−3 4.54 16.13 27.63 13.18 11.86 14.68 1.31 0.95 24.35
5× 10−4 10.22 24.96 29.95 13.15 11.85 15.11 21.96 20.96 27.72
1× 10−4 27.03 23.63 26.60 13.12 11.74 15.26 29.42 27.35 29.48
5× 10−5 26.34 20.94 24.87 13.34 11.92 14.85 29.37 26.07 27.9

In conclusion, selecting an appropriately high learning rate for sparse adaptation significantly en-
hances performance while ensuring model stability. This strategy is particularly useful for real-world
deployment of SNAP-TTA, where computational efficiency and robust performance are paramount.

G LICENSE OF ASSETS

Datasets CIFAR10/CIFAR100 (MIT License), CIFAR10-C/CIFAR100-C (Creative Commons
Attribution 4.0 International), and ImageNet-C (Apache 2.0).

Codes Torchvision for ResNet18, ResNet50, and VitBase-LN (Apache 2.0), the official repository
of CoTTA (MIT License), the official repository of Tent (MIT License), the official repository of
EATA (MIT License), the official repository of SAR (BSD 3-Clause License), the official repository
of RoTTA (MIT License), and the official repository of MECTA (Sony AI).
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